TWI620814B - Thermal control apparatus and method thereof - Google Patents
Thermal control apparatus and method thereof Download PDFInfo
- Publication number
- TWI620814B TWI620814B TW106115735A TW106115735A TWI620814B TW I620814 B TWI620814 B TW I620814B TW 106115735 A TW106115735 A TW 106115735A TW 106115735 A TW106115735 A TW 106115735A TW I620814 B TWI620814 B TW I620814B
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- heating
- thermal control
- cooling module
- current
- Prior art date
Links
Landscapes
- Control Of Temperature (AREA)
Abstract
本發明係提供一種熱控裝置及其熱控方法,熱控裝置包括一控制器以及一加熱致冷模組。加熱致冷模組包括一溫度感測器,用以量測該加熱致冷模組中之一第一位置的一第一目前溫度;以及一加熱致冷器,用以依據來自該控制器之一控制信號以調整在該第一位置之該第一目前溫度。該控制器係依據在該第一位置之該第一目前溫度以及一溫度模型以計算在該加熱致冷模組中之一第二位置的一預測溫度。該控制器更依據所計算出之該第二位置之該預測溫度及一期望溫度以自動調整該第一位置之一第一目標溫度,且控制該加熱致冷器自動調整該第一位置之該第一目前溫度達到該第一目標溫度。 The invention provides a thermal control device and a thermal control method thereof. The thermal control device comprises a controller and a heating and cooling module. The heating and cooling module includes a temperature sensor for measuring a first current temperature of a first position of the heating and cooling module, and a heating refrigerator for relying on the controller A control signal to adjust the first current temperature at the first location. The controller calculates a predicted temperature at a second position in the heating and cooling module based on the first current temperature at the first location and a temperature model. The controller further automatically adjusts the first target temperature of the first position according to the calculated predicted temperature of the second position and a desired temperature, and controls the heating refrigerator to automatically adjust the first position. The first current temperature reaches the first target temperature.
Description
本發明係有關於溫度控制,特別是有關於一種利用虛擬溫度模型及溫度推論機制之熱控裝置及其熱控方法。 The present invention relates to temperature control, and more particularly to a thermal control device utilizing a virtual temperature model and a temperature inference mechanism and a thermal control method thereof.
聚合酶連鎖反應(Polymerase Chain Reaction,PCR)是一種分子生物學技術,用於擴增特定的脫氧核醣核酸(Deoxyribonucleic Acid,DNA)片段,這種方法可在生物體外進行,不必依賴大腸桿菌或酵母菌等生物體。微生物複製是一個費時耗力的流程,首先要將DNA經限制酶剪裁,再利用接合酵素(Ligase)加到載體(Plasmid)中,之後利用瞬間電擊(Electroporation)或是熱休克(Heat Shock)的方式,送到大腸桿菌勝任細胞(competent cell)中,將此菌於培養皿大量繁殖培養,再經過繁複的分離、純化過程,通常需要耗費近一週時間,才能大量複製片段。相較之下,僅需約一小時反應時間的聚合酶連鎖反應可以節省大量時間和繁複的操作。聚合酶連鎖反應技術被廣泛地運用在醫學和生物學的實驗室,例如用於判斷檢體中是否會表現某遺傳疾病的圖譜、傳染病的診斷、基因複製,以及親子鑑定等。 Polymerase Chain Reaction (PCR) is a molecular biology technique used to amplify specific deoxyribonucleic acid (DNA) fragments. This method can be performed in vitro without relying on E. coli or yeast. Organisms such as bacteria. Microbial replication is a time-consuming and labor-intensive process. First, the DNA is cut by a restriction enzyme, and then Ligase is added to the carrier, followed by Electroporation or Heat Shock. The method is sent to the competent cell of Escherichia coli, and the bacteria are cultured and cultured in a culture dish, and after complicated separation and purification processes, it usually takes about one week to copy the fragments in large quantities. In contrast, a polymerase chain reaction requiring only about one hour of reaction time can save a lot of time and complicated operations. Polymerase chain reaction technology is widely used in medical and biological laboratories, for example, to determine whether a specimen exhibits a genetic disease map, infectious disease diagnosis, gene replication, and paternity testing.
聚合酶連鎖反應通常需要在特定的生化儀器設備進行,例如是聚合酶連鎖反應設備。因為聚合酶連鎖反應之過程需要反覆進行將聚合酶加熱及降溫之循環,故PCR設備通常是將盛裝聚合酶之容器(例如:試管)置於一熱控裝置之中以進行溫度控制,例如可透過將容器置於一熱電致冷器(thermoelectric cooler)之基板上以進行加熱及降溫之控制。在進行聚合酶連鎖反應時,將聚合酶加熱至一第一特定溫度(例如90至95度C)並降溫至第二特定溫度(例如40至60度C)之操作過程即可稱為一PCR循環,且PCR循環需要反覆進行多次。 The polymerase chain reaction usually needs to be carried out in a specific biochemical device, such as a polymerase chain reaction device. Because the process of the polymerase chain reaction needs to repeat the cycle of heating and cooling the polymerase, the PCR device usually places a container (eg, a test tube) containing the polymerase in a thermal control device for temperature control, for example, Control of heating and cooling is performed by placing the container on a substrate of a thermoelectric cooler. When performing a polymerase chain reaction, the process of heating the polymerase to a first specific temperature (for example, 90 to 95 degrees C) and cooling to a second specific temperature (for example, 40 to 60 degrees C) is called a PCR. Loop, and the PCR cycle needs to be repeated multiple times.
然而,聚合酶連鎖反應過程極需仰賴精確的溫度控制,才能達到DNA複製的目的。一般在進行聚合酶連鎖反應過程時,熱控裝置中之容器裡的液體溫度並無法被直接測得,且上述液體溫度與熱電致冷器之基板溫度並非一致,因此無法直接使用傳統的溫度控制方法來達到精確液溫控制之目標,而需要手動調整每台熱控裝置之控制參數,會花費相當多時間,造成產線生產製造的困擾。 However, the polymerase chain reaction process relies on precise temperature control to achieve DNA replication. Generally, when the polymerase chain reaction process is carried out, the temperature of the liquid in the container in the thermal control device cannot be directly measured, and the liquid temperature is not consistent with the substrate temperature of the thermoelectric cooler, so the conventional temperature control cannot be directly used. The method to achieve the goal of precise liquid temperature control, and the manual adjustment of the control parameters of each thermal control device, will take a considerable amount of time, causing troubles in production line manufacturing.
因此,需要一種可利用虛擬溫度模型及推論機制以進行準確溫控之熱控裝置及其方法以解決上述問題。 Therefore, there is a need for a thermal control device and method thereof that can utilize a virtual temperature model and an inference mechanism for accurate temperature control to solve the above problems.
本發明係提供一種熱控裝置,包括一控制器以及一加熱致冷模組。該加熱致冷模組包括:一溫度感測器,用以量測該加熱致冷模組中之一第一位置的一第一目前溫度;以及一加熱致冷器,用以依據來自該控制器之一控制信號以調整在 該第一位置之該第一目前溫度。該控制器係依據在該第一位置之該第一目前溫度以及一溫度模型以計算在該加熱致冷模組中之一第二位置的一預測溫度。該控制器更依據所計算出之該第二位置之該預測溫度及一期望溫度以自動調整該第一位置之一第一目標溫度,且控制該加熱致冷器自動調整該第一位置之該第一目前溫度達到該第一目標溫度。 The invention provides a thermal control device comprising a controller and a heating and cooling module. The heating and cooling module includes: a temperature sensor for measuring a first current temperature of a first position of the heating and cooling module; and a heating refrigerator for receiving the control One of the control signals to adjust The first current temperature of the first location. The controller calculates a predicted temperature at a second position in the heating and cooling module based on the first current temperature at the first location and a temperature model. The controller further automatically adjusts the first target temperature of the first position according to the calculated predicted temperature of the second position and a desired temperature, and controls the heating refrigerator to automatically adjust the first position. The first current temperature reaches the first target temperature.
本發明更提供一種熱控方法,用於一熱控裝置,其中該熱控裝置包括一溫度感測器及一加熱致冷模組,且該熱控方法包括以下步驟:利用該溫度感測器量測該加熱致冷模組中之一第一位置的一第一目前溫度;利用該加熱致冷器調整在該第一位置之該第一目前溫度;依據在該第一位置之該第一目前溫度以及一溫度模型以計算在該加熱致冷模組中之一第二位置的一預測溫度;依據所計算出之該第二位置之該預測溫度及一期望溫度以自動調整該第一位置之一第一目標溫度;控制該加熱致冷器自動調整該第一位置之該第一目前溫度達到該第一目標溫度。 The invention further provides a thermal control method for a thermal control device, wherein the thermal control device comprises a temperature sensor and a heating and cooling module, and the thermal control method comprises the following steps: using the temperature sensor Measureing a first current temperature of one of the first positions of the heating and cooling module; adjusting the first current temperature at the first position by the heating refrigerator; according to the first position at the first position a current temperature and a temperature model to calculate a predicted temperature at a second position in the heating and cooling module; automatically adjusting the first position based on the calculated predicted temperature of the second position and a desired temperature a first target temperature; controlling the heating refrigerator to automatically adjust the first current temperature of the first position to reach the first target temperature.
100‧‧‧熱控裝置 100‧‧‧ Thermal control device
110‧‧‧溫度控制模組 110‧‧‧temperature control module
111‧‧‧控制器 111‧‧‧ Controller
112‧‧‧記憶體單元 112‧‧‧ memory unit
112A‧‧‧揮發性記憶體 112A‧‧‧ volatile memory
112B‧‧‧非揮發性記憶體 112B‧‧‧Non-volatile memory
113‧‧‧控制信號 113‧‧‧Control signal
114‧‧‧溫度推論機制 114‧‧‧ Temperature inference mechanism
115‧‧‧溫度模型 115‧‧‧temperature model
116‧‧‧溫度回授信號 116‧‧‧ Temperature feedback signal
120‧‧‧加熱致冷模組 120‧‧‧heating cooling module
121‧‧‧容器 121‧‧‧ Container
122‧‧‧實驗液體 122‧‧‧Experimental liquid
123‧‧‧基板 123‧‧‧Substrate
124‧‧‧加熱致冷器 124‧‧‧heating refrigerator
125‧‧‧溫度感測器 125‧‧‧temperature sensor
200‧‧‧曲線 200‧‧‧ curve
210、220‧‧‧點 210, 220‧‧ points
A、B‧‧‧位置 A, B‧‧‧ position
S310-S370‧‧‧步驟 S310-S370‧‧‧Steps
S410-S450‧‧‧步驟 S410-S450‧‧‧Steps
第1圖係顯示依據本發明一實施例中之熱控裝置之功能方塊圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a functional block diagram showing a thermal control device in accordance with an embodiment of the present invention.
第2圖係顯示依據本發明一實施例中之溫度模型的示意圖。 Figure 2 is a schematic diagram showing a temperature model in accordance with an embodiment of the present invention.
第3圖係顯示依據本發明一實施例中之目標基板溫度推論方法之流程圖。 Figure 3 is a flow chart showing a method of inferring a target substrate temperature in accordance with an embodiment of the present invention.
第4圖係顯示依據本發明一實施例中之熱控方法之流程圖。 Figure 4 is a flow chart showing a thermal control method in accordance with an embodiment of the present invention.
為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.
第1圖係顯示依據本發明一實施例中之熱控裝置之功能方塊圖。如第1圖所示,熱控裝置100包括:一溫度控制模組110以及一加熱致冷模組120。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a functional block diagram showing a thermal control device in accordance with an embodiment of the present invention. As shown in FIG. 1 , the thermal control device 100 includes a temperature control module 110 and a heating and cooling module 120 .
溫度控制模組110係包括一控制器111及一記憶體單元112。在一實施例中,控制器111例如可為一通用處理器(general-purpose processor)、一數位信號處理器(digital signal procesor,DSP)、或是一微控制器(microcontroller),但本發明並不限於此。 The temperature control module 110 includes a controller 111 and a memory unit 112. In an embodiment, the controller 111 can be, for example, a general-purpose processor, a digital signal processor (DSP), or a microcontroller, but the present invention Not limited to this.
記憶體單元112係包括一揮發性記憶體112A及一非揮發性記憶體112B。揮發性記憶體112A例如可為一靜態隨機存取記憶體(SRAM)、或是一動態隨機存取記憶體(DRAM),但本發明並不限於此。非揮發性記憶體112B例如可為一唯讀記憶體(ROM)、電子可抹除式可程式化唯讀記憶體(EEPROM)、硬碟(hard disk)、固態硬碟(solid-state disk),但本發明並不限於此。 The memory unit 112 includes a volatile memory 112A and a non-volatile memory 112B. The volatile memory 112A may be, for example, a static random access memory (SRAM) or a dynamic random access memory (DRAM), but the present invention is not limited thereto. The non-volatile memory 112B can be, for example, a read only memory (ROM), an electronic erasable programmable read only memory (EEPROM), a hard disk, or a solid-state disk. However, the invention is not limited thereto.
在一實施例中,非揮發性記憶體112B係儲存一溫度推論機制114(例如可為一應用程式或程式碼)及一溫度模型115,其細節將詳述於後。 In one embodiment, the non-volatile memory 112B stores a temperature inference mechanism 114 (which may be, for example, an application or code) and a temperature model 115, the details of which will be detailed later.
加熱致冷模組120係包括一或多個容器121、一基板(heating base)123、一加熱致冷器(thermoelectric cooling device,TEC device)124、以及一溫度感測器125。容器121中係盛裝一實驗液體122,例如在聚合酶連鎖反應過程中,該實驗液體可為聚合酶。而在其他的實驗過程中,該實驗液體可為不同類型之液體。 The heating and cooling module 120 includes one or more containers 121, a heating base 123, a thermoelectric cooling device (TEC device) 124, and a temperature sensor 125. The container 121 contains an experimental liquid 122, such as a polymerase, for example during a polymerase chain reaction. In other experiments, the experimental liquid can be a different type of liquid.
容器121係置放於基板123上,基板123亦可稱為加熱基板,例如可由易於導熱之材質所製成,例如金屬,但本發明並不限定於此。加熱致冷器124係依據來自控制器111之一控制信號113以進行加熱或降溫。加熱致冷器124例如可為一加熱致冷晶片(thermoelectric cooling IC)、或是可為利用傳統的電熱器及風扇所實現之加熱致冷裝置。 The container 121 is placed on the substrate 123. The substrate 123 may also be referred to as a heating substrate. For example, the substrate may be made of a material that is easy to conduct heat, such as a metal. However, the present invention is not limited thereto. The heating chiller 124 is based on a control signal 113 from one of the controllers 111 for heating or cooling. The heating refrigerator 124 can be, for example, a thermoelectric cooling IC or a heating and cooling device that can be realized by a conventional electric heater and a fan.
在基板123上係配置有一溫度感測器125,其可即時量測基板123之目前基板溫度,並透過一溫度回授信號116回報該目前基板溫度至控制器111。 A temperature sensor 125 is disposed on the substrate 123 to instantly measure the current substrate temperature of the substrate 123 and report the current substrate temperature to the controller 111 through a temperature feedback signal 116.
舉例來說,加熱致冷器124可透過基板123對容器121中之實驗液體122進行加熱或降溫。因為PCR過程中需要對實驗液體122(例如為聚合酶)進行多次的加熱降溫循環(例如可稱為PCR循環),且目標是讓實驗液體122在加熱降溫循環之過程中會升溫至一第一溫度閥值(例如介於90~95度C之間的一特定溫度區間),以及降溫至一第二溫度閥值(例如介於40~60度C之間的一特定溫度區間),其中第一溫度閥值及第二溫度閥值則可視實驗液體122之種類及特性進行調整。 For example, the heating chiller 124 can heat or cool the test liquid 122 in the container 121 through the substrate 123. Because the PCR process requires a plurality of heating and cooling cycles (for example, a PCR cycle) for the test liquid 122 (for example, a polymerase), and the objective is to allow the test liquid 122 to heat up to a temperature during the heating and cooling cycle. a temperature threshold (eg, a specific temperature range between 90 and 95 degrees C), and a temperature drop to a second temperature threshold (eg, a specific temperature range between 40 and 60 degrees C), wherein The first temperature threshold and the second temperature threshold are adjusted depending on the type and characteristics of the experimental liquid 122.
然而,在進行聚合酶連鎖反應過程時,若採用外 部儀器量測實驗液體122之液體溫度則將不具使用之便利性,所以聚合酶連鎖反應設備一般都無法量測液體溫度。此外,傳統的聚合酶連鎖反應設備亦無法依據所量測到之基板溫度以即時計算出目前的液體溫度。 However, when using the polymerase chain reaction process, if The instrumental measurement of the liquid temperature of the test liquid 122 will not be convenient, so the polymerase chain reaction equipment generally cannot measure the liquid temperature. In addition, conventional polymerase chain reaction devices are unable to calculate the current liquid temperature in real time based on the measured substrate temperature.
第2圖係顯示依據本發明一實施例中之溫度模型的示意圖。本發明在進行聚合酶連鎖反應過程之前,可先建立液體溫度及基板溫度之間的一溫度模型,例如可透過多次在不同環境下之實驗統計結果並進行數學收斂分析以得到液體溫度及基板溫度之間的溫度模型。該溫度模型係記錄了基板溫度及液體溫度之一關係模型,其中該關係模型例如可用下列方程式所表示:T l_predicted (n)=α.T l_predicted(n-1)+β.T c_measured(n-1)+k (1) Figure 2 is a schematic diagram showing a temperature model in accordance with an embodiment of the present invention. The invention can establish a temperature model between the liquid temperature and the substrate temperature before performing the polymerase chain reaction process, for example, the experimental statistical results in multiple environments and the mathematical convergence analysis can be performed to obtain the liquid temperature and the substrate. Temperature model between temperatures. The temperature model records a relationship model between substrate temperature and liquid temperature, wherein the relationship model can be expressed, for example, by the following equation: T l_predicted ( n ) = α . T l_predicte d ( n -1) + β . T c_measure d ( n -1)+ k (1)
其中,T l_predicted (n)為預測之目前液體溫度;T l_predicted (n-1)為上一個時間點所預測之液體溫度;T c_measured (n-1)為上一個時間點所量測到之基板溫度;α及β為模型參數;k為溫度模型補償係數,用以補償溫度模型誤認為其輸出已經達到目標液溫(註:實際液溫與目標液溫之間仍有誤差)。 Where T l_predicted (n) is the predicted current liquid temperature; T l_predicted (n-1) is the liquid temperature predicted at the previous time point; T c_measured (n-1) is the substrate measured at the previous time point Temperature; α and β are model parameters; k is the temperature model compensation coefficient, which is used to compensate the temperature model and mistakenly believes that its output has reached the target liquid temperature (Note: there is still an error between the actual liquid temperature and the target liquid temperature).
在一些實施例中,可計算溫度模型補償係數k以對溫度模型所輸出之預測液體溫度進行溫度補償。在一些實施例中,可利用數學方式將溫度模型補償係數k整合至其他溫度模型之參數中,故可省略溫度模型補償係數k。溫度模型之曲線圖例如第2圖所示,其中X軸為基板溫度,Y軸為液體溫度。如 第2圖所示,在單一PCR循環中,液體溫度會隨著基板溫度升溫或降溫而改變。舉例來說,從溫度模型之曲線200中之點210開始,隨著基板溫度增加,液體溫度會先沿著曲線210往右移動。當完成升溫過程且開始降溫後,液體溫度會從右點之點220沿著曲線200往左移動。需注意的是曲線200僅為一示意圖,並非表示PCR之反應必然是使用曲線200所代表的溫度模型。 In some embodiments, the temperature model compensation coefficient k can be calculated to temperature compensate for the predicted liquid temperature output by the temperature model. In some embodiments, the temperature model compensation coefficient k can be mathematically integrated into the parameters of other temperature models, so the temperature model compensation coefficient k can be omitted. The graph of the temperature model is shown in Fig. 2, in which the X-axis is the substrate temperature and the Y-axis is the liquid temperature. As shown in Figure 2, in a single PCR cycle, the temperature of the liquid changes as the substrate temperature increases or decreases. For example, starting from point 210 in curve 200 of the temperature model, as the substrate temperature increases, the liquid temperature first moves to the right along curve 210. When the warming up process is completed and the temperature begins to cool down, the liquid temperature will move from the point 220 at the right point to the left along the curve 200. It should be noted that the curve 200 is only a schematic diagram, and it does not mean that the reaction of the PCR is necessarily the temperature model represented by the curve 200.
在傳統的熱控裝置中,可利用經驗以預先建立一溫度查找表(temperature lookup table),但在實際進行溫度控制的過程中,並無法即時反應些微的溫度動態變化。此外,傳統的熱控裝置亦無法反應在機器組裝上之公差所導致的影響。 In the conventional thermal control device, experience can be used to pre-establish a temperature lookup table, but in the actual temperature control process, it is not possible to immediately respond to slight temperature dynamic changes. In addition, conventional thermal controls do not reflect the effects of tolerances on machine assembly.
在一實施例中、控制器111係可將儲存於非揮發性記憶體112B之溫度推論機制應用程式及溫度模型讀取至揮發性記憶體112A並執行一溫度推論機制(例如可為模糊邏輯(fuzzy logic)演算法,或是其他類型之推論演算法),其中該溫度推論機制係可依據一溫度模型及一或多個液體期望溫度以計算出一基板期望溫度,且控制器111係可依據所計算出之基板期望溫度進行加熱致冷模組120中之加熱致冷器124的溫度控制(例如升溫或降溫),進而讓加熱致冷模組120中之容器121所盛裝之實驗液體的液體溫度實際上能達到預期的液體期望溫度。 In one embodiment, the controller 111 can read the temperature inference mechanism application and the temperature model stored in the non-volatile memory 112B to the volatile memory 112A and perform a temperature inference mechanism (for example, can be fuzzy logic ( Fuzzy logic), or other type of inference algorithm), wherein the temperature inference mechanism can calculate a desired temperature of a substrate according to a temperature model and one or more liquid desired temperatures, and the controller 111 can be based on The calculated desired temperature of the substrate is subjected to temperature control (for example, temperature rise or temperature reduction) of the heating refrigerator 124 in the heating and cooling module 120, thereby allowing the liquid of the test liquid contained in the container 121 in the heating and cooling module 120 to be heated. The temperature actually reaches the desired liquid desired temperature.
舉例來說,控制器111所執行之溫度推論方法可利用溫度模型所輸出之預測液體溫度及一期望液體溫度做為輸入,並產生一目標基板溫度。控制器111即可依據該目標基板溫度以更新基板目標參考溫度表。 For example, the temperature inference method performed by the controller 111 can utilize the predicted liquid temperature and a desired liquid temperature output by the temperature model as inputs and generate a target substrate temperature. The controller 111 can update the substrate target reference temperature table according to the target substrate temperature.
第3圖係顯示依據本發明一實施例中之目標基板溫度推論方法之流程圖。如第3圖所示,在PCR循環中之升溫過程及降溫過程可分開處理。例如在PCR循環之升溫過程中,期望液體溫度可設定為第一溫度閥值,例如為90至95度C之間的一特定溫度或是一特定溫度區間,並在預測液體溫度升溫到第一溫度閥值後並穩定維持一預定時間。在PCR循環之降溫過程中,期望液體溫度可設定為第二溫度閥值,例如為40至60度C之間的一特定溫度或是一特定溫度區間,並在預測液體溫度降溫到第一溫度閥值後並穩定維持一預定時間。 Figure 3 is a flow chart showing a method of inferring a target substrate temperature in accordance with an embodiment of the present invention. As shown in Figure 3, the temperature rise and temperature down processes in the PCR cycle can be treated separately. For example, during the temperature rise of the PCR cycle, the desired liquid temperature can be set to a first temperature threshold, for example, a specific temperature between 90 and 95 degrees C or a specific temperature interval, and the temperature of the liquid is predicted to rise to the first The temperature threshold is maintained and maintained for a predetermined period of time. During the cooling of the PCR cycle, the desired liquid temperature can be set to a second temperature threshold, such as a specific temperature between 40 and 60 degrees C or a specific temperature interval, and the temperature of the liquid is predicted to drop to the first temperature. After the threshold is maintained and maintained for a predetermined period of time.
舉例來說,以第3圖之上半部份為例,其係表示溫度控制循環之升溫過程,在步驟S310,取得一目前基板溫度並利用一溫度模型依據該目標基板溫度以計算一預測液體溫度,例如96.4度C。 For example, taking the upper half of FIG. 3 as an example, which represents the temperature rising process of the temperature control cycle, in step S310, a current substrate temperature is obtained and a temperature model is used to calculate a predicted liquid according to the target substrate temperature. Temperature, for example 96.4 degrees C.
在步驟S315,利用一溫度模型補償係數以調整該預測液體溫度。其中、溫度模型補償係數即為前述實施例中所述之溫度模型補償係數k。在一些實施例中,可利用數學方式將溫度模型補償係數k整合進至其他溫度模型之參數中,在此情況下,故可省略溫度模型補償係數k以及步驟S315。 At step S315, a temperature model compensation coefficient is utilized to adjust the predicted liquid temperature. The temperature model compensation coefficient is the temperature model compensation coefficient k described in the foregoing embodiment. In some embodiments, the temperature model compensation coefficient k can be mathematically integrated into the parameters of other temperature models, in which case the temperature model compensation coefficient k and step S315 can be omitted.
在步驟S320,執行一溫度推論機制依據該預測液體溫度及一期望液體溫度以產生一目標基板溫度。舉例來說,溫度推論機制可依據該預測液體溫度及該期望液體溫度直接產生該目標基板溫度,或是可產生一目標基板溫度修正值,此即表示目標基板溫度與目前基板溫度之間的差值。若為目標基板溫度修正值為一正值,則表示需要將目前基板溫度升溫以到 達目標基板温度,若為目標基板溫度修正值為一負值,則表示需要將目前基板溫度降溫以到達目標基板温度。 In step S320, a temperature inference mechanism is executed to generate a target substrate temperature based on the predicted liquid temperature and a desired liquid temperature. For example, the temperature inference mechanism may directly generate the target substrate temperature according to the predicted liquid temperature and the desired liquid temperature, or may generate a target substrate temperature correction value, which represents a difference between the target substrate temperature and the current substrate temperature. value. If the target substrate temperature correction value is a positive value, it means that the current substrate temperature needs to be increased. If the target substrate temperature is corrected to a negative value, it means that the current substrate temperature needs to be lowered to reach the target substrate temperature.
在步驟S325,將目前基板溫度調整至該目標基板溫度。 In step S325, the current substrate temperature is adjusted to the target substrate temperature.
舉例來說,當期望液體溫度高於預測液體溫度時,即表示需要提高目前基板溫度以對實驗液體122進行升溫,故目標基板溫度修正值可為正值,例如可將目前基板溫度加上該目標基板溫度修正值以做為目標基板溫度。當期望液體溫度低於預測液體溫度時,即表示需要降低目前基板溫度以對實驗液體122進行降溫,故目標基板溫度修正值可為負值,例如可將目前基板溫度加上該目標基板溫度修正值以做為目標基板溫度,或是直接計算出目標基板溫度再進行調整。 For example, when the desired liquid temperature is higher than the predicted liquid temperature, that is, the current substrate temperature needs to be increased to raise the temperature of the experimental liquid 122, the target substrate temperature correction value may be a positive value, for example, the current substrate temperature may be added. The target substrate temperature correction value is taken as the target substrate temperature. When the liquid temperature is lower than the predicted liquid temperature, it means that the current substrate temperature needs to be lowered to cool the experimental liquid 122, so the target substrate temperature correction value may be a negative value, for example, the current substrate temperature may be added to the target substrate temperature correction. The value is used as the target substrate temperature, or the target substrate temperature is directly calculated and adjusted.
在步驟S330,判斷目前溫度控制循環是否為一終點情況。若是,則結束調整溫度之控制(步驟S370)。若否,則回到步驟S310,並重複進行溫度控制循環。需注意的是,上述之終點情況可為一預定數值,舉例來說PCR過程需要重複進行多次PCR循環,該預定數值即為所要重複進行之PCR循環之次數。舉例來說,若第16次預測液體溫度已經符合目標液體溫度條件,則當完成第16次之溫度控制循環後,則會結束調整溫度之控制。 At step S330, it is determined whether the current temperature control loop is an end point condition. If so, the control of adjusting the temperature is ended (step S370). If not, the process returns to step S310, and the temperature control loop is repeated. It should be noted that the above end condition may be a predetermined value. For example, the PCR process needs to repeat a plurality of PCR cycles, which is the number of PCR cycles to be repeated. For example, if the 16th predicted liquid temperature has met the target liquid temperature condition, the control of the adjusted temperature is ended when the 16th temperature control cycle is completed.
在步驟S310~S330之流程係說明在溫度控制循環中之升溫目標基板溫度推論過程,而第3圖之下半部份的步驟S340~S360之流程則是說明在溫度控制循環中之降溫目標基板溫度推論過程。步驟S340~S360之流程係類似於步驟S310 ~S330。 The flow of steps S310 to S330 illustrates the temperature target substrate temperature inference process in the temperature control cycle, and the steps S340 to S360 of the lower half of FIG. 3 illustrate the temperature reduction target substrate in the temperature control cycle. Temperature inference process. The process of steps S340~S360 is similar to step S310. ~S330.
在步驟S340,取得一目前基板溫度並利用一溫度模型依據該目標基板溫度以計算一預測液體溫度,例如60.4度C。 In step S340, a current substrate temperature is obtained and a temperature model is used to calculate a predicted liquid temperature, for example, 60.4 degrees C.
在步驟S345,利用一溫度模型補償係數以調整該預測液體溫度。其中、溫度模型補償係數即為前述實施例中所述之溫度模型補償係數k。在一些實施例中,可利用數學方式將溫度模型補償係數k整合進至其他溫度模型之參數中,在此情況下,故可省略溫度模型補償係數k以及步驟S345。 At step S345, a temperature model compensation coefficient is utilized to adjust the predicted liquid temperature. The temperature model compensation coefficient is the temperature model compensation coefficient k described in the foregoing embodiment. In some embodiments, the temperature model compensation coefficient k can be mathematically integrated into the parameters of other temperature models, in which case the temperature model compensation coefficient k and step S345 can be omitted.
在步驟S350,執行一溫度推論機制依據該預測液體溫度及一期望液體溫度以產生一目標基板溫度。舉例來說,溫度推論機制可依據該預測液體溫度及一第一期望液體溫度直接產生該目標基板溫度,或是可產生一目標基板溫度修正值,此即表示目標基板溫度與目前基板溫度之間的差值。若為目標基板溫度修正值為一正值,則表示需要將目前基板溫度升溫以到達目標基板温度,若為目標基板溫度修正值為一負值,則表示需要將目前基板溫度降溫以到達目標基板温度。需注意的是,在步驟S350中之第二期望液體溫度係與步驟S320中之第一期望液體溫度不同。 In step S350, a temperature inference mechanism is executed to generate a target substrate temperature based on the predicted liquid temperature and a desired liquid temperature. For example, the temperature inference mechanism may directly generate the target substrate temperature according to the predicted liquid temperature and a first desired liquid temperature, or may generate a target substrate temperature correction value, which is between the target substrate temperature and the current substrate temperature. The difference. If the target substrate temperature correction value is a positive value, it means that the current substrate temperature needs to be raised to reach the target substrate temperature. If the target substrate temperature correction value is a negative value, it means that the current substrate temperature needs to be cooled to reach the target substrate. temperature. It should be noted that the second desired liquid temperature in step S350 is different from the first desired liquid temperature in step S320.
在步驟S355,將目前基板溫度調整至該目標基板溫度。 In step S355, the current substrate temperature is adjusted to the target substrate temperature.
舉例來說,當期望液體溫度高於預測液體溫度時,即表示需要提高目前基板溫度以對實驗液體122進行升溫,故目標基板溫度修正值可為正值,例如可將目前基板溫度 加上該目標基板溫度修正值以做為目標基板溫度。當期望液體溫度低於預測液體溫度時,即表示需要降低目前基板溫度以對實驗液體122進行降溫,故目標基板溫度修正值可為負值,例如可將目前基板溫度加上該目標基板溫度修正值以做為目標基板溫度。 For example, when the desired liquid temperature is higher than the predicted liquid temperature, that is, the current substrate temperature needs to be increased to raise the temperature of the experimental liquid 122, the target substrate temperature correction value may be a positive value, for example, the current substrate temperature may be used. The target substrate temperature correction value is added as the target substrate temperature. When the liquid temperature is lower than the predicted liquid temperature, it means that the current substrate temperature needs to be lowered to cool the experimental liquid 122, so the target substrate temperature correction value may be a negative value, for example, the current substrate temperature may be added to the target substrate temperature correction. The value is taken as the target substrate temperature.
在步驟S360,判斷目前溫度控制循環是否為一終點情況。若是,則結束調整溫度之控制(步驟S370)。若否,則回到步驟S340,並重複進行溫度控制循環。需注意的是,上述之終點情況可為一預定數值,舉例來說PCR過程需要重複進行多次PCR循環,該預定數值即為所要重複進行之PCR循環之次數。舉例來說,若第16次預測液體溫度已經符合目標液體溫度,則當完成第16次之溫度控制循環後,則會結束調整溫度之控制。 In step S360, it is determined whether the current temperature control loop is an end point condition. If so, the control of adjusting the temperature is ended (step S370). If not, the process returns to step S340, and the temperature control loop is repeated. It should be noted that the above end condition may be a predetermined value. For example, the PCR process needs to repeat a plurality of PCR cycles, which is the number of PCR cycles to be repeated. For example, if the 16th predicted liquid temperature has met the target liquid temperature, the control of the adjusted temperature is ended when the 16th temperature control cycle is completed.
在一些實施例中,第3圖之流程中之步驟S340~S360可省略,即透過上半部份溫度控制迴圈即可控制實驗液體之溫度。 In some embodiments, steps S340-S360 in the flow of FIG. 3 may be omitted, that is, the temperature of the experimental liquid can be controlled by the upper half of the temperature control loop.
需注意的是,本發明中之目標溫度推論方法並不限制僅用於PCR過程,本發明中之目標溫度推論方法可利用虛擬溫度模型及溫度推論機制以重複進行溫度控制循環以準確控制一待測物件(例如一特定實驗液體)之溫度,且可應用於無法用溫度感測器來直接量測待測物件之溫度的情境。 It should be noted that the target temperature inference method in the present invention is not limited to the PCR process only. The target temperature inference method in the present invention can utilize the virtual temperature model and the temperature inference mechanism to repeat the temperature control loop to accurately control the waiting process. The temperature of the object (for example, a specific experimental liquid) is measured and applied to a situation in which the temperature of the object to be tested cannot be directly measured by the temperature sensor.
第4圖係顯示依據本發明一實施例中之熱控方法的流程圖。需了解的是,本發明第3圖中之目標溫度推論方法並不限制用於PCR過程,而可廣泛地應用於在熱控裝置中之兩 個不同位置的溫度控制。請同時參考第1圖及第4圖。 Figure 4 is a flow chart showing a thermal control method in accordance with an embodiment of the present invention. It should be understood that the target temperature inference method in FIG. 3 of the present invention is not limited to the PCR process, but can be widely applied to two of the thermal control devices. Temperature control at different locations. Please also refer to Figures 1 and 4.
在步驟S410,利用溫度感測器125量測加熱致冷模組120中之一第一位置的一第一目前溫度。舉例來說,第一位置可例如為第1圖中之B點位置。 In step S410, a first current temperature of one of the first positions of the heating and cooling module 120 is measured by the temperature sensor 125. For example, the first position may be, for example, the position of point B in FIG. 1 .
在步驟S420,利用該加熱致冷器124調整在該第一位置之該第一目前溫度。 In step S420, the first current temperature at the first position is adjusted by the heating refrigerator 124.
在步驟S430,依據在該第一位置之該第一目前溫度以及一溫度模型以計算在該加熱致冷模組中之一第二位置的一預測溫度。舉例來說,第二位置可例如為第1圖中之A點位置,且該溫度模型即為該第一位置及該第二位置之間的溫度關係模型。 In step S430, a predicted temperature of one of the second positions in the heating and cooling module is calculated based on the first current temperature at the first position and a temperature model. For example, the second position may be, for example, the point A of FIG. 1 , and the temperature model is a temperature relationship model between the first position and the second position.
在步驟S440,依據所計算出之該第二位置之該預測溫度及該第二位置的一期望溫度以自動調整該第一位置之一第一目標溫度。 In step S440, a first target temperature of the first position is automatically adjusted according to the calculated predicted temperature of the second position and a desired temperature of the second position.
在步驟S450,控制該加熱致冷器自動調整該第一位置之該第一目前溫度達到該第一目標溫度。 In step S450, the heating refrigerator is controlled to automatically adjust the first current temperature of the first position to reach the first target temperature.
舉例來說,如第1圖所示,在A點位置即為待測物件之位置(例如一第二位置),且無法直接用溫度感測器來量測A點位置之待測物件之目前溫度。B點位置(例如一第一位置)則是配備有溫度感測器,可直接量測基板123之目前溫度。控制器111即可取得B點位置之目前溫度,並透過本發明中之目標溫度推論方法利用第一位置及第二位置之間的一溫度模型及目標溫度推論機制以重複進行溫度控制循環以準確控制無法直接量測之A點位置之待測物件(例如一特定實驗液體)之目前 溫度。 For example, as shown in Figure 1, the position of the object to be tested at position A (for example, a second position), and the temperature sensor is not directly used to measure the current position of the object to be tested at the point A. temperature. The point B (for example, a first position) is equipped with a temperature sensor that directly measures the current temperature of the substrate 123. The controller 111 can obtain the current temperature of the position B, and utilize the temperature model between the first position and the second position and the target temperature inference mechanism to repeat the temperature control cycle through the target temperature inference method of the present invention. Controlling the current state of the object to be tested (eg, a specific experimental liquid) that cannot be directly measured at point A temperature.
綜上所述,本發明係提供一種熱控裝置及其熱控方法,其可利用虛擬溫度模型及溫度推論機制以重複進行溫度控制循環以準確控制一待測物件(例如一特定實驗液體,如聚合酶)之溫度,且可應用於無法用溫度感測器來直接量測在待測物件之位置的溫度的情境。 In summary, the present invention provides a thermal control device and a thermal control method thereof, which can utilize a virtual temperature model and a temperature inference mechanism to repeatedly perform a temperature control cycle to accurately control an object to be tested (eg, a specific experimental liquid, such as The temperature of the polymerase) can be applied to a situation where the temperature of the object to be tested cannot be directly measured by the temperature sensor.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106115735A TWI620814B (en) | 2017-05-12 | 2017-05-12 | Thermal control apparatus and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106115735A TWI620814B (en) | 2017-05-12 | 2017-05-12 | Thermal control apparatus and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI620814B true TWI620814B (en) | 2018-04-11 |
TW201900867A TW201900867A (en) | 2019-01-01 |
Family
ID=62639875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106115735A TWI620814B (en) | 2017-05-12 | 2017-05-12 | Thermal control apparatus and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI620814B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI677572B (en) * | 2019-04-18 | 2019-11-21 | 台達電子工業股份有限公司 | Thermal control apparatus and automatic thermal control calibration method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103003448A (en) * | 2010-04-09 | 2013-03-27 | 生命技术公司 | Improved thermal uniformity for thermal cycler instrumentation using dynamic control |
-
2017
- 2017-05-12 TW TW106115735A patent/TWI620814B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103003448A (en) * | 2010-04-09 | 2013-03-27 | 生命技术公司 | Improved thermal uniformity for thermal cycler instrumentation using dynamic control |
Also Published As
Publication number | Publication date |
---|---|
TW201900867A (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5889278B2 (en) | Temperature control method and apparatus | |
US8151575B2 (en) | Temperature variation apparatus | |
JP2015536137A (en) | Method and apparatus for thawing biological material | |
JP2008262492A (en) | Heat treatment device, automatic adjustment method for control constant and storage medium | |
US20110275055A1 (en) | Thermal uniformity for thermal cycler instrumentation using dynamic control | |
TWI620814B (en) | Thermal control apparatus and method thereof | |
JP2014220430A (en) | Substrate processing method, program, controller, deposition system, and substrate processing system | |
JP6368686B2 (en) | Heat treatment apparatus, method for adjusting heat treatment apparatus, and program | |
CN108873979B (en) | Thermal control device and thermal control method thereof | |
CN101086485A (en) | Thermal analyzer | |
JP2006329869A (en) | Temperature estimating device, temperature control device, temperature estimating method, temperature control method, temperature estimating program, and temperature control program | |
CN203616670U (en) | PCR instrument temperature control system | |
JP2012228212A (en) | Genetic testing device | |
JP3519436B2 (en) | Heat treatment apparatus and temperature control method thereof | |
CN104076842A (en) | Temperature compensation method and temperature control method and system for thermal treatment equipoment | |
JP4670439B2 (en) | Temperature control method and temperature control apparatus | |
WO2005118774A1 (en) | Method and device for controlling temperature | |
TWI677572B (en) | Thermal control apparatus and automatic thermal control calibration method | |
KR20150024050A (en) | Apparatus for gene alplification and mamufacture method thereof | |
US8055450B2 (en) | Method and apparatus for temperature control | |
CN104635801A (en) | PCR (polymerase chain reaction) instrument temperature controlling system | |
US20230356231A1 (en) | Temperature control methods and devices | |
JPWO2006061892A1 (en) | Temperature control method and temperature control device | |
CN114815921B (en) | Temperature control method, device, equipment and storage medium for fluorescence in situ hybridization treatment instrument | |
KR100808345B1 (en) | Method and device for controlling temperature |