TWI597824B - Resistive random-access memory and operation of resistive random-access memory - Google Patents

Resistive random-access memory and operation of resistive random-access memory Download PDF

Info

Publication number
TWI597824B
TWI597824B TW102149200A TW102149200A TWI597824B TW I597824 B TWI597824 B TW I597824B TW 102149200 A TW102149200 A TW 102149200A TW 102149200 A TW102149200 A TW 102149200A TW I597824 B TWI597824 B TW I597824B
Authority
TW
Taiwan
Prior art keywords
memory cell
memory
voltage
control circuit
memory device
Prior art date
Application number
TW102149200A
Other languages
Chinese (zh)
Other versions
TW201526166A (en
Inventor
侯拓宏
徐崇威
周群策
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW102149200A priority Critical patent/TWI597824B/en
Publication of TW201526166A publication Critical patent/TW201526166A/en
Application granted granted Critical
Publication of TWI597824B publication Critical patent/TWI597824B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

電阻式記憶裝置、電阻式記憶裝置之操作方法 Resistive memory device, operation method of resistive memory device

本揭露係關於一種記憶體裝置,且特別關於一種電阻式隨機存取記憶體裝置。 The present disclosure relates to a memory device, and more particularly to a resistive random access memory device.

隨著積體電路功能性之增加,對記憶體之需求亦隨之增加。設計者已著眼於減少記憶體元件之尺寸,並於單位區域內堆疊更多的記憶體元件,以達到更多的容量並使每位元所需的成本更低。在最近幾十年中,由於微影技術的進步,快閃記憶體已廣泛用作大容量且不昂貴的非揮發性記憶體,其可在電源關閉時仍儲存資料。此外,快閃記憶體可藉由三維(3D)交錯陣列來達到高密度,例如使用垂直NAND記憶晶胞堆疊。然而,已發現的是,快閃記憶體之尺寸微縮會隨成本增高而受限 As the functionality of integrated circuits increases, so does the need for memory. Designers have focused on reducing the size of memory components and stacking more memory components in a unit area to achieve more capacity and lower cost per bit. In recent decades, due to advances in lithography, flash memory has been widely used as a large-capacity and inexpensive non-volatile memory that can store data when the power is turned off. In addition, flash memory can achieve high density by three-dimensional (3D) staggered arrays, such as using vertical NAND memory cell stacking. However, it has been found that the size of the flash memory is limited by the increase in cost.

設計者正在尋找下一代的非揮發性記憶體,例如磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)、相變化隨機存取記憶體(Phase Change Random Access Memory,PCRAM)、導電橋接式隨機存取記憶體(Conductive Bridging Random Access Memory,CBRAM)及電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM),以增加寫入速度及減少功耗。在上述種類的非揮發性 記憶體中,RRAM之結構簡單、且具有簡單的交錯陣列及可於低溫製造,使得RRAM具有最佳的潛力來取代現有的快閃記憶體。 Designers are looking for next-generation non-volatile memory, such as Magnetoresistive Random Access Memory (MRAM), Phase Change Random Access Memory (PCRAM), and conductive bridges. Conductive Bridging Random Access Memory (CBRAM) and Resistive Random Access Memory (RRAM) to increase write speed and reduce power consumption. Non-volatile in the above categories In memory, RRAM has a simple structure and a simple interleaved array and can be fabricated at low temperatures, so that RRAM has the best potential to replace existing flash memory.

雖然RRAM交錯陣列之結構簡單,但在製造上仍有許多問題待解決,特別是其3D交錯陣列。如無法形成3D交錯陣列,就高容量的資料儲存裝置來說,RRAM的每位元成本有可能無法與3D NAND記憶體競爭。 Although the structure of the RRAM interleaved array is simple, there are still many problems to be solved in manufacturing, especially its 3D interleaved array. If a 3D interleaved array cannot be formed, the high cost of the data storage device may not compete with the 3D NAND memory per bit cost of the RRAM.

此外,傳統的計算裝置,其工作記憶體和儲存記憶體使用不同的記憶裝置(例如工作記憶體使用隨機存取記憶體,儲存記憶體使用快閃記憶體),無法使得裝置尺寸有效的微縮。 In addition, in conventional computing devices, the working memory and the storage memory use different memory devices (for example, the working memory uses random access memory and the storage memory uses flash memory), and the device size cannot be effectively reduced.

本揭露提供一種電阻式記憶裝置,包括:一基底;一記憶晶胞陣列,包括沿基底表面垂直方向延伸的複數個垂直結構;複數個第一導線,其中上述第一導線中相鄰的兩第一導線間設置一絕緣層;一第一電阻轉換層和一第二電阻轉換層,設置於上述垂直結構之側壁上;複數個第二導線,與上述第一導線垂直的方向延伸;其中記憶晶胞陣列包括複數個記憶晶胞;其中上述記憶晶胞之第一部分施加一第一電壓,使第一部分之記憶晶胞作為工作記憶體,上述記憶晶胞之第二部分施加一第二電壓,使第二部分之記憶晶胞作為儲存記憶體。 The present disclosure provides a resistive memory device comprising: a substrate; a memory cell array comprising a plurality of vertical structures extending in a vertical direction along a surface of the substrate; a plurality of first wires, wherein the two adjacent ones of the first wires An insulating layer is disposed between the wires; a first resistance conversion layer and a second resistance conversion layer are disposed on the sidewall of the vertical structure; and the plurality of second wires extend in a direction perpendicular to the first wire; wherein the memory crystal The cell array includes a plurality of memory cells; wherein the first portion of the memory cell applies a first voltage such that the first portion of the memory cell acts as a working memory, and the second portion of the memory cell applies a second voltage The second part of the memory cell acts as a storage memory.

本揭露提供一種電阻式記憶裝置,包括:一種電阻式記憶裝置,包括:一具有複數個垂直結構之3D記憶晶胞陣列,3D記憶晶胞陣列之記憶晶胞位於上述垂直結構之側壁,上 述記憶晶胞陣列之第一部分施加一第一電壓,使第一部分之記憶晶胞作為工作記憶體,上述記憶晶胞陣列之第二部分施加一第二電壓,使第二部分之記憶晶胞作為儲存記憶體。 The present disclosure provides a resistive memory device comprising: a resistive memory device comprising: a 3D memory cell array having a plurality of vertical structures, the memory cell of the 3D memory cell array being located on a sidewall of the vertical structure Applying a first voltage to the first portion of the memory cell array such that the first portion of the memory cell acts as a working memory, and applying a second voltage to the second portion of the memory cell array to make the second portion of the memory cell Store memory.

本揭露提供一種電阻式記憶裝置之操作方法,包括:提供一具有複數個垂直結構之3D記憶晶胞陣列,3D記憶晶胞陣列之記憶晶胞位於上述垂直結構之側壁上;於上述3D記憶晶胞陣列之第一部分施加一第一電壓,使第一部分之3D記憶晶胞陣列作為一工作記憶體;及於上述3D記憶晶胞陣列之第二部分施加一第二電壓,使第二部分之3D記憶晶胞陣列作為一儲存記憶體。 The present disclosure provides a method for operating a resistive memory device, comprising: providing a 3D memory cell array having a plurality of vertical structures, wherein a memory cell of a 3D memory cell array is located on a sidewall of the vertical structure; and the 3D memory crystal Applying a first voltage to the first portion of the cell array to cause the first portion of the 3D memory cell array to function as a working memory; and applying a second voltage to the second portion of the 3D memory cell array to cause the second portion to be 3D The memory cell array acts as a storage memory.

102‧‧‧導線 102‧‧‧ wire

104‧‧‧導線 104‧‧‧Wire

106‧‧‧水平軸 106‧‧‧ horizontal axis

108‧‧‧圖案化金屬層 108‧‧‧ patterned metal layer

110‧‧‧方向 110‧‧‧ Direction

300‧‧‧基底 300‧‧‧Base

301‧‧‧電阻式記憶裝置 301‧‧‧Resistive memory device

302‧‧‧第二導線 302‧‧‧Second wire

304‧‧‧第一導線 304‧‧‧First wire

306‧‧‧第一絕緣層 306‧‧‧First insulation

308‧‧‧第二絕緣層 308‧‧‧Second insulation

310‧‧‧第三絕緣層 310‧‧‧ third insulation

312‧‧‧第一電阻轉換層 312‧‧‧First resistance conversion layer

314‧‧‧第二電阻轉換層 314‧‧‧Second resistance conversion layer

316‧‧‧記憶晶胞 316‧‧‧ memory cell

316‧‧‧記憶晶胞陣列 316‧‧‧Memory Cell Array

704‧‧‧第一部分記憶晶胞 704‧‧‧The first part of the memory cell

706‧‧‧第二部分記憶晶胞 706‧‧‧Second part memory cell

708‧‧‧位元線 708‧‧‧ bit line

710‧‧‧字元線 710‧‧‧ character line

712‧‧‧第一控制電路 712‧‧‧First control circuit

714‧‧‧第二控制電路 714‧‧‧Second control circuit

716‧‧‧第三控制電路 716‧‧‧ Third control circuit

718‧‧‧第四控制電路 718‧‧‧fourth control circuit

第1圖顯示一由1D1R或1S1R記憶晶胞堆疊結構所形成之理想RRAM 3D交錯陣列。 Figure 1 shows an ideal RRAM 3D staggered array formed from a 1D1R or 1S1R memory cell stack structure.

第2A圖顯示本發明一實施例3D RRAM記憶晶胞結構立體示意圖。 2A is a perspective view showing the structure of a 3D RRAM memory cell according to an embodiment of the present invention.

第2B圖顯示本發明一實施例3D RRAM記憶晶胞結構剖面圖。 Fig. 2B is a cross-sectional view showing the structure of a 3D RRAM memory cell according to an embodiment of the present invention.

第3圖顯示本揭露實施例之RRAM之電流對電壓圖。 Figure 3 is a graph showing the current versus voltage of the RRAM of the disclosed embodiment.

第4圖顯示本發明實施例電阻式記憶體裝置不同施加電壓下持久度與溫度的關係。 Fig. 4 is a view showing the relationship between the durability and the temperature under different applied voltages of the resistive memory device of the embodiment of the present invention.

第5圖顯示本發明實施例電阻式記憶體裝置不同設定電壓可靠度與溫度的關係。 Fig. 5 is a view showing the relationship between the different set voltage reliability and the temperature of the resistive memory device of the embodiment of the present invention.

第6圖顯示本發明實施例置晶胞陣列配置示意圖。 FIG. 6 is a schematic view showing the arrangement of a cell array according to an embodiment of the present invention.

電阻式記憶裝置交錯陣列理論上可容許4F2之最小單元胞尺寸(其中F為最小元件尺寸),且低溫製程可容許記憶體陣列之堆疊達到前所未有的積體密度。然而,在1R結構中(僅具有一電阻元件),會有潛行電流(sneak current)通過相鄰未被選擇之記憶晶胞,而嚴重地影響讀取邊境(read margin),且限制交錯陣列之最大尺寸低於64位元。 The staggered array of resistive memory devices theoretically allows a minimum cell size of 4F 2 (where F is the smallest component size), and the low temperature process allows the stack of memory arrays to achieve an unprecedented bulk density. However, in the 1R structure (having only one resistive element), there is a sneak current passing through adjacent unselected memory cells, which seriously affects the read margin and limits the staggered array. The maximum size is less than 64 bits.

此問題可藉由增加非線性選擇裝置與這些電阻轉換元件串聯予以解決。例如,已發展出一二極體搭配一電阻(1D1R)、一選擇器搭配一電阻(1S1R)、一雙極性接面電晶體搭配一電阻(1BJT1R)、一MOSFET電晶體搭配一電阻(1T1R)等記憶晶胞結構。在上述記憶晶胞結構中,1BJT1R結構及1T1R結構過於複雜且需高溫製程而較不適用,且互補式電阻轉換元件(CRS)記憶晶胞結構亦有破壞性讀出的問題。因此,1D1R結構及1S1R結構較適合3D交錯陣列之運用。 This problem can be solved by adding a nonlinear selection device in series with these resistance conversion elements. For example, a diode has been developed with a resistor (1D1R), a selector with a resistor (1S1R), a bipolar junction transistor with a resistor (1BJT1R), a MOSFET transistor with a resistor (1T1R). Wait for the memory cell structure. In the above memory cell structure, the 1BJT1R structure and the 1T1R structure are too complicated and require a high temperature process, and are not suitable, and the complementary resistance conversion element (CRS) memory cell structure also has a problem of destructive readout. Therefore, the 1D1R structure and the 1S1R structure are more suitable for the application of the 3D interleaved array.

然而,1D1R及1S1R之3D交錯陣列仍不易於製造。1D1R及1S1R記憶晶胞結構基本上係由一金屬-絕緣體-金屬-絕緣體-金屬(MIMIM)結構形成。第1圖顯示一由1D1R或1S1R記憶晶胞堆疊結構所形成之理想RRAM 3D交錯陣列。1D1R及1S1R記憶晶胞結構之MIMIM結構係形成於導線102及104之間並沿一水平軸106延伸,此水平軸106係垂直於導線102及104之側壁。然而,RRAM 3D交錯陣列係通常形成於半導體基材中。在形成導線102之後,微影製程僅能自方向110進行。自方向110 進行的微影製程可能無法形成如第1圖所示之圖案化金屬層108,因而使得1D1R及1S1R記憶晶胞結構之3D交錯陣列無法被實際應用。 However, 3D interleaved arrays of 1D1R and 1S1R are still not easy to manufacture. The 1D1R and 1S1R memory cell structures are basically formed of a metal-insulator-metal-insulator-metal (MIMIM) structure. Figure 1 shows an ideal RRAM 3D staggered array formed from a 1D1R or 1S1R memory cell stack structure. The MIMIM structure of the 1D1R and 1S1R memory cell structures is formed between the wires 102 and 104 and extends along a horizontal axis 106 that is perpendicular to the sidewalls of the wires 102 and 104. However, RRAM 3D staggered arrays are typically formed in a semiconductor substrate. After the wire 102 is formed, the lithography process can only be performed from the direction 110. From direction 110 The lithography process performed may not form the patterned metal layer 108 as shown in FIG. 1, thus making the 3D interlaced array of the 1D1R and 1S1R memory cell structures unusable.

第2A圖顯示本發明一實施例3D RRAM記憶晶胞結構立體示意圖。第2B圖顯示本發明一實施例3D RRAM記憶晶胞結構剖面圖。為本揭露記憶晶胞為1R結構,不需中間金屬層,故RRAM 3D交錯陣列可被製造。並且,由於在此所述之1R記憶晶胞結構係具有自限流及自整流之特性,其亦可解決傳統RRAM 3D交錯陣列之1R記憶晶胞之潛行電流的問題。 2A is a perspective view showing the structure of a 3D RRAM memory cell according to an embodiment of the present invention. Fig. 2B is a cross-sectional view showing the structure of a 3D RRAM memory cell according to an embodiment of the present invention. For the purpose of revealing that the memory cell is a 1R structure, an intermediate metal layer is not required, so a RRAM 3D staggered array can be fabricated. Moreover, since the 1R memory cell structure described herein has self-limiting current and self-rectification characteristics, it can also solve the problem of the sneak current of the 1R memory cell of the conventional RRAM 3D staggered array.

請參照第2A圖和第2B圖,此RRAM 301可包含一組彼此平行之第一導線304及一組彼此平行之第二導線302。RRAM記憶晶胞316結構係形成於這些彼此平行之第一導線304及彼此平行之第二導線302之交錯點之間。 Referring to FIGS. 2A and 2B, the RRAM 301 can include a set of first wires 304 that are parallel to each other and a set of second wires 302 that are parallel to each other. The RRAM memory cell 316 structure is formed between the first wires 304 that are parallel to each other and the second wires 302 that are parallel to each other.

在一實施例中,第一導線304可作為字元線,第二導線302可為位元線,或反之亦可。第一導線304及第二導線302之金屬元素可擇自下列組成之族群:Ti、Ta、Ni、Cu、W、Hf、Zr、Nb、Y、Zn、Co、Al、Si、Ge及前述之合金。例如,在一實施例中,第一導線304可為Ti層,且第二導線302可為Ta層。在另一實施例中,第一導線304可為Ta層,且第二導線302可為Ti層。 In an embodiment, the first wire 304 can be a word line, and the second wire 302 can be a bit line, or vice versa. The metal elements of the first wire 304 and the second wire 302 may be selected from the group consisting of Ti, Ta, Ni, Cu, W, Hf, Zr, Nb, Y, Zn, Co, Al, Si, Ge, and the foregoing. alloy. For example, in an embodiment, the first wire 304 can be a Ti layer and the second wire 302 can be a Ta layer. In another embodiment, the first wire 304 can be a Ta layer and the second wire 302 can be a Ti layer.

一第一絕緣層306可形成於基底300和第一導線304間,相鄰的第一導線304間形成第二絕緣層308。最上層之第一導線304上可形成一第三絕緣層310。在一些實施例中,第一絕緣層306、第二絕緣層308和第三絕緣層310為氧化矽、氮 化矽或氮氧化矽。在另一些實施例中,第一絕緣層306、第二絕緣層308和第三絕緣層310可以為高介電常數材料,例如Ta2O5、HfO2、HSiOx、Al2O3、InO2、La2O3、ZrO2或TaO2。第一絕緣層306、第二絕緣層308和第三絕緣層310可以為相同的材料,或在另一些實施例中包括不同的材料。 A first insulating layer 306 may be formed between the substrate 300 and the first conductive line 304, and a second insulating layer 308 is formed between the adjacent first conductive lines 304. A third insulating layer 310 may be formed on the first conductive line 304 of the uppermost layer. In some embodiments, the first insulating layer 306, the second insulating layer 308, and the third insulating layer 310 are hafnium oxide, tantalum nitride, or hafnium oxynitride. In other embodiments, the first insulating layer 306, the second insulating layer 308, and the third insulating layer 310 may be high dielectric constant materials such as Ta 2 O 5 , HfO 2 , HSiO x , Al 2 O 3 , InO. 2 , La 2 O 3 , ZrO 2 or TaO 2 . The first insulating layer 306, the second insulating layer 308, and the third insulating layer 310 may be the same material, or may include different materials in other embodiments.

在一些實施例中,第一導線304、第一絕緣層306、第二絕緣層308和第三絕緣層310構成一垂直於基底300表面之垂直結構。本發明於第3A圖和第3B圖之實施例揭示於垂直結構中包括三層導線,但本發明不限於此,本發明可以包括更多導線(例如4層導線或更多)或更少導線之垂直結構(例如2層導線或更少)。 In some embodiments, the first wire 304, the first insulating layer 306, the second insulating layer 308, and the third insulating layer 310 form a vertical structure perpendicular to the surface of the substrate 300. The embodiment of the present invention in Figures 3A and 3B discloses that three layers of wires are included in the vertical structure, but the invention is not limited thereto, and the invention may include more wires (e.g., 4 layers of wires or more) or fewer wires. Vertical structure (for example, 2 layers of wire or less).

第一電阻轉換層312和第二電阻轉換層314可形成於第一導線304和第一、第二和第三絕緣層306、308、310之側壁上。第一電阻轉換層312可由一具有第一能隙之絕緣體形成。第二電阻轉換層314可由一具有第二能隙之絕緣體形成,且第二能隙較第一能隙大。在一些實施例中,第一能隙及第二能隙可為約1eV至約9eV。在一些實施例中,第二能隙可較第一能隙大至少約0.5eV。 The first resistance conversion layer 312 and the second resistance conversion layer 314 may be formed on sidewalls of the first wire 304 and the first, second, and third insulating layers 306, 308, 310. The first resistance conversion layer 312 may be formed of an insulator having a first energy gap. The second resistance conversion layer 314 may be formed of an insulator having a second energy gap, and the second energy gap is larger than the first energy gap. In some embodiments, the first energy gap and the second energy gap can be from about 1 eV to about 9 eV. In some embodiments, the second energy gap can be at least about 0.5 eV greater than the first energy gap.

在一些實施例中,第一電阻轉換層312係由TiO2形成,且第二電阻轉換層314係由Ta2O5形成。在另一些實施例中,第一電阻轉換層312係由Ta2O5形成,第二電阻轉換層314係由HfO2形成。 In some embodiments, the first resistance conversion layer 312 is formed of TiO 2 and the second resistance conversion layer 314 is formed of Ta 2 O 5 . In other embodiments, the first resistance conversion layer 312 is formed of Ta 2 O 5 and the second resistance conversion layer 314 is formed of HfO 2 .

在一些實施例中,第一電阻轉換層314可由沉積方法形成,例如原子層沉積(ALD)、化學氣相沉積(CVD)、電漿 增強式化學氣相沉積(PECVD)、有機金屬化學氣相沉積(MOCVD)、物理氣相沉積(PVD)或其他合適沉積方式。第二電阻轉換層316可由合適之沉積方法形成,例如原子層沉積(ALD)、化學氣相沉積(CVD)、電漿增強式化學氣相沉積(PECVD)、有機金屬化學氣相沉積(MOCVD)、物理氣相沉積(PVD)或其他合適沉積方式。在一些實施例中,第一電阻轉換層314之厚度可為約1nm至約80nm。第二電阻轉換層316之厚度可為約1nm至約80nm。 In some embodiments, the first resistance conversion layer 314 can be formed by a deposition method such as atomic layer deposition (ALD), chemical vapor deposition (CVD), plasma Enhanced chemical vapor deposition (PECVD), organometallic chemical vapor deposition (MOCVD), physical vapor deposition (PVD) or other suitable deposition methods. The second resistance conversion layer 316 may be formed by a suitable deposition method such as atomic layer deposition (ALD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), or organometallic chemical vapor deposition (MOCVD). Physical vapor deposition (PVD) or other suitable deposition method. In some embodiments, the first resistance conversion layer 314 can have a thickness of from about 1 nm to about 80 nm. The second resistance conversion layer 316 may have a thickness of about 1 nm to about 80 nm.

各RRAM記憶晶胞316結構係形成於第一電阻轉換層312及第二電阻轉換層314與第一導線304直接接觸之處。亦即,如第2A圖和第2B圖所示,各RRAM記憶晶胞316結構位於包括第一導線304和第一、第二和第三絕緣層306、308、310之垂直結構側壁上第一電阻轉換層312及第二電阻轉換層314中。在一些實施例中,第一導線304為電阻式記憶裝置之下電極層,第二導線302為該電阻式記憶裝置之上電極層。 Each RRAM memory cell 316 structure is formed where the first resistance conversion layer 312 and the second resistance conversion layer 314 are in direct contact with the first wire 304. That is, as shown in FIGS. 2A and 2B, each RRAM memory cell 316 structure is located on the sidewall of the vertical structure including the first wire 304 and the first, second, and third insulating layers 306, 308, 310. In the resistance conversion layer 312 and the second resistance conversion layer 314. In some embodiments, the first wire 304 is a lower electrode layer of the resistive memory device, and the second wire 302 is an upper electrode layer of the resistive memory device.

在一些實施例中,本揭露的RRAM 3D交錯陣列僅包含1R記憶晶胞316結構。因為本揭露的1R記憶晶胞316結構不需中間金屬層,故RRAM 3D交錯陣列可被製造。並且,由於在此所述之1R記憶晶胞316結構係具有自限流及自整流之特性,其亦可解決傳統RRAM 3D交錯陣列之1R記憶晶胞316之潛行電流的問題。因此,本揭露所述之RRAM 3D交錯陣列係可用於下一世代之非揮發性記憶體,且具有極大的潛力可取代快閃式記憶體裝置。 In some embodiments, the RRAM 3D staggered array of the present disclosure includes only the 1R memory cell 316 structure. Because the 1R memory cell 316 structure disclosed herein does not require an intermediate metal layer, an RRAM 3D staggered array can be fabricated. Moreover, since the 1R memory cell 316 structure described herein has self-limiting current and self-rectification characteristics, it can also solve the problem of the sneak current of the 1R memory cell 316 of the conventional RRAM 3D staggered array. Therefore, the RRAM 3D staggered array described in the present disclosure can be used for the next generation of non-volatile memory, and has great potential to replace the flash memory device.

第3圖顯示依照本揭露實施例之RRAM之電流對電 壓圖。在此實施例中,此RRAM係由一Ti電極、一TiO2層、一Ta2O5層及一Ta電極依續堆疊形成,其中TiO2層之厚度為60nm,且Ta2O5層之厚度為20nm。 Figure 3 shows a current versus voltage diagram for an RRAM in accordance with an embodiment of the present disclosure. In this embodiment, the RRAM is formed by successively stacking a Ti electrode, a TiO 2 layer, a Ta 2 O 5 layer, and a Ta electrode, wherein the TiO 2 layer has a thickness of 60 nm and the Ta 2 O 5 layer The thickness is 20 nm.

如第3圖所示,本揭露實施例之RRAM可看出明顯的自整流特性。此外,該RRAM係為一雙極型(bipolar)的RRAM,其可藉由施予一正電壓而轉換至設定(set)狀態,且藉由施予一負電壓而轉換至重設(reset)狀態。該RRAM可被約+5V之最小電壓轉換至設定狀態及被約-4V之最小電壓轉換至重設狀態(+/-2V之電壓係用以進行讀取而非用以設定或重設此裝置)。並且,當負電壓增加時(甚至增加至-4V),本揭露之RRAM可具有一小於約10-4安培之電流限制極限(current compliance limit level)。 As shown in FIG. 3, the RRAM of the disclosed embodiment can be seen to have significant self-rectifying characteristics. In addition, the RRAM is a bipolar RRAM that can be switched to a set state by applying a positive voltage and converted to a reset by applying a negative voltage. status. The RRAM can be switched to a set state by a minimum voltage of about +5V and converted to a reset state by a minimum voltage of about -4V (a voltage of +/-2V is used for reading instead of setting or resetting the device) ). Also, when the negative voltage is increased (even to -4V), the disclosed RRAM can have a current compliance limit level of less than about 10 -4 amps.

第4圖顯示本發明實施例電阻式記憶體裝置不同施加電壓下資料保存時間(retention time)與溫度的關係。由第4圖可以得知,當施加電壓增加,本發明實施例電阻式記憶體裝置可以得到較佳的持久度。 Fig. 4 is a view showing the relationship between the retention time and the temperature under different applied voltages of the resistive memory device of the embodiment of the present invention. As can be seen from Fig. 4, when the applied voltage is increased, the resistive memory device of the embodiment of the present invention can obtain better durability.

第5圖顯示本發明實施例電阻式記憶體裝置不同設定電壓(set voltage)下可靠度與溫度的關係。由第5圖可以得知,本發明實施例電阻式記憶體裝置可得到相當良好的可靠度。當設定電壓為6V~7V時,在室溫下可靠度可達>1015循環次數。因此,本發明電阻式記憶體裝置可作為為一工作記憶裝置。 Fig. 5 is a graph showing the relationship between reliability and temperature under different set voltages of the resistive memory device of the embodiment of the present invention. As can be seen from Fig. 5, the resistive memory device of the embodiment of the present invention can obtain relatively good reliability. When the set voltage is 6V~7V, the reliability can reach >10 15 cycles at room temperature. Therefore, the resistive memory device of the present invention can be used as a working memory device.

如第5圖所示,當設定電壓增加,本發明實施例電阻式記憶體裝置可靠度變的較差。但根據第4圖,較高的施加電壓可得到較佳持久度。 As shown in Fig. 5, when the set voltage is increased, the reliability of the resistive memory device of the embodiment of the present invention becomes poor. However, according to Figure 4, a higher applied voltage results in better durability.

根據上述,本發明可控制操作電壓,於操作電壓 小於崩潰電壓和大於起始電壓的區間內,使得記憶晶胞陣列中部分的記憶晶胞施加第一操作電壓,作為一工作記憶裝置,而另一部分的記憶晶胞施加第二操作電壓,作為一儲存記憶裝置。 According to the above, the present invention can control the operating voltage at the operating voltage Within a range smaller than the breakdown voltage and greater than the initial voltage, a portion of the memory cell in the memory cell array applies a first operating voltage as a working memory device, and another portion of the memory cell applies a second operating voltage as a Store the memory device.

以下配合第6圖描述本發明實施例置晶胞陣列配置示意圖。本實施例將電阻式記憶裝置301之記憶晶胞陣列316分成第一部分記憶晶胞704和第二部分記憶晶胞706。 The following is a schematic diagram of a configuration of a cell array according to an embodiment of the present invention. In this embodiment, the memory cell array 316 of the resistive memory device 301 is divided into a first partial memory cell 704 and a second partial memory cell 706.

在一些實施例中,第一部分記憶晶胞704佔記憶晶胞陣列316之30%~70%,第二部分記憶晶胞706佔記憶晶胞陣列316之30%~70%。 In some embodiments, the first portion of the memory cell 704 is between 30% and 70% of the memory cell array 316 and the second portion of the memory cell 706 is between 30% and 70% of the memory cell array 316.

舉例來說,在一些實施例中,第一部分記憶晶胞704可以為70%,第二部分記憶晶胞706可以為30%,或另於一些實施例中,第一部分記憶晶胞704可以為50%,第二部分記憶晶胞706可以為50%,或第一部分記憶晶胞704可以為30%,第二部分記憶晶胞706可以為70%。第一部分記憶晶胞704和第二部分記憶晶胞706之比例可依產品的需求調整為更多或更少,本發明不特別限定於第一部分記憶晶胞704和第二部分記憶晶胞706所佔的比例。在一些實施例中,第一部分記憶晶胞704和第二部分記憶晶胞706皆為第2A圖和第2B圖之3D RRAM記憶晶胞316,使得本發明記憶裝置可達到高密度的需求,且因為第一部分記憶晶胞704和第二部分記憶晶胞706皆為相同的記憶晶胞,其開關的時間是相同的。 For example, in some embodiments, the first partial memory cell 704 can be 70%, the second partial memory cell 706 can be 30%, or in some embodiments, the first partial memory cell 704 can be 50%. %, the second partial memory cell 706 may be 50%, or the first partial memory cell 704 may be 30%, and the second partial memory cell 706 may be 70%. The ratio of the first portion of the memory cell 704 and the second portion of the memory cell 706 may be adjusted to be more or less depending on the needs of the product, and the present invention is not particularly limited to the first partial memory cell 704 and the second partial memory cell 706. The proportion. In some embodiments, both the first partial memory cell 704 and the second partial memory cell 706 are 3D RRAM memory cells 316 of FIGS. 2A and 2B, such that the memory device of the present invention can achieve high density requirements, and Since the first partial memory cell 704 and the second partial memory cell 706 are all the same memory cell, the switching time is the same.

第一部分記憶晶胞704經由位元線708連接於第一 控制電路,且由字元線710連接於第二控制電路714。第二部分記憶晶胞706經由位元線708連接於第三控制電路716,且由字元線710連接於第四控制電路718。藉由第一控制電路712、第二控制電路714、第三控制電路716和第四控制電路718之運作,使得第一部分記憶晶胞704和第二部分記憶晶胞706之設定電壓不同:於設定電壓小於崩潰電壓和大於起始電壓的區間內,記憶晶胞陣列316中第一部份記憶晶胞704施加第一操作電壓,作為一工作記憶裝置,而第二部份記憶晶胞706施加第二操作電壓,作為一儲存記憶裝置。 The first portion of the memory cell 704 is connected to the first via a bit line 708 The control circuit is coupled to the second control circuit 714 by word line 710. The second portion of memory cell 706 is coupled to third control circuit 716 via bit line 708 and to fourth control circuit 718 by word line 710. By the operation of the first control circuit 712, the second control circuit 714, the third control circuit 716, and the fourth control circuit 718, the set voltages of the first partial memory cell 704 and the second partial memory cell 706 are different: The first portion of the memory cell 704 in the memory cell array 316 applies a first operating voltage as a working memory device and the second portion of the memory cell 706 is applied in a region where the voltage is less than the breakdown voltage and greater than the initial voltage. The second operating voltage acts as a storage memory device.

在一些實施例中,第一電壓為約脈波(Pulse)6V~7V,第二電壓為約直流(DC)5V~6V。例如,在一範例中,第一部份記憶晶胞704之設定電壓為8V,第二部份記憶晶胞706之設定電壓為5V。因此,第一部份記憶晶胞704在溫度為90°C~100℃之可靠度可大於1015,可作為一工作記憶裝置,且第二部份記憶晶胞706有較佳的持久度,使其持久度足夠好可作為一儲存記憶裝置。 In some embodiments, the first voltage is about 6V~7V, and the second voltage is about 5V~6V. For example, in one example, the first partial memory cell 704 has a set voltage of 8V and the second partial memory cell 706 has a set voltage of 5V. Therefore, the reliability of the first portion of the memory cell 704 at a temperature of 90 ° C to 100 ° C can be greater than 10 15 , which can be used as a working memory device, and the second portion of the memory cell 706 has a better durability. It is good enough to be used as a storage memory device.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。再者,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大體相同功能或獲 得大體相同結果皆可使用於本發明中。因此,本發明之保護範圍應以較寬廣的範圍或意義來解讀。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified, replaced and retouched without departing from the spirit and scope of the invention. . Further, the scope of the present invention is not limited to the processes, machines, manufacture, compositions, devices, methods and steps in the specific embodiments described in the specification, and any one of ordinary skill in the art may disclose the invention. The present disclosure understands the processes, machines, manufacturing, material compositions, devices, methods, and steps that are presently or in the future, as long as they can perform substantially the same function or are obtained in the embodiments described herein. The same general results can be used in the present invention. Therefore, the scope of protection of the present invention should be interpreted in a broad scope or meaning.

301‧‧‧電阻式記憶裝置 301‧‧‧Resistive memory device

316‧‧‧記憶晶胞陣列 316‧‧‧Memory Cell Array

704‧‧‧第一部分記憶晶胞 704‧‧‧The first part of the memory cell

706‧‧‧第二部分記憶晶胞 706‧‧‧Second part memory cell

708‧‧‧位元線 708‧‧‧ bit line

710‧‧‧字元線 710‧‧‧ character line

712‧‧‧第一控制電路 712‧‧‧First control circuit

714‧‧‧第二控制電路 714‧‧‧Second control circuit

716‧‧‧第三控制電路 716‧‧‧ Third control circuit

718‧‧‧第四控制電路 718‧‧‧fourth control circuit

Claims (13)

一種電阻式記憶裝置,包括:一基底;一記憶晶胞陣列,包括沿該基底表面垂直方向延伸的複數個垂直結構;複數個第一導線,其中該些第一導線中相鄰的兩第一導線間設置一絕緣層;一第一電阻轉換層和一第二電阻轉換層,設置於該些垂直結構之側壁上;及複數個第二導線,與該些第一導線垂直的方向延伸;其中該記憶晶胞陣列包括複數個記憶晶胞;其中該些記憶晶胞之第一部分係連接於一第一控制電路及一第二控制電路,且該第一控制電路及該第二控制電路被配置用以對該些記憶晶胞之第一部分施加一第一電壓,使該第一部分之記憶晶胞作為工作記憶體,該些記憶晶胞之第二部分係連接於一第三控制電路及一第四控制電路,且該第三控制電路及該第四控制電路被配置用以對該些記憶晶胞之第二部分施加一第二電壓,使該第二部分之記憶晶胞作為儲存記憶體,且其中上述第一控制電路、第二控制電路、第三控制電路及第四控制電路被配置用以同時施加該第一電壓及該第二電壓。 A resistive memory device comprising: a substrate; a memory cell array comprising a plurality of vertical structures extending in a direction perpendicular to a surface of the substrate; a plurality of first wires, wherein the first two of the first wires are adjacent to each other An insulating layer is disposed between the wires; a first resistance conversion layer and a second resistance conversion layer are disposed on sidewalls of the vertical structures; and a plurality of second wires extend in a direction perpendicular to the first wires; wherein The memory cell array includes a plurality of memory cells; wherein the first portion of the memory cells is coupled to a first control circuit and a second control circuit, and the first control circuit and the second control circuit are configured And applying a first voltage to the first portion of the memory cells, the memory cell of the first portion is used as a working memory, and the second portion of the memory cells is connected to a third control circuit and a first a fourth control circuit, and the third control circuit and the fourth control circuit are configured to apply a second voltage to the second portion of the memory cells to make the second portion of the memory cell Storage memory, and wherein the first control circuit, second control circuit, the third control circuit and a fourth circuit is configured to simultaneously control the application of the first voltage and the second voltage. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該第一電壓為脈波(Pulse)6V~7V。 The resistive memory device of claim 1, wherein the first voltage is a pulse of 6V to 7V. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該第二 電壓為直流(DC)5V~6V。 The resistive memory device of claim 1, wherein the second The voltage is DC (DC) 5V~6V. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該第一部分之記憶晶胞佔該記憶晶胞陣列之30%~70%。 The resistive memory device of claim 1, wherein the first portion of the memory cell accounts for 30% to 70% of the memory cell array. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該第二部分記憶晶胞佔該記憶晶胞陣列之30%~70%。 The resistive memory device of claim 1, wherein the second portion of the memory cell accounts for 30% to 70% of the memory cell array. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該第一電壓較該第二電壓小。 The resistive memory device of claim 1, wherein the first voltage is smaller than the second voltage. 如申請專利範圍第1項所述之電阻式記憶裝置,其中各該晶胞位於該垂直結構側壁上之該第一電阻轉換層和該第二電阻轉換層中。 The resistive memory device of claim 1, wherein each of the unit cells is located in the first resistance conversion layer and the second resistance conversion layer on the sidewall of the vertical structure. 如申請專利範圍第1項所述之電阻式記憶裝置,其中該些第一導線和該些第二導線包括Ti、Ta、Ni、Cu、W、Hf、Zr、Nb、Y、Zn、Co、Al、Si、Ge或前述之合金。 The resistive memory device of claim 1, wherein the first wires and the second wires comprise Ti, Ta, Ni, Cu, W, Hf, Zr, Nb, Y, Zn, Co, Al, Si, Ge or the aforementioned alloy. 一種電阻式記憶裝置之操作方法,包括:提供一3D記憶晶胞陣列,具有複數個垂直結構,該3D記憶晶胞陣列之記憶晶胞位於該些垂直結構之側壁上;於該些3D記憶晶胞之第一部分施加一第一電壓,使該第一部分之3D記憶晶胞作為一工作記憶體;及於該些3D記憶晶胞之第二部分施加一第二電壓,使該第二部分之3D記憶晶胞作為一儲存記憶體,其中該第一電壓及該第二電壓係同時施加。 A method for operating a resistive memory device includes: providing a 3D memory cell array having a plurality of vertical structures, wherein the memory cells of the 3D memory cell array are located on sidewalls of the vertical structures; and the 3D memory crystals Applying a first voltage to the first portion of the cell to cause the first portion of the 3D memory cell to function as a working memory; and applying a second voltage to the second portion of the 3D memory cell to cause the second portion to be 3D The memory cell acts as a memory, wherein the first voltage and the second voltage are simultaneously applied. 如申請專利範圍第9項所述之電阻式記憶裝置之操作方法,其中該第一電壓為脈波(Pulse)6V~7V。 The method of operating a resistive memory device according to claim 9, wherein the first voltage is a pulse of 6V to 7V. 如申請專利範圍第9項所述之電阻式記憶裝置之操作方 法,其中該第二電壓為直流(DC)5V~6V。 The operating method of the resistive memory device as described in claim 9 The method, wherein the second voltage is direct current (DC) 5V~6V. 如申請專利範圍第9項所述之電阻式記憶裝置之操作方法,其中該第一部分之記憶晶胞佔該記憶晶胞陣列之30%~70%。 The method of operating a resistive memory device according to claim 9, wherein the memory cell of the first portion accounts for 30% to 70% of the memory cell array. 如申請專利範圍第9項所述之電阻式記憶裝置之操作方法,其中該第二部分記憶晶胞佔該記憶晶胞陣列之30%~70%。 The method of operating a resistive memory device according to claim 9, wherein the second portion of the memory cell occupies 30% to 70% of the memory cell array.
TW102149200A 2013-12-31 2013-12-31 Resistive random-access memory and operation of resistive random-access memory TWI597824B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102149200A TWI597824B (en) 2013-12-31 2013-12-31 Resistive random-access memory and operation of resistive random-access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102149200A TWI597824B (en) 2013-12-31 2013-12-31 Resistive random-access memory and operation of resistive random-access memory

Publications (2)

Publication Number Publication Date
TW201526166A TW201526166A (en) 2015-07-01
TWI597824B true TWI597824B (en) 2017-09-01

Family

ID=54197778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102149200A TWI597824B (en) 2013-12-31 2013-12-31 Resistive random-access memory and operation of resistive random-access memory

Country Status (1)

Country Link
TW (1) TWI597824B (en)

Also Published As

Publication number Publication date
TW201526166A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI492434B (en) Self-rectfying rram cell strcutre and 3d crossbar array architecture thereof
TWI529987B (en) Self-rectfying rram cell strcutre and rram 3d crossbar array architecture
US8759806B2 (en) Semiconductor memory device
US8890109B2 (en) Resistive random access memory access cells having thermally isolating structures
US9029187B1 (en) Using multi-layer MIMCAPs with defective barrier layers as selector element for a cross bar memory array
JP4698630B2 (en) Variable resistance memory device having buffer layer formed on lower electrode
JP5154138B2 (en) Variable resistance random access memory device with n + interface layer
US9978941B2 (en) Self-rectifying resistive random access memory cell structure
KR20150122647A (en) Three or more resistive state random access memory cell
KR20070043444A (en) Nonvolatile memory device comprising nanodot and manufacturing method for the same
Chen et al. Resistance switching for RRAM applications
CN101106171A (en) Non-volatile memory device including variable resistance material
US20140097397A1 (en) Resistive memory device and memory apparatus and data processing system having the same
US20150137062A1 (en) Mimcaps with quantum wells as selector elements for crossbar memory arrays
KR20150064709A (en) Method for forming resistive switching memory elements with improved switching behavior
US8860002B2 (en) Limited maximum fields of electrode-switching layer interfaces in Re-RAM cells
US9024283B2 (en) Horizontally oriented and vertically stacked memory cells
KR101471971B1 (en) Non-linear resistance switching memory device using multi-layered tunnel barrier selector
TWI597824B (en) Resistive random-access memory and operation of resistive random-access memory
CN104810048B (en) The operating method of resistive memory device, resistive memory device
US20170062522A1 (en) Combining Materials in Different Components of Selector Elements of Integrated Circuits
US9018068B2 (en) Nonvolatile resistive memory element with a silicon-based switching layer
CN105470277B (en) Self-rectifying resistive random access memory memory cell structure and 3D are staggered