TWI622128B - Resistive random access memory, manufacturing method thereof, and operation thereof - Google Patents

Resistive random access memory, manufacturing method thereof, and operation thereof Download PDF

Info

Publication number
TWI622128B
TWI622128B TW105131460A TW105131460A TWI622128B TW I622128 B TWI622128 B TW I622128B TW 105131460 A TW105131460 A TW 105131460A TW 105131460 A TW105131460 A TW 105131460A TW I622128 B TWI622128 B TW I622128B
Authority
TW
Taiwan
Prior art keywords
electrode
region
random access
access memory
resistive random
Prior art date
Application number
TW105131460A
Other languages
Chinese (zh)
Other versions
TW201814836A (en
Inventor
侯拓宏
博瑞 胡
張哲嘉
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105131460A priority Critical patent/TWI622128B/en
Publication of TW201814836A publication Critical patent/TW201814836A/en
Application granted granted Critical
Publication of TWI622128B publication Critical patent/TWI622128B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一種電阻式隨機存取記憶體包括第一電極、第二電極以及電荷捕捉層。第二電極位於第一電極上。電荷捕捉層位於第一電極與第二電極之間。電荷捕捉層包括第一區域與第二區域。第一區域具有第一摻質並靠近第一電極。第二區域具有第二摻質並靠近第二電極。A resistive random access memory includes a first electrode, a second electrode, and a charge trapping layer. The second electrode is located on the first electrode. The charge trapping layer is between the first electrode and the second electrode. The charge trapping layer includes a first region and a second region. The first region has a first dopant and is adjacent to the first electrode. The second region has a second dopant and is adjacent to the second electrode.

Description

電阻式隨機存取記憶體、其製造方法及其操作Resistive random access memory, manufacturing method thereof and operation thereof

本發明是有關於一種記憶體、其製造方法及其操作,且特別是有關於一種電阻式隨機存取記憶體、其製造方法及其操作。 The present invention relates to a memory, a method of fabricating the same, and an operation thereof, and more particularly to a resistive random access memory, a method of fabricating the same, and an operation thereof.

憶阻器(memristor)為一種二端點(two-terminal)元件,其使用電場誘導電阻開關以改變其電阻狀態。由於所述電阻狀態的改變為非揮發性的,因此,憶阻器可應用在人造神經突觸(artificial neuromorphic synapse)、模糊邏輯(fuzzy-logic)元件以及電阻式隨機存取記憶體(resistive random access memory,RRAM)等領域中。 A memristor is a two-terminal element that uses an electric field induced resistance switch to change its resistance state. Since the change in the resistance state is non-volatile, the memristor can be applied to artificial neuromorphic synapse, fuzzy-logic components, and resistive random access memory (resistive random access memory) Access memory, RRAM) and other fields.

RRAM廣泛地應用在非揮發性記憶體領域中。由於RRAM具有簡單的交錯陣列並可低溫製造,使得RRAM具有最佳的潛力來取代現有的快閃記憶體(flash memory)。雖然RRAM的 交錯陣列理論上可容許4F2之最小單元胞尺寸(其中F為最小特徵尺寸),且低溫製程可容許記憶體陣列之堆疊達到前所未有的積體密度。然而,在1R結構中(亦即僅具有一電阻元件),會有潛電流(sneak current)通過相鄰之未被選擇的記憶胞,而嚴重地影響讀取裕量(read margin),且限制交錯陣列之最大尺寸。此問題可藉由額外的非線性選擇裝置與這些電阻轉換元件串聯予以解決。因此,一個二極體搭配一個電阻(1D1R)以及一個選擇器搭配一個電阻(1S1R)等架構似乎已成為三維(3D)堆疊記憶體應用的主要競爭者。 RRAM is widely used in the field of non-volatile memory. Because RRAM has a simple interleaved array and can be fabricated at low temperatures, RRAM has the best potential to replace existing flash memory. Although the staggered array of RRAMs can theoretically tolerate a minimum cell size of 4F 2 (where F is the minimum feature size), and low temperature processes can allow stacking of memory arrays to achieve an unprecedented bulk density. However, in the 1R structure (that is, having only one resistive element), there is a sneak current passing through adjacent unselected memory cells, which seriously affects the read margin and limits The largest size of the staggered array. This problem can be solved by connecting these resistance conversion elements in series with additional nonlinear selection means. Therefore, a diode with a resistor (1D1R) and a selector with a resistor (1S1R) architecture seems to have become a major competitor in 3D (3D) stacked memory applications.

然而,將上述1D1R以及1S1R的架構應用在3D交錯陣列時容易產生製程問題,而無法被實際應用在3D記憶體的製程上。因此,如何實現一非線性的電阻轉換元件,且不需要額外的選擇元件將成為發展具有RRAM之3D記憶體的重要課題之一。 However, when the above-mentioned 1D1R and 1S1R architectures are applied to a 3D interleaved array, process problems are easily generated and cannot be practically applied to the process of 3D memory. Therefore, how to implement a non-linear resistance conversion element without the need for additional selection elements will become one of the important topics for developing 3D memory with RRAM.

本發明提供一種電阻式隨機存取記憶體、其製造方法及其操作,其具有非線性電阻值且不需要額外的選擇元件,因此,可縮小面積,進而達到高密度的三維堆疊式RRAM陣列。 The present invention provides a resistive random access memory, a method of fabricating the same, and an operation thereof, which have a non-linear resistance value and do not require additional selection elements, thereby reducing the area and thereby achieving a high-density three-dimensional stacked RRAM array.

本發明提供一種電阻式隨機存取記憶體、其製造方法及其操作,其不具有習知的生成(forming)、燈絲(filament)以及離子移動,進而達到低功耗的功效。 The present invention provides a resistive random access memory, a method of fabricating the same, and an operation thereof, which do not have conventional effects of forming, filament, and ion movement, thereby achieving low power consumption.

本發明提供一種電阻式隨機存取記憶體,包括第一電極、 第二電極以及電荷捕捉層。第二電極位於第一電極上。電荷捕捉層位於第一電極與第二電極之間。電荷捕捉層包括第一區域與第二區域。第一區域具有第一摻質並靠近第一電極。第二區域具有第二摻質並靠近第二電極。 The invention provides a resistive random access memory, comprising a first electrode, a second electrode and a charge trapping layer. The second electrode is located on the first electrode. The charge trapping layer is between the first electrode and the second electrode. The charge trapping layer includes a first region and a second region. The first region has a first dopant and is adjacent to the first electrode. The second region has a second dopant and is adjacent to the second electrode.

本發明提供一種電阻式隨機存取記憶體的製造方法,其步驟如下。提供第一電極。並於第一電極上形成電荷捕捉層。於電荷捕捉層上形成第二電極。 The present invention provides a method of manufacturing a resistive random access memory, the steps of which are as follows. A first electrode is provided. And forming a charge trapping layer on the first electrode. A second electrode is formed on the charge trap layer.

本發明提供一種記憶元件的操作,其步驟如下。提供上述電阻式隨機存取記憶體。在設定(set)時,對第二電極施加正偏壓,使得多個電子從第一電極注入電荷捕捉層的第一區域中且被電荷捕捉層的第二區域阻擋。在重設(reset)時,對第二電極施加負偏壓,使得電子從電荷捕捉層的該第一區域逸至第一電極。 The present invention provides an operation of a memory element, the steps of which are as follows. The above resistive random access memory is provided. At a set, a positive bias is applied to the second electrode such that a plurality of electrons are injected from the first electrode into the first region of the charge trapping layer and blocked by the second region of the charge trapping layer. At the time of reset, a negative bias is applied to the second electrode such that electrons escape from the first region of the charge trapping layer to the first electrode.

基於上述,本發明之電阻式隨機存取記憶體僅為1R記憶體結構,其具有非線性電阻值且不需要額外的選擇元件。因此,相較於習知的RRAM(例如1D1R與1S1R架構),本發明的RRAM具有較小的面積。另外,本發明之RRAM可省略初始生成步驟(forming-free),因此,可不需具有較大電壓的初始生成電壓以作活化,以避免RRAM結構的損傷,進而提升可靠度。另一方面,本發明之RRAM亦不需形成燈絲以及離子移動,進而達到低功耗的功效。 Based on the above, the resistive random access memory of the present invention is only a 1R memory structure, which has a non-linear resistance value and does not require additional selection elements. Therefore, the RRAM of the present invention has a smaller area than conventional RRAMs (e.g., 1D1R and 1S1R architecture). In addition, the RRAM of the present invention can omit the initial forming-free process. Therefore, the initial generated voltage having a large voltage can be eliminated for activation to avoid damage of the RRAM structure, thereby improving reliability. On the other hand, the RRAM of the present invention does not need to form a filament and ion movement, thereby achieving low power consumption.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.

10、20‧‧‧電阻式隨機存取記憶體 10, 20‧‧‧Resistive random access memory

201‧‧‧基底 201‧‧‧Base

102、202‧‧‧第一電極 102, 202‧‧‧ first electrode

203‧‧‧介電層 203‧‧‧ dielectric layer

104、204‧‧‧電荷捕捉層 104, 204‧‧‧ charge trapping layer

205‧‧‧記憶胞 205‧‧‧ memory cells

106、206‧‧‧第一區域 106, 206‧‧‧ first area

108、208‧‧‧第二區域 108, 208‧‧‧ second area

110、210‧‧‧第二電極 110, 210‧‧‧ second electrode

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

D3‧‧‧第三方向 D3‧‧‧ third direction

S‧‧‧堆疊結構 S‧‧‧Stack structure

圖1為本發明第一實施例的一種電阻式隨機存取記憶體的剖面示意圖。 1 is a cross-sectional view showing a resistive random access memory according to a first embodiment of the present invention.

圖2A為本發明第二實施例的一種電阻式隨機存取記憶體的立體圖。 2A is a perspective view of a resistive random access memory according to a second embodiment of the present invention.

圖2B為圖2A之記憶胞的剖面示意圖。 2B is a schematic cross-sectional view of the memory cell of FIG. 2A.

圖3A至圖3D為圖1之電阻式隨機存取記憶體的操作示意圖。 3A to 3D are schematic diagrams showing the operation of the resistive random access memory of FIG. 1.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。 The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not be repeated.

圖1為本發明第一實施例的一種電阻式隨機存取記憶體的剖面示意圖。 1 is a cross-sectional view showing a resistive random access memory according to a first embodiment of the present invention.

請參照圖1,本發明第一實施例的電阻式隨機存取記憶體10包括第一電極102、電荷捕捉層104以及第二電極110。第二電 極110位於第一電極102上。在一實施例中,第一電極102的材料與第二電極110的材料分別包括導電材料,其形成方法可以是物理氣相沈積法。所述導電材料可例如是金屬材料、金屬氮化物或類似導電材料。所述金屬材料包括選自由Ti、Ta、Ni、Cu、W、Hf、Zr、Nb、Y、Zn、Co、Al、Si、Ge所組成的群組中之至少一者。所述金屬氮化物包括選自由Ti、Ta、Ni、Cu、W、Hf、Zr、Nb、Y、Zn、Co、Al、Si、Ge所組成的群組中之至少一者之金屬所形成的氮化物。在一實施例中,第一電極102與第二電極110可以是不同材料。舉例來說,第一電極102可以是TiN層,且第二電極110可以是Ta層。又或者是,第一電極102可以是Ta層,且第二電極110可以是Hf層。在另一實施例中,第一電極102與第二電極110可以是相同材料。舉例來說,第一電極102與第二電極110皆為TiN層或是Ta層。 Referring to FIG. 1, a resistive random access memory 10 according to a first embodiment of the present invention includes a first electrode 102, a charge trap layer 104, and a second electrode 110. Second electric The pole 110 is located on the first electrode 102. In an embodiment, the material of the first electrode 102 and the material of the second electrode 110 respectively comprise a conductive material, which may be formed by physical vapor deposition. The electrically conductive material can be, for example, a metallic material, a metal nitride or a similar electrically conductive material. The metal material includes at least one selected from the group consisting of Ti, Ta, Ni, Cu, W, Hf, Zr, Nb, Y, Zn, Co, Al, Si, and Ge. The metal nitride includes a metal selected from the group consisting of at least one of Ti, Ta, Ni, Cu, W, Hf, Zr, Nb, Y, Zn, Co, Al, Si, and Ge. nitride. In an embodiment, the first electrode 102 and the second electrode 110 may be different materials. For example, the first electrode 102 may be a TiN layer, and the second electrode 110 may be a Ta layer. Still alternatively, the first electrode 102 may be a Ta layer, and the second electrode 110 may be an Hf layer. In another embodiment, the first electrode 102 and the second electrode 110 may be the same material. For example, the first electrode 102 and the second electrode 110 are both TiN layers or Ta layers.

電荷捕捉層104位於第一電極102與第二電極110之間。,電荷捕捉層104包括第一區域106與第二區域108。第一區域106具有第一摻質並靠近第一電極102。第二區域108具有第二摻質並靠近第二電極110。 The charge trap layer 104 is located between the first electrode 102 and the second electrode 110. The charge trap layer 104 includes a first region 106 and a second region 108. The first region 106 has a first dopant and is adjacent to the first electrode 102. The second region 108 has a second dopant and is adjacent to the second electrode 110.

在一實施例中,電荷捕捉層104的材料為能隙小於5eV的絕緣材料。所述絕緣材料包括選自由TiO2、NiO、HfO、HfO2、ZrO、ZrO2、Ta2O5、ZnO、WO3、CoO及Nb2O5所組成的群組中之至少一者。舉例來說,電荷捕捉層104的材料可以是TiO2。但本發明不以此為限,在其他實施例中,電荷捕捉層104的材料的能 隙可依需求來調整。 In one embodiment, the material of the charge trapping layer 104 is an insulating material having an energy gap of less than 5 eV. The insulating material includes at least one selected from the group consisting of TiO 2 , NiO, HfO, HfO 2 , ZrO, ZrO 2 , Ta 2 O 5 , ZnO, WO 3 , CoO, and Nb 2 O 5 . For example, the material of charge trapping layer 104 can be TiO 2 . However, the present invention is not limited thereto. In other embodiments, the energy gap of the material of the charge trap layer 104 can be adjusted according to requirements.

在一實施例中,第一摻質與第二摻雜分別包括選自由Ti、Zr、Fe、Co、Al、S、N、Ca、Cu、Pb、Sr、Hf、B、C、Mo、Zn、Mg所組成的群組中之至少一者。在一實施例中,第一摻質與第二摻質可以不同。舉例來說,第一摻質可以是Al,且第二摻質可以是Hf。但本發明不以此為限,在其他實施例中,只要調整第一摻質與第二摻質的種類使得具有第二摻質的第二區域108的能隙大於具有第一摻質的第一區域106的能隙即為本發明的範疇。在一實施例中,第二區域108的能隙比第一區域106的能隙大至少1eV。因此,本實施例可提升電荷捕捉層104的第一區域106的電子捕捉能力,並在施加電場下抑制第一區域106中的離子移動(ionic movement)以保持氧空缺(oxygen vacancies)或其他離子固定不動。另一方面,電荷捕捉層104的第二區域108可避免或阻擋電子從第一區域106(或第一電極102)流向第二電極110,進而更加提升第一區域106的電子捕捉能力。換言之,電荷捕捉層104的第二區域108可控制非揮發性之電阻狀態的儲存能力(retention),進而提升電阻式隨機存取記憶體10的可靠度。 In one embodiment, the first dopant and the second dopant respectively comprise a layer selected from the group consisting of Ti, Zr, Fe, Co, Al, S, N, Ca, Cu, Pb, Sr, Hf, B, C, Mo, Zn. And at least one of the groups consisting of Mg. In an embodiment, the first dopant and the second dopant may be different. For example, the first dopant can be Al and the second dopant can be Hf. However, the present invention is not limited thereto. In other embodiments, the first dopant and the second dopant are adjusted such that the second region 108 having the second dopant has a larger energy gap than the first dopant. The energy gap of a region 106 is within the scope of the invention. In an embodiment, the energy gap of the second region 108 is at least 1 eV greater than the energy gap of the first region 106. Thus, this embodiment can enhance the electron capture capability of the first region 106 of the charge trapping layer 104 and inhibit the ionic movement in the first region 106 to maintain oxygen vacancies or other ions under application of an electric field. Fixed. On the other hand, the second region 108 of the charge trapping layer 104 can prevent or block electrons from flowing from the first region 106 (or the first electrode 102) to the second electrode 110, thereby further enhancing the electron capture capability of the first region 106. In other words, the second region 108 of the charge trapping layer 104 can control the retention of the non-volatile resistive state, thereby increasing the reliability of the resistive random access memory 10.

在一實施例中,第一區域106中的第一摻質的濃度介於1at%至50at%之間。第二區域108中的第二摻質的濃度介於10at%至90at%之間。在一實施例中,第一區域106的厚度可約為5-15nm,而第二區域108的厚度可約為5-10nm。但本發明不以此為限,第一區域106與第二區域108的厚度可依使用者需求來進行調整。 In an embodiment, the concentration of the first dopant in the first region 106 is between 1 at% and 50 at%. The concentration of the second dopant in the second region 108 is between 10 at% and 90 at%. In an embodiment, the first region 106 may have a thickness of about 5-15 nm, and the second region 108 may have a thickness of about 5-10 nm. However, the present invention is not limited thereto, and the thickness of the first region 106 and the second region 108 can be adjusted according to user requirements.

在一實施例中,當第一摻質與第二摻質相同,第一區域106中的第一摻質的濃度可小於第二區域108中的第二摻質的濃度。但本發明不以此為限,在其他實施例中,當第一摻質與第二摻質不同,第一區域106中的第一摻質的濃度亦可小於第二區域108中的第二摻質的濃度。 In an embodiment, when the first dopant is the same as the second dopant, the concentration of the first dopant in the first region 106 may be less than the concentration of the second dopant in the second region 108. However, the present invention is not limited thereto. In other embodiments, when the first dopant is different from the second dopant, the concentration of the first dopant in the first region 106 may be smaller than the second in the second region 108. The concentration of the dopant.

在另一實施例中,當第一摻質與第二摻質相同,電荷捕捉層104的第一區域106與第二區域108中的第一摻質的濃度(或第二摻質的濃度)可呈一梯度分布,使得靠近第一電極102處的第一摻質的濃度小於靠近第二電極110處的第二摻質的濃度。 In another embodiment, when the first dopant is the same as the second dopant, the concentration of the first dopant in the first region 106 and the second region 108 of the charge trapping layer 104 (or the concentration of the second dopant) A gradient may be present such that the concentration of the first dopant adjacent the first electrode 102 is less than the concentration of the second dopant adjacent the second electrode 110.

以上所述的第一實施例的電阻式隨機存取記憶體10可例如是平面式之電荷捕捉層的電阻式隨機存取記憶體。但本發明不以此為限,在其他實施例中,亦可以是堆疊式之電荷捕捉層的電阻式隨機存取記憶體,詳細說明如下。 The resistive random access memory 10 of the first embodiment described above may be, for example, a resistive random access memory of a planar charge trapping layer. However, the present invention is not limited thereto. In other embodiments, it may be a resistive random access memory of a stacked charge trapping layer, which is described in detail below.

圖2A為本發明第二實施例的一種電阻式隨機存取記憶體的立體圖。圖2B為圖2A之記憶胞的剖面示意圖。 2A is a perspective view of a resistive random access memory according to a second embodiment of the present invention. 2B is a schematic cross-sectional view of the memory cell of FIG. 2A.

請參照圖2A與圖2B,本發明第二實施例的電阻式隨機存取記憶體20包括基底201、多個第一電極202、多個介電層203、電荷捕捉層204以及多個第二電極210。在一實施例中,基底201可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(SOI)。 Referring to FIG. 2A and FIG. 2B, the resistive random access memory 20 of the second embodiment of the present invention includes a substrate 201, a plurality of first electrodes 202, a plurality of dielectric layers 203, a charge trapping layer 204, and a plurality of second Electrode 210. In an embodiment, the substrate 201 can be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (SOI) on the insulating layer.

第一電極202與介電層203皆沿著第一方向D1延伸,並沿著第三方向D3相互堆疊以形成堆疊結構S。第一電極202的材 料、形成方法與上述第一電極102的材料、形成方法相似,於此便不再贅述。介電層203的材料可例如是氧化矽、氮化矽或其組合,其形成方法可以是化學氣相沉積法、熱氧化法等。 The first electrode 202 and the dielectric layer 203 both extend along the first direction D1 and are stacked one on another along the third direction D3 to form a stacked structure S. The material of the first electrode 202 The material and the formation method are similar to those of the first electrode 102 described above, and will not be described herein. The material of the dielectric layer 203 may be, for example, hafnium oxide, tantalum nitride or a combination thereof, and the formation method may be a chemical vapor deposition method, a thermal oxidation method, or the like.

電荷捕捉層204共形地(conformally)且毯覆式地(blanketly)覆蓋堆疊結構S(其包括相互堆疊的第一電極202與介電層203)的表面(亦即頂面與側壁)。 The charge trapping layer 204 conformally and blanketly covers the surface (ie, the top and sidewall) of the stacked structure S (which includes the first electrode 202 and the dielectric layer 203 stacked one on another).

第二電極210沿著第二方向D2延伸並共形地覆蓋堆疊結構S(其包括相互堆疊的第一電極202與介電層203)的表面(亦即頂面與側壁)。第一電極202與第二電極210的交會處或重疊處可形成記憶胞(memory cell)205。第二電極210的材料、形成方法與上述第二電極110的材料、形成方法相似,於此便不再贅述。在一實施例中,第一方向D1、第二方向D2以及第三方向D3實質上相互垂直。 The second electrode 210 extends along the second direction D2 and conformally covers the surface (ie, the top surface and the sidewall) of the stacked structure S (which includes the first electrode 202 and the dielectric layer 203 stacked on each other). A memory cell 205 may be formed at the intersection or overlap of the first electrode 202 and the second electrode 210. The material and formation method of the second electrode 210 are similar to those of the second electrode 110 described above, and will not be described herein. In an embodiment, the first direction D1, the second direction D2, and the third direction D3 are substantially perpendicular to each other.

如圖2B所示,記憶胞205可包括部分第一電極202、部分電荷捕捉層204以及部分第二電極210。部分電荷捕捉層204位於部分第一電極202的側壁上,以形成垂直式之電荷捕捉層。部分第二電極210位於部分電荷捕捉層204上,使得部分電荷捕捉層204位於部分第一電極202與部分第二電極210之間。詳細地說,電荷捕捉層204亦包括第一區域206與第二區域208。第一區域206具有第一摻質並靠近第一電極202。第二區域208具有第二摻質並靠近第二電極210。由於第二實施例之電荷捕捉層204、第一區域206以及第二區域208的材料、濃度以及厚度與第一實 施例之電荷捕捉層104、第一區域106以及第二區域108的材料、濃度以及厚度相似,於此便不再贅述。 As shown in FIG. 2B, the memory cell 205 can include a portion of the first electrode 202, a portion of the charge trapping layer 204, and a portion of the second electrode 210. A portion of the charge trapping layer 204 is located on a sidewall of a portion of the first electrode 202 to form a vertical charge trapping layer. A portion of the second electrode 210 is located on the portion of the charge trapping layer 204 such that a portion of the charge trapping layer 204 is between the portion of the first electrode 202 and the portion of the second electrode 210. In detail, the charge trap layer 204 also includes a first region 206 and a second region 208. The first region 206 has a first dopant and is adjacent to the first electrode 202. The second region 208 has a second dopant and is adjacent to the second electrode 210. Due to the material, concentration, and thickness of the charge trap layer 204, the first region 206, and the second region 208 of the second embodiment, The materials, concentrations, and thicknesses of the charge trap layer 104, the first region 106, and the second region 108 of the embodiment are similar, and will not be described herein.

接著,將詳述本發明之電阻式隨機存取記憶體的製造方法。以下將以第一實施例之電阻式隨機存取記憶體10為例進行說明。 Next, a method of manufacturing the resistive random access memory of the present invention will be described in detail. Hereinafter, the resistive random access memory 10 of the first embodiment will be described as an example.

首先,提供第一電極102。接著,在第一電極102上形成電荷捕捉層104。之後,在電荷捕捉層104上形成第二電極110。由於第一電極102、電荷捕捉層104以及第二電極110的材料已於上述段落說明過,於此便不再贅述。 First, the first electrode 102 is provided. Next, a charge trap layer 104 is formed on the first electrode 102. Thereafter, the second electrode 110 is formed on the charge trap layer 104. Since the materials of the first electrode 102, the charge trap layer 104, and the second electrode 110 have been described in the above paragraphs, they will not be described again.

在一實施例中,電荷捕捉層104的形成方法可包括藉由原子層沈積製程原位(in situ)形成電荷捕捉層104。在一實施例中,原子層沈積製程可例如是電漿增強原子層沈積製程(plasma-enhanced atomic layer deposition,PEALD)。 In an embodiment, the method of forming the charge trap layer 104 may include forming the charge trap layer 104 in situ by an atomic layer deposition process. In one embodiment, the atomic layer deposition process can be, for example, a plasma-enhanced atomic layer deposition (PEALD) process.

具體地說,所述原子層沈積製程包括進行多次第一沈積循環,以形成多個具有絕緣材料的第一材料層。之後,進行多次第二沈積循環,以形成多個具有第一摻質的第二材料層。然後,重複所述第一沈積循環與所述第二沈積循環,直到形成所需厚度的電荷捕捉層104的第一區域106。在一實施例中,第一沈積循環的次數可大於第二沈積循環的次數。舉例來說,可進行7次第一沈積循環以形成7層TiO2層,之後,進行1次第二次沈積循環以形成1層Al2O3層。接著,重複7次第一沈積循環與1次第二次沈積循環的步驟,直到電荷捕捉層104的第一區域106的厚度約為 10nm。但本發明不以此為限,只要第一沈積循環的次數大於第二沈積循環的次數即為本發明的範疇。 Specifically, the atomic layer deposition process includes performing a plurality of first deposition cycles to form a plurality of first material layers having an insulating material. Thereafter, a second deposition cycle is performed a plurality of times to form a plurality of second material layers having the first dopant. The first deposition cycle and the second deposition cycle are then repeated until a first region 106 of the charge trap layer 104 of a desired thickness is formed. In an embodiment, the number of first deposition cycles may be greater than the number of second deposition cycles. For example, 7 first deposition cycles can be performed to form a 7-layer TiO 2 layer, after which a second deposition cycle is performed to form a 1-layer Al 2 O 3 layer. Next, the steps of the first deposition cycle and the 1st second deposition cycle are repeated 7 times until the thickness of the first region 106 of the charge trap layer 104 is about 10 nm. However, the invention is not limited thereto, as long as the number of times of the first deposition cycle is greater than the number of times of the second deposition cycle.

上述藉由原子層沈積製程以於第一電極102上原位形成電荷捕捉層104的第一區域106,其可調整第一區域106的厚度與Al摻雜劑量(或摻雜濃度),使得電阻式隨機存取記憶體的崩潰電壓、操作電壓以及操作電流準位(operation-current level)可有效率地被調整。 The first region 106 of the charge trapping layer 104 is formed in situ on the first electrode 102 by an atomic layer deposition process, which can adjust the thickness of the first region 106 and the Al doping amount (or doping concentration) so that the resistance The breakdown voltage, operating voltage, and operation-current level of the random access memory can be efficiently adjusted.

同樣地,形成電荷捕捉層104的第一區域106之後,可接著進行多次第三沈積循環,以形成多個具有絕緣材料的第三材料層。接著,進行多次第四沈積循環,以形成多個具有第二摻質的第四材料層。然後,重複第三沈積循環與第四沈積循環,直到形成所需厚度的電荷捕捉層104的第二區域108。在一實施例中,第四沈積循環的次數可大於第三沈積循環的次數。舉例來說,可進行1次第三次沈積循環以形成1層TiO2層,之後,進行9次第四沈積循環以形成9層HfO2層。接著,重複1次第三次沈積循環與9次第四沈積循環的步驟,直到電荷捕捉層104的第二區域108的厚度約為10nm。但本發明不以此為限,只要第四沈積循環的次數大於第三沈積循環的次數即為本發明的範疇。 Likewise, after the first region 106 of the charge trapping layer 104 is formed, a third deposition cycle can be performed a plurality of times to form a plurality of third material layers having an insulating material. Next, a fourth deposition cycle is performed a plurality of times to form a plurality of fourth material layers having the second dopant. Then, the third deposition cycle and the fourth deposition cycle are repeated until a second region 108 of the charge trap layer 104 of a desired thickness is formed. In an embodiment, the number of fourth deposition cycles may be greater than the number of third deposition cycles. For example, a third deposition cycle can be performed to form a 1-layer TiO 2 layer, after which a fourth deposition cycle is performed 9 times to form a 9-layer HfO 2 layer. Next, the steps of the third deposition cycle and the 9th fourth deposition cycle are repeated once until the thickness of the second region 108 of the charge trap layer 104 is about 10 nm. However, the invention is not limited thereto, as long as the number of fourth deposition cycles is greater than the number of third deposition cycles.

上述藉由原子層沈積製程以於第一電極102上原位形成電荷捕捉層104的第二區域108,其可調整第二區域108的厚度與Hf摻雜劑量(或摻雜濃度),使得電阻式隨機存取記憶體之操作電流準位、電阻狀態保持以及平衡準位(equilibrium level)可有效 率地被調整。 The second region 108 of the charge trapping layer 104 is formed in situ on the first electrode 102 by an atomic layer deposition process, which can adjust the thickness of the second region 108 and the Hf doping amount (or doping concentration) so that the resistance The operating current level, resistance state retention, and equilibrium level of the random access memory are effective. The rate is adjusted.

此外,由於本實施例使用原子層沈積製程原位形成電荷捕捉層,使得所形成的電荷捕捉層可共形地且均勻地沈積在第一電極的垂直側壁上。因此,此原子層沈積製程可適用於高密度的三維堆疊式RRAM陣列,以符合現今科技輕薄短小的趨勢。 Furthermore, since the present embodiment forms the charge trap layer in situ using an atomic layer deposition process, the formed charge trap layer can be deposited conformally and uniformly on the vertical sidewalls of the first electrode. Therefore, this atomic layer deposition process can be applied to high-density three-dimensional stacked RRAM arrays to meet the current trend of thin and light technology.

在另一實施例中,電荷捕捉層104的形成方法亦可包括藉由化學沈積製程先形成材料層(例如是TiO2層)之後,進行離子佈植製程,以將Al摻雜至TiO2層中,藉此形成電荷捕捉層104的第一區域106。選擇性地,亦可在第一區域106上形成藉由化學沈積製程形成材料層(例如是HfO2層)後,進行離子佈植製程,以將Ti摻雜至HfO2層中,藉此形成電荷捕捉層104的第二區域108。 In another embodiment, the method for forming the charge trapping layer 104 may further include performing an ion implantation process to form Al to the TiO 2 layer after forming a material layer (for example, a TiO 2 layer) by a chemical deposition process. The first region 106 of the charge trapping layer 104 is thereby formed. Alternatively, an ion implantation process may be performed on the first region 106 by forming a material layer (for example, an HfO 2 layer) by a chemical deposition process to dope the Ti into the HfO 2 layer, thereby forming The second region 108 of the charge trapping layer 104.

圖3A至圖3D為圖1之電阻式隨機存取記憶體的操作示意圖。 3A to 3D are schematic diagrams showing the operation of the resistive random access memory of FIG. 1.

以下將以第一實施例之電阻式隨機存取記憶體10為例進行說明。請參照圖3A,在設定(set)時,對第二電極110施加正偏壓(例如是+4.0V),使得多個電子從接地(GND)的第一電極102注入電荷捕捉層104的第一區域106中且被電荷捕捉層104的第二區域108阻擋(blocked)。此時,電荷捕捉層104的電阻狀態從高電阻狀態(high resistance state,HRS)轉變為低電阻狀態(low resistance state,LRS)。 Hereinafter, the resistive random access memory 10 of the first embodiment will be described as an example. Referring to FIG. 3A, at the time of setting, a positive bias (for example, +4.0 V) is applied to the second electrode 110, so that a plurality of electrons are injected from the first electrode 102 of the ground (GND) into the charge trap layer 104. A region 106 is blocked by the second region 108 of the charge trapping layer 104. At this time, the resistance state of the charge trap layer 104 is changed from a high resistance state (HRS) to a low resistance state (LRS).

請參照圖3B,在LRS讀取(read)時,對第二電極110 施加讀取負偏壓(例如是-2V),使得福勒-諾德翰姆(Fowler-Nordheim,FN)電子從第二電極110注入第一區域106,並藉由第一區域106中被補捉的電子以及FN電子的總合判讀為低電阻狀態。 Referring to FIG. 3B, when the LRS is read, the second electrode 110 is paired. A read negative bias voltage (e.g., -2V) is applied such that Fowler-Nordheim (FN) electrons are injected from the second electrode 110 into the first region 106 and are supplemented by the first region 106. The sum of the captured electrons and the FN electrons is read as a low resistance state.

請參照圖3C,在重設(reset)時,對第二電極110施加負偏壓(例如是-8.0V),使得上述電子從電荷儲存層104的第一區域106逸(escape)至接地的第一電極102。此時,電荷捕捉層104的電阻狀態從低電阻狀態(LRS)轉變為高電阻狀態(HRS)。 Referring to FIG. 3C, a negative bias (eg, -8.0 V) is applied to the second electrode 110 during reset to cause the electrons to escape from the first region 106 of the charge storage layer 104 to ground. The first electrode 102. At this time, the resistance state of the charge trap layer 104 is changed from the low resistance state (LRS) to the high resistance state (HRS).

請參照圖3D,在HRS讀取(read)時,對第二電極110施加讀取負偏壓(例如是-2V),使得FN電子從第二電極110注入第一區域106,由於第一區域106中僅剩下FN電子而沒有被補捉的電子,因此,其判讀為高電阻狀態。 Referring to FIG. 3D, when the HRS is read, a negative bias voltage (for example, -2 V) is applied to the second electrode 110, so that FN electrons are injected from the second electrode 110 into the first region 106 due to the first region. In Fig. 106, only the FN electrons are left and the electrons are not captured, so that they are interpreted as a high resistance state.

綜上所述,本發明之電阻式隨機存取記憶體僅為1R記憶體結構,其具有非線性電阻值且不需要額外的選擇元件。因此,相較於習知的RRAM(例如1D1R與1S1R架構),本發明的RRAM具有較小的面積。另外,本發明之RRAM可省略初始生成步驟,因此,可不需具有較大電壓的初始生成電壓以作活化,以避免RRAM結構的損傷,進而提升可靠度。另一方面,本發明之RRAM亦可省略燈絲形成以及離子移動,進而達到低功耗的功效。 In summary, the resistive random access memory of the present invention is only a 1R memory structure, which has a non-linear resistance value and does not require additional selection elements. Therefore, the RRAM of the present invention has a smaller area than conventional RRAMs (e.g., 1D1R and 1S1R architecture). In addition, the RRAM of the present invention can omit the initial generation step, and therefore, the initial generated voltage having a large voltage can be eliminated for activation to avoid damage of the RRAM structure, thereby improving reliability. On the other hand, the RRAM of the present invention can also omit filament formation and ion mobility, thereby achieving low power consumption.

此外,本發明使用原子層沈積製程原位形成電荷捕捉層。因此,此原子層沈積製程可適用於高密度的三維堆疊式RRAM陣列,以符合現今科技輕薄短小的趨勢。 Further, the present invention forms an electric charge trapping layer in situ using an atomic layer deposition process. Therefore, this atomic layer deposition process can be applied to high-density three-dimensional stacked RRAM arrays to meet the current trend of thin and light technology.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (18)

一種電阻式隨機存取記憶體,包括:一第一電極,包括一第一導電材料;一第二電極,包括一第二導電材料,且位於該第一電極上;一電荷捕捉層,位於該第一電極與該第二電極之間,其中該電荷捕捉層包括:一第一區域,具有一第一摻質並靠近該第一電極;以及一第二區域,具有一第二摻質並靠近該第二電極,其中該第二區域的能隙大於該第一區域的能隙。 A resistive random access memory comprising: a first electrode comprising a first conductive material; a second electrode comprising a second conductive material on the first electrode; a charge trapping layer located at the Between the first electrode and the second electrode, wherein the charge trapping layer comprises: a first region having a first dopant adjacent to the first electrode; and a second region having a second dopant and adjacent The second electrode, wherein an energy gap of the second region is greater than an energy gap of the first region. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該電荷捕捉層的材料為能隙小於5eV的一絕緣材料,該絕緣材料包括選自由TiO2、NiO、HfO、HfO2、ZrO、ZrO2、Ta2O5、ZnO、WO3、CoO及Nb2O5所組成的群組中之至少一者。 The resistive random access memory according to claim 1, wherein the material of the charge trap layer is an insulating material having an energy gap of less than 5 eV, and the insulating material comprises a material selected from the group consisting of TiO 2 , NiO, HfO, and HfO 2 . At least one of the group consisting of ZrO, ZrO 2 , Ta 2 O 5 , ZnO, WO 3 , CoO, and Nb 2 O 5 . 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第一摻質包括選自由Ti、Zr、Fe、Co、Al、S、N、Ca、Cu、Pb、Sr、Hf、B、C、Mo、Zn、Mg所組成的群組中之至少一者。 The resistive random access memory of claim 1, wherein the first dopant comprises a layer selected from the group consisting of Ti, Zr, Fe, Co, Al, S, N, Ca, Cu, Pb, Sr, Hf At least one of the group consisting of B, C, Mo, Zn, and Mg. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第一區域中的該第一摻質的濃度介於1at%至50at%之間。 The resistive random access memory of claim 1, wherein the concentration of the first dopant in the first region is between 1 at% and 50 at%. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第二摻質包括選自由Ti、Zr、Fe、Co、Al、S、N、Ca、Cu、Pb、Sr、Hf、B、C、Mo、Zn、Mg所組成的群組中之至少一者。 The resistive random access memory of claim 1, wherein the second dopant comprises a layer selected from the group consisting of Ti, Zr, Fe, Co, Al, S, N, Ca, Cu, Pb, Sr, Hf At least one of the group consisting of B, C, Mo, Zn, and Mg. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第二區域中的該第二摻質的濃度介於10at%至90at%之間。 The resistive random access memory of claim 1, wherein the concentration of the second dopant in the second region is between 10 at% and 90 at%. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第二區域的能隙比該第一區域的能隙大至少1eV。 The resistive random access memory of claim 1, wherein the energy gap of the second region is at least 1 eV greater than the energy gap of the first region. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第一摻質與該第二摻質不同。 The resistive random access memory of claim 1, wherein the first dopant is different from the second dopant. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第一摻質與該第二摻質相同,且該第一區域中的該第一摻質的濃度與該第二區域中的該第二摻質的濃度呈梯度分布。 The resistive random access memory according to claim 1, wherein the first dopant is the same as the second dopant, and the concentration of the first dopant in the first region is different from the second The concentration of the second dopant in the region is in a gradient distribution. 如申請專利範圍第1項所述的電阻式隨機存取記憶體,其中該第一電極沿著一第一方向延伸,該第二電極沿著一第二方向延伸,該第一方向與該第二方向實質上相互垂直。 The resistive random access memory of claim 1, wherein the first electrode extends along a first direction, and the second electrode extends along a second direction, the first direction and the first The two directions are substantially perpendicular to each other. 如申請專利範圍第10項所述的電阻式隨機存取記憶體,其中該第一電極的數量為多個,該些第一電極與多個介電層皆沿著該第一方向延伸,並沿著一第三方向相互堆疊,其中該電荷捕捉層至少覆蓋該些第一電極的側壁。 The resistive random access memory according to claim 10, wherein the number of the first electrodes is plural, and the first electrodes and the plurality of dielectric layers extend along the first direction, and Stacking along a third direction, wherein the charge trapping layer covers at least sidewalls of the first electrodes. 如申請專利範圍第11項所述的電阻式隨機存取記憶體,其中該電荷捕捉層共形地覆蓋該些第一電極與該些介電層的表面。 The resistive random access memory of claim 11, wherein the charge trapping layer conformally covers the surfaces of the first electrodes and the dielectric layers. 如申請專利範圍第11項所述的電阻式隨機存取記憶體,其中各該些第一電極與所對應的第二電極的重疊處形成至少一記憶胞。 The resistive random access memory according to claim 11, wherein at least one memory cell is formed at an overlap of each of the first electrodes and the corresponding second electrode. 一種電阻式隨機存取記憶體的製造方法,包括:提供一第一電極;於該第一電極上形成一電荷捕捉層;以及 於該電荷捕捉層上形成一第二電極,其中形成該電荷捕捉層的方法包括一原子層沈積製程,該原子層沈積製程包括:進行多次第一沈積循環,以形成多個具有一絕緣材料的第一材料層;進行多次第二沈積循環,以形成多個具有一第一摻質的第二材料層,其中該些第一沈積循環的次數大於該些第二沈積循環的次數;以及重複該些第一沈積循環與該些第二沈積循環,直到形成所需厚度的該電荷捕捉層的一第一區域,其中該第一區域靠近該第一電極。 A method of manufacturing a resistive random access memory, comprising: providing a first electrode; forming a charge trapping layer on the first electrode; Forming a second electrode on the charge trapping layer, wherein the method of forming the charge trapping layer comprises an atomic layer deposition process, the atomic layer deposition process comprising: performing a plurality of first deposition cycles to form a plurality of insulating materials a first material layer; performing a plurality of second deposition cycles to form a plurality of second material layers having a first dopant, wherein the number of the first deposition cycles is greater than the number of the second deposition cycles; The first deposition cycle and the second deposition cycles are repeated until a first region of the charge trap layer of a desired thickness is formed, wherein the first region is adjacent to the first electrode. 如申請專利範圍第14項所述的電阻式隨機存取記憶體的製造方法,該原子層沈積製程更包括:進行多次第三沈積循環,以形成多個具有該絕緣材料的第三材料層;進行多次第四沈積循環,以形成多個具有一第二摻質的第四材料層,其中該些第四沈積循環的次數大於該些第三沈積循環的次數;以及重複該些第三沈積循環與該些第四沈積循環,直到形成所需厚度的該電荷捕捉層的一第二區域,其中該第二區域靠近該第二電極。 The method for manufacturing a resistive random access memory according to claim 14, wherein the atomic layer deposition process further comprises: performing a plurality of third deposition cycles to form a plurality of third material layers having the insulating material; Performing a plurality of fourth deposition cycles to form a plurality of fourth material layers having a second dopant, wherein the number of the fourth deposition cycles is greater than the number of the third deposition cycles; and repeating the third The deposition cycle and the fourth deposition cycles are continued until a second region of the charge trap layer of a desired thickness is formed, wherein the second region is adjacent to the second electrode. 一種電阻式隨機存取記憶體的操作,包括:提供如申請專利範圍第1項至第13項中任一項所述的電阻式隨機存取記憶體; 在設定時,對該第二電極施加正偏壓,使得多個電子從該第一電極注入該電荷捕捉層的該第一區域中且被該電荷捕捉層的該第二區域阻擋;以及在重設時,對該第二電極施加負偏壓,使得該些電子從該電荷捕捉層的該第一區域逸至該第一電極。 The operation of the resistive random access memory, comprising: providing the resistive random access memory according to any one of claims 1 to 13; When set, applying a positive bias to the second electrode such that a plurality of electrons are injected from the first electrode into the first region of the charge trapping layer and blocked by the second region of the charge trapping layer; In response, a negative bias is applied to the second electrode such that the electrons escape from the first region of the charge trapping layer to the first electrode. 如申請專利範圍第16項所述的電阻式隨機存取記憶體的操作,更包括在讀取時,對該第二電極施加讀取負偏壓,使得FN電子從該第二電極注入該第一區域,並藉由該第一區域中的電子總合來判讀高電阻狀態或低電阻狀態。 The operation of the resistive random access memory according to claim 16, further comprising applying a read negative bias to the second electrode during reading, so that FN electrons are injected from the second electrode. An area, and the high resistance state or the low resistance state is interpreted by the sum of electrons in the first region. 如申請專利範圍第16項所述的電阻式隨機存取記憶體的操作,其中在進行設定或重設之前,並不進行生成。 The operation of the resistive random access memory according to claim 16, wherein the generation is not performed until the setting or resetting is performed.
TW105131460A 2016-09-30 2016-09-30 Resistive random access memory, manufacturing method thereof, and operation thereof TWI622128B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105131460A TWI622128B (en) 2016-09-30 2016-09-30 Resistive random access memory, manufacturing method thereof, and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105131460A TWI622128B (en) 2016-09-30 2016-09-30 Resistive random access memory, manufacturing method thereof, and operation thereof

Publications (2)

Publication Number Publication Date
TW201814836A TW201814836A (en) 2018-04-16
TWI622128B true TWI622128B (en) 2018-04-21

Family

ID=62639132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131460A TWI622128B (en) 2016-09-30 2016-09-30 Resistive random access memory, manufacturing method thereof, and operation thereof

Country Status (1)

Country Link
TW (1) TWI622128B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404636B2 (en) 2020-04-24 2022-08-02 Applied Materials, Inc Crested barrier device and synaptic element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511030A (en) * 2013-07-18 2015-03-16 Semiconductor Energy Lab Semiconductor device and method for manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511030A (en) * 2013-07-18 2015-03-16 Semiconductor Energy Lab Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201814836A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
US10236061B2 (en) Resistive random access memory having charge trapping layer, manufacturing method thereof, and operation thereof
KR100790861B1 (en) Resistive memory device comprising nanodot and manufacturing method for the same
US8350262B2 (en) Nonvolatile memory device and nonvolatile memory array including the same
US9034689B2 (en) Non-volatile storage with metal oxide switching element and methods for fabricating the same
US8912524B2 (en) Defect gradient to boost nonvolatile memory performance
US9960350B2 (en) Method of fabricating switching element and method of manufacturing resistive memory device
US10741760B2 (en) Resistive random access memory device for 3D stack and memory array using the same and fabrication method thereof
JP2008010836A (en) Variable resistance random access memory element equipped with n+ interface layer
JP2005317976A (en) Memory device utilizing multilayer structure with stepwise resistance value
TWI553925B (en) Self-rectifying resistive random access memory cell structure
JP2007036256A (en) Non-volatile resistance memory cell based on metallic oxide nanoparticle, method for manufacturing same and arrangement of memory cell
US20150137062A1 (en) Mimcaps with quantum wells as selector elements for crossbar memory arrays
KR20120097634A (en) Non-volatile memory of having 3 dimensional structure
TWI622128B (en) Resistive random access memory, manufacturing method thereof, and operation thereof
US8367460B2 (en) Horizontally oriented and vertically stacked memory cells
KR20140001075A (en) Switching element and memory device employing the same
KR100647332B1 (en) Resistive random access memory enclosing a oxide with variable resistance states
US20140374693A1 (en) Varied multilayer memristive device
JP6092696B2 (en) Memory cell using variable resistance element
WO2010084774A1 (en) Nonvolatile memory cell, resistance variable nonvolatile memory device and method for designing nonvolatile memory cell
KR101371438B1 (en) Multi-bit resistive switching memory with different electrodes and fabrication method thereof
KR101781002B1 (en) ReRAM and manufacture method thereof
TWI597824B (en) Resistive random-access memory and operation of resistive random-access memory
KR20120071257A (en) Resistive ram of having ohmic contact layer