TWI618792B - Processes and compositions for organic rankine cycles for generating mechanical energy from heat - Google Patents
Processes and compositions for organic rankine cycles for generating mechanical energy from heat Download PDFInfo
- Publication number
- TWI618792B TWI618792B TW101130771A TW101130771A TWI618792B TW I618792 B TWI618792 B TW I618792B TW 101130771 A TW101130771 A TW 101130771A TW 101130771 A TW101130771 A TW 101130771A TW I618792 B TWI618792 B TW I618792B
- Authority
- TW
- Taiwan
- Prior art keywords
- working fluid
- hfo
- 1336mzz
- weight percent
- heat
- Prior art date
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本文揭露達到較高循環效率進而達到較高整體系統效率而獨特設計的新穎工作流體的組成物。具體而言,此等工作流體可用於有機郎肯循環系統,用於將來自任何熱源的熱有效地轉換成機械能。本發明亦關於使用含有新穎工作流體之ORC系統以自熱源回收熱的新穎製程,其中新穎工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)、反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzzE)或其混合物。 This paper discloses a composition of a novel working fluid that is uniquely designed to achieve higher cycle efficiency and thus higher overall system efficiency. In particular, such working fluids can be used in an organic Rankine cycle system for efficiently converting heat from any heat source into mechanical energy. The present invention also relates to a novel process for recovering heat from a heat source using an ORC system containing a novel working fluid, wherein the novel working fluid comprises at least about 20 weight percent of cis-1,1,1,4,4,4-hexafluoro-2. Butene (HFO-1336mzz-Z), trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzzE) or a mixture thereof.
Description
本發明一般係關於一種針對降低氣候改變的影響及達到較高循環效率而獨特設計的新穎工作流體,藉此達到較高的整體系統效率。具體而言,這些工作流體可用於有機郎肯循環(ORC)系統,用於將來自各種熱源的熱有效率地轉換成機械能。本發明亦關於一種使用含有新穎工作流體的ORC系統從熱源回收熱的新穎製程,其中新穎工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)、反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或其混合物。 The present invention relates generally to a novel working fluid that is uniquely designed to reduce the effects of climate change and achieve higher cycle efficiencies, thereby achieving higher overall system efficiency. In particular, these working fluids can be used in organic Rankine cycle (ORC) systems for efficiently converting heat from various heat sources into mechanical energy. The present invention also relates to a novel process for recovering heat from a heat source using an ORC system containing a novel working fluid, wherein the novel working fluid comprises at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2 Butene (HFO-1336mzz-Z), trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or a mixture thereof.
先前的郎肯循環系統已使用包含易燃或可燃工作流體的各種工作流體,例如具有相當高毒性的流體、具有相當高全球暖化潛勢(GWP)的流體以及臭氧層破壞潛勢(ODP)並非零的流體。產業界已在進行取代破壞臭氧層的氟氯碳化物(CFC)以及氫氟氯碳化物(HCFC)的工作。郎肯循環應用極度希望使用非易燃、低毒性又具有環境永續性的工作流體。 Previous Rankine cycle systems have used various working fluids containing flammable or combustible working fluids, such as fluids with relatively high toxicity, fluids with a relatively high global warming potential (GWP), and ozone depletion potential (ODP). Zero fluid. The industry is already working to replace the ozone-depleting CFCs and hydrochlorofluorocarbons (HCFCs). Langken cycle applications are extremely promising for working fluids that are non-flammable, less toxic, and environmentally sustainable.
已發現到本發明新穎的工作流體可令人驚訝地在ORC系統中獨特提供較高的循環效率,因以此在動力循環中達到較高的整體系統效率,同時為低毒性、不易燃、零ODP及非常低的GWP。 It has been discovered that the novel working fluid of the present invention surprisingly provides a high degree of cycle efficiency in an ORC system, thereby achieving a higher overall system efficiency in the power cycle while being low toxicity, non-flammable, zero ODP and very low GWP.
在一實施例中,本發明係關於一種從一熱源回收熱並產生機械能的製程,包含以下步驟:(a)使液相的一第一工作流體通過一熱交換器或一蒸發器,其中該熱交換器或該蒸發器與供應熱的該熱源連通;(b)從該熱交換器或該蒸發器移除至少一部分汽相的該第一工作流體;(c)將該至少一部分汽相的該第一工作流體傳遞至一膨脹機,其中至少一部分的熱被轉換成機械能;(d)將該至少一部分汽相的該第一工作流體由該膨脹機傳遞至一冷凝器,其中該至少一部分汽相的該第一工作流體被冷凝成液相的一第二工作流體;(e)選擇性地壓縮並混合液相的該第二工作流體及步驟(a)中液相的該第一工作流體;以及(f)選擇性地重複步驟(a)至(e)至少一次;其中至少約20重量百分比的該第一工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In one embodiment, the invention is directed to a process for recovering heat from a heat source and generating mechanical energy, comprising the steps of: (a) passing a first working fluid of the liquid phase through a heat exchanger or an evaporator, wherein The heat exchanger or the evaporator is in communication with the heat source supplying heat; (b) removing at least a portion of the vapor phase of the first working fluid from the heat exchanger or the evaporator; (c) the at least a portion of the vapor phase The first working fluid is transferred to an expander, wherein at least a portion of the heat is converted to mechanical energy; (d) the at least a portion of the vapor phase of the first working fluid is transferred from the expander to a condenser, wherein At least a portion of the vapor phase of the first working fluid is condensed into a liquid phase of a second working fluid; (e) selectively compressing and mixing the liquid phase of the second working fluid and the liquid phase of step (a) a working fluid; and (f) selectively repeating steps (a) through (e) at least once; wherein at least about 20 weight percent of the first working fluid comprises HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof .
本發明更關於一種從一熱源回收熱並產生機械能的製程,包含以下步驟:(a)將液相的一第一工作流體壓縮高於該第一工作流體的臨界壓力;(b)使步驟(a)的該第一工作流體通過一熱交換器或一流體加熱器,並將該第一工作流體加熱至高於或低於該第一工作流體之臨界溫度的溫度,其中該熱交換器或該流體加熱器係與供應熱的該熱源連通; (c)從該熱交換器或該流體加熱器移除至少一部分被加熱的該第一工作流體;(d)將該至少一部分被加熱的該第一工作流體傳遞至一膨脹機;其中至少一部分的熱被轉換成機械能,以及其中該至少一部分被加熱的該第一工作流體的壓力被降至低於該第一工作流體的臨界壓力,藉此使該至少一部分被加熱的該第一工作流體成為一第一工作流體蒸氣或一第一工作流體的蒸氣與液體混合物;(e)將該第一工作流體蒸氣或該第一工作流體的蒸氣與液體混合物由該膨脹機傳遞至一冷凝器,其中該至少一部分的該工作流體蒸氣或該工作流體的蒸氣與液體混合物被完全冷凝成液相的一第二工作流體;(f)選擇性地壓縮並混合液相的該第二工作流體及步驟(a)中液相的該第一工作流體;(g)選擇性地重複步驟(a)至(f)至少一次;其中至少約20重量百分比的該第一工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 More particularly, the invention relates to a process for recovering heat from a heat source and generating mechanical energy, comprising the steps of: (a) compressing a first working fluid of the liquid phase above a critical pressure of the first working fluid; (b) causing the steps The first working fluid of (a) passes through a heat exchanger or a fluid heater and heats the first working fluid to a temperature above or below a critical temperature of the first working fluid, wherein the heat exchanger or The fluid heater is in communication with the heat source that supplies heat; (c) removing at least a portion of the heated first working fluid from the heat exchanger or the fluid heater; (d) transferring the at least a portion of the heated first working fluid to an expander; at least a portion of The heat is converted into mechanical energy, and wherein the pressure of the at least a portion of the heated first working fluid is reduced below a critical pressure of the first working fluid, thereby causing the at least a portion of the first work to be heated The fluid becomes a first working fluid vapor or a vapor and liquid mixture of a first working fluid; (e) transferring the first working fluid vapor or the vapor and liquid mixture of the first working fluid from the expander to a condenser Wherein the at least a portion of the working fluid vapor or the vapor and liquid mixture of the working fluid is completely condensed into a second working fluid in the liquid phase; (f) selectively compressing and mixing the second working fluid of the liquid phase and The first working fluid of the liquid phase in step (a); (g) selectively repeating steps (a) through (f) at least once; wherein at least about 20 weight percent of the first working fluid comprises HFO-1336 mzz-Z, HFO-1336mzz-E or a mixture thereof.
在一實施例中,本發明更關於一種組成物,其包含溫度在約250℃至約300℃範圍內的HFO-1336mzz-Z,其中該HFO-1336mzz-Z的含量係在約50重量百分比至99.5重量百分比的範圍內。 In one embodiment, the invention is more directed to a composition comprising HFO-1336mzz-Z having a temperature in the range of from about 250 ° C to about 300 ° C, wherein the HFO-1336mzz-Z is present in an amount of from about 50 weight percent to Within 99.5 weight percent range.
在又另一實施例中,本發明係關於一種在約3 MPa至約10 Mpa範圍的運轉壓力下提取熱的有機郎肯循環 系統,其中約20重量百分比的該工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In yet another embodiment, the present invention is directed to an organic Rankine cycle for extracting heat at operating pressures ranging from about 3 MPa to about 10 Mpa. A system wherein about 20 weight percent of the working fluid comprises HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
在另一實施例中,本發明係關於一種作為用於動力循環之工作流體的組成物,其中該組成物的溫度係在約50℃至約400℃的範圍內,且其中約20重量百分比的該組成物包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In another embodiment, the present invention is directed to a composition as a working fluid for power cycling, wherein the temperature of the composition is in the range of from about 50 ° C to about 400 ° C, and wherein about 20 percent by weight The composition comprises HFO-1336mzz-Z, HFO-1336mzz-E or a mixture thereof.
在另一實施例中,本發明係關於一種在一動力循環系統中取代HFC-245fa的方法。該方法包含從該動力循環系統移除該HFC-245fa,並以包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物的一工作流體充填該系統。 In another embodiment, the invention is directed to a method of replacing HFC-245fa in a power cycle system. The method includes removing the HFC-245fa from the power cycle system and filling the system with a working fluid comprising HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
全球暖化潛勢(GWP)為一種指數,其係以二氧化碳之一公斤排放為基準,評估一公斤特定溫室氣體之大氣排放的相對全球暖化貢獻。透過計算不同時間範圍之GWP,可瞭解一特定氣體於大氣中留存時間之效應。通常以百年時間範圍之GWP為參考值。 The Global Warming Potential (GWP) is an index that assesses the relative global warming contribution of atmospheric emissions of one kilogram of specific greenhouse gases based on one kilogram of carbon dioxide emissions. By calculating the GWP for different time horizons, you can understand the effect of a particular gas remaining in the atmosphere. The GWP is usually referenced over a hundred years.
淨循環動力輸出為膨脹機(例如渦輪)處的機械功產生率減去壓縮機(例如液體泵)所消耗的機械功率。 The net cycle power output is the mechanical work rate at the expander (eg, turbine) minus the mechanical power consumed by the compressor (eg, the liquid pump).
動力循環之容積為在該循環中進行循環之工作流體每單位體積的淨循環動力輸出(在膨脹機出口處之條件下量測)。 The volume of the power cycle is the net cycle power output per unit volume of the working fluid circulating in the cycle (measured at the outlet of the expander).
循環效率(又稱為熱效率)為淨循環動力輸出除以加熱階段被工作流體接受的熱比率。 Cycle efficiency (also known as thermal efficiency) is the net cycle power output divided by the heat ratio accepted by the working fluid during the heating phase.
過冷為在一定壓力下低於液體之飽和點之該液體溫度的減少。飽和點是蒸氣組成物完全冷凝為液體之溫度(又稱為泡點)。但過冷持續將液體於一定壓力冷卻為更低溫度的液體。過冷量為低於飽和溫度的冷量(以度計)或一液體組成物被冷卻至低於其飽和溫度的程度。 Subcooling is a decrease in the temperature of the liquid below a saturation point of the liquid at a certain pressure. The saturation point is the temperature at which the vapor composition completely condenses into a liquid (also known as a bubble point). However, too cold continues to cool the liquid to a lower temperature liquid at a certain pressure. The amount of subcooling is a cooling amount (in degrees) below the saturation temperature or a liquid composition is cooled to a level below its saturation temperature.
過熱為一種加熱一蒸氣組成物時定義高於其飽和溫度(若冷卻組成物時,形成第一滴液體的溫度,又稱為「露點」)之程度的術語。 Overheating is a term that defines the extent to which a vapor composition is heated above its saturation temperature (the temperature at which the first drop of liquid is formed, also referred to as the "dew point" if the composition is cooled).
溫度滑移(temperature glide,有時僅稱為「滑移」)為一冷媒於一冷媒系統之一組件中之相變化過程之起始與結束溫度間的絕對差值,並且排除任何過冷或過熱。此術語可用於描述一近共沸或非共沸組成物之冷凝或蒸發。平均滑移係指在一組特定條件下運轉的一特定冷凍系統之冷凝器中的滑移與在蒸發器中的滑移的平均。 Temperature glide (sometimes simply referred to as "slip") is the absolute difference between the start and end temperatures of a refrigerant in a component of a refrigerant system and excludes any supercooling or overheat. This term can be used to describe the condensation or evaporation of a near azeotropic or non-azeotropic composition. Average slip is the average of the slip in the condenser of a particular refrigeration system operating under a particular set of conditions and the slip in the evaporator.
術語「乾式」,例如關於用在「乾式膨脹」,係意指一種完全發生在汽相且並無液體工作流體存在的膨脹。因此,於本文中所用的「乾式」並無關於水的存在與否。 The term "dry", for example as used in "dry expansion", means an expansion that occurs entirely in the vapor phase and is free of the presence of a liquid working fluid. Therefore, the "dry" used in this article does not relate to the presence or absence of water.
一共沸組成物為兩種或更多種不同組分的混合物,其在一特定壓力下為液體形式時,會在一實質固定溫度下沸騰,該溫度可能高於或低於個別組分的沸騰溫度,且會提供與發生沸騰之整體液體組成物實質相同的一蒸氣組成物。(參見例如M.F.Doherty and M.F. Malone,Conceptual Design of Distillation Systems,McGraw-Hill(New York),2001,185-186,351-359)。 An azeotropic composition is a mixture of two or more different components which, when in a liquid form at a particular pressure, boils at a substantially fixed temperature which may be higher or lower than the boiling of the individual components. The temperature, and will provide a vapor composition substantially the same as the bulk liquid composition in which the boiling occurs. (See for example M.F. Doherty and M.F. Malone, Conceptual Design of Distillation Systems, McGraw-Hill (New York), 2001, 185-186, 351-359).
因此,共沸組成物之主要特徵為在一特定壓力下,液體組成物之沸點為固定,且沸騰組成物上方之蒸氣組成物實質上係為整體沸騰液體組成物(即不會發生液體組成物組分分餾)。亦如本領域中所認知,當共沸組成物於不同壓力下沸騰時,各組分之沸點及重量百分比可能會改變。因此,共沸組成物可就特定壓力下具有固定沸點之組成物的各組分之確切重量百分比來定義,或就組分的組成範圍來定義,或就存在於組份間的獨特關係來定義。 Therefore, the main feature of the azeotropic composition is that the boiling point of the liquid composition is fixed at a specific pressure, and the vapor composition above the boiling composition is substantially an integral boiling liquid composition (ie, no liquid composition occurs) Fractionation of components). As also recognized in the art, as the azeotrope boils at different pressures, the boiling point and weight percentage of each component may vary. Thus, the azeotrope composition can be defined by the exact weight percentage of the components of the composition having a fixed boiling point at a particular pressure, or as defined by the compositional range of the components, or as defined by the unique relationship between the components. .
針對本發明目的,一類共沸組成物意指一種行為實質類似一共沸組成物的組成物(亦即具有固定的沸騰特性或在沸騰或蒸發時具有不會分餾的傾向)。因此,在沸騰或蒸發時,蒸氣及液體組成物若有任何改變,此改變也僅是極少或屬可忽略之程度。此與非類共沸物組成物於沸騰或蒸發時該蒸氣及液體組成物會大幅改變可形成對比。 For the purposes of the present invention, a class of azeotrope compositions means a composition that behaves substantially like an azeotrope composition (i.e., has a fixed boiling character or has a tendency to not fractionate upon boiling or evaporation). Therefore, if there is any change in the vapor and liquid composition during boiling or evaporation, the change is only minimal or negligible. This vapor and liquid composition can be contrasted when the non-azeotrope composition is boiled or evaporated.
如本文所用之術語「包含」、「包括」、「具有」或其任何其他變型意欲涵蓋非排他性的包括物。例如,含有清單列出的複數元素的一組合物、製程、方法、製品或裝置不一定僅限於清單上所列出的這些元素而已,而是可以包括未明確列出但卻是該組合物、製程、方法、製品或設裝置固有的其他元素。此外,除非有相反的明確說明,「或」是指涵括性的「或」,而不是指排他性的「或」。例如,以下任何一種情況均滿足條件A或B: A是真實的(或存在的)且B是虛假的(或不存在的),A是虛假的(或不存在的)且B是真實的(或存在的),以及A和B都是真實的(或存在的)。 The terms "comprising," "comprising," "having," or "said" or "comprising", as used herein, are intended to encompass non-exclusive inclusions. For example, a set of compounds, processes, methods, articles, or devices containing the plural elements listed in the list are not necessarily limited to the elements listed in the list, but may include, but not explicitly listed, Process, method, article or other element inherent in the device. In addition, unless expressly stated to the contrary, “or” is an inclusive “or” rather than an exclusive “or”. For example, any of the following conditions satisfies condition A or B: A is true (or exists) and B is false (or non-existent), A is false (or non-existent) and B is real (or existing), and A and B are real (or exist).
連接詞「由所組成」(consisting of)排除任何未具體說明之元件、步驟或成分。若用於申請專利範圍,除了通常與其相關之雜質外,此語應將該項申請專利範圍侷限於其所列舉材料之範圍。當用語「由所組成」出現在申請專利範圍中主體的子句,而不是直接緊跟在前言之後時,其僅限制子句中的元件;而其他元件並未排除於申請專利範圍整體之外。 The conjunction "consisting of" excludes any element, step or component that is not specifically described. If used in the scope of patent application, in addition to the impurities normally associated with it, this language should limit the scope of the patent application to the scope of the materials listed. When the phrase "consisting of" appears in the clause of the subject matter in the scope of the patent application, rather than directly following the preface, it only limits the elements in the clause; other elements are not excluded from the scope of the patent application. .
該連接詞「主要由所組成」(consisting essentially of)係用於定義一包括文字所揭露者以外之材料、步驟、特徵、組分或元件的組成物、方法或裝置,前提是該等額外包括之材料、步驟、特徵、組分或元件確實實質上影響本發明基本及新穎特徵。「主要由所組成」一語之涵義介於「包含」與「由所組成」之間。 The word "consisting essentially of" is used to define a composition, method or device that includes materials, steps, features, components or elements other than those disclosed in the text, provided that such additional The materials, steps, features, components or elements do have a substantial impact on the basic and novel features of the invention. The term "mainly composed" is between "contains" and "contains".
若申請人以開放式用語如「包含」定義一發明或其部分,則表示(除非另有說明)該敘述應解讀為亦以「主要由所組成」或「由所組成」描述該發明。 If the applicant defines an invention or part thereof in an open-ended language such as "including", it means that (unless otherwise stated) the description should be construed as describing the invention as "mainly composed" or "consisting of".
又,使用「一」或「一個」來描述本文所述的元件和組件。這樣做僅僅是為了方便,並且對本發明範疇提供一般性的意義。除非很明顯地另指他意,這種描述應被理解為包括一個或至少一個,並且該單數也同時包括複數。 Also, "a" or "an" is used to describe the elements and components described herein. This is done for convenience only and provides a general sense of the scope of the invention. This description should be understood to include one or at least one, and the singular also includes the plural.
除非另有定義,本文所用之所有技術與科學術語均與本發明所屬技術領域具有一般知識者所通常理解的 意義相同。儘管類似或同等於本文所述內容之方法或材料可用於本發明之實施例的實施或測試,但合適的方法與材料仍如下所述。除非引用特定段落,否則本文中所提及之所有公開案、專利申請案、專利及其他參考文獻均以引用方式全文併入本文中。在發生衝突的情況下,以包括定義在內之本說明書為準。此外,該等材料、方法及實例僅係說明性質,而不意欲為限制拘束。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning The meaning is the same. Although methods or materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, suitable methods and materials are still described below. All publications, patent applications, patents, and other references mentioned herein are hereby incorporated by reference in their entirety in their entirety in the entirety of the disclosure. In the event of a conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.
E-1,1,1,4,4,4-六氟-2-丁烯(又稱為HFO-1336mzz-E或反-HFO-1336mzz,並具有E-CF3CH=CHCF3的結構)以及Z-1,1,1,4,4,4-六氟-2-丁烯(又稱為HFO-1336mzz-Z或順-HFO-1336mzz,並具有Z-CF3CH=CHCF3的結構)可藉由本領域已知的方法製造,例如進行2,3-二氯-1,1,1,4,4,4-六氟-2-丁烯的加氫脫氯處理,如美國專利申請案公開第US 2009/0012335 A1號所述,其以引用方式併入本文。 E-1,1,1,4,4,4-hexafluoro-2-butene (also known as HFO-1336mzz-E or anti-HFO-1336mzz, and having the structure of E-CF 3 CH=CHCF 3 ) And Z-1,1,1,4,4,4-hexafluoro-2-butene (also known as HFO-1336mzz-Z or cis-HFO-1336mzz, and having a structure of Z-CF 3 CH=CHCF 3 ) can be produced by methods known in the art, such as hydrodechlorination of 2,3-dichloro-1,1,1,4,4,4-hexafluoro-2-butene, such as U.S. Patent Application The invention is described in US 2009/0012335 A1, which is incorporated herein by reference.
針對本發明目的,跨臨界有機郎肯循環係定義為一種在高於循環中所用之工作流體的臨界壓力的壓力下提取熱的有機郎肯循環。 For the purposes of the present invention, a transcritical organic Rankine cycle is defined as an organic Rankine cycle that extracts heat at a pressure above the critical pressure of the working fluid used in the cycle.
在一實施例中,本發明係關於一種使用利用一新穎工作流體的有機郎肯循環(ORC)系統從一熱源回收熱並產生機械能的新穎製程。 In one embodiment, the present invention is directed to a novel process for recovering heat from a heat source and generating mechanical energy using an organic Rankine cycle (ORC) system utilizing a novel working fluid.
在一實施例中,前述用於從一熱源回收熱並產生機械能的製程包含以下步驟: (a)使液相的一第一工作流體通過一熱交換器或一蒸發器,其中該熱交換器或該蒸發器與供應熱的該熱源連通;(b)從該熱交換器或該蒸發器移除至少一部分汽相的該第一工作流體;(c)將該至少一部分汽相的該第一工作流體傳遞至一膨脹機,其中至少一部分的熱被轉換成機械能;(d)將該至少一部分汽相的該第一工作流體由該膨脹機傳遞至一冷凝器,其中該至少一部分汽相的該第一工作流體被冷凝成液相的一第二工作流體;(e)選擇性地壓縮並混合液相的該第二工作流體及步驟(a)中液相的該第一工作流體;以及(f)選擇性地重複步驟(a)至(e)至少一次;其中至少約20重量百分比的該第一工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該第一工作流體包含至少30重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該第一工作流體包含至少40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該第一工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In one embodiment, the foregoing process for recovering heat from a heat source and generating mechanical energy comprises the steps of: (a) passing a first working fluid of the liquid phase through a heat exchanger or an evaporator, wherein the heat exchanger or the evaporator is in communication with the heat source supplying heat; (b) from the heat exchanger or the evaporation Removing at least a portion of the vapor phase of the first working fluid; (c) transferring the at least a portion of the vapor phase of the first working fluid to an expander, wherein at least a portion of the heat is converted to mechanical energy; (d) The first working fluid of the at least a portion of the vapor phase is transferred from the expander to a condenser, wherein the first working fluid of the at least a portion of the vapor phase is condensed into a second working fluid in the liquid phase; (e) selective Compressing and mixing the second working fluid of the liquid phase and the first working fluid of the liquid phase in step (a); and (f) selectively repeating steps (a) through (e) at least once; wherein at least about 20 The weight percent of the first working fluid comprises HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 30 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 40 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
前述的該工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物。在另一實施例中,該工作流體包含至少約30重量 百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該工作流體包含至少40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於該工作流體的下列百分比含量:約20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、50.5、51、52、52.5、53、53.5、54、54.5、55、55.5、56、56.5、57、57.5、58、58.5、59、59.5、60、60.5、61、61.5、62、62.5、63、63.5、64、64.5、65、65.5、66、66.5、67、67.5、68、68.5、69、69.5、70、70.5、71、71.5、72、72.5、73、73.5、74、74.5、75、55.5、76、76.5、77、77.5、78、78.5、79、79.5、80、80.5、81、81.5、82、82.5、83、83.5、84、84.5、85、85.5、86、86.5、87、87.5、88、88.5、89、89.5、90、90.5、91、91.5、92、92.5、93、93.5、94、94.5、95、95.5、96、96.5、97、97.5、98、98.5、99、99.5及約100%。 The aforementioned working fluid comprises at least about 20 weight percent of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20 weight percent of trans-1 1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of a mixture thereof. In another embodiment, the working fluid comprises at least about 30 weights Percentage of HFO-1336mzz-Z, HFO-1336mzz-E or mixtures thereof. In another embodiment, the working fluid comprises at least 40 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In a suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the at least about 20 weight percent The trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or the mixture of at least about 20 weight percent is selected from the following percentages of the working fluid. : about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50.5, 51, 52, 52.5, 53, 53.5, 54, 54.5, 55, 55.5, 56, 56.5, 57, 57.5, 58, 58.5, 59, 59.5, 60, 60.5, 61, 61.5, 62, 62.5, 63, 63.5, 64, 64.5, 65, 65.5, 66, 66.5, 67, 67.5, 68, 68.5, 69, 69.5, 70, 70.5, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 75, 55.5, 76, 76.5, 77, 77.5, 78, 78.5, 79, 79.5, 80, 80.5, 81, 81.5, 82, 82.5, 83, 83.5, 84, 84.5, 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5 and about 100%.
在另一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至 少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於前述任兩個百分比數值所定義的範圍(端點包括在內)。 In another suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the About 20% by weight of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20% by weight of the mixture thereof is selected from the foregoing The range defined by the two percentage values (endpoints are included).
在前述製程的一實施例中,其中該工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約10重量百分比的HFO-1336mzz-E及90或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中該工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約15重量百分比的HFO-1336mzz-E及85或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中該工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約20重量百分比的HFO-1336mzz-E及80或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中該工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約25重量百分比的HFO-1336mzz-E及75或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中該工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含約25重量百分比至約75重量百分比的HFO-1336mzz-E以及約75重量百分比至約25重量百分比的HFO-1336mzz-Z。 In an embodiment of the foregoing process, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 10 weight percent HFO-1336mzz-E and 90 or more weight percent HFO-1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 15 weight percent HFO-1336mzz-E and 85 or more weight percent HFO -1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 20 weight percent HFO-1336mzz-E and 80 or more weight percent HFO -1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 25 weight percent HFO-1336mzz-E and 75 or more weight percent HFO -1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising from about 25 weight percent to about 75 weight percent HFO-1336mzz-E and about 75 weight percent Up to about 25 weight percent of HFO-1336mzz-Z.
該工作流體亦可包含少於約80重量百分比之選自於下列物質的一或更多其他組分: 順-HFO-1234ze、反-HFO-1234ze、HFO-1234yf、HFO-1234ye-E或Z、HFO 1225ye(Z)、HFO-1225ye(E)、HFO-1225yc、HFO-1243zf(3,3,3-三氟丙烯)、HFO-1233zd-E或Z、HFO-1233xf、CF3CH=CHCF3(E)、(CF3)2CFCH=CHF(E & Z)、(CF3)2CFCH=CF2、CF3CHFC=CHF(E & Z)、(C2F5)(CF3)C=CH2、HFC-245fa、HFC-245eb、HFC-245ca、HFC-245cb、HFC-227ea、HFC-236cb、HFC-236ea、HFC-236fa、HFC-365mfc、HFC-43-10mee、CHF2-O--CHF2、CHF2-O-CH2F、CH2F-O-CH2F、CH2F-O-CH3、環-CF2-CH2-CF2-O、環-CF2-CF2-CH2-O、CHF2-O--CF2-CHF2、CF3-CF2-O-CH2F、CHF2-O-CHF-CF3、CHF2-O-CF2-CHF2、CH2F-O-CF2-CHF2、CF3-O-CF2-CH3、CHF2-CHF-O-CHF2、CF3-O-CHF-CH2F、CF3-CHF-O-CH2F、CF3-O-CH2-CHF2、CHF2-O-CH2-CF3、CH2F-CF2-O-CH2F、CHF2-O-CF2-CH3、CHF2-CF2-O-CH3、CH2F-O-CHF--CH2F、CHF2-CHF-O-CH2F、CF3-O-CHF-CH3、CF3-CHF-O-CH3、CHF2-O-CH2-CHF2、CF3-O-CH2-CH2F、CF3-CH2-O-CH2F、CF2H-CF2-CF2-O-CH3、丙烷、環丙烷、丁烷、異丁烷、正戊烷、異戊烷、新戊烷、環戊烷、正己烷、異己烷、庚烷、反-1,2-二氯乙烯以及其與順-HFO-1234ze及HFC-245fa的混合物。 The working fluid may also comprise less than about 80 weight percent of one or more other components selected from the group consisting of: cis-HFO-1234ze, anti-HFO-1234ze, HFO-1234yf, HFO-1234ye-E or Z , HFO 1225ye (Z), HFO-1225ye (E), HFO-1225yc, HFO-1243zf (3,3,3-trifluoropropene), HFO-1233zd-E or Z, HFO-1233xf, CF 3 CH=CHCF 3 (E), (CF 3 ) 2 CFCH=CHF(E & Z), (CF 3 ) 2 CFCH=CF 2 , CF 3 CHFC=CHF(E & Z), (C 2 F 5 )(CF 3 ) C=CH 2 , HFC-245fa, HFC-245eb, HFC-245ca, HFC-245cb, HFC-227ea, HFC-236cb, HFC-236ea, HFC-236fa, HFC-365mfc, HFC-43-10mee, CHF 2 - O--CHF 2 , CHF 2 -O-CH 2 F, CH 2 FO-CH 2 F, CH 2 FO-CH 3 , cyclo-CF 2 -CH 2 -CF 2 -O, ring-CF 2 -CF 2 -CH 2 -O, CHF 2 -O--CF 2 -CHF 2 , CF 3 -CF 2 -O-CH 2 F, CHF 2 -O-CHF-CF 3 , CHF 2 -O-CF 2 -CHF 2 , CH 2 FO-CF 2 -CHF 2 , CF 3 -O-CF 2 -CH 3 , CHF 2 -CHF-O-CHF 2 , CF 3 -O-CHF-CH 2 F, CF 3 -CHF-O- CH 2 F, CF 3 -O-CH 2 -CHF 2 , CHF 2 -O-CH 2 -CF 3 , CH 2 F-CF 2 -O-CH 2 F, CHF 2 -O-CF 2 -CH 3 , CHF 2 -CF 2 -O-CH 3 , CH 2 FO-CHF--CH 2 F, CHF 2 -C HF-O-CH 2 F, CF 3 -O-CHF-CH 3 , CF 3 -CHF-O-CH 3 , CHF 2 -O-CH 2 -CHF 2 , CF 3 -O-CH 2 -CH 2 F , CF 3 -CH 2 -O-CH 2 F, CF 2 H-CF 2 -CF 2 -O-CH 3 , propane, cyclopropane, butane, isobutane, n-pentane, isopentane, neopentane Alkanes, cyclopentane, n-hexane, isohexane, heptane, trans-1,2-dichloroethylene and mixtures thereof with cis-HFO-1234ze and HFC-245fa.
在一實施例中,該工作流體包含80重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含70重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含60重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含50重量百分比或更少的至少一種前述化合物。 In an embodiment, the working fluid comprises 80% by weight or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 70 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 60 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 50 weight percent or less of at least one of the foregoing compounds.
在一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-Z所組成。在另一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-E所組成。在另一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-Z及HFO-1336mzz-E的混合物所組成。 In an embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-Z. In another embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-E. In another embodiment, the working fluid used to extract heat may be comprised of a mixture of HFO-1336mzz-Z and HFO-1336mzz-E.
應注意雖然前述製程描述中的該工作流體被稱為一「第一」工作流體及一「第二」工作流體,但應了解這兩個工作流體的差異僅在於該第一工作流體為進入ORC系統的流體,而該第二工作流體為先歷經前述製程的至少一個步驟後才進入該ORC系統的流體。 It should be noted that although the working fluid in the foregoing process description is referred to as a "first" working fluid and a "second" working fluid, it should be understood that the difference between the two working fluids is only that the first working fluid is entering the ORC. The fluid of the system, and the second working fluid is the fluid that enters the ORC system after at least one step of the preceding process.
在前述製程的一實施例中,將熱轉換成機械能的效率(循環效率)為至少約7%。在一合適的實施例中,該效率可由以下所列者選出:約7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5及約25%。 In an embodiment of the foregoing process, the efficiency (cycle efficiency) of converting heat to mechanical energy is at least about 7%. In a suitable embodiment, the efficiency can be selected by the following: about 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5 and about 25%.
在另一實施例中,該效率係選自於以兩端點(包含在內)作為任兩個效率數值的範圍。應了解該ORC系 統的瞬時效率可取決於該ORC系統中例如來源溫度以及工作流體的壓力及其溫度等數個變數而在任何特定時間改變。 In another embodiment, the efficiency is selected from the range of endpoints (inclusive) as a range of any two efficiency values. Should understand the ORC system The instantaneous efficiency of the system can vary at any particular time depending on, for example, the source temperature and the pressure of the working fluid and its temperature.
在前述製程的一實施例中,該工作流體為具有極小量其他組分的HFO-1336mzz-Z,且蒸發器運轉溫度(該工作流體提取熱的最高溫度)係低於或等於約171℃。在一合適的實施例中,該運轉溫度可為下列任一溫度或是在由下列任兩個數值所定義的範圍內(端點包含在內):約60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162及約163、164、165、166、167、168、169、170及約171℃。 In one embodiment of the foregoing process, the working fluid is HFO-1336mzz-Z having a very small amount of other components, and the evaporator operating temperature (the highest temperature at which the working fluid extracts heat) is less than or equal to about 171 °C. In a suitable embodiment, the operating temperature can be any of the following temperatures or within a range defined by any two of the following values (end points are included): about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162 and about 163, 164 , 165, 166, 167, 168, 169, 170 and about 171 ° C.
在前述製程的一實施例中,該工作流體主要為HFO-1336mzz-E,且蒸發器運轉溫度(該工作流體提取熱的最高溫度)係低於或等於約137℃。在一合適的實施例中,該運轉溫度可為下列任一溫度或是在由下列任兩個數值所定義的範圍內(端點包含在內): 約60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136及約137℃。 In one embodiment of the foregoing process, the working fluid is primarily HFO-1336mzz-E and the evaporator operating temperature (the highest temperature at which the working fluid extracts heat) is less than or equal to about 137 °C. In a suitable embodiment, the operating temperature can be any of the following temperatures or within a range defined by any two of the following values (endpoints are included): About 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 , 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 , 135, 136 and about 137 ° C.
在另一實施例中,該工作流體為HFO-1336mzz-Z及HFO-1336mzz-E的混合物,且蒸發器運轉溫度(該工作流體提取熱的最高溫度)係在約137℃至約171℃的範圍內。 In another embodiment, the working fluid is a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, and the evaporator operating temperature (the highest temperature at which the working fluid extracts heat) is between about 137 ° C and about 171 ° C. Within the scope.
在前述製程的一實施例中,蒸發器運轉壓力係低於約2.5 MPa。在一合適的實施例中,該運轉壓力可為下列任一壓力或是在由下列任兩個數值所定義的範圍內(端點包含在內):約1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20、2.25、2.30、2.35、2.40、2.45及約2.50 MPa。 In an embodiment of the foregoing process, the evaporator operating pressure is less than about 2.5 MPa. In a suitable embodiment, the operating pressure can be any of the following pressures or within a range defined by any two of the following values (end points are included): about 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00, 2.05, 2.10, 2.15, 2.20, 2.25, 2.30, 2.35, 2.40, 2.45 and About 2.50 MPa.
在前述製程的一實施例中,該工作流體具有小於35的GWP。在一合適的實施例中,該GWP可為下列任一數值或是在由下列任兩個數值所定義的範圍內(端點包含在內): 5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、30.5、31、31.5、32、32.5、33、33.5、34、34.5及約35。 In an embodiment of the foregoing process, the working fluid has a GWP of less than 35. In a suitable embodiment, the GWP can be any of the following values or within a range defined by any of the following two values (endpoints are included): 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5 and about 35.
圖1顯示用於使用來自一熱源的熱之ORC系統的一實施例示意圖。一供熱熱交換器40將自一熱源46供應的熱傳遞至進入該供熱熱交換器40之液相的工作流體。該供熱熱交換器40與熱源為熱連通(該連通可為直接接觸或其他方式)。換言之,該供熱熱交換器40藉由任何已知的熱傳手段自該熱源46接收熱能。該ORC系統工作流體循環通過該供熱熱交換器40而得到熱能。至少一部分的該液體工作流體在該供熱熱交換器(在某些實例中為一蒸發器)40中轉換成蒸氣。 Figure 1 shows a schematic diagram of an embodiment of an ORC system for using heat from a heat source. A heat supply heat exchanger 40 transfers heat supplied from a heat source 46 to a working fluid entering the liquid phase of the heat supply heat exchanger 40. The heat supply heat exchanger 40 is in thermal communication with a heat source (which may be in direct contact or otherwise). In other words, the heat supply heat exchanger 40 receives thermal energy from the heat source 46 by any known heat transfer means. The ORC system working fluid circulates through the heat supply heat exchanger 40 to obtain thermal energy. At least a portion of the liquid working fluid is converted to vapor in the heat supply heat exchanger (in some instances, an evaporator) 40.
將現在為蒸氣形式的工作流體路由至膨脹機32,在膨脹機32的膨脹製程造成從該熱源供應的至少部分熱能被轉換成機械能,通常為軸能。取決於所欲速度及所需轉矩,藉由使用傳統配置的皮帶、滑輪、齒輪、傳動或類似裝置,可將軸動力用於作任何機械功。在一實施例中,軸亦可連接至例如一感應發電機的一電動力產生裝置30。所產生的電力可於局部使用或傳送至柵極。 The working fluid, now in vapor form, is routed to an expander 32 where the expansion process from the heat source causes at least a portion of the thermal energy supplied from the heat source to be converted to mechanical energy, typically shaft energy. The shaft power can be used for any mechanical work by using a conventionally configured belt, pulley, gear, transmission or the like depending on the desired speed and the required torque. In an embodiment, the shaft may also be coupled to an electrodynamic generating device 30 such as an induction generator. The generated power can be used locally or transmitted to the grid.
從膨脹機32出來的該工作流體仍為蒸氣形式,並繼續送至冷凝器34,在冷凝器34中進行充分的排熱以造成該流體冷凝成液體。 The working fluid exiting the expander 32 is still in vapor form and continues to the condenser 34 where sufficient heat is removed to cause the fluid to condense into a liquid.
亦希望在該冷凝器34及泵38之間具有一液體緩衝槽36,以確保液體形式的工作流體可充分供應至泵吸入口。液體形式的工作流體流至一泵38,其可增加該流體之壓力,而使該流體可被導回該供熱熱交換器40,因此完成郎肯循環迴圈。 It is also desirable to have a liquid buffer tank 36 between the condenser 34 and the pump 38 to ensure that the working fluid in liquid form is adequately supplied to the pump suction. The working fluid in liquid form flows to a pump 38 which increases the pressure of the fluid so that the fluid can be directed back to the heat supply heat exchanger 40, thus completing the Rankine cycle.
在另一實施例中,亦可使用在熱源及ORC系統間運轉的第二熱交換迴圈。在圖2中,顯示一有機郎肯循環系統使用一第二熱交換迴圈。主要的有機郎肯循環的運轉如前述圖1所述。圖2所示的第二熱交換迴圈運轉如下:利用一熱傳遞介質(即第二熱交換迴圈流體)將來自熱源46’的熱輸送至供熱熱交換器40’。該熱傳遞介質從供熱熱交換器40’移動至一泵42’,其中泵42’將該熱傳遞介質泵送回到熱源46’。此種配置提供另一種自熱源移除熱並將其傳送至ORC系統的手段。此種配置藉由促進各種用於顯熱傳遞之流體的使用而提供了彈性。事實上,本發明之工作流體可用作為第二熱交換迴圈流體,若迴圈內的壓力係維持在大於或等於迴圈內流體溫度的流體飽和壓力。另一方面,本發明之工作流體可用作為第二熱交換迴圈流體或熱載流體,以自運轉模式中的熱源抽出熱,其中工作流體可在熱交換過程中蒸發,藉此產生大的流體密度差異而足以維持流體流動(熱虹吸效應)。此外,例如甘醇、鹽水、聚矽氧或其他實質非揮發性流體的高沸點流體可用作為所述第二迴圈配置中的顯熱傳遞。高沸點流體可以是沸點為150℃或更高的流體。第二熱交換迴圈可使熱源或ORC系統之維護更為容易,因為這兩個系統可更容易地隔離或 分開。與具有一包括高質量流/低熱通量部與緊跟著的高熱通量/低質量流部之熱交換器相比,此種作法可簡化熱交換器設計。 In another embodiment, a second heat exchange loop that operates between the heat source and the ORC system can also be used. In Figure 2, an organic Rankine cycle system is shown using a second heat exchange loop. The operation of the main organic Rankine cycle is as described in Figure 1 above. The second heat exchange loop shown in Figure 2 operates as follows: heat from heat source 46' is delivered to heat supply heat exchanger 40' using a heat transfer medium (i.e., a second heat exchange loop fluid). The heat transfer medium moves from the heat supply heat exchanger 40' to a pump 42' where the pump 42' pumps the heat transfer medium back to the heat source 46'. This configuration provides another means of removing heat from the heat source and transferring it to the ORC system. This configuration provides flexibility by promoting the use of various fluids for sensible heat transfer. In fact, the working fluid of the present invention can be used as a second heat exchange loop fluid if the pressure within the loop is maintained at a fluid saturation pressure greater than or equal to the fluid temperature within the loop. In another aspect, the working fluid of the present invention can be used as a second heat exchange loop fluid or hot carrier fluid to extract heat from a heat source in an operational mode, wherein the working fluid can evaporate during the heat exchange process thereby generating a large fluid The difference in density is sufficient to maintain fluid flow (thermosiphon effect). Additionally, high boiling fluids such as glycol, brine, polyoxane or other substantially non-volatile fluids may be used as sensible heat transfer in the second loop configuration. The high boiling fluid may be a fluid having a boiling point of 150 ° C or higher. The second heat exchange loop makes maintenance of the heat source or ORC system easier because the two systems can be more easily isolated or separate. This approach simplifies heat exchanger design as compared to a heat exchanger having a high mass flow/low heat flux portion followed by a high heat flux/low mass flow portion.
有機化合物通常具有溫度上限,高於此溫度上限會發生熱分解。熱分解的開始與化學物質的特定結構有關,因此對於不同化合物會有所不同。為了能夠利用經由工作流體進行直接熱交換的高溫源,前述的熱通量及質量流設計考量可被用來促進熱交換,同時將工作流體維持在低於其熱分解開始溫度。於此種情形中的直接熱交換通常需要有額外的工程學及機械特點,因此會增加成本。於此種情形中,藉由溫度控管,第二迴圈的設計可促進高溫熱源的利用,同時避免直接熱交換情形下所引發的問題。 Organic compounds usually have an upper temperature limit above which thermal decomposition occurs. The onset of thermal decomposition is related to the specific structure of the chemical and therefore will vary for different compounds. In order to be able to utilize a high temperature source for direct heat exchange via a working fluid, the aforementioned heat flux and mass flow design considerations can be used to promote heat exchange while maintaining the working fluid below its thermal decomposition onset temperature. Direct heat exchange in such situations often requires additional engineering and mechanical features and therefore increases costs. In this case, the second loop is designed to promote the utilization of high temperature heat sources by temperature control while avoiding the problems caused by direct heat exchange.
用於第二熱交換迴圈實施例的其他ORC系統組件與圖1所述者實質相同。如圖2所示,一液體泵42’使第二流體(例如熱傳遞介質)於第二迴圈內進行循環,而使第二流體進入迴圈在熱源46’中的部分因而獲得熱。然後流體通過熱交換器40’,其中第二流體在熱交換器40’釋出熱至ORC工作流體。 Other ORC system components for the second heat exchange loop embodiment are substantially identical to those described in FIG. As shown in Fig. 2, a liquid pump 42' circulates a second fluid (e.g., a heat transfer medium) in a second loop, and a portion of the second fluid entering the loop in the heat source 46' thereby obtains heat. The fluid then passes through a heat exchanger 40' wherein the second fluid releases heat to the ORC working fluid at heat exchanger 40'.
在又另一實施例中,本發明係關於一種獨特設計用於動力循環中得到較高循環效率的新穎工作流體,藉此得到較高的整體系統效率。具體而言,這些工作流體有益於有機郎肯循環(ORC)系統,用於有效率地將各種熱源的熱轉換成機械能。此工作流體係描述於前。 In yet another embodiment, the present invention is directed to a novel working fluid that is uniquely designed for higher cycle efficiency in a power cycle, thereby resulting in higher overall system efficiency. In particular, these working fluids are beneficial to organic Rankine Cycle (ORC) systems for efficiently converting the heat of various heat sources into mechanical energy. This workflow system is described before.
在一實施例中,有機郎肯循環為跨臨界循環。因此,本發明係關於一種自一熱源回收熱的製程,其包含下列步驟:(a)將液相的一第一工作流體壓縮高於該第一工作流體的臨界壓力;(b)使步驟(a)的該第一工作流體通過一熱交換器或一流體加熱器,並將該第一工作流體加熱至高於或低於該第一工作流體之臨界溫度的溫度,其中該熱交換器或該流體加熱器係與供應熱的該熱源連通;(c)從該熱交換器或該流體加熱器移除至少一部分被加熱的該第一工作流體;(d)將該至少一部分被加熱的該第一工作流體傳遞至一膨脹機;其中至少一部分的熱被轉換成機械能,以及其中該至少一部分被加熱的該第一工作流體的壓力被降至低於該第一工作流體的臨界壓力,藉此使該至少一部分被加熱的該第一工作流體成為一第一工作流體蒸氣或一第一工作流體的蒸氣與液體混合物;(e)將該第一工作流體蒸氣或該第一工作流體的蒸氣與液體混合物由該膨脹機傳遞至一冷凝器,其中該至少一部分的該工作流體蒸氣或該工作流體的蒸氣與液體混合物被完全冷凝成液相的一第二工作流體;(f)選擇性地壓縮並混合液相的該第二工作流體及步驟(a)中液相的該第一工作流體;(g)選擇性地重複步驟(a)至(f)至少一次; 其中至少約20重量百分比的該第一工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,第一工作流體包含至少30重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,第一工作流體包含至少40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,第一工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In one embodiment, the organic Rankine cycle is a transcritical cycle. Accordingly, the present invention is directed to a process for recovering heat from a heat source comprising the steps of: (a) compressing a first working fluid of the liquid phase above a critical pressure of the first working fluid; (b) causing the step ( a) the first working fluid passes through a heat exchanger or a fluid heater and heats the first working fluid to a temperature above or below a critical temperature of the first working fluid, wherein the heat exchanger or the a fluid heater in communication with the heat source supplying heat; (c) removing at least a portion of the heated first working fluid from the heat exchanger or the fluid heater; (d) the at least a portion of the heated portion a working fluid is transferred to an expander; wherein at least a portion of the heat is converted to mechanical energy, and wherein a pressure of the at least a portion of the heated first working fluid is reduced to a lower pressure than the first working fluid Dissolving the at least a portion of the heated first working fluid as a first working fluid vapor or a first working fluid vapor and liquid mixture; (e) the first working fluid vapor or the first working fluid The vapor-liquid mixture is transferred from the expander to a condenser, wherein the at least a portion of the working fluid vapor or the vapor-liquid mixture of the working fluid is completely condensed into a second working fluid in the liquid phase; (f) selective And compressing and mixing the second working fluid of the liquid phase and the first working fluid of the liquid phase in step (a); (g) selectively repeating steps (a) to (f) at least once; Wherein at least about 20 weight percent of the first working fluid comprises HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 30 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 40 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the first working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
在前述製程的一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約10重量百分比的HFO-1336mzz-E及90或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約15重量百分比的HFO-1336mzz-E及85或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約20重量百分比的HFO-1336mzz-E及80或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約25重量百分比的HFO-1336mzz-E及75或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含約25重量百分比至約75重量百分比的 HFO-1336mzz-E以及約75重量百分比至約25重量百分比的HFO-1336mzz-Z。 In an embodiment of the foregoing process, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 10 weight percent HFO-1336mzz-E and 90 or more weight percent HFO-1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 15 weight percent HFO-1336mzz-E and 85 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 20 weight percent HFO-1336mzz-E and 80 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 25 weight percent HFO-1336mzz-E and 75 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising from about 25 weight percent to about 75 weight percent HFO-1336mzz-E and about 75 weight percent to about 25 weight percent HFO-1336mzz-Z.
在前述製程的一實施例中,將熱轉換成機械能的效率(循環效率)係至少約7%。在一合適的實施例中,該效率可由以下所列者選出:約7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5及約25%。 In one embodiment of the foregoing process, the efficiency (cycle efficiency) of converting heat to mechanical energy is at least about 7%. In a suitable embodiment, the efficiency can be selected by the following: about 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5 and about 25%.
在另一實施例中,該效率係選自於以兩端點(包含在內)作為前述任兩個效率數值的範圍。 In another embodiment, the efficiency is selected from the range of endpoints (inclusive) as a range of any of the foregoing efficiency values.
前述工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物。在一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於下列百分比含量的工作流體:約20、21、22、23、24、25、26、27、28、29、30、31、32、33、34,35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、50.5、51、52、52.5、53、53.5、54、54.5、55、55.5、56、56.5、57、57.5、58、58.5、59、59.5、60、60.5、61、61.5、62、62.5、63、63.5、64、64.5、 65、65.5、66、66.5、67、67.5、68、68.5、69、69.5、70、70.5、71、71.5、72、72.5、73、73.5、74、74.5、75、55.5、76、76.5、77、77.5、78、78.5、79、79.5、80、80.5、81、81.5、82、82.5、83、83.5、84、84.5、85、85.5、86、86.5、87、87.5、88、88.5、89、89.5、90、90.5、91、91.5、92、92.5、93、93.5、94、94.5、95、95.5、96、96.5、97、97.5、98、98.5、99、99.5及約100重量百分比。 The aforementioned working fluid comprises at least about 20 weight percent of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20 weight percent of trans-1,1 1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of a mixture thereof. In a suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the at least about 20 weight percent The trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or the mixture of at least about 20 weight percent is selected from the following percentages of working fluid: About 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 45, 46, 47, 48, 49, 50, 50.5, 51, 52, 52.5, 53, 53.5, 54, 54.5, 55, 55.5, 56, 56.5, 57, 57.5, 58, 58.5, 59, 59.5, 60 , 60.5, 61, 61.5, 62, 62.5, 63, 63.5, 64, 64.5, 65, 65.5, 66, 66.5, 67, 67.5, 68, 68.5, 69, 69.5, 70, 70.5, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 75, 55.5, 76, 76.5, 77, 77.5, 78, 78.5, 79, 79.5, 80, 80.5, 81, 81.5, 82, 82.5, 83, 83.5, 84, 84.5, 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5 and about 100 weight percent.
在另一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於前述任兩個百分比數值所定義的範圍(端點包括在內)。 In another suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the at least about 20 weight The percentage of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or the mixture of at least about 20 weight percent is selected from any of the foregoing two percentage values. The defined range (endpoints included).
在一實施例中,用於提取熱的工作流體可由HFO-1336mzz-Z所組成。在另一實施例中,用於提取熱的工作流體可由HFO-1336mzz-E所組成。在另一實施例中,用於提取熱的工作流體可由HFO-1336mzz-Z及HFO-1336mzz-E的混合物所組成。 In one embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-Z. In another embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-E. In another embodiment, the working fluid used to extract heat may be comprised of a mixture of HFO-1336mzz-Z and HFO-1336mzz-E.
應注意的是,在高運轉溫度下,工作流體中的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)可能發生異構化作用而變成其反式異構物,亦即反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)。驚人地發現到此種異構化作用即使在例如250℃的高溫下也可以是極小的。 It should be noted that at high operating temperatures, cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) in the working fluid may undergo isomerization. It becomes its trans isomer, namely trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E). It has surprisingly been found that such isomerization can be extremely small even at high temperatures of, for example, 250 °C.
工作流體亦可包含少於約80重量百分比之選自於下列物質的一或更多其他組分:順-HFO-1234ze、反-HFO-1234ze、HFO-1234yf、HFO-1234ye-E或Z、HFO-1225ye(Z)、HFO-1225ye(E)、HFO-1243zf(3,3,3-三氟丙烯)、HFO1225yc、HFO-1233zd-E或Z、HFC-1233xf、CF3CH=CHCF3(E)、(CF3)2CFCH=CHF(E & Z)、(CF3)2CFCH=CF2、CF3CHFC=CHF(E & Z)、(C2F5)(CF3)C=CH2、HFC-245fa、HFC-245eb、HFC-245ca、HFC-245cb、HFC-227ea、HFC-236cb、HFC-236ea、HFC-236fa、HFC-365mfc、HFC-43-10mee、CHF2-O--CHF2、CHF2-O-CH2F、CH2F-O-CH2F、CH2F-O-CH3、環-CF2-CH2-CF2-O、環-CF2-CF2-CH2-O、CHF2-O--CF2-CHF2、CF3-CF2-O-CH2F、CHF2-O-CHF-CF3、CHF2-O-CF2-CHF2、CH2F-O-CF2-CHF2、CF3-O-CF2-CH3、CHF2-CHF-O-CHF2、CF3-O-CHF-CH2F、CF3-CHF-O-CH2F、CF3-O-CH2-CHF2、CHF2-O-CH2-CF3、CH2F-CF2-O-CH2F、CHF2-O-CF2-CH3、CHF2-CF2-O-CH3、CH2F-O-CHF--CH2F、CHF2-CHF-O-CH2F、CF3-O-CHF-CH3、CF3-CHF-O-CH3、CHF2-O-CH2-CHF2、CF3-O-CH2-CH2F、CF3-CH2-O-CH2F、CF2H-CF2-CF2-O-CH3、丙烷、環丙烷、丁烷、異丁烷、正戊烷、異戊烷、新戊烷、環戊烷、正己 烷、異己烷、庚烷、反-1,2-二氯乙烯以及其與順-HFO-1234ze及HFC-245fa的混合物。 The working fluid may also comprise less than about 80 weight percent of one or more other components selected from the group consisting of: cis-HFO-1234ze, anti-HFO-1234ze, HFO-1234yf, HFO-1234ye-E or Z, HFO-1225ye(Z), HFO-1225ye(E), HFO-1243zf(3,3,3-trifluoropropene), HFO1225yc, HFO-1233zd-E or Z, HFC-1233xf, CF 3 CH=CHCF 3 ( E), (CF 3 ) 2 CFCH=CHF(E & Z), (CF 3 ) 2 CFCH=CF 2 , CF 3 CHFC=CHF(E & Z), (C 2 F 5 )(CF 3 )C= CH 2 , HFC-245fa, HFC-245eb, HFC-245ca, HFC-245cb, HFC-227ea, HFC-236cb, HFC-236ea, HFC-236fa, HFC-365mfc, HFC-43-10mee, CHF 2 -O- -CHF 2 , CHF 2 -O-CH 2 F, CH 2 FO-CH 2 F, CH 2 FO-CH 3 , ring-CF 2 -CH 2 -CF 2 -O, ring-CF 2 -CF 2 -CH 2 -O, CHF 2 -O--CF 2 -CHF 2 , CF 3 -CF 2 -O-CH 2 F, CHF 2 -O-CHF-CF 3 , CHF 2 -O-CF 2 -CHF 2 ,CH 2 FO-CF 2 -CHF 2 , CF 3 -O-CF 2 -CH 3 , CHF 2 -CHF-O-CHF 2 , CF 3 -O-CHF-CH 2 F, CF 3 -CHF-O-CH 2 F, CF 3 -O-CH 2 -CHF 2 , CHF 2 -O-CH 2 -CF 3 , CH 2 F-CF 2 -O-CH 2 F, CHF 2 -O-CF 2 -CH 3 , CHF 2 -CF 2 -O-CH 3 , CH 2 FO-CHF--CH 2 F, CHF 2 -CHF-O- CH 2 F, CF 3 -O-CHF-CH 3 , CF 3 -CHF-O-CH 3 , CHF 2 -O-CH 2 -CHF 2 , CF 3 -O-CH 2 -CH 2 F, CF 3 - CH 2 -O-CH 2 F, CF 2 H-CF 2 -CF 2 -O-CH 3 , propane, cyclopropane, butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane Alkane, n-hexane, isohexane, heptane, trans-1,2-dichloroethylene and mixtures thereof with cis-HFO-1234ze and HFC-245fa.
在前述製程的一實施例中,工作流體包含80重量百分比或更少的至少一種前述化合物。在另一實施例中,工作流體包含70重量百分比或更少的至少一種前述化合物。在另一實施例中,工作流體包含60重量百分比或更少的至少一種前述化合物。在另一實施例中,工作流體包含50重量百分比或更少的至少一種前述化合物。 In an embodiment of the foregoing process, the working fluid comprises 80% by weight or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 70 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 60 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 50 weight percent or less of at least one of the foregoing compounds.
注意雖然前述製程描述中的該工作流體被稱為一「第一」工作流體及一「第二」工作流體,但應了解這兩個工作流體的差異僅在於該第一工作流體為進入ORC系統的流體,而該第二工作流體為已歷經前述製程的至少一個步驟的流體。 Note that although the working fluid in the foregoing process description is referred to as a "first" working fluid and a "second" working fluid, it should be understood that the difference between the two working fluids is only that the first working fluid is entering the ORC system. And the second working fluid is a fluid that has undergone at least one step of the foregoing process.
在前述製程的一實施例中,第一工作流體在步驟(b)中加熱到達的溫度係在約50℃至約400℃的範圍內,較佳為約150℃約300℃的範圍內,更佳為約175℃至275℃的範圍內,又更佳為約200℃至250℃的範圍內。 In an embodiment of the foregoing process, the temperature at which the first working fluid is heated in the step (b) is in the range of from about 50 ° C to about 400 ° C, preferably in the range of from about 150 ° C to about 300 ° C. It is preferably in the range of about 175 ° C to 275 ° C, and more preferably in the range of about 200 ° C to 250 ° C.
在一合適的實施例中,膨脹機入口處的運轉溫度可為下列任一溫度或是在由下列任兩個數值所定義的範圍內(端點包含在內):約50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、 103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162及約163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、323、323、324、325、326、327、328、329、330、331、323、333、334、335、 336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372、373、374、375、376、377、378、379、380、381、382、383、384、385、386、387、388、389、390、391、392、393、394、395、396、397、398、399、400℃。 In a suitable embodiment, the operating temperature at the inlet of the expander can be any of the following temperatures or within a range defined by any two of the following values (end points are included): about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162 and about 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177 , 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202 , 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227 , 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252 ,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,2 69, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 323, 323, 324, 325, 326, 327, 328, 329, 330, 331, 323, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 °C.
在前述製程的一實施例中,在步驟(a)中的工作流體被加壓至約3 MPa至約10 MPa的範圍。在一合適的實施例中,該運轉壓力可為下列任一壓力或是在由下列任兩個數值所定義的範圍內(端點包含在內):約3.0、3.1、3.2、3.3、3.4、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5及10.0 MPa。 In an embodiment of the foregoing process, the working fluid in step (a) is pressurized to a range of from about 3 MPa to about 10 MPa. In a suitable embodiment, the operating pressure can be any of the following pressures or within a range defined by any two of the following values (end points are included): about 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0 MPa.
在前述製程的一實施例中,該工作流體具有小於35的GWP。在一合適的實施例中,該GWP可為下列任一數值或是在由下列任兩個數值所定義的範圍內(端點包含在內):5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、30.5、31、31.5、32、32.5、33、33.5、34、34.5及約35。 In an embodiment of the foregoing process, the working fluid has a GWP of less than 35. In a suitable embodiment, the GWP can be any of the following values or within the range defined by any two of the following values (endpoints are included): 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5 and about 35.
在前述跨臨界有機郎肯循環(ORC)系統的第一步驟中,包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物的液相工作流體係被壓縮至高於其臨界壓力。HFO-1336mzz-Z的臨界壓力為2.903 MPa,而HFO-1336mzz-E的臨界壓力為3.149 MPa。在第二步驟中,在流體進入膨脹機之前,使該工作流體通過熱交換器而被加熱至較高的溫度,其中該熱交換器係與該熱源熱連通。換言之,熱交換器藉由任何已知的熱傳手段自熱源接收熱能。ORC系統工作流體在熱回收熱交換器內進行循環並獲得熱。 In the first step of the aforementioned transcritical organic Rankine cycle (ORC) system, comprising at least about 20 weight percent of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz) -Z) or at least about 20 weight percent of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of the liquid phase of the mixture thereof The workflow system is compressed above its critical pressure. The critical pressure of HFO-1336mzz-Z is 2.903 MPa, while the critical pressure of HFO-1336mzz-E is 3.149 MPa. In a second step, the fluid is heated to a higher temperature by a heat exchanger prior to entering the expander, wherein the heat exchanger is in thermal communication with the heat source. In other words, the heat exchanger receives thermal energy from the heat source by any known heat transfer means. The ORC system working fluid circulates in the heat recovery heat exchanger and obtains heat.
在下個步驟中,自該熱交換器移除至少一部分經加熱的該第一工作流體。工作流體被路由至膨脹機,在膨脹機的膨脹製程造成工作流體的至少部分能量含量被轉換成機械能,通常為軸能。取決於所欲速度及所需轉矩,藉由使用傳統配置的皮帶、滑輪、齒輪、傳動或類似裝置,可將軸動力用於作任何機械功。在一實施例中,軸亦可連接至例如一感應發電機的一電動力產生裝置。所產生之電可當地使用或傳送至輸電網。工作流體的壓力被降低至低於該工作流體的臨界壓力,藉此使工作流體成為汽相的第一工作流體。 In the next step, at least a portion of the heated first working fluid is removed from the heat exchanger. The working fluid is routed to the expander, where at least a portion of the energy content of the working fluid is converted to mechanical energy, typically shaft energy, during the expansion process of the expander. The shaft power can be used for any mechanical work by using a conventionally configured belt, pulley, gear, transmission or the like depending on the desired speed and the required torque. In an embodiment, the shaft may also be coupled to an electrodynamic generating device such as an induction generator. The electricity generated can be used locally or transmitted to the transmission grid. The pressure of the working fluid is lowered below the critical pressure of the working fluid, thereby causing the working fluid to become the first working fluid of the vapor phase.
在下個步驟中,將現在為汽相的工作流體從膨脹機傳遞到冷凝器,其中汽相的工作流體被冷凝成液相的工作流體。前述步驟形成迴圈系統並可重複許多次。 In the next step, the working fluid, now vapor phase, is passed from the expander to the condenser where the working fluid of the vapor phase is condensed into a working fluid in the liquid phase. The foregoing steps form a loop system and can be repeated many times.
圖5顯示本發明的一實施例,其中使用跨臨界ORC。圖5為本實施例之循環的壓力-焓圖式。圖中的實質垂直線為等熵線。在曲線左半部為垂直但在圖中右半部開始顯現偏差並彎曲的線為等溫線。圓頂形狀左側的虛線為飽和液體線。圓頂形狀右側的虛線為飽和蒸氣線。在第一步驟中,將工作流體壓縮(加壓)高於工作流體的臨界壓力,其通常為實質等熵。然後在實質固定壓力(等壓)的條件下將其加熱至高於其臨界溫度的溫度。在下個步驟中,通常以實質等熵的方式膨脹工作流體。於膨脹步驟期間將流體溫度降低至低於其臨界溫度。膨脹步驟結束時的流體為過熱蒸氣狀態。在下個步驟中,冷卻並冷凝工作流體,且排出熱並降低溫度。工作流體通過兩個相變化邊界,即右側所示的飽和蒸氣曲線,然後是左側的飽和液體曲線。在此步驟結束時工作流體處在稍微過冷的液態。 Figure 5 shows an embodiment of the invention in which a transcritical ORC is used. Fig. 5 is a pressure-enthalpy diagram of the cycle of the present embodiment. The substantial vertical line in the figure is an isentropic line. The line that is vertical in the left half of the curve but begins to show deviation and bends in the right half of the figure is an isotherm. The dotted line to the left of the dome shape is the saturated liquid line. The dotted line to the right of the dome shape is the saturated vapor line. In a first step, the working fluid is compressed (pressurized) above the critical pressure of the working fluid, which is typically substantially isentropic. It is then heated to a temperature above its critical temperature under substantially fixed pressure (isostatic) conditions. In the next step, the working fluid is typically expanded in a substantially isentropic manner. The fluid temperature is lowered below its critical temperature during the expansion step. The fluid at the end of the expansion step is in a superheated vapor state. In the next step, the working fluid is cooled and condensed, and the heat is discharged and the temperature is lowered. The working fluid passes through two phase change boundaries, the saturated vapor curve shown on the right, and then the saturated liquid curve on the left. At the end of this step the working fluid is in a slightly subcooled liquid state.
圖6顯示本發明的一實施例,其中使用跨臨界ORC。圖6為本實施例之循環的壓力-焓圖式。圖中的實質垂直線為等熵線。在曲線左半部為垂直但在圖中右半部開始顯現偏差並彎曲的線為等溫線。圓頂形狀左側的虛線為飽和液體線。圓頂形狀右側的虛線為飽和蒸氣線。在第一步驟中,將工作流體壓縮(加壓)高於工作 流體的臨界壓力,其通常為實質等熵。然後在實質固定壓力的條件下將其加熱至高於其臨界溫度的溫度。 Figure 6 shows an embodiment of the invention in which a transcritical ORC is used. Figure 6 is a pressure-enthalpy diagram of the cycle of the present embodiment. The substantial vertical line in the figure is an isentropic line. The line that is vertical in the left half of the curve but begins to show deviation and bends in the right half of the figure is an isotherm. The dotted line to the left of the dome shape is the saturated liquid line. The dotted line to the right of the dome shape is the saturated vapor line. In the first step, the working fluid is compressed (pressurized) higher than the work The critical pressure of a fluid, which is usually substantially isentropic. It is then heated to a temperature above its critical temperature under substantially fixed pressure conditions.
工作流體溫度高於其臨界溫度的程度係僅在下個步驟中通常以實質等熵的方式膨脹工作流體且降低其溫度時,使等熵膨脹以膨脹造成工作流體部分冷凝或成霧的方式大略依循飽和蒸氣曲線。然而在此膨脹步驟結束時,工作流體係處於過熱蒸氣狀態,亦即其位於飽和蒸氣曲線的右側。 The extent to which the working fluid temperature is above its critical temperature is such that, in the next step, the working fluid is generally expanded in a substantially isentropic manner and its temperature is lowered, the isentropic expansion is substantially followed by expansion to cause partial condensation or fogging of the working fluid. Saturated vapor curve. At the end of this expansion step, however, the workflow system is in a superheated vapor state, i.e., it is on the right side of the saturated vapor curve.
在下個步驟中,冷卻並冷凝工作流體且排出熱並降低其溫度。工作流體通過兩個相變化邊界,即右側所示的飽和蒸氣曲線,然後是左側的飽和液體曲線。在此步驟結束時工作流體係處在稍微過冷的液態。 In the next step, the working fluid is cooled and condensed and the heat is removed and the temperature is lowered. The working fluid passes through two phase change boundaries, the saturated vapor curve shown on the right, and then the saturated liquid curve on the left. At the end of this step the workflow system is in a slightly subcooled liquid state.
圖7顯示本發明的一實施例,其中使用跨臨界ORC。圖7為本實施例之循環的壓力-焓圖式。圖中的實質垂直線為等熵線。在曲線左半部為垂直但在圖中右半部開始顯現偏差並彎曲的線為等溫線。圓頂形狀左側的虛線為飽和液體線。圓頂形狀右側的虛線為飽和蒸氣線。 Figure 7 shows an embodiment of the invention in which a transcritical ORC is used. Figure 7 is a pressure-enthalpy diagram of the cycle of the present embodiment. The substantial vertical line in the figure is an isentropic line. The line that is vertical in the left half of the curve but begins to show deviation and bends in the right half of the figure is an isotherm. The dotted line to the left of the dome shape is the saturated liquid line. The dotted line to the right of the dome shape is the saturated vapor line.
在第一步驟中,將工作流體壓縮(加壓)高於工作流體的臨界壓力,其通常為實質等熵。然後在實質固定壓力的條件下將其加熱至僅稍微高於其臨界溫度的溫度。 In a first step, the working fluid is compressed (pressurized) above the critical pressure of the working fluid, which is typically substantially isentropic. It is then heated to a temperature that is only slightly above its critical temperature under substantially fixed pressure conditions.
工作流體溫度高於其臨界溫度的程度係僅在下個步驟中通常以實質等熵的方式膨脹工作流體時,降低其 溫度,且等熵膨脹為濕式膨脹。具體而言,在此膨脹步驟結束時工作流體為一蒸氣-液體混合物。 The extent to which the working fluid temperature is above its critical temperature is reduced only when the working fluid is normally expanded in a substantially isentropic manner in the next step. Temperature, and isentropic expansion is wet expansion. Specifically, the working fluid is a vapor-liquid mixture at the end of this expansion step.
在下個步驟中,冷卻工作流體,將工作流體的蒸氣部分冷凝且排出熱並降低其溫度。蒸氣-液體混合物狀態的工作流體通過飽和液體曲線的相變化邊界。在此步驟結束時工作流體係處在稍微過冷的液態。 In the next step, the working fluid is cooled, the vapor portion of the working fluid is partially condensed and the heat is removed and the temperature is lowered. The working fluid in the vapor-liquid mixture state passes through the phase change boundary of the saturated liquid curve. At the end of this step the workflow system is in a slightly subcooled liquid state.
圖8顯示本發明的一實施例,其中使用跨臨界ORC。圖8為本實施例之循環的壓力-焓圖式。圖中的實質垂直線為等熵線。在曲線左半部為垂直但在圖中右半部開始顯現偏差並彎曲的線為等溫線。圓頂形狀左側的虛線為飽和液體線。圓頂形狀右側的虛線為飽和蒸氣線。 Figure 8 shows an embodiment of the invention in which a transcritical ORC is used. Figure 8 is a pressure-enthalpy diagram of the cycle of the present embodiment. The substantial vertical line in the figure is an isentropic line. The line that is vertical in the left half of the curve but begins to show deviation and bends in the right half of the figure is an isotherm. The dotted line to the left of the dome shape is the saturated liquid line. The dotted line to the right of the dome shape is the saturated vapor line.
在第一步驟中,將工作流體壓縮(加壓)高於工作流體的臨界壓力,其通常為實質等熵。然後在實質固定壓力的條件下將其加熱至低於其臨界溫度的溫度。 In a first step, the working fluid is compressed (pressurized) above the critical pressure of the working fluid, which is typically substantially isentropic. It is then heated to a temperature below its critical temperature under substantially fixed pressure conditions.
在下個步驟中,通常以實質等熵的方式將工作流體膨脹至形成一蒸氣-液體混合物的低壓及溫度狀態(濕式膨脹)。 In the next step, the working fluid is typically expanded in a substantially isentropic manner to a low pressure and temperature state (wet expansion) that forms a vapor-liquid mixture.
在下個步驟中,冷卻工作流體,冷凝工作流體的蒸氣部分並排出熱。在此步驟結束時工作流體係處在稍微過冷的液態。 In the next step, the working fluid is cooled, the vapor portion of the working fluid is condensed and heat is removed. At the end of this step the workflow system is in a slightly subcooled liquid state.
雖然前述範例顯示實質等熵、等焓或等溫的膨脹及加壓以及等壓加熱或冷卻,其他雖未維持例如等熵、等 焓、等溫或等壓條件但完成循環的的其他循環亦屬於本發明範疇中。 Although the foregoing examples show substantial isentropic, isothermal or isothermal expansion and pressurization, and isostatic heating or cooling, others do not maintain, for example, isentropic, etc. Other cycles of helium, isothermal or isostatic conditions but completing the cycle are also within the scope of the invention.
本發明之一實施例係關於可變相循環(Variable Phase Cycle)或三邊循環(Trilateral Cycle)(Phil Welch及Patrick Boyle:“New Turbines to Enable Efficient Geothermal Power Plants”GRC Transactions,Vol.33,2009)。加壓液體工作流體,然後在熱交換器中以無蒸發方式將其加熱。離開熱交換器的經加熱、加壓液體被直接在兩相膨脹機中膨脹。冷凝低壓流體,封閉循環。 One embodiment of the present invention relates to a Variable Phase Cycle or a Trilateral Cycle (Phil Welch and Patrick Boyle: "New Turbines to Enable Efficient Geothermal Power Plants" GRC Transactions , Vol. 33, 2009). . The liquid working fluid is pressurized and then heated in a heat exchanger without evaporation. The heated, pressurized liquid exiting the heat exchanger is expanded directly in the two-phase expander. Condensing the low pressure fluid and closing the cycle.
在一實施例中,本發明係關於一種用於ORC系統中自熱源回收熱的工作流體組成物,其中工作流體組成物維持在溫度約175℃至約300℃的範圍,較佳約200℃至250℃的範圍,且其中該組成物包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物。 In one embodiment, the present invention is directed to a working fluid composition for recovering heat from a heat source in an ORC system, wherein the working fluid composition is maintained at a temperature in the range of from about 175 ° C to about 300 ° C, preferably from about 200 ° C. a range of 250 ° C, and wherein the composition comprises at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20 weight Percent of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of its mixture.
在又另一實施例中,本發明係關於一種使用新穎工作流體的ORC系統,其中該工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物。在該系統的另一實施例中,工作流體包含至少30重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在該系統的另一實施例中,工作流體包含至少 40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在該系統的另一實施例中,工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In yet another embodiment, the present invention is directed to an ORC system using a novel working fluid, wherein the working fluid comprises at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2 - butene (HFO-1336mzz-Z) or at least about 20 weight percent of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight Percent of its mixture. In another embodiment of the system, the working fluid comprises at least 30 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment of the system, the working fluid comprises at least 40% by weight of HFO-1336mzz-Z, HFO-1336mzz-E or a mixture thereof. In another embodiment of the system, the working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
在前述系統的一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約10重量百分比的HFO-1336mzz-E及90或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約15重量百分比的HFO-1336mzz-E及85或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約20重量百分比的HFO-1336mzz-E及80或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約25重量百分比的HFO-1336mzz-E及75或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含約25重量百分比至約75重量百分比的HFO-1336mzz-E及約75重量百分比至約25重量百分比的HFO-1336mzz-Z。 In an embodiment of the foregoing system, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 10 weight percent HFO-1336mzz-E and 90 or more weight percent HFO-1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 15 weight percent HFO-1336mzz-E and 85 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 20 weight percent HFO-1336mzz-E and 80 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 25 weight percent HFO-1336mzz-E and 75 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising from about 25 weight percent to about 75 weight percent HFO-1336mzz-E and about 75 weight percent to About 25 weight percent of HFO-1336mzz-Z.
在一實施例中,ORC系統中的工作流體可由HFO-1336mzz-Z所組成。在另一實施例中,ORC系統中的工作流體可由HFO-1336mzz-E所組成。在另一實 施例中,ORC系統中的工作流體可由HFO-1336mzz-Z及HFO-1336mzz-E的混合物所組成。 In one embodiment, the working fluid in the ORC system can be comprised of HFO-1336mzz-Z. In another embodiment, the working fluid in the ORC system can be comprised of HFO-1336mzz-E. In another reality In the example, the working fluid in the ORC system can be composed of a mixture of HFO-1336mzz-Z and HFO-1336mzz-E.
在另一實施例中,本發明包含一種在約3 MPa至約10 MPa範圍的運轉壓力下提取熱的有機郎肯循環系統,其中該系統含有一工作流體,且其中約50重量百分比的該工作流體包含HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In another embodiment, the invention comprises an organic Rankine cycle system for extracting heat at an operating pressure in the range of from about 3 MPa to about 10 MPa, wherein the system contains a working fluid, and wherein about 50 weight percent of the work The fluid comprises HFO-1336mzz-Z, HFO-1336mzz-E or a mixture thereof.
本發明的新穎工作流體可用於一ORC系統中,以由熱源提取熱能並將其轉換成機械能,熱源可為例如低壓蒸汽、例如工業廢熱的低階能源、太陽能、地熱溫泉、低壓地熱蒸氣(主要或次要配置)或利用燃料電池或例如渦輪、微渦輪或內燃機的原動機之分散式發電設備。低壓蒸汽亦可於熟知為二元朗肯循環的製程中取得。大量的低壓蒸汽可在許多場所發現,例如化石燃料驅動的電力產生電廠。可配合電廠冷卻劑特性(其溫度)修改本發明的工作流體,以得到二元循環的最大效率。 The novel working fluid of the present invention can be used in an ORC system to extract thermal energy from a heat source and convert it into mechanical energy, such as low pressure steam, low order energy such as industrial waste heat, solar energy, geothermal hot springs, low pressure geothermal steam ( Primary or secondary configuration) or a decentralized power plant utilizing a fuel cell or a prime mover such as a turbine, micro-turbine or internal combustion engine. Low pressure steam can also be obtained in processes well known as binary Rankine cycles. A large amount of low pressure steam can be found in many places, such as fossil fuel-driven power generation plants. The working fluid of the present invention can be modified to match the power plant coolant characteristics (its temperature) to achieve maximum efficiency of the binary cycle.
其他熱源包含從移動式內燃機(例如卡車或火車或船的柴油引擎)、飛機引擎所排放氣體回收的廢熱、從固定式內燃機(例如固定式柴油引擎發電機)所排放氣體回收的廢熱、來自燃料電池的廢熱、在複合式加熱、冷卻及動力或區域式加熱及冷卻工廠獲得的熱、來自生質燃料引擎的廢熱、來自由各種來源(包括生化氣體、垃圾掩埋氣以及煤層甲烷)的甲烷運轉之天然氣或甲烷氣爐或燃燒甲烷的鍋爐或甲烷燃料電池(例如在分散式發電設備)的熱、來自造紙廠燃燒樹皮及木質素的熱、來自焚化爐的熱、來自傳統蒸汽發電廠用以利用至少約 20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物的組成物作為工作流體來驅動「底」朗肯循環之低壓蒸汽的熱、用於利用至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物之組成物作為工作流體循環於地上的朗肯循環(例如二元循環地熱發電廠)之地熱、用於利用HFO-1336mzz-Z或HFO-1336mzz-E或HFO-1336mzz-Z及HFO-1336mzz-E的混合物作為朗肯循環工作流體以及作為專由或大量由溫度誘發之流體密度變化驅動的流體在地下深井中循環的地熱載體之地熱(熟知為「熱虹吸效應」(例如參見Davis,A.P.及E.E.Michaelides:“Geothermal power production from abandoned oil wells”,Energy,34(2009)866-872;Matthews,H.B.美國專利號4,142,108-Feb.27,1979))、來自包含拋物面式太陽能板陣列之太陽能板陣列的太陽熱、來自集光式太陽能電廠的太陽熱、自光伏(PV)太陽能系統移除以冷卻PV系統而維持高PV系統效率的熱。在其他實施例中,本發明亦使用其他類型的ORC系統,例如使用微渦輪或小尺寸正位移膨脹機的小規模(例如1-500 kw,較佳5-250 kw)朗肯循環系統(例如Tahir,Yamada及Hoshino:“Efficiency of compact organic Rankine cycle system with rotary-vane-type expander for low-temperature waste heat recovery”,Int’l.J.of Civil and Environ.Eng 2:12010)、複合的多階段及多層級朗肯循環以及具有復熱器以自離開膨脹機的蒸氣回收熱的朗肯循環系統。 Other heat sources include waste heat recovered from mobile internal combustion engines (such as diesel engines for trucks or trains or ships), exhaust gases from aircraft engines, waste heat from gases emitted from stationary internal combustion engines (such as stationary diesel engine generators), and fuel from fuel. Waste heat from batteries, heat from complex heating, cooling and power or district heating and cooling plants, waste heat from biofuel engines, methane from a variety of sources including biogas, landfill gas and coal bed methane Natural gas or methane gas or methane-fired boilers or methane fuel cells (eg in decentralized power plants), heat from paper mills burning bark and lignin, heat from incinerators, from traditional steam power plants Use at least about 20% by weight of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20% by weight of anti-1,1,1,4,4 , 4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of the composition of the mixture as a working fluid to drive the heat of the "bottom" Rankine cycle of low pressure steam for use About 20% by weight of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20% by weight of anti-1,1,1,4, 4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of the composition of the mixture thereof as a Rankine cycle in which the working fluid circulates on the ground (eg, a binary cycle geothermal power plant) Geothermal, used as a mixture of HFO-1336mzz-Z or HFO-1336mzz-E or HFO-1336mzz-Z and HFO-1336mzz-E as a Rankine cycle working fluid and as a dedicated or large temperature-induced fluid density change drive The geothermal heat of the geothermal carrier circulating in deep underground wells (known as the "thermo siphon effect" (see, for example, Davis, AP and EE Michaelides: "Geothermal power production from abandoned oil wells", Energy, 34 (2009) 866-872; Matthews, HB U.S. Patent No. 4,142,108-Feb. 27, 1979)), solar heat from solar panel arrays containing parabolic solar panel arrays, solar heat from photovoltaic solar power plants, self-photovoltaic (PV) solar system removal to cool PV systems The heat that maintains the efficiency of high PV systems. In other embodiments, the present invention also uses other types of ORC systems, such as a small scale (e.g., 1-500 kw, preferably 5-250 kw) Rankine cycle system using a micro-turbine or a small-sized positive displacement expander (e.g. Tahir, Yamada and Hoshino: "Efficiency of compact organic Rankine cycle system with Rotary-vane-type expander for low-temperature waste heat recovery", Int'l. J. of Civil and Environ. Eng 2:12010), composite multi-stage and multi-level Rankine cycle and with reheater to leave The vapor of the expander recovers the heat of the Rankine cycle system.
其他熱源包含選自於由下列產業所組成之群組中至少一者相關的至少一操作:煉油業、石化廠、油氣管線業、化學工業、商業建築、旅館、購物商場、超市、烘烤業、食品加工業、餐廳、塗料熟化烤箱、家具製造業、塑膠製模業、水泥窯、烘木窯、煅燒作業、鋼鐵業、玻璃工業、晶圓代工業、冶煉業、空調業、冷凍業以及中央供熱。 Other heat sources include at least one operation selected from at least one of the group consisting of: refining industry, petrochemical plant, oil and gas pipeline industry, chemical industry, commercial building, hotel, shopping mall, supermarket, baking industry , food processing industry, restaurants, paint curing ovens, furniture manufacturing, plastic molding, cement kiln, wood kiln, calcining operations, steel industry, glass industry, wafer industry, smelting industry, air conditioning industry, refrigeration industry and Central heating.
現行利用HFC-245fa的ORC系統可能需要一種具有較低全球暖化潛勢(GWP)的新工作流體。HFC-245fa的GWP為1030。本發明工作流體的GWP相當低。HFO-1336mzz-Z具有9.4的GWP,而HFO-1336mzz-E具有約32的GWP。因此針對使用HFO-1336mzz-Z、HFO-1336mzz-E或其混合物的ORC系統,可進行許多工作流體的調配以提供更利於環境永續性的工作流體。 Current ORC systems utilizing HFC-245fa may require a new working fluid with a lower global warming potential (GWP). The GWP of HFC-245fa is 1030. The GWP of the working fluid of the present invention is quite low. HFO-1336mzz-Z has a GWP of 9.4, while HFO-1336mzz-E has a GWP of about 32. Thus for ORC systems using HFO-1336mzz-Z, HFO-1336mzz-E or mixtures thereof, many working fluids can be formulated to provide a working fluid that is more environmentally sustainable.
在一實施例中,提供一種在一動力循環系統中取代HFC-245fa的方法,其包含從該動力循環系統移除該HFC-245fa並以包含至少約20重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物的一替代工作流體充填該系統。在另一實施例中,該替代工作流體包含至少30重量百分比的HFO-1336mzz-Z、 HFO-1336mzz-E或其混合物。在另一實施例中,該替代工作流體包含至少40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,該替代工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。 In one embodiment, a method of replacing HFC-245fa in a power cycle system is provided, comprising removing the HFC-245fa from the power cycle system and comprising at least about 20 weight percent HFO-1336mzz-Z, HFO An alternative working fluid of -1336mzz-E or a mixture thereof fills the system. In another embodiment, the replacement working fluid comprises at least 30 weight percent HFO-1336mzz-Z, HFO-1336mzz-E or a mixture thereof. In another embodiment, the replacement working fluid comprises at least 40 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the replacement working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof.
在前述製程的一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約10重量百分比的HFO-1336mzz-E及90或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約15重量百分比的HFO-1336mzz-E及85或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約20重量百分比的HFO-1336mzz-E及80或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約25重量百分比的HFO-1336mzz-E及75或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含約25重量百分比至約75重量百分比的HFO-1336mzz-E以及約75重量百分比至約25重量百分比的HFO-1336mzz-Z。 In an embodiment of the foregoing process, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 10 weight percent HFO-1336mzz-E and 90 or more weight percent HFO-1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 15 weight percent HFO-1336mzz-E and 85 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 20 weight percent HFO-1336mzz-E and 80 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 25 weight percent HFO-1336mzz-E and 75 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising from about 25 weight percent to about 75 weight percent HFO-1336mzz-E and about 75 weight percent to About 25 weight percent of HFO-1336mzz-Z.
前述工作流體包含至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或至少約20 重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或至少約20重量百分比的其混合物。在另一實施例中,工作流體包含至少30重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,工作流體包含至少40重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在另一實施例中,工作流體包含至少50重量百分比的HFO-1336mzz-Z、HFO-1336mzz-E或其混合物。在一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於工作流體的下列百分比含量:約20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、50.5、51、52、52.5、53、53.5、54、54.5、55、55.5、56、56.5、57、57.5、58、58.5、59、59.5、60、60.5、61、61.5、62、62.5、63、63.5、64、64.5、65、65.5、66、66.5、67、67.5、68、68.5、69、69.5、70、70.5、71、71.5、72、72.5、73、73.5、74、74.5、75、55.5、76、76.5、77、77.5、78、78.5、79、79.5、80、80.5、81、81.5、82、82.5、83、83.5、84、84.5、85、85.5、86、86.5、87、87.5、88、88.5、89、89.5、90、90.5、91、91.5、 92、92.5、93、93.5、94、94.5、95、95.5、96、96.5、97、97.5、98、98.5、99、99.5及約100%。 The aforementioned working fluid comprises at least about 20 weight percent of cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or at least about 20 Percent by weight of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or at least about 20 weight percent of its mixture. In another embodiment, the working fluid comprises at least 30 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the working fluid comprises at least 40 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In another embodiment, the working fluid comprises at least 50 weight percent HFO-1336mzz-Z, HFO-1336mzz-E, or a mixture thereof. In a suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the at least about 20 weight percent The trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or the mixture of at least about 20 weight percent is selected from the following percentages of the working fluid: About 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 45, 46, 47, 48, 49, 50, 50.5, 51, 52, 52.5, 53, 53.5, 54, 54.5, 55, 55.5, 56, 56.5, 57, 57.5, 58, 58.5, 59, 59.5, 60 , 60.5, 61, 61.5, 62, 62.5, 63, 63.5, 64, 64.5, 65, 65.5, 66, 66.5, 67, 67.5, 68, 68.5, 69, 69.5, 70, 70.5, 71, 71.5, 72, 72.5 , 73, 73.5, 74, 74.5, 75, 55.5, 76, 76.5, 77, 77.5, 78, 78.5, 79, 79.5, 80, 80.5, 81, 81.5, 82, 82.5, 83, 83.5, 84, 84.5, 85 , 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5 and about 100%.
在另一合適的實施例中,該至少約20重量百分比的順-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-Z)或該至少約20重量百分比的反-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz-E)或該至少約20重量百分比的其混合物係選自於前述任兩個百分比數值所定義的範圍(端點包括在內)。 In another suitable embodiment, the at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z) or the at least about 20 weight The percentage of trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E) or the mixture of at least about 20 weight percent is selected from any of the foregoing two percentage values. The defined range (endpoints included).
在前述製程的一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約10重量百分比的HFO-1336mzz-E及90或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約15重量百分比的HFO-1336mzz-E及85或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約20重量百分比的HFO-1336mzz-E及80或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含至少約25重量百分比的HFO-1336mzz-E及75或更高重量百分比的HFO-1336mzz-Z。在另一實施例中,其中工作流體包含HFO-1336mzz-Z及HFO-1336mzz-E的混合物,該工作流體包含約25重量百分比至約75重量百分比的 HFO-1336mzz-E以及約75重量百分比至約25重量百分比的HFO-1336mzz-Z。 In an embodiment of the foregoing process, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 10 weight percent HFO-1336mzz-E and 90 or more weight percent HFO-1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 15 weight percent HFO-1336mzz-E and 85 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 20 weight percent HFO-1336mzz-E and 80 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising at least about 25 weight percent HFO-1336mzz-E and 75 or more weight percent HFO- 1336mzz-Z. In another embodiment, wherein the working fluid comprises a mixture of HFO-1336mzz-Z and HFO-1336mzz-E, the working fluid comprising from about 25 weight percent to about 75 weight percent HFO-1336mzz-E and about 75 weight percent to about 25 weight percent HFO-1336mzz-Z.
該工作流體亦可包含少於約80重量百分比之選自於下列物質的一種或更多其他組分:順-HFO-1234ze、反-HFO-1234ze、HFO-1234yf、HFO-1234ye-E或Z、HFO 1225ye(Z)、HFO-1225ye(E)、HFO-1225yc、HFO-1243zf(3,3,3-三氟丙烯)、HFO-1233zd-E或Z、HFO-1233xf、CF3CH=CHCF3(E)、(CF3)2CFCH=CHF(E & Z)、(CF3)2CFCH=CF2、CF3CHFC=CHF(E & Z)、(C2F5)(CF3)C=CH2、HFC-245fa、HFC-245eb、HFC-245ca、HFC-245cb、HFC-227ea、HFC-236cb、HFC-236ea、HFC-236fa、HFC-365mfc、HFC-43-10mee、CHF2-O--CHF2、CHF2-O-CH2F、CH2F-O-CH2F、CH2F-O-CH3、環-CF2-CH2-CF2-O、環-CF2-CF2-CH2-O、CHF2-O--CF2-CHF2、CF3-CF2-O-CH2F、CHF2-O-CHF-CF3、CHF2-O-CF2-CHF2、CH2F-O-CF2-CHF2、CF3-O-CF2-CH3、CHF2-CHF-O-CHF2、CF3-O-CHF-CH2F、CF3-CHF-O-CH2F、CF3-O-CH2-CHF2、CHF2-O-CH2-CF3、CH2F-CF2-O-CH2F、CHF2-O-CF2-CH3、CHF2-CF2-O-CH3、CH2F-O-CHF--CH2F、CHF2-CHF-O-CH2F、CF3-O-CHF-CH3、CF3-CHF-O-CH3、CHF2-O-CH2-CHF2、CF3-O-CH2-CH2F、CF3-CH2-O-CH2F、 CF2H-CF2-CF2-O-CH3、丙烷、環丙烷、丁烷、異丁烷、正戊烷、異戊烷、新戊烷、環戊烷、正己烷、異己烷、庚烷、反-1,2-二氯乙烯以及與其與順-HFO-1234ze及HFC-245fa的混合物。 The working fluid may also comprise less than about 80 weight percent of one or more other components selected from the group consisting of: cis-HFO-1234ze, anti-HFO-1234ze, HFO-1234yf, HFO-1234ye-E or Z , HFO 1225ye (Z), HFO-1225ye (E), HFO-1225yc, HFO-1243zf (3,3,3-trifluoropropene), HFO-1233zd-E or Z, HFO-1233xf, CF 3 CH=CHCF 3 (E), (CF 3 ) 2 CFCH=CHF(E & Z), (CF 3 ) 2 CFCH=CF 2 , CF 3 CHFC=CHF(E & Z), (C 2 F 5 )(CF 3 ) C=CH 2 , HFC-245fa, HFC-245eb, HFC-245ca, HFC-245cb, HFC-227ea, HFC-236cb, HFC-236ea, HFC-236fa, HFC-365mfc, HFC-43-10mee, CHF 2 - O--CHF 2 , CHF 2 -O-CH 2 F, CH 2 FO-CH 2 F, CH 2 FO-CH 3 , cyclo-CF 2 -CH 2 -CF 2 -O, ring-CF 2 -CF 2 -CH 2 -O, CHF 2 -O--CF 2 -CHF 2 , CF 3 -CF 2 -O-CH 2 F, CHF 2 -O-CHF-CF 3 , CHF 2 -O-CF 2 -CHF 2 , CH 2 FO-CF 2 -CHF 2 , CF 3 -O-CF 2 -CH 3 , CHF 2 -CHF-O-CHF 2 , CF 3 -O-CHF-CH 2 F, CF 3 -CHF-O- CH 2 F, CF 3 -O-CH 2 -CHF 2 , CHF 2 -O-CH 2 -CF 3 , CH 2 F-CF 2 -O-CH 2 F, CHF 2 -O-CF 2 -CH 3 , CHF 2 -CF 2 -O-CH 3 , CH 2 FO-CHF--CH 2 F, CHF 2 -CHF-O-CH 2 F, CF 3 -O-CHF-CH 3 , CF 3 -CHF-O-CH 3 , CHF 2 -O-CH 2 -CHF 2 , CF 3 -O-CH 2 -CH 2 F, CF 3 -CH 2 -O-CH 2 F, CF 2 H-CF 2 -CF 2 -O-CH 3 , propane, cyclopropane, butane, isobutane, n-pentane, isopentane, new Pentane, cyclopentane, n-hexane, isohexane, heptane, trans-1,2-dichloroethylene and mixtures thereof with cis-HFO-1234ze and HFC-245fa.
在一實施例中,該工作流體包含80重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含70重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含60重量百分比或更少的至少一種前述化合物。在另一實施例中,該工作流體包含50重量百分比或更少的至少一種前述化合物。 In an embodiment, the working fluid comprises 80% by weight or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 70 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 60 weight percent or less of at least one of the foregoing compounds. In another embodiment, the working fluid comprises 50 weight percent or less of at least one of the foregoing compounds.
在一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-Z所組成。在另一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-E所組成。在另一實施例中,用於提取熱的該工作流體可由HFO-1336mzz-Z及HFO-1336mzz-E的混合物所組成。 In an embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-Z. In another embodiment, the working fluid used to extract heat may be comprised of HFO-1336mzz-E. In another embodiment, the working fluid used to extract heat may be comprised of a mixture of HFO-1336mzz-Z and HFO-1336mzz-E.
此處所描述的概念將以下列實例進一步說明之,該等實例不限制申請專利範圍中所描述發明之範疇。 The concepts described herein are further illustrated by the following examples which do not limit the scope of the invention described in the claims.
實例A顯示使用HFO-1336mzz-Z之朗肯循環在次臨界條件下由柴油引擎所排放的熱產生動力,其中蒸發溫度Tevap低於HFO-1336mzz-Z的臨界溫度(Tcr_HFO-1336mzz-Z=171.28℃)。 Example A shows the heat generated by the diesel engine under subcritical conditions using the Rankine cycle of HFO-1336mzz-Z, where the evaporation temperature T evap is lower than the critical temperature of HFO-1336mzz-Z (T cr_HFO-1336mzz-Z =171.28 ° C).
下列實例中顯示使用以HFO-1336mzz-Z作為工作流體之朗肯循環系統由內燃機(例如柴油引擎)所排放氣體提取出的熱來產生機械動力。透過朗肯循環產生的機械動力係為由引擎從燃料燃燒所產生的機械動力以外,且其增加每單位燃燒燃料質量所產生機械動力的總量。 The following example shows the use of heat extracted from a gas discharged from an internal combustion engine (for example, a diesel engine) using a Rankine cycle system using HFO-1336mzz-Z as a working fluid to generate mechanical power. The mechanical power generated by the Rankine cycle is in addition to the mechanical power generated by the engine from the combustion of the fuel, and it increases the total amount of mechanical power generated per unit of combustion fuel mass.
比較包含HFO-1336mzz-Z(CF3CH=CHCF3)之工作流體效能與熟知工作流體HFC-245fa(CHF2CH2CF3)之效能。 Compare the performance of the working fluid containing HFO-1336mzz-Z (CF 3 CH=CHCF 3 ) with the well-known working fluid HFC-245fa (CHF 2 CH 2 CF 3 ).
蒸發器(鍋爐)溫度:T蒸發器=270℉=132.22℃ Evaporator (boiler) temperature: T evaporator = 270 ° F = 132.22 ° C
冷凝器溫度:T冷凝器=130℉=54.44℃ Condenser temperature: T condenser = 130 ° F = 54.44 ° C
進入膨脹機的過熱蒸氣:△Tsuph=36℉=20℃ Superheated steam entering the expander: △T suph =36°F=20°C
過冷液體:△Tsubc=14℉=7.78℃ Subcooled liquid: △T subc =14°F=7.78°C
膨脹機效率 ηexp=0.85 Expander efficiency η exp =0.85
泵效率 ηpump=0.85 Pump efficiency η pump =0.85
表A1顯示HFO-1336mzz-Z實質能匹配HFC-245fa的能量效率,同時提供更低的GWP。再者,HFO-1336mzz-Z產生實質低於HFC-245fa的運轉壓力。然而,HFO-1336mzz-Z產生動力的容積(CAP)係低於HFC-245fa。 Table A1 shows that HFO-1336mzz-Z can substantially match the energy efficiency of HFC-245fa while providing a lower GWP. Furthermore, HFO-1336mzz-Z produces operating pressures substantially lower than HFC-245fa. However, the HFO-1336mzz-Z produces a power volume (CAP) that is lower than HFC-245fa.
以HFO-1336mzz-Z運轉的朗肯循環的熱動力效率為11.41%,其在相同循環運轉條件下實質匹配HFC-245fa。利用HFO-1336mzz-Z的蒸發器壓力(1.41 MPa)實質低於HFC-245fa(2.45 MPa)。相較於HFC-245fa,利用HFO-1336mzz-Z時在膨脹機出口處需要比較高的容積流率,以產生目標機械動力率。對應地,當單位體積的HFO-1336mzz-Z在該循環中進行循環時會產生比HFC-245fa(543.63 kJ/m3)還少量的機械功(311.86 kJ/m3)。 The thermal power efficiency of the Rankine cycle operating at HFO-1336mzz-Z was 11.41%, which substantially matched HFC-245fa under the same cycle operating conditions. The evaporator pressure (1.41 MPa) using HFO-1336mzz-Z is substantially lower than HFC-245fa (2.45 MPa). Compared to HFC-245fa, the use of HFO-1336mzz-Z requires a relatively high volumetric flow rate at the exit of the expander to produce the target mechanical power rate. Correspondingly, when the unit volume of HFO-1336mzz-Z is circulated in the cycle, a small amount of mechanical work (311.86 kJ/m3) is generated than HFC-245fa (543.63 kJ/m 3 ).
HFO-1336mzz-Z具有比HFC-245fa還高的臨界溫度(參見表A2)並產生較低的蒸氣壓。因此,HFO-1336mzz-Z能在比HFC-245fa還高的溫度下進行次臨界有機郎肯循環運轉(參見表A3)。 HFO-1336mzz-Z has a higher critical temperature than HFC-245fa (see Table A2) and produces a lower vapor pressure. Therefore, HFO-1336mzz-Z can perform subcritical organic Rankine cycle operation at a temperature higher than HFC-245fa (see Table A3).
HFO-1336mzz-Z可用作為以熱源運轉之次臨界有機郎肯循環的工作流體,該熱源可使蒸發器溫度達到155℃(亦即高於HFC-245fa的臨界溫度)。表A3顯示155℃的蒸發器溫度相較於132.22℃的蒸發溫度係實質改善效率及動力產生的容積(分別改善14.90%及18.53%)。 HFO-1336mzz-Z can be used as a working fluid for a subcritical organic Rankine cycle operating at a heat source that can bring the evaporator temperature to 155 ° C (ie, above the critical temperature of HFC-245fa). Table A3 shows that the evaporator temperature of 155 ° C is substantially improved by the efficiency and power generation volume compared to the evaporation temperature of 132.22 ° C (14.90% and 18.53% improvement, respectively).
在一定溫度下,HFO-1336mzz-Z產生比HFC-245fa還低的蒸氣壓。因此,在任何特定最大容許蒸發器工作壓力情況下,HFO-1336mzz-Z可使有機郎肯循環運轉於比HFC-245fa還高的蒸發器溫度。表A4比較以HFO-1336mzz-Z運轉且蒸發器溫度為161.6℃的有機郎肯循環與以HFC-245fa運轉且蒸發器溫度為132.22℃的 有機郎肯循環。兩個循環皆在2.45 MPa的蒸發器運轉壓力下進行運轉。以HFO-1336mzz-Z運轉的循環達到比HFC-245fa(11.42%)還高的能量效率(13.51%)。 At a certain temperature, HFO-1336mzz-Z produces a lower vapor pressure than HFC-245fa. Therefore, at any particular maximum allowable evaporator operating pressure, HFO-1336mzz-Z allows the organic Rankine cycle to operate at higher evaporator temperatures than HFC-245fa. Table A4 compares the organic Rankine cycle operating at HFO-1336mzz-Z with an evaporator temperature of 161.6 °C and operating at HFC-245fa with an evaporator temperature of 132.22 °C. Organic Langken cycle. Both cycles were run at an evaporator operating pressure of 2.45 MPa. The cycle operating with HFO-1336mzz-Z achieved a higher energy efficiency (13.51%) than HFC-245fa (11.42%).
實例B顯示使用HFO-1336mzz-Z之朗肯循環在跨臨界條件下由柴油引擎所排放熱產生動力。 Example B shows that the Rankine cycle using HFO-1336mzz-Z generates power from the heat emitted by the diesel engine under transcritical conditions.
出乎意料的,HFO-1336-mzz-Z在實質高於其臨界溫度(171.28℃)的溫度係仍維持化學安定性。因此,HFO-1336-mzz-Z可達到在超臨界狀態中使用HFO1336-mzz-Z作為工作流體且獲取溫度高於171.28℃的熱源之朗肯循環。使用越高溫的熱源可得到越高的循環能量效率及動力產生的容積(相較於使用低溫熱源)。 Unexpectedly, HFO-1336-mzz-Z maintains chemical stability at temperatures substantially above its critical temperature (171.28 °C). Therefore, HFO-1336-mzz-Z can achieve the Rankine cycle using HFO1336-mzz-Z as the working fluid in the supercritical state and obtaining a heat source with a temperature higher than 171.28 °C. The higher the temperature of the heat source, the higher the cycle energy efficiency and the volume generated by the power (compared to the use of a low temperature heat source).
當使用超臨界流體加熱器而非傳統次臨界朗肯循環的蒸發器(或鍋爐),必須指明加熱器壓力及加熱器出口溫度(或對應膨脹機入口溫度)。圖3顯示以HFO-1336mzz-Z作為工作流體運轉之跨臨界朗肯循環的能量效率與超臨界流體加熱器的壓力及膨脹機入口處之工作流體溫度的關係圖。舉例而言,在5 MPa的壓力及225℃的加熱器出口溫度(或膨脹機入口溫度)下運轉超臨界流體加熱器能達到15.5%的朗肯循環能量效率。越高的膨脹機入口溫度,在增加越高的加熱器壓力下可達到最大效率。超臨界流體加熱器中越高的運轉壓力會需要使用越穩固的設備。 When using a supercritical fluid heater instead of a conventional subcritical Rankine cycle evaporator (or boiler), the heater pressure and heater outlet temperature (or corresponding expander inlet temperature) must be indicated. Figure 3 shows the energy efficiency of a cross-critical Rankine cycle operating with HFO-1336mzz-Z as the working fluid versus the pressure of the supercritical fluid heater and the temperature of the working fluid at the inlet of the expander. For example, operating a supercritical fluid heater at a pressure of 5 MPa and a heater outlet temperature of 225 ° C (or expander inlet temperature) can achieve a Rankine cycle energy efficiency of 15.5%. The higher the expander inlet temperature, the higher the maximum heater pressure can be achieved. The higher operating pressures in supercritical fluid heaters require the more robust equipment to be used.
通常熱源的溫度在熱交換過程間降低。在次臨界朗肯循環運轉實例中,在熱提取蒸發製程中工作流體溫度係固定的。相較於次臨界運轉實例,使用超臨界流體提取熱能會在熱源及超臨界工作流體的變化溫度間有較好的匹配。因此,跨臨界循環的熱交換程序的效果可高於次臨界循環的效果(參見Chen等人之Energy,36,(2011)549-555並於此作為參考)。 Usually the temperature of the heat source is reduced during the heat exchange process. In the subcritical Rankine cycle operation example, the temperature of the working fluid is fixed during the heat extraction evaporation process. Compared to the subcritical operation example, the use of supercritical fluid to extract thermal energy has a good match between the temperature of the heat source and the supercritical working fluid. Thus, the effect of the heat exchange procedure of the transcritical cycle can be higher than that of the subcritical cycle (see Chen et al., Energy, 36, (2011) 549-555 and incorporated herein by reference).
表B1顯示先於3 MPa加熱HFO-1336mzz-Z至200℃然後將經加熱的HFO-1336mzz-Z膨脹至Tcond=54.44℃之冷凝器的運轉壓力(0.21 MPa)的朗肯循環,可達到14.2%的熱效率以及412.03 kJ/m3之動力產生的容積。工作流體(HFO-1336mzz-Z)在6 MPa的壓力下加熱至250℃時,甚至可達更高的效率及動力產生的容積。HFO-1336mzz-Z在250℃下仍維持足夠的安定性。在實例A中,跨臨界循環相對於次臨界循環能達到較高的效率及容積。表B2比較在相同的流體加熱器壓力、加熱器出口溫度、冷凝器溫度、液體過冷、膨脹機效率及液體壓縮機(即泵)效率下,分別以HFO-1336mzz-Z與HFC-245fa作為工作流體之跨臨界朗肯循環之效能。 Table B1 shows the Rankine cycle of heating the HFO-1336mzz-Z to 200 °C before 3 MPa and then expanding the heated HFO-1336mzz-Z to a condenser of Tcond=54.44 °C (0.21 MPa), which can reach 14.2 The thermal efficiency of % and the volume generated by the power of 412.03 kJ/m 3 . When the working fluid (HFO-1336mzz-Z) is heated to 250 ° C under a pressure of 6 MPa, it can even reach higher efficiency and volume generated by power. HFO-1336mzz-Z still maintains sufficient stability at 250 °C. In Example A, the transcritical cycle achieves higher efficiency and volume relative to the subcritical cycle. Table B2 compares HFO-1336mzz-Z and HFC-245fa with the same fluid heater pressure, heater outlet temperature, condenser temperature, liquid subcooling, expander efficiency, and liquid compressor (ie pump) efficiency. The effectiveness of the cross-critical Rankine cycle of the working fluid.
表C1顯示HFO-1336mzz-Z能將有機郎肯循環與普遍可獲得的低成本HVAC型設備進行組合,其運轉於中等蒸發器壓力(不超過約2.18 MPa),同時提供吸引人的安全性、健康及環境特性以及吸引人的能量效率。使用低成本設備實質擴張ORC的實際應用性(參見Joost J.Brasz,Bruce P.Biederman and Gwen Holdmann:“Power Production from a Moderate-Temperature Geothermal Resource”,GRC Annual Meeting,September 25-28th,2005;Reno,NV,USA)。表C1顯示HFO-1336mzz-Z得到15.51%的能量效率係比HFC-245fa得到13.48%的能量效率高出15.06%。 Table C1 shows that HFO-1336mzz-Z can combine the organic Rankine cycle with commonly available low cost HVAC-type equipment that operates at moderate evaporator pressures (not exceeding about 2.18 MPa) while providing attractive safety, Health and environmental characteristics as well as attractive energy efficiency. The practical application of real-life expansion of ORC using low-cost equipment (see Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann: "Power Production from a Moderate-Temperature Geothermal Resource", GRC Annual Meeting, September 25-28th, 2005; Reno , NV, USA). Table C1 shows that the energy efficiency of 15.51% for HFO-1336mzz-Z is 15.06% higher than that for HFC-245fa.
對HFO-1336mzz-Z及HFC-245fa兩者而言,膨脹機入口溫度為250℃之朗肯循環能量效率隨著加熱器壓力從高於臨界壓力增加至9 MPa而單調遞增。表C2中所選的加熱器壓力(9 MPa)高於大部分常用的HVAC型設備的最大工作壓力。 For both HFO-1336mzz-Z and HFC-245fa, the Rankine cycle energy efficiency of the expander inlet temperature of 250 °C increases monotonically as the heater pressure increases from above the critical pressure to 9 MPa. The heater pressure (9 MPa) selected in Table C2 is higher than the maximum working pressure of most commonly used HVAC equipment.
表C2顯示HFO-1336mzz-Z能使跨臨界朗肯循環系統以比HFC-245fa還高2.7%的能量效率(在相同的運轉條件下)將相當高溫(250℃)下可得的熱轉換成動力,同時提供更吸引人的安全性及環境特性。 Table C2 shows that HFO-1336mzz-Z enables the transcritical Rankine cycle system to convert heat available at a relatively high temperature (250 ° C) to an energy efficiency of 2.7% higher than HFC-245fa (under the same operating conditions). Power while providing more attractive safety and environmental features.
表C1及表C2顯示利用HFO-1336mzz-Z來將相當高溫(250℃)下可得的熱轉換成動力的跨臨界朗肯循環系統可達到比以HFO-1336mzz-Z運轉的次臨界ORC還要高的能量效率。 Tables C1 and C2 show that the HFO-1336mzz-Z can be used to convert the heat available at a relatively high temperature (250 °C) into a dynamic transcritical Rankine cycle system that achieves a subcritical ORC operation with HFO-1336mzz-Z. To have high energy efficiency.
圖4顯示能量效率與在不同膨脹機入口溫度之加熱器壓力的關係圖。出乎意料地發現能量效率隨著越高的膨脹機入口溫度之加熱器壓力而增加。發現在10 MPa之250℃膨脹機溫度的效率大於18%。 Figure 4 shows a plot of energy efficiency versus heater pressure at different expander inlet temperatures. It has unexpectedly been found that energy efficiency increases with higher heater pressure at the expander inlet temperature. The efficiency of the extruder temperature at 250 ° C at 10 MPa was found to be greater than 18%.
根據ANSI/ASHRAE標準97-2007之密封管測試方法檢測HFO-1336mzz-Z在金屬存在下的化學安定性。用於密封管測試的HFO-1336mzz-Z原料為純度99.9864+重量百分比(雜質為136 ppmw)且實質不含水或空氣。 The chemical stability of HFO-1336mzz-Z in the presence of metals was tested according to the sealed tube test method of ANSI/ASHRAE Standard 97-2007. The HFO-1336mzz-Z material used for the sealed tube test was 99.9864 + weight percent (136 ppmw impurity) and was substantially free of water or air.
在至多250℃之各種溫度加熱烤箱中,將各含有由鋼、銅及鋁製成且浸潤在HFO-1336mzz-Z中的三條金屬試片之密封玻璃管熟化14天。熱熟化後目視檢測密封玻璃管顯示清澈的液體,並無變色或其他看得出的流體變質。再者,金屬試片的外觀沒有任何顯示腐蝕或其他劣化的改變。 The sealed glass tubes each containing three metal test pieces made of steel, copper and aluminum and infiltrated in HFO-1336mzz-Z were aged for 14 days in a heating oven of various temperatures up to 250 °C. After hot curing, the sealed glass tube was visually inspected to show a clear liquid with no discoloration or other visible fluid deterioration. Furthermore, the appearance of the metal test piece did not show any change in corrosion or other deterioration.
表C3顯示在熟化的液體樣品中所量測的氟離子濃度。氟離子濃度可詮釋為HFO-1336mzz-Z劣化程度的指標。表C3顯示即使在最高測試溫度(250℃)下,HFO-1336mzz-Z的劣化是驚人的小。 Table C3 shows the fluoride ion concentration measured in the aged liquid sample. The fluoride ion concentration can be interpreted as an indicator of the degree of deterioration of HFO-1336mzz-Z. Table C3 shows that the degradation of HFO-1336mzz-Z is surprisingly small even at the highest test temperature (250 °C).
表C4顯示在鋼、銅及鋁存在的情況下,於各種溫度熟化兩個星期後,HFO-1336mzz-Z樣品由GCMS定量的組分變化。即使在最高測試溫度(250℃)下,熟化僅造成屬於可忽略比例的新未知化合物。 Table C4 shows the compositional changes quantified by GCMS for HFO-1336mzz-Z samples after two weeks of curing at various temperatures in the presence of steel, copper and aluminum. Even at the highest test temperature (250 ° C), ripening only results in a new unknown compound that is negligible.
預期HFO-1336mzz的反式異構物,即HFO-1336mzz-E,比順式異構物HFO-1336mzz-Z有多約5 kcal/莫耳的熱動力安定性。出乎意料的,儘管有用 於使HFO-1336mzz-Z變成更安定之反式異構物的異構作用的實質熱動力驅動力,表C4中的量測結果顯示即使在最高測試溫度(250℃)下,HFO-1336mzz-Z仍大量以Z(或順式)異構形式存在。可忽略在250℃熟化兩個星期後所形成之小部分HFO-1336mzz-E(3,022.7 ppm或0.30227重量百分比)對工作流體(HFO-1336mzz-Z)的熱動力性質以及對循環效能的影響。 The trans isomer of HFO-1336mzz, HFO-1336mzz-E, is expected to have about 5 kcal/mole of thermodynamic stability over the cis isomer HFO-1336mzz-Z. Unexpected, although useful In terms of the substantial thermodynamic driving force that makes HFO-1336mzz-Z a heterogeneous trans isomer, the measurement in Table C4 shows that even at the highest test temperature (250 ° C), HFO-1336mzz- Z is still present in large amounts in the Z (or cis) isomeric form. The thermodynamic properties of the working fluid (HFO-1336mzz-Z) and the effect on the cycle performance of a small portion of HFO-1336mzz-E (3,022.7 ppm or 0.30227 weight percent) formed after two weeks of ripening at 250 °C can be ignored.
表D比較以HFO-1336mzz-E作為工作流體運轉之次臨界朗肯循環以及以HFO-1336mzz-Z或HFC-245fa作為工作流體運轉之次臨界朗肯循環的效能。表D中所比較的所有循環的蒸發器壓力為2.18 MPa。利用HFO-1336mzz-E的循環能量效率係較HFC-245fa低 8.46%。利用HFO-1336mzz-E之動力產生的容積係較HFC-245fa高出8.6%。 Table D compares the performance of the subcritical Rankine cycle with HFO-1336mzz-E as the working fluid and the subcritical Ranken cycle with HFO-1336mzz-Z or HFC-245fa as the working fluid. The evaporator pressures for all cycles compared in Table D were 2.18 MPa. The cycle energy efficiency of HFO-1336mzz-E is lower than HFC-245fa 8.46%. The volume produced by the power of HFO-1336mzz-E is 8.6% higher than that of HFC-245fa.
HFC-245fa的效能係被HFO-1336mzz-Z及HFO-1336mzz-E的效能所概括。這表示可調配HFO-1336mzz-Z及HFO-1336mzz-E的調合物以取代既有朗肯循環應用中的HFC-245fa。 The performance of HFC-245fa is summarized by the performance of HFO-1336mzz-Z and HFO-1336mzz-E. This represents a blend of HFO-1336mzz-Z and HFO-1336mzz-E that can be used to replace HFC-245fa in both Rankine cycle applications.
表E比較在蒸發溫度120℃下利用HFO-1336mzz-E相較於利用HFO-1336mzz-Z及HFC-145fa的朗肯循環效能。利用HFO-1336mzz-E的循環能量效率係較HFC-245fa低3.8%。利用HFO-1336mzz-E之動力產生的容積係較HFC245fa高出16.2%。 Table E compares the Rankine cycle efficiency with HFO-1336mzz-E compared to HFO-1336mzz-Z and HFC-145fa at an evaporation temperature of 120 °C. The cycle energy efficiency with HFO-1336mzz-E is 3.8% lower than that of HFC-245fa. The volume produced by the power of HFO-1336mzz-E is 16.2% higher than that of HFC245fa.
HFC-245fa的效能係被HFO-1336mzz-Z及HFO-1336mzz-E的效能所概括。這表示可調配HFO-1336mzz-Z及HFO-1336mzz-E的調合物以取代既有朗肯循環應用中的HFC-245fa。 The performance of HFC-245fa is summarized by the performance of HFO-1336mzz-Z and HFO-1336mzz-E. This represents a blend of HFO-1336mzz-Z and HFO-1336mzz-E that can be used to replace HFC-245fa in both Rankine cycle applications.
表F總結三種不同組分之HFO-1336mzz-E/HFO-1336mzz-Z調合物的朗肯循環效能。可改變HFO-1336mzz-E/HFO-1336mzz-Z調合物的組成以達到不同的效能目標。 Table F summarizes the Rankine cycle efficiencies of the three different components of the HFO-1336mzz-E/HFO-1336mzz-Z blend. The composition of the HFO-1336mzz-E/HFO-1336mzz-Z blend can be varied to achieve different performance goals.
表G比較HFO-1336mzz-E、HFO-1336mzz-Z、HFO-1336mzz-E及HFO-1336mzz-Z的50/50 wt%調合物以及HFC-245fa之跨臨界ORC效能。 Table G compares the 50/50 wt% blend of HFO-1336mzz-E, HFO-1336mzz-Z, HFO-1336mzz-E, and HFO-1336mzz-Z with the cross-critical ORC potency of HFC-245fa.
由資料顯示,HFO-1336mzz-Z以及其與HFO-1336mzz-E的混合物提供接近於HFC-245fa的效率。此外,添加HFO-1336mzz-E至HFO-1336mzz-Z讓使用此種混合物可提供接近於HFC-245fa之動力產生的容積,同時為產業提供更具環境永續性的工作流體。 From the data, HFO-1336mzz-Z and its mixture with HFO-1336mzz-E provide efficiency close to HFC-245fa. In addition, the addition of HFO-1336mzz-E to HFO-1336mzz-Z allows the use of such a mixture to provide a volume that is close to the power generated by HFC-245fa while providing the industry with a more environmentally sustainable working fluid.
30‧‧‧電動力產生裝置 30‧‧‧Electrical power generating device
32‧‧‧膨脹機 32‧‧‧Expansion machine
34‧‧‧冷凝器 34‧‧‧Condenser
36‧‧‧液體緩衝槽 36‧‧‧Liquid buffer tank
38‧‧‧泵 38‧‧‧ pump
40‧‧‧供熱熱交換器 40‧‧‧heat exchanger
46‧‧‧熱源 46‧‧‧heat source
30'‧‧‧電動力產生裝置 30'‧‧‧Electrical power generating device
32'‧‧‧膨脹機 32'‧‧‧Expansion machine
34'‧‧‧冷凝器 34'‧‧‧Condenser
36'‧‧‧液體緩衝槽 36'‧‧‧Liquid buffer tank
38'‧‧‧泵 38'‧‧‧ pump
40'‧‧‧供熱熱交換器 40'‧‧‧heat exchanger
42'‧‧‧泵 42'‧‧‧ pump
46'‧‧‧熱源 46'‧‧‧heat source
圖1為根據本發明進行直接熱交換之一熱源與一有機郎肯循環系統的方塊圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a heat source for direct heat exchange and an organic Rankine cycle system in accordance with the present invention.
圖2為根據本發明一熱源與一有機郎肯循環系統的方塊圖,其使用第二迴圈組態將熱源的熱提供至熱交換器而轉換成機械能。 2 is a block diagram of a heat source and an organic Rankine cycle system in accordance with the present invention that uses a second loop configuration to provide heat from a heat source to a heat exchanger for conversion to mechanical energy.
圖3顯示在膨脹機入口處之工作流體的選定溫度下(Tcond=54.44℃;Tsubcooling=7.78℃;膨脹機效率=0.85;以及泵效率=0.85),以HFO-1336mzz-Z作為工 作流體進行運轉的跨臨界有機郎肯循環之能量效率與流體加熱器之壓力的關係圖。 Figure 3 shows the selected temperature of the working fluid at the inlet of the expander (T cond = 54.44 ° C; T subcooling = 7.78 ° C; expander efficiency = 0.85; and pump efficiency = 0.85), with HFO-1336mzz-Z as the working fluid A plot of the energy efficiency of a transcritical organic Rankine cycle operating with the pressure of a fluid heater.
圖4顯示在膨脹機入口處之工作流體的選定溫度下(Tcond=40℃;Tsubcooling=0℃;膨脹機效率=0.85;以及泵效率=0.85),以HFO-1336mzz-Z作為工作流體進行運轉的跨臨界有機郎肯循環之能量效率與流體加熱器之壓力的關係圖。 Figure 4 shows the selected temperature of the working fluid at the inlet of the expander (T cond = 40 ° C; T subcooling = 0 ° C; expander efficiency = 0.85; and pump efficiency = 0.85), with HFO-1336mzz-Z as the working fluid A plot of the energy efficiency of a transcritical organic Rankine cycle operating with the pressure of a fluid heater.
圖5顯示完全乾式膨脹的跨臨界ORC。 Figure 5 shows a fully dry expanded transcritical ORC.
圖6顯示在膨脹時部分冷凝但在膨脹機出口處具有乾蒸氣的跨臨界ORC。 Figure 6 shows a transcritical ORC that partially condenses upon expansion but has dry vapor at the exit of the expander.
圖7顯示濕式膨脹且膨脹機入口處的溫度高於工作流體臨界溫度的跨臨界ORC。 Figure 7 shows a transcritical ORC with a wet expansion and a temperature at the inlet of the expander that is above the critical temperature of the working fluid.
圖8顯示濕式膨脹但膨脹機入口處的溫度低於工作流體臨界溫度的跨臨界ORC。 Figure 8 shows a transcritical ORC with a wet expansion but at a temperature at the inlet of the expander that is below the critical temperature of the working fluid.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101130771A TWI618792B (en) | 2012-08-24 | 2012-08-24 | Processes and compositions for organic rankine cycles for generating mechanical energy from heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101130771A TWI618792B (en) | 2012-08-24 | 2012-08-24 | Processes and compositions for organic rankine cycles for generating mechanical energy from heat |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201408762A TW201408762A (en) | 2014-03-01 |
TWI618792B true TWI618792B (en) | 2018-03-21 |
Family
ID=50820239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101130771A TWI618792B (en) | 2012-08-24 | 2012-08-24 | Processes and compositions for organic rankine cycles for generating mechanical energy from heat |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI618792B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201219349A (en) * | 2010-11-10 | 2012-05-16 | Du Pont | Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof |
-
2012
- 2012-08-24 TW TW101130771A patent/TWI618792B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201219349A (en) * | 2010-11-10 | 2012-05-16 | Du Pont | Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201408762A (en) | 2014-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6800942B2 (en) | Methods and compositions for the Organic Rankine cycle to generate mechanical energy from heat | |
JP6995050B2 (en) | Use of perfluoroheptene in power cycle systems | |
US9003797B2 (en) | Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles | |
CN114292627B (en) | Compositions comprising tetrafluoropropene and tetrafluoroethane, their use in power cycles, and power cycle apparatus | |
JP2015507716A (en) | A composition comprising E-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally 1,1,1,2,3-pentafluoropropane in a power cycle Use of things | |
TWI618792B (en) | Processes and compositions for organic rankine cycles for generating mechanical energy from heat |