TW201219349A - Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof - Google Patents

Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof Download PDF

Info

Publication number
TW201219349A
TW201219349A TW100139287A TW100139287A TW201219349A TW 201219349 A TW201219349 A TW 201219349A TW 100139287 A TW100139287 A TW 100139287A TW 100139287 A TW100139287 A TW 100139287A TW 201219349 A TW201219349 A TW 201219349A
Authority
TW
Taiwan
Prior art keywords
composition
working fluid
cis
heat
hfo
Prior art date
Application number
TW100139287A
Other languages
Chinese (zh)
Inventor
Barbara Haviland Minor
Konstantinos Kontomaris
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of TW201219349A publication Critical patent/TW201219349A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A composition comprising cis-1, 1, 1, 4, 4, 4-hexafluoro-2-butene (cis-HFO-1336mzz) and 2-difluoromethoxy-1, 1, 1, 2-tetrafluoroethane (HFE-236eaEbg) is provided. Such compositions may be azeotropic or azeotrope-like. Also, methods are provided for producing cooling and for replacing HCFC-123, CFC-11, or CFC-113 in a chiller. Also, processes for recovering heat, for generating power, and for replacing HFC-245fa in power cycles are provided.

Description

201219349 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於冷凍、空調與熱泵系統之組成 物’其中5亥組成物包括順-1,11,4,4,4-六氟-2-丁烯(順_ 順-HFO-1336mZZ)及2-二氟甲氧基-U丄2·四氟乙烷 (HFE-236eaEbg)之摻合物。本發明之組成物可用於製 冷、回收熱(例如透過有機朗肯(Rankine)循環)之方法、 作為熱傳流體、發泡劑、氣溶膠推進劑及抑火與滅火劑。 【先前技術】 在過去數十年來,冷凍工業致力於尋找替代冷媒, 以取代因蒙特婁議定書而逐步淘汰破壞臭氧之氟氯碳 化合物(CFC)及氟氯氫碳化合物(HCFC)。多數冷媒 製造者的解決方法’係商品化之氫氟碳(HFC)冷媒。 新的HFC冷媒中以HFC_134a為目前最廣泛使用者,此 種冷媒不具臭氧耗竭潛勢,因此不受蒙特婁議定書規範 特定冷媒必須逐步淘汰之規定的影響。但進一步之環境 規範最終可能造成某些HFC冷媒的全球停用。目前, /又車工業在車用空調使用的冷媒方面也受到全球暖化 潛勢相關規範的約束。因此,目前亟需為車用空調市場 提供低全球暖化潛勢的新冷媒。若此等規範於未來擴大 實施’例如用於固定式空調及冷凍系統,則於冷凍及空 調產業各方面將展現更大之冷媒需求。 目前提出用以替代HFC-134a之冷媒包括 HFC-I52a、丙烷或丁烷等純烴,或如C02等「天然」 冷媒°許多建議的替代方案具有毒性、可燃性及/或具 201219349 有低能量效率。因此,目前正在尋找新的替代性冷媒。 亦有人提出其他含HFC、CFC及HCFC冷媒之替代品, 例如 CFC-11、HCFC-22、HCFC-123、HFC-245fa、 R404A、R407C及R410A等等之替代品。 【發明内容】 根據本發明係提供一種組成物,包括順-1,1,1,4,4,4- 六氣-2-丁燦(順_HFO-1336mzz)及 2-二氟甲氧基-l,i,i,2-四氟乙烷(HFE-236eaEbg)。 此外,根據本發明係提供一種製冷之方法。該方法 包括在一待冷卻主體附近之一蒸發器内將一包括順 -1,1,1,4,4,4-六氣-2·丁婦(川頁 _HFO-1336mzz)及 2-二氣^ 甲 氧基-1,1,1,2-四氟乙烷(HFE-236eaEbg)的組成物蒸發, 以藉此製冷。 此外,根據本發明係提供一種於一冷凍器内替換 110^-123'CFC-11或CFC-113之方法該方法包括提供 一包括順· 1,1,1,4,4,4_ 六氟-2- 丁烯(順-HF0-1336mzz)及 2-二氟甲氧基-1,1,1,2-四氟乙烷(HFE-236eaEbg)之組成 物至該冷凍器以取代HCFC-123、CFC-11或CFC-113。 此外’根據本發明係提供一種回收熱之方法。該方 法包括於一與一供熱系統接觸之熱交換器中將一包括 順-1,1,1,4,4,4-六氟-2-丁烯(順-册0-133611^)及2-二氟 甲氧基-1,1,1,2-四氟乙烷(HFE-236eaEbg)之組成物的液 相工作流體蒸發’以產生一氣相工作流體,以及將該氣 相工作流體傳送至一產生機械能之膨脹機。 5 201219349 此外,根據本發明係提供一種由接收自一熱源之熱 以產^動力之方法。該方奸括⑷將—液相卫作'流體壓' 縮至咼於該工作流體之臨界壓力;(b)將來自步驟(a)之 該工作流體通過一熱交換器或一流體加熱器,並 作流體加熱至一高於或低於該工作流體之臨界溫g的 溫度,其中該熱交換器或該流體加熱器係與供應該^之 熱源相連通;(c)自該熱交換器或流體加熱器移&一 部分的經加熱之工作流體;(d)將該至少—部分的經加埶 之工作流體傳送至一膨脹機,其中至少—部分的熱被轉 換成機械能,且其中該經加熱之工作流體之壓力被降低 至低於該工作流體的臨界壓力,藉此使該至少一部分的 經加熱之工作流體成為一工作流體蒸氣或一蒸氣及液 體之工作流體混合物;(e)將該工作流體蒸氣或蒸氣及液 體之工作流體混合物從該膨脹機傳送至一冷凝器,其中 該至少一部分的該工作流體蒸氣或該蒸氣及液體之工 作流體混*合物被完全冷凝成工作流體液體;以及⑴視需 要將該工作流體液體與步驟(a)的該第一工作流體液體 混合;以及(g)視需要重複步驟⑻至(f)至少一次;其中 該工作流體包括順-1,1,1,4,4,4-六氟-2· 丁烯(順 -HFO-1336mzz)及2_二氟曱氧基·1,1,1,2-四氟乙烧 (HFE-236eaEbg)。 此外,根據本發明係提供一種於動力循環系統中替 換HFC-245fa之方法。該方法包括提供一包括順 -1,1,1,4,4,4-六氟-2-丁烯(順-HFO-1336mzz)及 2-二氟甲 氧基-1,1,1,2-四氟乙烷(HFE-236eaEbg)之組成物至該動 力循環系統以取代HFC-245fa。 201219349 此外,根據本發明係提供一種於一動力循環裝置中 將熱轉換為機械能之方法,該裝置具有(a)—熱交換器, 其中係利用來自一熱源之熱將一液相工作流體汽化;以 及(b)一膨脹機,其中係利用來自該熱交換器之經汽化之 工作〃IL體來產生機械能。該方法包括:⑴於該熱交換器 中Ά化作為工作流體之液相E_HF〇-l438mzz; (ii)將汽 化之E-HFO-1438mzz由該熱交換器傳送至該膨脹機; 以及(iii)於該膨脹機中將來自汽化之E-HFO-1438mzz 的熱轉換為機械能。 【實施方式】 在提出下述實施例之細節前,先定義或闡明一些術 語。 定義 如本文中所用者,術語熱傳組成物意指一種用於自 —熱源攜帶熱炱一散熱裝置的組成物。 熱源係定義為任何欲由此傳遞、移動或移除熱之空 間、位置、物件或主體。熱源之實例包括需要冷凍或冷 卻之空間(開放式或封閉式),例如超市中的冷凍機與 冷凍器箱體、需要空調的建築物空間、工業用水冷凍器 或需要空調的汽車内乘客艙。在某些實施例中,在整個 傳遞過程中,熱傳組成物可能處於分子聚集之恆定態或 相(即並未蒸發或冷凝)。在其他實施例中,蒸發冷卻 過程亦可利用熱傳組成物。 7 201219349 一散熱裝置係定義為任何能夠吸收熱之空間、位 置、物體或主體。冷卻水通過—蒸氣壓縮冷凍系統之冷 凝器即為該散熱裝置的一個實例。 一熱傳系統為用以在一特定空間中產生一加熱或 冷部效果之系統(或裝置)。熱傳系統可為一移動式系 統或一固定式系統。 熱傳系統的實例包括但不限於空調機、冷凍器、冷 凍機、熱泵、水冷凍器、浸沒式蒸發冷凍器、直接膨脹 冷凍器、步入式冷卻器、超市系統、熱泵、移動式冷凍 機、移動式空調裝置及其組合。 如本文中所用者’移動式熱傳系統係指併入用於道 ,軌l海上及空中之運輸裝置的任何一種冷珠、空 w周或加熱裝置。此外,移動式冷;東或空調機裝置包括獨 立於任何移動载具且已知為麵201219349 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a composition for a refrigeration, air conditioning, and heat pump system, wherein the 5 hai composition includes cis-1,11,4,4,4-hexafluoro- A blend of 2-butene (cis-cis-HFO-1336mZZ) and 2-difluoromethoxy-U丄2·tetrafluoroethane (HFE-236eaEbg). The composition of the present invention can be used in a process for cooling, recovering heat (e.g., through an organic Rankine cycle), as a heat transfer fluid, a blowing agent, an aerosol propellant, and a fire suppressing and extinguishing agent. [Prior Art] Over the past few decades, the refrigeration industry has been looking for alternative refrigerants to replace the phase-out of ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) due to the Montreal Protocol. The solution for most refrigerant manufacturers' is commercialized hydrofluorocarbon (HFC) refrigerant. Among the new HFC refrigerants, HFC_134a is currently the most widely used. This type of refrigerant does not have an ozone depletion potential and is therefore not affected by the Montreal Protocol's regulation that specific refrigerants must be phased out. However, further environmental regulations may eventually result in the global decommissioning of certain HFC refrigerants. At present, the automotive industry is also constrained by the global warming potential regulations for refrigerants used in automotive air conditioners. Therefore, there is an urgent need for new refrigerants that provide a low global warming potential for the automotive air conditioning market. If these specifications are to be expanded in the future, for example, for stationary air conditioning and refrigeration systems, there will be greater refrigerant demand in all aspects of the refrigeration and air conditioning industry. The refrigerants currently proposed to replace HFC-134a include HFC-I52a, pure hydrocarbons such as propane or butane, or "natural" refrigerants such as C02. Many proposed alternatives are toxic, flammable and/or have low energy with 201219349 effectiveness. Therefore, new alternative refrigerants are currently being sought. Alternatives to HFC, CFC and HCFC refrigerants, such as CFC-11, HCFC-22, HCFC-123, HFC-245fa, R404A, R407C and R410A, have also been proposed. SUMMARY OF THE INVENTION According to the present invention, there is provided a composition comprising cis-1,1,1,4,4,4-hexa-2-buten(cis_HFO-1336mzz) and 2-difluoromethoxy -l, i, i, 2-tetrafluoroethane (HFE-236ea Ebg). Further, according to the present invention, a method of cooling is provided. The method comprises, in an evaporator near a body to be cooled, a cis-1,1,1,4,4,4-six gas-2·丁妇(川页_HFO-1336mzz) and 2-two The composition of gas methoxy-1,1,1,2-tetrafluoroethane (HFE-236eaEbg) was evaporated to thereby cool. Further, according to the present invention there is provided a method of replacing 110^-123'CFC-11 or CFC-113 in a freezer, the method comprising providing a cis-1,1,1,4,4,4_hexafluoro- a composition of 2-butene (cis-HF0-1336mzz) and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane (HFE-236eaEbg) to the freezer to replace HCFC-123, CFC-11 or CFC-113. Further, according to the present invention, a method of recovering heat is provided. The method comprises, in a heat exchanger in contact with a heating system, comprising cis-1,1,1,4,4,4-hexafluoro-2-butene (cis-book 0-136311) and The liquid phase working fluid of the composition of 2-difluoromethoxy-1,1,1,2-tetrafluoroethane (HFE-236eaEbg) evaporates to produce a gas phase working fluid, and delivers the gas phase working fluid To an expander that produces mechanical energy. 5 201219349 Furthermore, in accordance with the present invention, a method of generating power from heat received from a heat source is provided. The method includes (4) reducing the liquid pressure 'fluid pressure' to a critical pressure of the working fluid; (b) passing the working fluid from step (a) through a heat exchanger or a fluid heater, And heating the fluid to a temperature above or below a critical temperature g of the working fluid, wherein the heat exchanger or the fluid heater is in communication with a heat source supplying the gas; (c) from the heat exchanger or The fluid heater moves & part of the heated working fluid; (d) transferring the at least a portion of the twisted working fluid to an expander, wherein at least a portion of the heat is converted to mechanical energy, and wherein The pressure of the heated working fluid is lowered below a critical pressure of the working fluid, whereby the at least a portion of the heated working fluid becomes a working fluid vapor or a vapor and liquid working fluid mixture; (e) The working fluid vapor or vapor and liquid working fluid mixture is transferred from the expander to a condenser, wherein the at least a portion of the working fluid vapor or the vapor and liquid working fluid mixture is finished Condensing into a working fluid liquid; and (1) mixing the working fluid liquid with the first working fluid liquid of step (a) as needed; and (g) repeating steps (8) through (f) at least once as needed; wherein the working fluid comprises Cis-1,1,1,4,4,4-hexafluoro-2·butene (cis-HFO-1336mzz) and 2-difluorodecyloxy-1,1,1,2-tetrafluoroethane ( HFE-236eaEbg). Moreover, in accordance with the present invention, a method of replacing HFC-245fa in a power cycle system is provided. The method comprises providing one comprising cis-1,1,1,4,4,4-hexafluoro-2-butene (cis-HFO-1336mzz) and 2-difluoromethoxy-1,1,1,2 A composition of tetrafluoroethane (HFE-236eaEbg) to the power cycle system to replace HFC-245fa. 201219349 Further, according to the present invention, there is provided a method of converting heat into mechanical energy in a power cycle apparatus having (a) a heat exchanger in which a liquid phase working fluid is vaporized by heat from a heat source. And (b) an expander in which mechanical energy is generated using a vaporized working 〃IL body from the heat exchanger. The method comprises: (1) deuterating a liquid phase E_HF〇-l438mzz as a working fluid in the heat exchanger; (ii) transferring the vaporized E-HFO-1438mzz from the heat exchanger to the expander; and (iii) The heat from the vaporized E-HFO-1438mzz is converted to mechanical energy in the expander. [Embodiment] Some terms are defined or clarified before the details of the following embodiments are presented. Definitions As used herein, the term heat transfer composition means a composition for carrying a heat sink from a heat source. A heat source is defined as any space, location, object, or body from which to transfer, move, or remove heat. Examples of heat sources include spaces that require freezing or cooling (open or closed), such as freezers and freezers in supermarkets, building spaces requiring air conditioning, industrial water freezers, or in-vehicle passenger compartments that require air conditioning. In certain embodiments, the heat transfer composition may be in a constant state or phase of molecular aggregation (i.e., not evaporated or condensed) throughout the transfer. In other embodiments, the evaporative cooling process may also utilize a heat transfer composition. 7 201219349 A heat sink is defined as any space, location, object or body that can absorb heat. The condenser of the cooling water passing through the vapor compression refrigeration system is an example of the heat sink. A heat transfer system is a system (or apparatus) for producing a heating or cold effect in a particular space. The heat transfer system can be a mobile system or a stationary system. Examples of heat transfer systems include, but are not limited to, air conditioners, freezers, freezers, heat pumps, water freezers, immersion chillers, direct expansion chillers, walk-in chillers, supermarket systems, heat pumps, mobile chillers , mobile air conditioning units and combinations thereof. As used herein, a mobile heat transfer system refers to any type of cold bead, air wrap, or heating device incorporated into a transport device for rail, rail, and air. In addition, mobile cold; east or air conditioner units are included in any mobile vehicle and are known as noodles

統的那些裝置。,屮相_ A 此聯合運輸系統包括「貨櫃」(聯合 海上/陸上運輪)以β「 公路/鐵路運輪)。可換車廂(swap bodies)」(聯合 固定之Hf固定式熱傳系統為操作期間位 同建築,或可為=熱傳系統可結合於或連接至各式 賣機。此等固定*庙門外之單獨裝置,例如清涼飲料 不限於冷凍器、古二用可為固定式空調及熱泵(包括 系統,且包括窗:溫熱f、住宅、商業用或工業用空 及裝設於外部值心t管、㈣、封裝終端、冷珠器 固定式冷凍應用中、,杀物連接者,例如屋頂系統)。 用、工業用ί住〜,所揭露之組成物可用於設備包括 毛用冷凍機與冷凍器、製冰機、自供 8 201219349 冷卻器與冷凍器、浸沒式蒸發冷凍器、直接膨脹冷凍 态、步入式及取放式(reach-in)冷卻器與冷;東器以及組合 式系統。在某些實施例中,所揭露之組成物可用於超市 冷凍系統。此外,固定式系統包括使用第一冷媒及第二 熱傳流體之第二迴圈系統。 冷凍能力(亦稱為冷卻能力)一詞,係用來定義對 於每一碎循環的冷媒,在蒸發器内冷媒的焓變化,或是 對於每單位體積離開蒸發器的冷媒蒸氣,於蒸發器内由 冷媒移除的熱(容積)。冷康能力用來評量冷媒或熱傳 組成物製冷之能力。因此,該能力越高,每單位質量或 體積經由蒸發器循環之冷媒所產生的冷就越多。冷卻率 意指每單位時間蒸發器内之冷媒所移除之熱。 性能係數(COP)為移除的熱量除以操作該循環所需 的忐源輸入。COP愈高,則能源效率愈高。COP與能 源效率比(EER)直接相關,EER係指冷凍或空調設備在 一組特定内部及外部溫度之效率評等。 過冷為在一定壓力下低於液體之飽和點之該液體 溫度的減少。飽和點是蒸氣組成物完全冷凝為液體之溫 度(又稱為泡點)。但過冷持續將液體於一定壓力冷卻 為更低溫度的液體。淨冷凍能力可藉由把液體冷卻至低 於飽和溫度而增加。過冷因而改善一系統的冷凍能力與 月b畺效率。過冷量為低於飽和溫度的冷量(以度計)或 一液體組成物被冷卻至低於其飽和溫度的程度。 過熱為定義加熱一蒸氣組成物超過其飽和蒸氣溫 度多少之一術語(飽和蒸氣溫度為若冷卻該組成物,則 形成第一滴液體時之溫度,亦稱為「露點」)。 201219349 溫度滑移(temperature glide,有時僅稱為「滑移」) 為一冷媒於一冷媒系統之一組件中之相變化過程之起 始與結束溫度間的絕對差值,並且排除任何過冷或過 熱。此術語可用於描述一近共沸或非共沸組成物之冷凝 或蒸發。 所謂共沸組成物意指兩種或以上物質之恆沸混合 物’其表現有如一單一物質❶一種特徵化共沸組成物之 ^式為該液體之部分蒸發或蒸餾所產生之蒸氣具有與 5玄液體(該蒸氣係蒸發或蒸餾自該液體)相同之組成, 亦即該混合物蒸餾/回流時不會發生組成改變 。恆沸組 成物之特徵為具有共沸性質’因為相較於相同化合物之 非共沸混合物,它們會展現一最高或最低沸點。共沸組 不會在運作中的冷凍或空調系統内分餾,前述現象 Γ =低系統的熱傳及效能。此外,共沸組成物從一冷 者或=凋系統漏出時不會發生分餾現象。如本文中所用 發或;:二重量百分比的組成物被移除後(例如在蒸 " a1)’在原組成物與被移除50重量百分比後 組成物之間兩者的蒸氣Μ並無可測得的差異,則 该組成物即定義為㈣者。 兩種3=5物(一般又稱為「近共沸組成物」)是 在一定愿*質的混合物,其與單一成分純物質類似, 共沸組成物:;二質4恆定之溫度沸騰。-種特徵化類 的蒸氣與被體之部分蒸發或蒸鑛產生 組成,換丄;洛顧的液盘兩者具有實質上相同的 形下―錢合物在沒有發生實f組成改變的情 “、、 机。另一種特徵化類共沸組成物的方式 10 201219349 是,該組成物的泡點蒸氣壓與露點蒸氣壓在一定溫度為 實質上相同。於本文中’若於50重量百分比的組成物 被移除後(例如透過蒸發或沸騰),在原組成物與被移 除50重量百分比之原組成物後剩餘的組成物之間兩者 的蒸氣壓差異小於百分之10 ’則該組成物即定義為類 共沸者。 非共沸組成物為兩種或更多物質的混合物,其於值 定壓力下沸騰期間具有顯著的溫度變化。一種特徵化非 共彿組成物的方式是由液體之部分蒸發或蒸餾所產生 的蒸氣與被蒸發或蒸镏的液體兩者具有實質上不同的 組成,換言之,該混合物在發生實質組成改變的情形下 热條/回;iW。另一種特徵化非共彿組成物之方式為在一 特定溫度下,該組成物之泡點蒸氣壓與露點蒸氣壓實質 上不同。在本文中,若一組成物例如藉由菽發或 移除其50重量百分比後,該原始組成物與移除5〇重量 百分比後之組成物間的蒸氣壓差大於約1〇百分比,則 該組成物即為非共沸。 ' 如本文中所用者,術語「潤滑劑」意指任何添加至 -組成物或-壓縮機(並且與任何熱傳系統中使用的任 何熱傳組成物接觸)的材m提供該壓縮機潤滑效 果以幫助避免零件卡住。 如本文中所用者,相容劑為改善本文所揭露之組成 物的氫氟碳或聽_二者於熱傳系_滑劑中的溶 解度之化合物。在某些實施例中,該相容劑使回油㈣ return)至龍誠之能力得叫善。在某些實施例中, 相容劑改善組成物的熱傳性質。在某些實施例中,該组 201219349 成物係與一系統潤滑劑一起使用以降低富含油相之黏 度。 :' 如本文中所用者,回油係指一熱傳組成物攜帶潤滑 劑通過一熱傳系統並將潤滑劑帶回到該壓縮機 t 力。亦即在使用中,該熱傳組成物將該壓縮機潤滑劑的 某些部分帶離該壓縮機並進入該系統之其他部分的現 象並非不尋常。在此類系統中,若該潤滑劑無法有致回 到該壓縮機’則該壓縮機最終會因缺乏潤滑而故障。 如本文中所用者,「紫外」染料係定義為一 uv螢 光或填光組成物’其吸收在電磁光譜之紫外區或「近 紫外區的光。該UV螢光染料在一 uv光照射下所產生 之螢光可被债測,該UV光係發射至少一些波長範圍在 10奈米至約775奈米的輻射。 全球暖化潛勢(GWP)為一種指數,其係以二氧化碳 之一公斤排放為基準,評估一公斤特定溫室氣體之大氣 排放的相對全球暖化貢獻。透過計算不同時間範圍之 GWP’可瞭解一特定氣體於大氣中留存時間之效應。通 常以百年時間範圍之GWP為參考值。對於混合物,可 基於各組分之個別GWP計算其加權平均數。 臭氧耗竭潛勢(ODP)為一物質所造成臭氧耗竭之量 化表示。ODP為一化學物質對於臭氧之影響與相同質量 的CFC-11 (氟三氯甲烷)之影響的比值。因此,cFC-H 之0DP定義為。其他CFCs與HCFCs具有之ODPs 範圍為0.01至1.0。HFCs為零ODP。 可燃性術語意指一組成物燃燒與/或傳播火焰之能 力。對於冷媒與其他熱傳組成物而言,可燃性下限 201219349 (「LFL」)為空氣中熱傳組成物之最低濃度,其可在Those devices. , 屮相_ A This combined transportation system includes "container" (combined sea/land freighter) with beta "road/railway transporter". "swap bodies" (joint fixed Hf fixed heat transfer system is During operation, it can be connected to the building, or it can be combined with or connected to various types of merchandisers. The separate devices outside the fixed temples, such as refreshing drinks, are not limited to chillers, and can be used for stationary air conditioners. And heat pump (including system, and including window: warm f, residential, commercial or industrial space and installed in the external value of the tube, (four), packaging terminal, cold ball fixed refrigeration application, killing connection For example, the roof system). For industrial use, the disclosed components can be used in equipment including hair dryers and freezers, ice machines, self-supply 8 201219349 coolers and freezers, submersible evaporators Direct expansion frozen state, walk-in and reach-in coolers and colds; east and combined systems. In certain embodiments, the disclosed compositions can be used in supermarket refrigeration systems. Fixed system A second loop system using a first refrigerant and a second heat transfer fluid. The term refrigeration capacity (also known as cooling capacity) is used to define the enthalpy change of the refrigerant in the evaporator for each cycle of refrigerant. Or the heat (volume) removed by the refrigerant in the evaporator for the refrigerant vapor leaving the evaporator per unit volume. The cold capacity is used to measure the ability of the refrigerant or heat transfer composition to cool. Therefore, the ability High, the more cooling per unit mass or volume of refrigerant passing through the evaporator. The cooling rate means the heat removed by the refrigerant in the evaporator per unit time. The coefficient of performance (COP) is the heat removed. The input of the helium source required to operate the cycle. The higher the COP, the higher the energy efficiency. The COP is directly related to the energy efficiency ratio (EER), which refers to the efficiency of the refrigeration or air conditioning equipment in a specific set of internal and external temperatures. The supercooling is the decrease in the temperature of the liquid below the saturation point of the liquid at a certain pressure. The saturation point is the temperature at which the vapor composition completely condenses into a liquid (also known as the bubble point). The constant pressure is cooled to a lower temperature liquid. The net freezing capacity can be increased by cooling the liquid to below the saturation temperature. The supercooling thus improves the refrigeration capacity and monthly efficiency of a system. The subcooling amount is lower than the saturation temperature. The amount of cooling (in degrees) or a liquid composition is cooled to below its saturation temperature. Overheating is a term that defines how much heating a vapor composition exceeds its saturated vapor temperature (saturated vapor temperature is if the composition is cooled) The temperature at which the first drop of liquid is formed, also known as the "dew point". 201219349 Temperature glide (sometimes simply called "slip") is a refrigerant in one of the components of a refrigerant system. The absolute difference between the start and end temperatures of the phase change process, and excluding any supercooling or superheating. This term can be used to describe the condensation or evaporation of a near azeotropic or non-azeotropic composition. By azeotrope composition is meant a constant boiling mixture of two or more substances which behaves as a single substance, a characterized azeotropic composition, or a vapor produced by partial evaporation or distillation of the liquid. The same composition of the liquid (the vapor is evaporated or distilled from the liquid), that is, the composition does not change upon distillation/reflow. The azeotrope composition is characterized by having azeotropic properties' because they exhibit a highest or lowest boiling point compared to a non-azeotropic mixture of the same compound. The azeotrope group will not be fractionated in the operating refrigeration or air conditioning system. The above phenomenon Γ = low system heat transfer and efficiency. In addition, fractionation does not occur when the azeotrope is leaked from a cold or = system. As used herein; or after two parts by weight of the composition is removed (for example, in the steaming " a1)', the vapor between the original composition and the composition after removal of 50 weight percent is not available. The measured difference is defined as (4). Two 3 = 5 species (generally referred to as "near azeotrope compositions") are mixtures of a certain mass that are similar to a single component pure azeotrope: a constant temperature boiling of the secondary mass 4 . - a characteristic type of vapor is partially formed by vaporization or steaming of the body, and the composition is changed; the liquid trays of Luo Gu have substantially the same shape - the composition of the money compound does not change in the real f composition" Another way of characterizing azeotrope-like composition 10 201219349 is that the bubble point vapor pressure of the composition is substantially the same as the dew point vapor pressure at a certain temperature. Here, 'if 50 weight percent composition After the material is removed (for example, by evaporation or boiling), the vapor pressure difference between the original composition and the composition remaining after removing 50% by weight of the original composition is less than 10%, then the composition That is, defined as an azeotrope-like. A non-azeotropic composition is a mixture of two or more substances that have a significant temperature change during boiling at a given pressure. A way of characterizing a non-common composition is from a liquid The vapor produced by partial evaporation or distillation has a substantially different composition from the vaporized or distilled liquid, in other words, the mixture is hot strip/back in the event of a substantial composition change; iW. The manner in which the non-common composition is characterized is that the bubble vapor pressure of the composition is substantially different from the dew point vapor pressure at a particular temperature. In this context, a composition, for example, by bursting or removing it After 50 weight percent, the difference in vapor pressure between the original composition and the composition after removal of 5 weight percent is greater than about 1%, the composition is non-azeotropic. 'As used herein, the term " "Lubricant" means any material m added to the -component or -compressor (and in contact with any heat transfer composition used in any heat transfer system) to provide the compressor lubrication effect to help avoid component jamming. As used herein, a compatibilizing agent is a compound that improves the solubility of hydrofluorocarbons or listeners in the heat-transmitting-slip agent of the compositions disclosed herein. In some embodiments, the compatibilizing agent returns the oil return (four) to the ability of Long Cheng. In certain embodiments, the compatibilizer improves the heat transfer properties of the composition. In certain embodiments, the set of 201219349 strains is used with a system of lubricant to reduce the viscosity of the oil-rich phase. : 'As used herein, oil return means that a heat transfer composition carries a lubricant through a heat transfer system and brings the lubricant back to the compressor. That is, in use, it is not unusual for the heat transfer composition to carry portions of the compressor lubricant away from the compressor and into other portions of the system. In such systems, if the lubricant fails to return to the compressor, the compressor will eventually fail due to lack of lubrication. As used herein, an "ultraviolet" dye is defined as a uv fluorescent or filled composition that absorbs light in the ultraviolet region of the electromagnetic spectrum or in the near ultraviolet region. The UV fluorescent dye is illuminated under a uv light. The resulting fluorescence can be measured by a debt that emits at least some radiation having a wavelength in the range of 10 nm to about 775 nm. The Global Warming Potential (GWP) is an index that is one kilogram of carbon dioxide. Emissions are used to assess the relative global warming contribution of atmospheric emissions of one kilogram of specific greenhouse gases. The effect of retention time of a particular gas in the atmosphere can be understood by calculating GWP' over time. Usually based on GWP over a hundred years For mixtures, the weighted average can be calculated based on the individual GWP of each component. Ozone Depletion Potential (ODP) is a quantitative representation of ozone depletion caused by a substance. ODP is the effect of a chemical on ozone and the same quality. The ratio of the effect of CFC-11 (fluorotrichloromethane). Therefore, the 0DP of cFC-H is defined as. Other CFCs and HCFCs have ODPs ranging from 0.01 to 1.0. HFCs are zero ODP. Term means the ability of a composition to burn and/or spread flames. For refrigerants and other heat transfer compositions, the lower flammability limit 201219349 ("LFL") is the lowest concentration of heat transfer composition in the air.

ASTM (美國材料试驗協會)E681所規定的測試條件 下,透過空氣與組成物的均質混合物延續火焰,可燃性 上限(「UFL」)為空氣中熱傳組成物之最高濃度,其可 在ASTM E681條件下透過空氣與組成物的均質混合物 延續火焰。對於許多冷凍與空調應用而言,需要冷媒或 工作流體為不可燃。 如本文中所用者,術語「包含」、「包括」、「具有」 或其任何其它變型均旨在涵蓋非排他性的包括。例如/ 含有清單列出的複數元素的一組合物、製程、方法、製 品或裝置不一定僅限於清單上所列出的這些元素而 已,而是可以包括未明確列出但卻是該組合物、製程、 方法、製品或設裝置固有的其他元素。此外,除非有相 反的明確說明,「或」是指包含性的「或」,而不是指排 他性的「或」。例如,以下任何—㈣況均滿足條件A 或B· A是真實的(或存在的)且8是虛假的(或不存 f的)’ A是虛㈣(衫存在的)且b是真實的(或 子在的以及A和B都是真實的(或存在的)。 具體ΐ=Ί ·· · · · ·所組成」(_sisting Gf)排除任何未 除了 步驟或成分。若用^請專利範圍, 圍^吊〜、相關之雜f外,此語應將該項申請專利範 。〈於其所列舉材料之範圍。當用語「纟··..·.所組 前;ίΓ:專利範圍中主體的子句’而不是直接緊跟在」 排i於^專3限制子句中的元件;而其他元件並未 瓦甲印專利範圍整體之外。 201219349 該連接詞「Φ Φ丄 要由......所組成」(consisting essen翩y of)係用於定義一包括文字所揭露者以外之 =、步驟、特徵、組分或元件的組成物、方法或裝置, j疋該等額外包括之材料、步驟、特徵、組分或元件 確只實質上影響本發日祕本及新穎特徵。「主要由所組 成」:語之涵義介於「包含」與「由·..·.·所組成」之間。 若ΐ請人以相語如「包含」定義—發明或其 則表不(除非另有說明)該敘述應解讀為亦以「主 要由·.····所組成」或「由所··.·..組成」描述該發明。 ㈣「-」或「―個」來描述本文所述的元件 =此舉僅僅是為了方便,以及對本發明的範圍提 二-般性的意義。這種描述應被理解為包括—個或至少 :’並且該單數也同時包括複數,除非很明顯地另指 他思。 ,數值是藉由使用前置詞「約」而表達為近似值 注「’可了解5㈣定值形成另—實施例。—般而言,用 湘=」的使用是代表近似值,其可視所揭露之標的所 =料的性質而改變,且其係於所使用的上下文中根 =功忐而被解讀,同時本領域具有通常知識者可以此 人:進r解讀。所有範圍於出現時均為涵蓋性且可被結 二1換言之,對於範圍中描述之數值的指涉乃包括該範 圍中的每一個及全部數值。 風除非另加說明,否則在本文採用的所有技術以及科 ^名詞的含意,皆與熟習此項技術者所普遍認知者相 5上雖然類似或等效於本文所述者之材料可用於實施或 測試該所揭示組成物的實施例,但合適之方法及材料係 201219349 如下如述。除非引用特定段落’否則本文所述之所有公 開文獻、專利申請案、專利以及其他參考文獻均以引用 方式全文併入本文中。在發生矛盾的情況下’以本說明 書為準,包括定義在内。此外,該等材料、方法及實例 僅係說明性質’而沒有意欲做限制拘束。 組成物 本文所揭露者為包括順-HFO-1336mzz及 HFE-236eaEbg 之組成物。 含有順-HFO-1336mzz及HFE-236eaEbg之組成物 可用作為熱傳組成物、氣溶膠推進劑、發泡劑、載體流 體、排氣乾燥劑、拋光研磨劑、聚合介質、聚烯烴及聚 胺甲酸酯用膨脹劑、用於由熱產生機械或電能(例如透 過有機朗肯循環或其他已知的動力產生循環)及氣態介 電質。以液體或氣體形式,所揭露之組成物可作為工作 流體’用以將熱從一熱源攜帶熱至一散熱裝置。此等熱 傳組成物亦可作為一循環中的冷媒’其中工作流體進行 相變化。舉例來說,組成物可由一液體過渡至一氣體, 並由氣體過渡回液體,反之亦然。 可利用本領域已知的方法製備順-1,1,1,4,4,4-六氟 -2-丁烯(又稱為順-HFO-1336mzz 或 Z-HFO-1336mzz, 且具有順-CF3CH=CHCF3之結構),例如藉由2,3-二氯 -1,1,1,4,4,4-六氟·2_丁烯之氫化脫氣反應,其係描述於 美國專利申請案公開第2009/0012335Α1號中,該文係 併入本文作參考。 201219349 HFO-1336mzz以兩種組態異構物之一者存在,即順 式與反式。在任一種「純」異構物樣本中,仍會存有某 種程度的另一種異構物。如本文中所用者,順 -HFO-1336mzz係用以指稱純的順式異構物(Z異構 物)。此外,順-HFO-1336mzz可包括一部分的反 -HFO-1336mzz (E異構物),通常少於5重量百分比。 可利用本領域已知的方法製備2-二氟甲氧基 -1,1,1,2-四氟乙烷(又稱為1^£-2366&£匕层或「地氟烷 (desflurane)」,具有結構 CHF2OCH2FCF3)。舉例而言, US 2008/0132731 A1 揭露一種由 CF3CHC10CF2H(異氟 烷(isoflurane))在含鉻催化劑存在下與HF反應以製備 地氟烷之方法。 在一實施例中,當順-HFO-1336mzz之存在量為約 1重量百分比至約99重量百分比且HFE-236eaEbg之存 在量為約99重量百分比至約1重量百分比時,所揭露 之組成物通常是可使用的。 在另一實施例中’本文所揭露之組成物可為共沸或 類共沸者。在約0°C至約40°C之溫度,此等共沸或類共 沸組成物包括約1重量百分比至約99重量百分比的順 •HFO-1336mzz及約99重量百分比至約1重量百分比的 HFE-236eaEbg。在原組成物與50重量百分比之組成物 移除後所剩餘的組成物之間,此等共沸或類共沸組成物 顯示少於10百分比的蒸氣壓改變。 在另一實施例中’在原組成物與50重量百分比之 組成物移除後所剩餘的組成物之間,此等組成物顯示少 於5百分比的蒸氣壓改變。在此實施例中,此等組成物 16 201219349 包括約1重量百分比至約71重量百分比之順 -HFO-1336mzz及約29重量百分比至約99重量百分比 之HFE-236eaEbg。此外,包括約95重量百分比至約99 重量百分比之順-HFO-1336mzz及約5重量百分比至約 1重量百分比之HFE-236eaEg之組成的範圍,在此蒸氣 逸出之情境中,也顯示少於5百分比的蒸氣壓改變。 在另一實施例中,在原組成物與50重量百分比之 組成物移除後所剩餘的組成物之間,此等組成物顯示少 於1百分比的蒸氣壓改變。在此實施例中,此等組成物 包括約1重量百分比至約43重量百分比之順 -HFO-1336mzz及約99重量百分比至約57重量百分比 之 HFE-236eaEbg。 在另一實施例中,當順-HFO-1336mzz之存在量為 約20重量百分比至約80重量百分比且HFE-236eaEbg 之存在量為約80重量百分比至約20重量百分比時,所 揭露之組成物是可使用的。 在另一實施例中,當順-HFO-1336mzz之存在量為 約50重量百分比至約80重量百分比且HFE-236eaEbg 之存在量為約50重量百分比至約20重量百分比時,所 揭露之組成物是可使用的。 此外’在約0°C至約40°C之溫度範圍以及約6 psia 至約25 psia之壓力範圍,在包括一含有約12.2重量百 分比至約16.2重量百分比之順_HFO-1336mzz之共沸混 合物的實施例中可發現可使用的組成物。 根據表1及表2之數據(見實例1 )’包括1重量 百分比至43重量百分比之順_HFO-1336mzz的組成物, 201219349 在4.4°C以及37.8Ϊ,具有少於1百分比的壓力變化。 此外’如表1及表2所示,包括1重量百分比至20重 量百分比之順-HFO-1336mzz的組成物,在4.4°C及37.8 °C,幾乎沒有壓力變化。 在另一實施例中,當組成物包括約20重量百分比 至約50重量百分比之順_HFO_1336mzz及約8〇重量百 分比至約50重量百分比之HFE-236eaEbg時,包括順 -HFO-1336mzZ及HFE_236eaEbg之該等組成物,就冷 卻能力及能量效率(COP)而言’係與HCFC-123 (2,2-二 氯-1,1,1-二氟乙烧,CFsCHCl2)之冷卻效能相匹配。因 此,在冷凍及空調設備中,此等組成物可作為hcfc_i23 之有用替代品。 在某些實施例中,於此處所揭露之組成物中視需要 使用的其他組分(在此亦稱為添加劑)可包括—或多種 選自於由以下物質所組成之群_組分:潤滑劑、染 料、助溶劑、相容劑、安定劑、示縱劑、全氟聚驗、抗 磨f極壓劑、祕及氧化抑制劑、金屬表面能降低劑、 孟屬表面核化劑、自由⑽_、發賴控劑、黏度 指數提升劑、舰降低劑、㈣冑、 別是’許多此等視需要使用的其他組分符;這 :類別的一或多者’且可能具有某種性質而能達成一或 多種效能特性。 乂 ^ 在某些實施例中 平乂;整體組成而言,一或多 存在所揭露之組成物中的添加劑係以少量存在。在某此 實施例中’在所揭露之組成物中的 μ t 〒的添加劑濃度可為少於 總添加劑的約謹重量百分此至高達約5重量百分 18 201219349 比。在某些實施例中,存在所揭露之組成物中的添加添, 其數量係介於約0.1重量百分比至約3.5重量百分比J 在某些實施例中,存在所揭露之組成物中的添加劑其 量係介於約0.1重量百分比至約i重量百分比。所^露 組成物選用之(多種)添加劑組分係依用途與/或個I 設備組件或系統要求而選擇。 別 在某些實施例中’所揭露之組成物包括至少一適用 於熱傳系統之潤滑劑。特別是潤滑劑係選自於由礦物油 (礦物來源之油)、合成潤滑劑及其混合物所組成之 組。. 拜 在某些實施例中,適用於熱傳系統之潤滑劑為確物 油潤滑劑。在某些實施例中,該礦物油潤滑劑係選自由 石蠟(包括直礙鏈飽和烴、分枝碳鏈飽和烴與上述物質 之組合)、環烷(包括飽和環狀與環結構)、芳族(具有 含有一個或以上之環的不飽和烴者,其中該一個或以上 之環的特徵為交替出現的碳-碳雙鍵)以及非烴類(含 有原子如硫、氮、氧及上述原子之混合的分子者)以及 上述物質之混合物及組合所組成之群組。 代表性的傳統潤滑劑為市售的BVM 100N(由BVA Oils販售的石蝶性礦物油)、可購自Crompton Co.且商 標為Suniso® 3GS及Suniso® 5GS之環烧礦物油、可講 自Pennzoil且商標為Sontex® 372LT之環烷礦物油、可 購自 Calumet Lubricants 且商標為 Calumet® RO-30 之環 烧礦物油、可購自Shrieve Chemicals且商標為Zerol® 75、Zerol® 150 及 Zerol® 500 之直鏈烷苯以及 HAB 22 (Nippon Oil販售的支鏈烷苯)。 』 19 201219349 在某些實施例中,潤滑劑的存在量係少於總組成物 的5.0重量百分比。在其他實施例中,潤滑劑的存在量 係介於總組成物的约0.1及3.5重量百分比之間。 僮管有本文所揭露之組成物的前述重量比例,仍應 了解到在某些熱傳系統中,當使用了該組成物時,有可 能從該熱傳系統的一或多個設備元件中獲得額外的潤 滑劑。例如,在某些冷凍、空調與熱泵系統中,可將潤 滑劑注入該壓縮機與/或該壓縮機之潤滑劑貯槽。此潤 滑劑為存在於此一系統之冷媒中的潤滑添加劑以外 者。在使用中’該冷媒組成物在該壓縮機中時,可能拾 取某些量之設備潤滑劑而改變其冷媒-潤滑劑組成並與 其起始比例不同。 在某些實施例中,適合的潤滑劑包含有合成油。合 成油包括烷基芳族物質(即直鏈及支鏈烷基烷基苯 類)、合成石蠟及環烷以及聚(〇1烯烴”在其他實施例 中’潤滑劑亦可包含已設計為與氫氟碳化物冷媒一同使 用的潤滑劑,並且在壓縮冷凍與空調裝置之操作條件 下,可與本發明之冷媒互溶。此類冷媒包括但不限於聚 醇酉日(POE)如 Castrol⑧ 1〇〇 (Castrol, United Kingdom)、 聚烧一醇(PAG)如 RL-488A (來自 Dow (Dow Chemical, Midland,Michigan))、聚乙婦酸(pvE)以及聚碳酸酯 (PC)。 與包括順-HFO-1336mzz及HFE-236eaEbg之組成 物一起使用的潤滑劑在選擇時,係考量到給定的壓縮機 要求及該潤滑劑所暴露的環境。 201219349 在某些實施例中,本文所揭露之組成物包括至少一 染料。在某些實施例中,本文所揭露之組成物包括至少 一紫外(υν)染料。在某些實施例中,本文所述之組成物 包括至少一 UV染料,其為一螢光染料且係選自於由萘 醯亞胺、茈、香豆素、蔥、菲、二苯并哌喃、二苯并噻 旅喃、萘二苯并哌喃、螢光素及該染料之衍生物及其組 合所組成之群組。 在某些實施例中,所揭露組成物含有約0.001重量 百分比至約1·〇重量百分比UV染料。在其他實施例中, UV染料之存在量為約〇 〇〇5重量百分比至約〇 5重量百 分比。在其他實施例中,UV染料之存在量為總組成物 的0.01重量百分比至約0 25重量百分比。 在某些實施例中,UV染料為一有用的組分,可藉 由讓人觀察到在裝置中(例如冷凍裝置、空調機或熱泵) 浪漏點處或附近的染料螢光,而可用以彳貞測組成物茂 漏。操作人員可觀察到UV發射,例如來自染料在紫外 光區段下的螢光。因此,若一含有此一 υν染料之組成 物自一裝置的特定點洩漏,可在該洩漏點或該洩漏點附 近偵測到螢光。 在某些實施例中’所述組成物更包栝至少一助溶 劑,選擇以改善所述組成物中一或多種染料的溶解度。 在某些實施例中,染料對助溶劑的重量比範圍為約99:1 至約1:1。 在某些實施例中,所揭露組成物中的助溶劑包括選 自於由以下物質所組成群組之至少一化合物:烴、烴 醚、聚氧伸烧二醇趟(例如二丙二醇二甲醚)、醯胺、玉 21 201219349 腈、酮、氣碳化物(例如二氣甲烷、三氯乙烷、氯仿或 其混合物)、酯、内酯、芳香酯、氟醚及1,1,卜三氟烷及 其混合物。 在某些實施例中,至少一種相容劑係選用以改善一 種或以上之潤滑劑與所揭露組成物之相容性。在某些實 施例中’相容劑係選自於由以下物質所組成之群組: 烴、烴醚、聚氧伸烷二醇醚(例如二丙二醇二甲醚)、 醯胺、腈、酮、氣碳化物(例如二氯甲烷、三氯乙烷、 氯仿或其混合物)、酯、内酯、芳香酯、氟醚及1,1,1_ 二亂炫*及其混合物。 在某些實施例中,一或多種助溶劑及/或相容劑係 選自於由煙醚所組成之群組,其係由只含碳、氫及氧的 醚類所組成,例如二曱醚(DME)及其混合物。 在某些實施例中,所揭露組成物包括至少一直鏈或 環脂族或芳族烴相容劑,其含有3至15個碳原子。在 某些實施例中’相容劑係選自於由至少一烴所組成之群 組;在其他實施例中’相容劑為選自於由至少以下物質 所組成尤群組的烴:正丁烧、異丁燒、2_甲基丁烧、2,2-一甲基丁烷、2,3-二曱基丁院、戊烷、己烧、辛烧、壬 烧及癸烧。此等烴之數者係可購自Exxon Chemical (USA),其商標為isopai^ H (高純度Cii至c12異烷烴)、ASTM (American Society for Testing and Materials) E681 continuation of the flame through a homogeneous mixture of air and composition under test conditions, the upper limit of flammability ("UFL") is the highest concentration of heat transfer composition in the air, which can be used in ASTM The E681 condition continues the flame through a homogeneous mixture of air and composition. For many refrigeration and air conditioning applications, the refrigerant or working fluid is required to be non-flammable. The terms "including", "comprising", "having", or any other variants are intended to cover a non-exclusive include. For example, a set of compounds, processes, methods, articles, or devices containing the plural elements listed in the list are not necessarily limited to those listed in the list, but may include, but not explicitly listed, Process, method, article or other element inherent in the device. In addition, unless expressly stated otherwise, “or” refers to an inclusive “or” rather than an exclusive “or”. For example, any of the following - (4) conditions satisfy the condition A or B · A is true (or existing) and 8 is false (or does not exist f) 'A is virtual (four) (the shirt exists) and b is true (or sub- and A and B are true (or exist). Specific ΐ=Ί ·· · · · · constituting" (_sisting Gf) excludes any steps or components that are not excluded. In addition to the surrounding hoisting ~, related miscellaneous f, this language should apply for the patent. The scope of the materials listed in it. When the term "纟··..·. The subject's clause 'is not directly followed by the elements in the ^3 restricted clause; the other elements are not outside the entire wavy-printed patent range. 201219349 The conjunction "Φ Φ丄. "consisting essen翩y" is used to define a composition, method or device that includes a =, step, feature, component or element other than the one disclosed in the text, j疋 these additional The materials, steps, features, components or components included do only materially affect the secret and novel features of this issue. "Composition": The meaning of the language is between "contains" and "consisted of.".. If you ask the person to use a definition such as "contains" - the invention or its representation (unless otherwise Note: The narrative should be interpreted as describing the invention by "mainly composed of ······" or "consisting of..." (4) "-" or "-" to describe the article The elements described are merely for convenience and to the scope of the invention. This description should be understood to include one or at least: 'and the singular also includes the plural, unless it is obvious In other words, the value is expressed as an approximation by using the preposition "about". "You can understand the value of 5 (four) to form another embodiment. - Generally speaking, the use of Xiang = " represents an approximation, which is visible. The nature of the disclosed subject matter changes, and it is interpreted in the context of the use of the root = merit, and the person with ordinary knowledge in the field can read this: all the ranges appear at the time of appearance Covered and can be concluded in the second, in other words, for the description in the scope Numerical references refer to every and every value in the range. Unless otherwise stated, all the techniques used in this document, as well as the meaning of the nouns, are common to those who are familiar with the art. Although materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the disclosed compositions, suitable methods and materials are as follows. Unless otherwise recited, all disclosures herein The literature, patent applications, patents, and other references are hereby incorporated by reference in their entirety in their entirety herein in the the the the the the the the the Explain the nature' and not intend to be restrained. Compositions The compositions disclosed herein are compositions comprising cis-HFO-1336mzz and HFE-236eaEbg. Compositions containing cis-HFO-1336mzz and HFE-236eaEbg can be used as heat transfer compositions, aerosol propellants, blowing agents, carrier fluids, exhaust drying agents, polishing abrasives, polymerization media, polyolefins, and polyamines. The acid ester is used as a swelling agent for generating mechanical or electrical energy from heat (for example, through an organic Rankine cycle or other known power generation cycle) and a gaseous dielectric. In liquid or gaseous form, the disclosed composition acts as a working fluid to carry heat from a heat source to a heat sink. These heat transfer compositions can also act as a refrigerant in a cycle where the working fluid undergoes a phase change. For example, the composition can transition from a liquid to a gas and from a gas back to a liquid, and vice versa. The cis-1,1,1,4,4,4-hexafluoro-2-butene (also known as cis-HFO-1336mzz or Z-HFO-1336mzz can be prepared by methods known in the art, and has a cis- CF3CH=CHCF3 structure), for example, hydrogenation degassing reaction of 2,3-dichloro-1,1,1,4,4,4-hexafluoro-2-butene, which is described in U.S. Patent Application This is incorporated herein by reference. 201219349 HFO-1336mzz exists as one of two configurational isomers, cis and trans. In any "pure" isomer sample, there will still be some degree of another isomer. As used herein, cis-HFO-1336mzz is used to refer to a pure cis isomer (Z isomer). In addition, cis-HFO-1336mzz may include a portion of trans-HFO-1336mzz (E isomer), typically less than 5 weight percent. 2-Difluoromethoxy-1,1,1,2-tetrafluoroethane can be prepared by methods known in the art (also known as 1^£-2366& 匕 或 layer or "desflurane" ", has the structure CHF2OCH2FCF3). For example, US 2008/0132731 A1 discloses a process for the preparation of desflurane by reacting CF3CHC10CF2H (isoflurane) with HF in the presence of a chromium-containing catalyst. In one embodiment, when cis-HFO-1336mzz is present in an amount from about 1 weight percent to about 99 weight percent and HFE-236eaEbg is present in an amount from about 99 weight percent to about 1 weight percent, the disclosed compositions are typically It is available. In another embodiment, the compositions disclosed herein may be azeotrope or azeotrope-like. At a temperature of from about 0 ° C to about 40 ° C, such azeotropic or azeotrope-like compositions comprise from about 1 weight percent to about 99 weight percent cis HFO-1336mzz and from about 99 weight percent to about 1 weight percent HFE-236eaEbg. These azeotrope or azeotrope-like compositions exhibit a vapor pressure change of less than 10 percent between the composition remaining after removal of the original composition and 50 weight percent of the composition. In another embodiment, the composition exhibits a vapor pressure change of less than 5 percent between the composition remaining after removal of the original composition and 50 weight percent of the composition. In this embodiment, the compositions 16 201219349 comprise from about 1 weight percent to about 71 weight percent cis-HFO-1336mzz and from about 29 weight percent to about 99 weight percent HFE-236eaEbg. Further, a range comprising from about 95 weight percent to about 99 weight percent of cis-HFO-1336mzz and from about 5 weight percent to about 1 weight percent of HFE-236eaEg, in the context of vapor evolution, is also shown to be less than The 5 percent vapor pressure changes. In another embodiment, the composition exhibits a vapor pressure change of less than 1 percent between the composition remaining after removal of the original composition and 50 weight percent of the composition. In this embodiment, the compositions comprise from about 1 weight percent to about 43 weight percent cis-HFO-1336mzz and from about 99 weight percent to about 57 weight percent HFE-236eaEbg. In another embodiment, the disclosed composition is when cis-HFO-1336mzz is present in an amount from about 20 weight percent to about 80 weight percent and HFE-236eaEbg is present in an amount from about 80 weight percent to about 20 weight percent It is available. In another embodiment, the disclosed composition is when cis-HFO-1336mzz is present in an amount from about 50 weight percent to about 80 weight percent and HFE-236eaEbg is present in an amount from about 50 weight percent to about 20 weight percent It is available. Further, 'at a temperature range of from about 0 ° C to about 40 ° C and a pressure range of from about 6 psia to about 25 psia, including an azeotropic mixture containing from about 12.2 weight percent to about 16.2 weight percent of cis_HFO-1336mzz Compositions that can be used can be found in the examples. According to the data of Tables 1 and 2 (see Example 1)', including 1% by weight to 43% by weight of the composition of cis_HFO-1336mzz, 201219349 has a pressure change of less than 1% at 4.4 ° C and 37.8 Torr. Further, as shown in Tables 1 and 2, the composition comprising 1% by weight to 20% by weight of cis-HFO-1336mzz has almost no pressure change at 4.4 ° C and 37.8 ° C. In another embodiment, when the composition comprises from about 20 weight percent to about 50 weight percent cis_HFO_1336mzz and from about 8 weight percent to about 50 weight percent HFE-236eaEbg, including cis-HFO-1336mzZ and HFE_236eaEbg These compositions, in terms of cooling capacity and energy efficiency (COP), match the cooling performance of HCFC-123 (2,2-dichloro-1,1,1-difluoroethane, CFsCHCl2). Therefore, in refrigeration and air conditioning equipment, these components can be used as a useful alternative to hcfc_i23. In certain embodiments, other components (also referred to herein as additives) that are optionally used in the compositions disclosed herein may include - or a plurality of groups selected from the group consisting of: lubricants , dyes, cosolvents, compatibilizers, stabilizers, extenders, perfluoropolymers, anti-wear extreme pressure agents, secret and oxidation inhibitors, metal surface energy reducers, Meng surface nucleating agents, free (10) _ , the control agent, the viscosity index enhancer, the ship reducer, (4) 胄, not the 'many other components that are used as needed; this: one or more of the categories' and may have a certain nature Achieve one or more performance characteristics.乂 ^ In some embodiments, in terms of overall composition, one or more of the additives present in the disclosed composition are present in minor amounts. In some embodiments, the additive concentration of μ t 在 in the disclosed composition may be less than about 3% by weight of the total additive to up to about 5 weight percent 18 201219349 ratio. In certain embodiments, there is an additive in the disclosed composition in an amount ranging from about 0.1 weight percent to about 3.5 weight percent. J. In certain embodiments, there is an additive in the disclosed composition. The amount is from about 0.1 weight percent to about i weight percent. The additive component(s) selected for the composition are selected depending on the application and/or the I device component or system requirements. In some embodiments, the disclosed composition includes at least one lubricant suitable for use in a heat transfer system. In particular, the lubricant is selected from the group consisting of mineral oils (oils of mineral origin), synthetic lubricants, and mixtures thereof. In some embodiments, the lubricant suitable for use in a heat transfer system is an oil lubricant. In certain embodiments, the mineral oil lubricant is selected from the group consisting of paraffin wax (including straight chain saturated hydrocarbons, branched carbon chain saturated hydrocarbons and combinations thereof), naphthenes (including saturated cyclic and ring structures), aromatic a group (having an unsaturated hydrocarbon having one or more rings, wherein the one or more rings are characterized by alternating carbon-carbon double bonds) and non-hydrocarbons (containing atoms such as sulfur, nitrogen, oxygen, and the above-mentioned atoms) a group of mixed molecules) and a mixture and combination of the above. Representative conventional lubricants are commercially available BVM 100N (stone butterfly mineral oil sold by BVA Oils), cyclamin mineral oil available from Crompton Co. under the trademarks Suniso® 3GS and Suniso® 5GS. Cycloalkane mineral oil from Pennzoil under the trademark Sontex® 372LT, cyclaline mineral oil available from Calumet Lubricants under the trademark Calumet® RO-30, available from Shrieve Chemicals under the trademarks Zerol® 75, Zerol® 150 and Zerol ® 500 linear alkylbenzenes and HAB 22 (branched alkylbenzenes sold by Nippon Oil). 19 201219349 In certain embodiments, the lubricant is present in an amount less than 5.0 weight percent of the total composition. In other embodiments, the lubricant is present in an amount between about 0.1 and 3.5 weight percent of the total composition. The child tube has the aforementioned weight ratio of the composition disclosed herein, and it should be understood that in some heat transfer systems, when the composition is used, it is possible to obtain from one or more equipment components of the heat transfer system. Additional lubricant. For example, in some refrigeration, air conditioning, and heat pump systems, a lubricant can be injected into the compressor and/or the lubricant reservoir of the compressor. This lubricant is other than the lubricating additive present in the refrigerant of this system. In use, when the refrigerant composition is in the compressor, it is possible to pick up some amount of equipment lubricant and change its refrigerant-lubricant composition and differ from its initial ratio. In certain embodiments, suitable lubricants include synthetic oils. Synthetic oils include alkyl aromatic materials (i.e., linear and branched alkyl alkyl benzenes), synthetic paraffins and naphthenes, and poly(xene olefins). In other embodiments, 'lubricants may also include those that have been designed to Lubricants used with HFC refrigerants, and under the operating conditions of compression refrigeration and air conditioning units, may be miscible with the refrigerant of the present invention. Such refrigerants include, but are not limited to, Polyoxane Days (POE) such as Castrol 8 1〇〇 (Castrol, United Kingdom), polyanitool (PAG) such as RL-488A (from Dow (Dow Chemical, Midland, Michigan)), polyethoxylate (pvE), and polycarbonate (PC). The lubricant used with the HFO-1336mzz and HFE-236eaEbg compositions is selected to take into account the given compressor requirements and the environment to which the lubricant is exposed. 201219349 In certain embodiments, the compositions disclosed herein The composition includes at least one dye. In certain embodiments, the compositions disclosed herein comprise at least one ultraviolet (υν) dye. In certain embodiments, the compositions described herein include at least one UV dye, which is a Fluorescent dyes and selection By naphthyl imine, hydrazine, coumarin, onion, phenanthrene, dibenzopyran, dibenzothiazepine, naphthalene dibenzopyran, luciferin and derivatives of the dye and combinations thereof Groups of Compositions. In certain embodiments, the disclosed compositions contain from about 0.001 weight percent to about 1 weight percent UV dye. In other embodiments, the UV dye is present in an amount of about 5% by weight. Up to about 5 weight percent. In other embodiments, the UV dye is present in an amount from 0.01 weight percent to about 0 25 weight percent of the total composition. In certain embodiments, the UV dye is a useful component. By observing the dye fluorescence at or near the point of leakage in the device (eg, a freezer, air conditioner, or heat pump), the composition can be used to detect leaks. The operator can observe UV emissions, such as Fluorescence from the dye under the ultraviolet section. Therefore, if a composition containing the dye of υν leaks from a specific point of a device, fluorescence can be detected near the leak or near the leak. 'The composition in some embodiments At least one co-solvent is included to improve the solubility of the one or more dyes in the composition. In certain embodiments, the weight ratio of dye to co-solvent ranges from about 99:1 to about 1:1. In an embodiment, the cosolvent in the disclosed composition comprises at least one compound selected from the group consisting of hydrocarbons, hydrocarbon ethers, polyoxyalkylene glycol oximes (eg dipropylene glycol dimethyl ether), hydrazine Amine, jade 21 201219349 Nitrile, ketone, gas carbide (such as di-methane, trichloroethane, chloroform or a mixture thereof), esters, lactones, aromatic esters, fluoroethers, 1,1, dicofane and their mixture. In certain embodiments, at least one compatibilizer is selected to improve the compatibility of one or more lubricants with the disclosed compositions. In certain embodiments, the compatibilizer is selected from the group consisting of hydrocarbons, hydrocarbon ethers, polyoxyalkylene glycol ethers (eg, dipropylene glycol dimethyl ether), decylamine, nitriles, ketones. , gas carbide (such as methylene chloride, trichloroethane, chloroform or a mixture thereof), esters, lactones, aromatic esters, fluoroethers and 1,1,1_2 messy* and mixtures thereof. In certain embodiments, the one or more cosolvents and/or compatibilizers are selected from the group consisting of smoke ethers, which are composed of ethers containing only carbon, hydrogen, and oxygen, such as diterpenes. Ether (DME) and mixtures thereof. In certain embodiments, the disclosed compositions comprise at least a straight chain or cycloaliphatic or aromatic hydrocarbon compatibilizer having from 3 to 15 carbon atoms. In certain embodiments the 'compatibilizer is selected from the group consisting of at least one hydrocarbon; in other embodiments the compatibilizer is selected from the group consisting of at least the following: hydrocarbons: Ding, Isobutyl, 2-methylbutyrate, 2,2-methylbutane, 2,3-dimercaptoin, pentane, hexane, simmer, simmer and simmer. The number of such hydrocarbons is commercially available from Exxon Chemical (USA) under the trademark isopai^ H (high purity Cii to c12 isoalkane),

Aromatic 150 (C9 至 Cu 芳香烴)、Aromatic 200 (C9 至 C15 芳香烴)及Naptha 140及其混合物。 在某些實施例中,所揭露組成物包括至少一聚合性 相容劑。在某些實施例中,所揭露組成物包括至少一聚 合性相輔,其係選自氟化及非敗化丙稀酸醋之無規共 22 201219349Aromatic 150 (C9 to Cu aromatics), Aromatic 200 (C9 to C15 aromatics) and Naptha 140 and mixtures thereof. In certain embodiments, the disclosed compositions include at least one polymeric compatibilizer. In certain embodiments, the disclosed compositions include at least one polymer that is selected from the group consisting of fluorinated and non-volatile acrylic acid vinegar 22 201219349

聚物者,其中該聚合物包括至少一單體之重複單元,該 單體係由式 CHfQRbCC^R2、CH2=C(R3)C6H4R4 及 CH2=C(R5)C6H4XR6所代表,其中X為氧或硫;r1、r3 及R5係各自獨立選自於由Η及CVC4烷基基團所組成 之群組;且R2、R4及R6係各自獨立選自於由含有C及 F之碳-碳-鍵系基團所組成之群組,且其可進一步包括 Η、C卜醚氧或以硫醚、亞砜或砜基形式存在之硫,以 及其混合物。此類聚合性相容劑之實例包括商購可得 者’如來自 Ε. I. du Pont de Nemours & Co. (Wilmington, DE,19898, USA)且商標為 Zonyl® PHS 者。Zonyl® PHS 為一無規共聚物,其係藉由聚合40重量百分比之 CH2=C(CH3)C02CH2CH2(CF2CF2)mF (又稱為 Zonyl®氟 甲基丙烯酸酯或ZFM)其中m係從1至12 (主要為2 至8)以及60重量百分比之曱基丙烯酸月桂酯 (CH2=C(CH3)C〇2(CH2)uCH3,又稱為 LMA)而製得。 在某些實施例中,該相容劑組分含有約0.01至3〇 重量百分比(基於相容劑總量)的一添加劑,其降低發 現於熱交換器中之金屬銅、鋁、鋼或其他金屬或金屬合 金的表面能’而在某種程度上降低潤滑劑對金屬的黏附 性。金屬表面能降低劑之實例包括商購可得者,如來自a polymer, wherein the polymer comprises at least one monomer repeating unit represented by the formula: CHfQRbCC^R2, CH2=C(R3)C6H4R4, and CH2=C(R5)C6H4XR6, wherein X is oxygen or Sulfur; r1, r3 and R5 are each independently selected from the group consisting of anthracene and CVC4 alkyl groups; and R2, R4 and R6 are each independently selected from carbon-carbon-bonds containing C and F A group consisting of groups, and which may further comprise hydrazine, C butyloxy or sulfur in the form of a thioether, sulfoxide or sulfone group, and mixtures thereof. Examples of such polymeric compatibilizers include those commercially available, such as those from Ε. I. du Pont de Nemours & Co. (Wilmington, DE, 1989, USA) and trademarked Zonyl® PHS. Zonyl® PHS is a random copolymer by polymerizing 40% by weight of CH2=C(CH3)C02CH2CH2(CF2CF2)mF (also known as Zonyl® fluoromethacrylate or ZFM) where m is from 1 to 12 (mainly 2 to 8) and 60% by weight of lauryl methacrylate (CH2=C(CH3)C〇2(CH2)uCH3, also known as LMA). In certain embodiments, the compatibilizer component contains from about 0.01 to about 3 weight percent (based on the total amount of compatibilizer) of an additive that reduces metallic copper, aluminum, steel, or other materials found in the heat exchanger. The surface energy of a metal or metal alloy 'to some extent reduces the adhesion of the lubricant to the metal. Examples of metal surface energy reducing agents include commercially available, such as from

DuPont 並以 Zonyl® FSA、Zonyl® FSP 與 Zonyl® FSJ 為商標者。 在某些實施例中’所揭露組成物更包括金屬表面去 活化劑。在某些實施例中,至少一金屬表面去活化劑係 選自於由以下物質所組成之群組:草醯雙(亞苄基)醯肼 (areoxalyl bis (benzylidene) hydrazide)(CAS 編號 201219349 6629-10-3)、N,N’-雙(3,5-雙三級丁基-4-羥基氫桂皮醯基 醯肼(CAS編號32687-78-8)、2,2,’-草醯胺基雙-乙基 -(3,5-雙三級丁基-4-羥基氫桂皮酸酯(CAS編號 70331-94-1)、N,N'-(二亞柳基)-1,2-二胺基丙烷(CAS 編 號94-91-7)以及乙二胺四乙酸(CAS編號60-00-4)及其鹽 及其混合物。 在某些實施例中,本文所揭露之組成物更包括至少 一安定劑。尤有甚者,安定劑係選自於由以下所列者所 組成之群組:受阻酚、硫代磷酸鹽、丁基化三苯基硫代 磷酸酯、有機磷酸鹽或亞磷酸犟、芳基烷基醚、萜、類 萜、環氧化物、氟化環氧化物、環氧丙烧、抗壞血酸、 硫醇、内酯、硫醚、胺、硝甲烷、烷基矽烷、二苯基酉同 衍生物、芳基硫化物、二乙烯基對苯二甲酸、二苯基對 苯二甲酸、離子液體及其混合物。 代表性的安定劑化合物包括但不限於生育酚、氣 酉昆、三級丁基氫酿、單硫代構酸鹽及二硫代構酸鹽,其 可講自 Ciba Specialty Chemicals, Basel,Switzerland,文 後簡稱「Ciba」,其商標為irgalube® 63 ;二烧基硫代碟 酸酯,可購自Ciba,其商標分別為lrgaiube® 353及 Irgalube® 350; 丁基化三苯基偶磷基硫磺酸鹽,可購自DuPont is also trademarked Zonyl® FSA, Zonyl® FSP and Zonyl® FSJ. In certain embodiments, the disclosed composition further includes a metal surface deactivator. In certain embodiments, the at least one metal surface deactivator is selected from the group consisting of: areoxalyl bis (benzylidene) hydrazide (CAS No. 201219349 6629) -10-3), N, N'-bis (3,5-bis-tertiary butyl-4-hydroxyhydrocinnaquinone oxime (CAS No. 32687-78-8), 2, 2, '-grass Aminobis-ethyl-(3,5-bistris-butyl-4-hydroxyhydrocinnamate (CAS No. 70331-94-1), N,N'-(dipylinyl)-1,2 - diaminopropane (CAS No. 94-91-7) and ethylenediaminetetraacetic acid (CAS No. 60-00-4) and salts thereof and mixtures thereof. In certain embodiments, the compositions disclosed herein are more Including at least one stabilizer. In particular, the stabilizer is selected from the group consisting of hindered phenols, thiophosphates, butylated triphenyl thiophosphates, and organophosphates. Or yttrium phosphite, aryl alkyl ether, hydrazine, terpenoid, epoxide, fluorinated epoxide, propylene oxide, ascorbic acid, thiol, lactone, thioether, amine, methane, alkyl decane , diphenyl hydrazine derivatives, aryl sulfides, Vinyl terephthalic acid, diphenylterephthalic acid, ionic liquids, and mixtures thereof. Representative stabilizer compounds include, but are not limited to, tocopherol, gas oxime, tertiary butyl hydrogen, monothio acid Salts and dithioformatic acid salts, which are described in Ciba Specialty Chemicals, Basel, Switzerland, hereinafter referred to as "Ciba" under the trademark irgalube® 63; dicalcium thioate esters, available from Ciba, The trademarks are lrgaiube® 353 and Irgalube® 350; butylated triphenylphosphonium sulfonate, available from

Ciba ’其商標為Irgalube⑧232 ;填酸胺,可購自Ciba, 其商標為Irgalube® 349 (Ciba);受阻亞磷酸鹽,可購自 Ciba,其商標為irgafos® 168 ;磷酸鹽,例如(三·(二· 三級丁基苯基),可購自Ciba,其商標為Irgafos® ΟΡΗ ; (一-亞構酸正辛酯);以及亞填酸異癸基二苯基酯,可購 自Ciba,其商標為Irgafos® DDPP ;苯曱醚;1,4-二甲 24 201219349 氧土苯;Μ·二乙氧基苯;1,3,5_三甲氧基苯;d_葶烯; 視網搭;菠烯;薄荷腦;維生素A;【、孟】二燦;卜 +孟U,8-二稀;祐紅素;貝他胡蘿葡素;卜+伯】烷; I,2-環氧^烧;環氧丁烧;正丁基環氧丙基鍵;三 氟曱基環氧乙燒;1,1_雙(三氟f基)環氧乙烧;3_乙基_3_ 經甲基-環氧丙院,例如〇XT_1〇1 (T〇ag〇sei c〇 ,⑽; 3-乙基-3-((苯氧基)甲基)_環氧丙烷,例如〇XT_2u (Toagosei Co·,Ltd) ; 3-乙基-3-((2-乙基-己氧基)甲基)_ 環氧丙烷’例如OXT-212 (Toagosei C〇.5 Ltd);抗壞血 酸;甲硫醇(甲基硫醇.);乙硫醇(乙基硫醇);輔酶A ; 二巯基琥珀酸(DMSA);葡萄柚硫醇((r)-2-(4-曱基環己 -3-烯基)丙烷-2-硫醇));半胱胺酸(⑻-2_胺基_3_硫基_丙 酸);硫辛醯胺(1,2-二噻【口 +柬】-3-戊醯胺);5,7-雙(1,1-二甲基乙基)-3-[2,3(或3,4)-二甲基苯基]-2(3H)-苯并呋 喃酮,可購自Ciba,其商標為lrganox® HP-136 ;硫化 >本,硫化二本基,二異丙胺;3,3’-硫代二丙酸雙十八 酯,可購自 Ciba,其商標為 Irganox® PS 802 (Ciba);Ciba 'is available under the trademark Irgalube 8232; acid-filled amines available from Ciba under the trademark Irgalube® 349 (Ciba); hindered phosphites available from Ciba under the trademark irgafos® 168; phosphates such as (3) (di-tert-butylphenyl) available from Ciba under the trademark Irgafos® ΟΡΗ; (n-octyl acid n-octyl ester); and isodecyl diphenyl phthalate, available from Ciba , whose trademark is Irgafos® DDPP; phenyl hydrazine ether; 1,4-dimethyl 24 201219349 oxobenzene; Μ·diethoxybenzene; 1,3,5-trimethoxybenzene; d_pinene; Raspene; menthol; vitamin A; [, Meng] Ercan; Bu+Meng U, 8-di-salt; Youhongsu; Beta-carotene; Bu+Bao]; I, 2-ring Oxygen burning; butyl epoxide; n-butyl epoxy propyl bond; trifluorosulfonyl epoxide; 1,1 bis (trifluorofyl) epoxy; 3_ethyl _3_ Methyl-epoxypropyl, such as 〇XT_1〇1 (T〇ag〇sei c〇, (10); 3-ethyl-3-((phenoxy)methyl)-epoxypropane, such as 〇XT_2u (Toagosei Co·,Ltd); 3-ethyl-3-((2-ethyl-hexyloxy)methyl)_ propylene oxide' such as OXT-212 (Toag Osei C〇.5 Ltd); ascorbic acid; methyl mercaptan (methyl mercaptan.); ethanethiol (ethyl mercaptan); coenzyme A; dimercaptosuccinic acid (DMSA); grapefruit thiol ((r) -2-(4-amidinocyclohex-3-enyl)propane-2-thiol)); cysteine ((8)-2-amino-3_thio-propionic acid); thiooctylamine (1,2-dithia [mouth + Cambodia]-3-pentamidine); 5,7-bis(1,1-dimethylethyl)-3-[2,3 (or 3,4)- Dimethylphenyl]-2(3H)-benzofuranone, available from Ciba under the trademark lrganox® HP-136; vulcanized > present, disulfide sulfide, diisopropylamine; 3,3'- Dioctadecyl thiodipropionate, available from Ciba under the trademark Irganox® PS 802 (Ciba);

3,3’-硫代二丙酸雙十二酯,可購自Ciba,其商標為 Irganox® PS 800 ;二-(2,2,6,6-四甲基-4-派咬基)癸二酸 酯,可購自Ciba,其商標為Tinuvin® 770 ;聚-(N-羥乙 基-2,2,6,6-四甲基-4-羥基-哌啶基琥珀酸酯,可購自 Ciba,其商標為Tinuvin® 622LD (Ciba);甲基雙牛脂 胺、雙牛脂胺、酚-α-萘胺,雙(二甲胺基)甲基矽烷 (DMAMS)、三(三甲矽基)矽烷(TTMSS)、乙烯基三乙氧 基矽烷、乙烯基三甲氧基矽烷、2,5-二氟二苯基酮、2’55’-二羥基苯乙酮、2-胺基二苯基酮、2-氯二苯基酮、苄基 S 25 201219349 苯基硫化物、二苯基硫化物、二节基硫化物、離子液體 及其他物質。 同樣地,可使用安定劑如抗氧化劑、自由基清除劑 與水清除劑。此類別中之化合物可包括但不限於丁基化 羥基甲苯(BHT)、環氧化物與其混合物。腐餘抑制劑包 括十二烷基琥珀酸(DDSA)、胺磷酸鹽(AP)、油醯基肌 胺酸、咪腙(imidazone)衍生物與經取代磺酸鹽 (sulfphonate)。金屬表面去活化劑包括草醯雙(亞苄基) 醯肼(areoxalyl bis (benzylidene) hydrazide)(CAS 編號 6629-10-3)、N,N'-雙(3,5-雙三級丁基-4-羥基氫桂皮醯基 醯肼(CAS編號32687-78-8)、2,2,'-草醯胺基雙·乙基 -(3,5-雙三級丁基-4-羥基氫桂皮酸酯(CAS編號 70331-94-1)、N,N,-(二亞柳基)-1,2_二胺基丙烷(CAS 編 號94-91 -7)以及乙二胺四乙酸(CAS編號60-00-4)及其鹽 及其混合物。 離子液體為熔點低於l〇〇°C之有機鹽。在另一實施 例中’離子液體安定劑包括含有陽離子及陰離子之鹽 類’其中陽離子係選自於由吡啶鏽、嗒【口+井】鏽、 嘧啶鑌、吡【口+井】鑌、咪唑鏽、吡唑啉鏽、噻唑鑌、 【口 +咢】唑鏽及三唑啉鏽所組成之群組;而陰離子係 選自於由[BF4]·、[PF6]-、[SbF6]-、[CF3S〇3]-、 [HCF2CF2S03]-、[CF3HFCCF2S03]-、[HCC1FCF2S03]-、 [(cf3so2)2n]_、[(CF3cf2so2)2n>、[(cf3s〇2)3c]-、 [CF3C〇2]_及F-所組成之群組。代表性的離子液體安定 劑包括emim BF4 (四氟硼酸1-乙基-3-曱基咪唑鏽); bmimBF4(四硼酸^丁基_3_曱基咪唑鏽);emimPF〆六 26 201219349 氟磷酸1-乙基-3-甲基咪唑鏽);以及bmim PF6 (六氟磷 酸1- 丁基-3-甲基咪唑鏽),其均可購自Fluka (Sigma-Aldrich) 0 在某些實施例中,所揭露之組成物包括至少一示蹤 劑。在某些實施例中,於所揭露之組成物中的示蹤劑添 加劑係由兩種或更多種示蹤劑化合物所組成,其可來自 同類化合物或不同類化合物。 在某些實施例中’示蹤劑組分或示蹤劑摻合物係以 重量約百萬分之50 (ppm)至約1〇〇〇 ppm的總濃度存在 組成物中。在其他實施例中’示縱劑化合物或示縱劑摻 合物係以約50 ppm至約500 ppm的總濃度存在。在其 他實施例中,示蹤劑化合物或示蹤劑摻合物係以約1〇〇 ppm至約300 ppm的總濃度存在。 在一實施例中’該些組成物可與約〇〇1重量百分 比至約5重量百分比的安定劑、自由基清除劑或抗氧化 劑一同使用。 視需要而定,在另一實施例中,某些冷凍或空調系 統添加劑可依需求而添加至包括順-IiF〇_1336mzz及 HFE-236eaEbg之組成物中,以提升性能及系統穩定 性。這些添加劑在冷凍與空調領域中為已知者,並且包 括但不限於抗磨劑、極壓潤滑劑、腐蝕與氧化抑制劑、 金屬表面去活化劑、自由基清除劑與發泡控制劑。一般 而s ’這些添加劑在本發明組成物中相對於整體組成物 可以少量存在。典型的使用濃度為少於約〇 i重量百分 比至多達約3重量百分比的各個添加劑。添加劑的選擇 係基於各系統要求。 27 201219349 此等添加劑包括EP(極壓)潤滑性添加劑之磷酸三 芳酉曰豕族的成員,例如丁基化磷酸三苯酯(BTpp),或其 他烷基化磷酸三芳酯,例如購自Akz〇 Chemicals的 Syn-0-Ad 8478、磷酸三甲苯酯及相關化合物。此外, δ玄些金屬一炫|基二硫磷酸酯(例如鋅二烧基二硫構酸醋 (或ZDDP)、Lubrizol 1375與其他此化學品家族之成員 可用於本發明之組成物中。其他抗磨添加劑包括天然產 物油與不對稱聚經基潤滑添加劑,例如Synerg〇i tmS (International Lubricants) ° 在其他實施例中’本文所揭露之組成彳勿可進一步包 括全氟聚醚。全氟聚醚之一普遍特性為存在全氟烷基醚 部分(moieties)。全氟聚醚為全氟聚燒基輕之同義詞。其 他常用同義詞包括“PFPE”、“PFAE,,、「PFPE油」、「PFPE 液」及“PFPAE”。在某些實施例中,全氟聚醚具有式 CF3-(CF2)2-0-[CF(CF3)-CF2-0]j,-R,f,且其可購自 DuPont’其商標為Krytox®。在前述式中,j’為2至100 且包含端值,且R’f為CF2CF3、C3至C6之全氟烷基或 其組合。 也可使用其他PFPEs ’其可購自Ausimont (Milan, Italy)及 Montedison S.p.A.,(Milan,Italy),商標分別為 Fomblin®及Galden® ’且係由全氟烯烴之光氧化反應製 得。 商標為Fomblin®-Y之PFPE商品可具有式 CF30(CF2CF(CF3)-0-)m(CF2-0-)n>-R1f 。 CFsOtCFlCFCCI^C^n^CFKFzCOJCFsCOyl^f 也可適 用。於式中,為CF3、C2F5、C3F7或其二者或更多 28 201219349 者之組合;(m,+ η’)為8至45且包含端值;且m/n為 20至1000且包含端值;〇’為1 ; (m’ + n’ + o’)為8至45 且包含端值;m’/n’為20至1000且包含端值。 商標為Fomblin®-Z之PFPE商品可具有式 CF30(CF2CF2-0-)p,(CF2-0)q’CF3,其中(p,+ q,)為 40 至 180且p’/q’為0.5至2,均包含端值。 也可使用PFPE的另一家族,其可購自Daikin Industries,Japan,而商標為DemnumTM。其可藉由依序 寡聚合與氟化2,2,3,3-四氟環氧丙烷,而產生式 F-[(CF2)3-〇]t,-R2f ’ 其中 R2f 為 CF3、C2F5 或上述物質之 組合,且t’為2至200 (包括所述之端值)。 在某些實施例中,該PFPE為未經官能基化。在一 未經官能基化之全氟聚醚中,其終端基團可為分枝或直 鍵全氟烧基基團終端基團。此種全氟聚醚之實例可具有 式 Cr,F(2r,+l)-A-Cr,F(2r,+ i), 其中各r’獨立為3至6 ; A可 為 0-(CF(CF3)CF2_0)w,、〇-(CF2-〇)x,(CF2CF2-0)y,、 0-(C2F4_0)w, 、 〇-(C2F4-0)x<C3F6-0)y^ 、 0_(CF(CF3)CF2-0)x,(CF2_0)y,、〇_(cf2CF2CF2-0)w,、 0-(CF(CF3)CF2-0)x,(CF2CF2-〇)广(cf2-0)z,或其兩者或 更多者之組合;較佳A係〇-(CF(CF3)CF2-0)w,、 0-(C2F4-0)w’ 、 0-(C2F4_0)x,(C3F6-0)y, 、 0-(CF2CF2CF2_0)w’或其兩者或更多者之組合;w’為4 至100 ; X’及y’各自獨立為1至100。具體實例包括但 不 限 於 f(cf(cf3)-ct2-o)9-ct2ct3 、 F(CF(CF3)-CF2-0)9-CF(CF3)2 及其組合。在此類 PFPEs 29 201219349 中,至多30%的鹵素原子可為非氟之鹵素原子,例如像 疋氣原子。 在其他實施例中,該全氟聚醚之兩個終端基團可獨 立經相同或不同基團官能基化。一官能基化PFPE為該 全氟聚鍵兩個終端基團之至少一者具有其_素原子之 至少一者係經一基團所取代的一 PFPE,該取代基團係 選自由酯、羥基、胺、醯胺、氰基、羧酸、磺酸與上述 物質之組合所組成之群組。 在某些實施例中,代表性酯終端基團包括 -COOCH3 ' -COOCH2CH3 ' -CF2COOCH3 > -CF2COOCH2CH3 、 -CF2CF2COOCH3 、 -CF2CF2COOCH2CH3 、 -CF2CH2COOCH3 、 -CF2CF2CH2COOCH3 、 -CF2CH2CH2COOCH3 、 CF2CF2CH2CH2COOCH3。 在某些實施例中,代表性羥基終端基團包括 -cf2oh 、 -cf2cf2oh、-cf2ch2oh、-cf2cf2ch2oh、-cf2ch2 ch2oh、-cf2cf2ch2ch2oh。 在某些實施例中,代表性胺終端基團包括 -CF2NR1R2 、-CF2CF2NR1R2 、-C¥2CH2^RlR2 > -cf2cf2ch2nr1r2 、 -cf2ch2ch2nr1r2 、 -CFfFaCHza^NR^R2,其中 R1 及 R2 獨立為 H、CH3 或 ch2ch3。 在某些實施例中,代表性醯胺終端基團包括 -CF2C(0)NR1R2 、 -CF2CF2C(0)NR1R2 、 -CF2CH2C(0)NR1R2 、 -CFzCFzCHjC^NR^2 、 30 201219349 -CF2CH2CH2C(0)NR1R2 ' -CF2CF2CH2CH2C(0)NR1R2 » 其中R1及R2獨立為H、CH3或CH2CH3。 在某些實施例中,代表性氰基終端基團包括 -cf2cn 、 -cf2cf2cn、-cf2ch2cn、-cf2cf2ch2cn、-cf2ch2 ch2cn、-cf2cf2ch2ch2cn。 在某些實施例中,代表性之羧酸終端基團包 括-CF2COOH、-CF2CF2COOH、-CF2CH2COOH、 -CF2CF2CH2COOH 、 -CF2CH2CH2COOH 、 -CF2CF2CH2CH2COOH 〇 在某些實施例中,磺酸終端基團係選自由以下所列 者所組成之群組:-S(0)(0)0R3、-S(0)(0)R4、 -CF20S(0)(0)0R3 、 -cf2cf2os(o)(o)or3 、 -cf2ch2os(o)(o)or3 、 _cf2cf2ch2os(o)(o)or3、-cf2ch2ch2os(o)(o)or3、 -cf2cf2ch2ch2os(o)(o)or3 、-cf2s(o)(o)or3 、 -CF2CF2S(0)(0)0R3 、 -CF2CH2S(0)(0)0R3 、-CF2CF2CH2S(0)(0)0R3 、 -CF2CH2CH2S(0)(0)0R3' -CF2CF2CH2CH2S(0)(0)0R3 > -CF20S(0)(0)R4 、 -CF2CF20S(0)(0)R4 、 CF2CH20S(0)(0)R4 、-CF2CF2CH20S(0)(0)R4 、 -cf2ch2ch2os(o)(o)r4、-cf2cf2ch2ch2os(o)(o)r4, 其中 R3 為 H、CH3、CH2CH3、CH2CF3、CF3 或 CF2CF3, R4 為 CH3、CH2CH3、CH2CF3、CF3 或 CF2CF3。 組成物之製備 31 201219349 在一實施例中’本文中所揭露之組成物可以任何便 利之方法製備,以組合所欲量之個別組分。一較佳方法 為秤出所欲之組分重量,而後在一合適容器中組合該些 組分。若需要時,可使用攪拌。 在另一實施例中,本文所揭露之組成物可用一方法 製備’該方法包括⑴從至少一冷媒容器中’收回一體積 的本文所揭露之冷媒組成物的一或多種組分;(ϋ)充分 移除雜質以達成前述一或多種經收回組分得再利用;以 及視需要進行(iii)將前述經收回體積之組分全部或一部 分與至少一種額外的冷媒組成物或組分組合。 一冷媒容器可為任何儲存一冷媒摻合組成物之容 器’該組成物係用於一冷凍裝置、空調裝置或熱泵裝 置。冷媒容器可為冷凍裝置、空調裝置或熱泵裝置,其 中係使用冷媒摻合物。此外,該冷媒容器可為一收集回 收冷媒摻合物組分之儲存容器,包括但不限於加壓氣 瓶。 剩餘冷媒為任何數量的冷媒摻合物或冷媒摻合物 組分,其可利用任一種已知用於傳送冷媒摻合物或冷媒 摻合物組分的方法從冷媒容器移出。 雜質可為任何在該冷媒摻合物或冷媒摻合物組分 中之組分,其出現係由於將其使用在一冷凍裝置、空調 裝置或熱泵裝置。此類雜質包括但不限於冷凍潤滑劑 (前文中所述者)、由該冷凍裝置、空調裝置或熱泵裝 置中出現之顆粒’包括但不限於金屬、金屬鹽或彈性物 顆粒以及任何可對該冷媒摻合物組成物之性能造成不 利影響的汙染物。 32 201219349 可充分移除該等雜質以達成冷媒摻合物或冷媒摻 合物組分之再利用,而不對使用冷媒摻合物或冷媒摻合 物組分的設備或性能有不良影響。 提供額外之冷媒摻合物或冷媒摻合物成分至該殘 餘之冷媒摻合物或冷媒掺合物成分可能為必要,以產生 符合一特定產品所需規格之組成物。舉例而言,若冷媒 摻合物具有特定重量百分比範圍的三種組分,則有可能 需要添加一定量的一或多種組分,以將組成物回復至使 用手冊的限值内。 本發明組成物具有零臭氧耗竭潛勢與低全球暖化 潛勢(GWP)。順-HFO-1336mzz 之 GWP(“GWPHF0”)估計 約為 9〇HFE_236eaEbg 之 GWP(‘‘GWPe,,)估計約為 960。 此外’本文所揭露之組成物可具有低於許多目前使用中 的氳氟破冷媒的全球暖化潛勢。本發明之一方面係提供 一種冷媒,其具有低於1000、或低於300、或低於100、 或低於30的全球暖化潛勢。 根據本發明之一實施例,本文亦揭露空調或冷凍設 備’特別是一種冷束器裝置,其含有包括順 -HFO-1336mzz 及 HFE-236eaEbg 之組成物。 在一實施例中,包括順-HFO-1336mzz及 HFE-236eaEbg之組成物,如本文所揭露者,可於冷凍 或空調設備(包括冷凍器)中與乾燥劑組合使用,以促 進移除濕氣。乾燥劑可由活性氧化鋁、矽膠或沸石為主 的分子篩所組成。在某些實施例中,具有孔洞尺寸約3 埃、4埃或5埃的分子篩最為有用。代表性的分子篩包 33 201219349 括 MOLSIV XH-7、XH-6、XH-9 以及 XH-ll (UOP LLC, Des Plaines,IL)。 冷凍器裝置 在一實施例中,係提供一種含有包括順 -HFO-1336mzz及HFE-236eaEbg之組成物的空調或冷 凍裝置。此種裝置可為閉環熱傳系統,例如美國專利公 開第US 2008/0314073號所揭露者’其公開日為2008 年I2月25日’該案係併入本文作參考。 在一實施例中,含有包括順-HFO-1336mzz及 HFE-236eaEbg之組成物的該空調或冷凍裝置為冷凍 器。冷来器為空調/冷束裝置的一種類型。本揭露係關 於一蒸氣壓縮冷凍器。該蒸氣壓縮冷凍器可為浸沒式蒸 發冷凍器,其一實施例如圖丨所示。該冷凍器亦可為直 接膨脹冷凍器,其一實施例如圖2所示。浸沒式蒸發冷 凍裔及直接膨脹冷凍器可為氣冷式或水冷式。 社々來裔為水冷式的實施例中,此類冷凍器通常玄 接至冷卻塔以將熱從系統中排出。在冷III為氣冷式έ 實施例中,該些冷凍器係配備有冷媒至空氣鰭^ (efrigerrnit-to-air finned_tube)的冷凝器旋管與風扇,^ 將熱枚系統中排出。氣冷式冷洗器系統通常比相同容^ 的包括冷料及核的水冷切東器祕更低成本。令 由於其較錢冷凝溫度,在許多操如 201219349 與除濕空氣)給大型商業建築,包括旅館、辦公室建築、 醫院、大學與類似者。在另一實施例中,冷凍器,最可 能為氣冷式直接膨脹式冷凍器,已發現在海軍潛水艇與 水面船艦中有額外的實用性。 為說明冷凍器如何操作,請參閱圖式。水冷式浸沒 式蒸發冷凍器如圖1所示。在此冷凍器中,一第一熱傳 介質、一包括水的溫流體以及在某些實施例中之添加劑 (如二醇類,例如乙二醇或丙二醇)由一冷卻系統(例 如建物冷卻系統)進入冷束器,如於箭頭3處進入,其 係經過蒸發器6的旋管9,而其具有一入口與一出口。 該溫第一熱傳介質係傳送至該蒸發器,在此處該介質係 藉由液體冷媒冷卻,該冷媒係顯示於該蒸發器之較低部 分。液體冷媒蒸發的溫度比流經旋管9的溫第一熱傳介 質還低。經冷卻的第一熱傳介質如箭頭4所示經由旋管 9的返回部分再次循環進入建物冷卻系統。如圖1之蒸 發器6的下部所示,液體冷媒會蒸發並進入壓縮機7, 其會增加冷媒蒸氣的壓力及溫度。該壓縮機壓縮此蒸 氣,所以當其離開該蒸發器時,其可在較該冷媒蒸氣的 壓力與溫度為高之壓力與溫度,冷凝於一冷凝器5中。 第二熱傳介質(在水冷式冷凍器時為液體)從圖1 箭頭1處的冷卻塔經由冷凝器5内的旋管10進入冷凝 器。第二熱傳介質在過程中被加溫,並經由旋管10的 返回迴圈及箭頭2回到冷卻塔或環境中。此第二熱傳介 質冷卻冷凝器内的蒸氣,並使蒸氣冷凝成液體冷媒,故 在冷凝器的下部内有液體冷媒,如圖1所示。冷凝器内 經冷凝的液體冷媒經由膨脹裝置8流回到蒸發器,而膨 201219349 置8可為一孔口、毛細管或膨脹閥。膨脹裝置8降 亥液丄體冷媒的壓力’並且將該⑽冷媒部分轉換為蒸 也就疋說該液體冷媒由於冷凝器與蒸發器間的壓差 为六t驟,弗冷卻冷媒,即在蒸發11壓力τ使液體冷媒 二媒蒸氣都到達飽和溫度,而讓液體冷媒及冷媒蒸氣 都存在蒸發器内。 應注意的是,對於一單一組分的冷媒組成物而言, =蒸發ϋ中的蒸氣冷媒組成係與在該蒸發器中的液 w媒組成相同。在此情況下,蒸發將會在恒溫下發 ,二=而,若是使用冷媒摻合物(或混合物),如本發 ^叙則条發器(或冷凝器)内的液體冷媒及冷媒蒸 氣可具有不同組成。此情形會導致系統效率低並對設^ 使用上造成困難,因此較理想是使用單組分冷媒。一共 j或類共沸組成物基本上可在一冷凍器中作用為一單 、、且刀冷媒,所以該液體組成與該蒸氣組成基本上為相 同可降低因使用非共沸或類共彿組成物所引起的效 不彰。 冷卻能力高於700 kW的冷凍器通常使用浸沒式蒸 發器,其中蒸發器及冷凝器内的冷媒圍繞旋管或其他熱 ,介質導管(即冷媒位於殼側)。浸沒式蒸發器需要較 问的冷媒量,但可達成較接近的溫度及較高效率。具有 低於700 kW冷卻能力的冷凍器通常使用的蒸發器為具 有流入該些管中的冷媒以及圍繞該些管的熱傳介質(在 蒸發'器與冷凝器中)’亦即熱傳介質係在該殼側。此類 冷凍器係稱為直接膨脹式(DX)冷凍器。 36 201219349 圖2說明水冷式直接膨脹冷凍器的一個實施例。於 圖2所示冷凍器中,第一液體熱傳介質(其為溫液,如 溫水)於入口 14處進入蒸發器6'。液體冷媒(具有少 量冷媒蒸氣)大多在箭頭3’處進入蒸發器内的旋管9’, 並蒸發成為蒸氣。結果第一液體熱傳介質在該蒸發器中 冷卻,而冷卻之第一液體熱傳介質在出口 16離開該蒸 發器,並送至一待冷卻之主體如一建築。 在圖2實施例中,是由此經冷卻的第一液體熱傳介 質冷卻建築物或其他待冷卻主體。該冷媒蒸氣在箭號4’ 處離開該蒸發器並送至一壓縮機7 ’,在此處該蒸氣係經 壓縮並且離開時為高溫高壓之冷媒蒸氣。此冷媒蒸氣在 Γ處經由冷凝器旋管10'進入冷凝器5'。此冷媒蒸氣在 冷凝器内被第二液體熱傳介質(如水)冷卻而變成液體。 第二液體熱傳介質經由冷凝器熱傳介質入口 20進 入冷凝器。第二液體熱傳介質從變成液體冷媒的冷凝冷 媒蒸氣抽出熱,而這會加溫冷凝器内的第二液體熱傳介 質。第二液體熱傳介質經由冷凝器熱傳介質出口 18離 開冷凝器。 經冷凝的冷媒液體如圖2所示經由下旋管10’離開 冷凝器,並流經膨脹裝置12,其可為孔口、毛細管或 膨脹閥。膨脹裝置12降低該液體冷媒的壓力。因膨脹 而產生的少量蒸氣進入該蒸發器,而且液體冷媒通過旋 管9’,並且重複此循環。 離心壓縮機 37 201219349 一離心壓縮機使用旋轉元件來徑向加速冷媒,並且 典型為包括封蓋於一護罩中的一葉輪與擴散器。離心壓 縮機通常在一葉輪入口(impener eye)或一循環式葉輪 的中央進口處抽取流體,並使其徑向向外加速。在該葉 ,中會產生一些靜壓上升(StatiC pressure rise),但是該 壓力上升大部分發生在該護罩的擴散器區段,在此處速 度係轉換為靜壓❶各個葉輪_擴散器組為該壓縮機之一 I1白#又離〜壓細機係建構有1至12個或更多的階段, 取決於所欲之最終壓力與待處理的冷媒體積。 一壓縮機之壓力比或壓縮比為絕對排放壓力與絕 對進口壓力之比例。由一離心壓縮機所傳送的壓力在一 相對廣泛之容量範圍中做定的。—離^壓縮機可發出 的壓力係取決於該葉輪的尖端速度。尖端速度為量測葉 輪尖端所得速度,其额葉輪直徑與其每分鐘轉數有 關。離心㈣機的容量係由通過該葉輪之通道大小決 定。,壓,機的大小更取決於所需之壓力而非容量。 ?备氣㈣冷束器可藉由它們所使用的壓縮機類型 而加以區別。在—實施例中,包括順-HFO-1336mZZ及 HFE_236eaEbg的s她成物可用於使用離d缩機的冷 〉東益’於本文又稱為離心冷p東器。 使用方法及製程 於許多應用中’所揭露之組成物的某些實施例可作 為冷媒,減供至対―尋求替代品之冷媒相比較的 冷卻性能(特別是意指冷卻能力及/或能量效率) 。特別 201219349 是,本文所揭露之組成物證實可作為R-123 (2,2-二氯 -1,1,1-三氟乙烷,CF3CHC12) 的有效替代品。在某些實施例中,前文揭露組成物 的用途包括在製程中使用該組成物作為熱傳组成物以 製熱,包括在待加熱主體附近冷凝本文所揭露之組成 物,之後蒸發該組成物。 本文亦揭露將上述組成物在製程中作為熱傳組成 物以製冷的用途,包括冷凝本文所揭露之組成物,之後 在待冷卻主體附近蒸發該組成物。 在待加熱或待冷卻主體附近,是指例如蒸發器可安 置在一房間、冷/東益或冷柬機區域或超市展示箱體(其 等為待冷卻主體)附近或内部。 〃 在某些實施例中,前文揭露組成物的用途包括在製 程中使用該組成物作為熱傳組成物以製冷,其中該組成 物先於壓力下被冷卻並保存’當其暴露至較溫暖的環境 時’該組錢會吸㈣分環境熱⑽脹,峨溫環 境會被冷卻。 .......小凡丨八 性幵唭元一热得糸 方法,該熱傳系統包含—待替換冷媒及—潤滑劑、 法包括在從熱傳系統移除待替換冷媒的同時,在 分的潤滑劑,並將本文所揭露的組成物導 在另—實施例中,提供包括本文所揭露 ==奥系統。該系統係選自於由以下所列: 浸沒式ir,、冷h、冷;東機、熱栗、水冷凉 動直接膨脹冷’東器、步入式冷都 …、移動式冷康機、移動式空調裝置及具有其組 39 201219349 系統。此外,本文所揭露的組成物可用於第二迴圈系統 中,其中此等組成物作為第一冷媒而提供冷卻給第二熱 傳流體,並由第二熱傳流體冷卻遠端區域。 p蒸氟壓縮冷/東、空調或熱泵系統包括一蒸發器、一 壓鈿機、一冷凝機與一膨脹裝置。一蒸氣壓縮循環在多 個階段中重複使用冷媒,一冷卻效果係產生於一步驟中 而一加熱效果係產生於另一步驟中。此循環可簡述如 下:⑴液體冷媒經由膨脹裝置進入蒸發器,且液體冷媒 藉由自低溫環境取得熱而於蒸發器内沸騰以形成氣體 並製冷。(ii)低壓氣體進入壓縮機,並於其中被壓縮而 提升其溫度與壓力。(iii)壓力較高(經壓縮)的冷媒蒸 氣之後進入冷凝器,冷媒在冷凝器中冷凝並將其熱排出 至環境。(iv)冷媒返回膨脹裝置,藉此,液體由冷凝器 内的高壓態膨脹成為蒸發器内的低壓態,因此重複該循 is. 4 〇 在一實施例中,所提供者為一含有本文中所揭露組 成物之熱傳系統。在另一實施例中係揭露含有本文中所 揭露組成物之冷凍、空調或熱泵裝置。在另一實施例中 係揭露含有本文中所揭露組成物之固定式冷束或空調 裝置。在又一實施例中,所揭露者為一含有本文中所揭 露組成物之移動式冷凍或空調裝置。 在又一實施例中,所揭露者為將本發明組成物用作 熱傳流體組成物的方法。該方法包括將該組成物從一熱 源輸送至一散熱裝置。 在另一實施例中,本發明係關於包括如本文所述之 順-HFO-1336mzz/HFE-236eaEbg換合物的發泡膨脹劑 40 201219349 組成物,其係用於製備發泡物。在其他實施例中,本發 明係提供可發泡組成物,較佳係提供聚胺甲酸酯及聚異 氰酸酯發泡組成物’以及製備發泡物之方法。於此泡沫 實施例中’包括順-HFO-1336mzz/HFE-236eaEbg摻合物 之組成物係以發泡膨脹劑形式存在於可發泡組成物 中,此組成物較佳包括一或多種可於適當條件下反應及 發泡以形成發泡物或泡孔結構之其他成分。 本發明更關於一種形成發泡物之方法,包括:(a) 將一包括順-HFO-1336mzz/HFE-236eaEbg摻合物之組 成物添加至一可發泡組成物中;以及(b)於一有效形成發 泡物之條件下反應該可發泡組成物。 本發明另一實施例係關於包括順 -HFO-1336mZZ/HFE-236eaEbg摻合物之組成物的用 途,如本文所述,其係作為可喷灑組成物中的推進劑。 此外,本發明係關於包括順 HFO-1336mZZ/HFE-236eaEbg摻合物之可喷灑組成 物,如本文所述。欲連同惰性成分、溶劑及其他材料一 起喷灑的活性成分亦可存在於可喷灑組成物中。可嘴灑 組成物較佳係形成氣溶膠。適合的欲噴灑活性材料包括 但不限於化妝材料,例如除臭劑、香水、髮膠、清潔劑 及拋光劑,以及醫藥材料,例如抗氣喘及抗口臭用藥。 本發明更關於一種製造氣溶膠產品之方法,其包括 將本文所述的一種包括二順 #FO-1336mZz/HFE_236eaEbg摻合物的組成物添加至 氣溶膠容器内的活性成分之步驟,其中該組成物之 係作為推進劑。 ι 201219349 在一實施例中’ 一種製冷之方法包括在一待冷卻主 體附近之一蒸發器内將包括順_HFO_1336mzz及 HFE-236eaEbg之組成物蒸發,以藉此製冷。該製冷之 方法更包括於一壓縮機内壓縮該包括順_HF〇_1336mzz 及HFE-236eaEbg之組成物,之後並冷凝該包括順 -HFO-1336mzz 及 HFE-236eaEbg 之組成物。 在一實施例中’ 一待冷卻主體可為任何可被冷卻的 空間、物體或流體。在一實施例中,一待冷卻主體可為 一房間、建築、一汽車中的乘客隔間、冷凍機、冷凍器 或超市或便利商店展示櫃。或者,在另一實施例中,一 待冷卻主體可為一熱傳介質或熱傳流體。 在一實施例中’該製冷之方法包括於上述圖1之浸 沒式蒸發冷凍器内製冷。於此方法中,係將包括順 -HFO_1336mzz及HFE_236eaEbg之組成物蒸發以於一 第一熱傳介質附近形成冷媒蒸氣。該熱傳介質為一溫液 體如水’其係經由一管路從一冷卻系統輸送至該蒸發器 中。該溫液體係冷卻並傳送至一待冷卻主體’例如一建 築。該冷媒蒸氣而後在一第二熱傳介質附近冷凝,該介 質係一冷卻之液體並可從例如一冷卻塔中帶出。該第二 熱傳介質冷卻該冷媒蒸氣所以其冷凝以形成一液體冷 媒。在此方法中’亦可使用一浸沒式蒸發器冷凍器以冷 卻旅館、辦公室建築、醫院與大學。 在另一實施例中,該製冷之方法包括於上述圖2之 直接膨脹式冷凍器内製冷。於此方法中,係將包括順 -HFO-1336mzz及HFE-236eaEbg之組成物通過一蒸發 器並使其蒸發以產生冷媒蒸氣。一第一液體熱傳介質係 42 201219349 由該蒸發中的冷媒冷卻。該第一液體熱傳介質係從該蒸 發器傳送至一待冷卻主體。在此方法中,亦可使用該直 接膨服式冷〉東益以冷卻旅館、辦公室建築、醫院盥大 學,以及海軍潛水艇或海軍水面船艦。 不論是在浸沒式蒸發冷凍器或直接膨脹式冷康器 内製冷的方法’ 5亥冷;東器均包括一壓縮機,其可為離心 式、往復式、螺桿式或渦卷式壓縮機之任一種。 基於 Intergovernmental Panel on Climate Change (IPCC)所公布之GWP計算值,需要進行替換的冷媒及 熱傳流體包括但不限於HCFC-123。因此,根據本發明, 係提供一種於浸沒式蒸發冷凍器或直接膨脹式冷珠器 内替換HCFC-123之方法。該方法包括將包括順 -HFO-1336mzz及HFE-236eaEbg之組成物提供至浸沒 式洛發冷;東裔或直接膨服式冷;東器内以替換 HCFC-123。 在該HCFC-123之替換方法中,包括順 -HFO-1336mzz及HFE-236eaEbg之組成物可適用於原 本是設計及製造來利用HCFC-123進行運轉的離心式冷 凍器於現存設備中替換HCFC-123的過程中,藉由調整 設備或運作條件或二者可達成額外的好處。舉例而言, 在使用包括順-HFO-1336mzz及HFE-236eaEbg之組成 物作為替換冷媒的離心式冷凍器中,可調整葉輪直徑及 葉輪速度。 另一種因為 ODP (ODP=l)及 GWP (GWP=4750)而 需要替換的冷媒為CFC-11°HCFC-123本來是在冷束器 内使用而作為CFC-11之替代品。但CFC-11在世界上 $ 43 201219349 某些地區可能仍在使用。因此’根據本發明,係提供一 種於浸沒式蒸發冷束器或直接膨脹式冷束器内替換 CFC-11之方法。該方法包括提供一包括順 -HFO-1336mzz及HFE-236eaEbg之組成物至浸沒式蒸 發冷涞器或直接膨脹式冷束器内以替換CFC-11。 於此替換CFC-11之方法中,包括順_HF〇-1336mzz 及HFE-236eaEbg之組成物可用於本來是設計及製造用 以藉由CFC-11進行運轉的離心式冷凍器中。於現存設 備中替換CFC-11的過程中,藉由調整設備或運作條件 或二者可達成額外的好處。舉例而言,在使用包括順 -HFO-1336mzz及HFE-236eaEbg之組成物作為替換冷 媒的離心式冷凍器中,可調整葉輪直徑及葉輪速度。在 另一實施例中’該組成物可用於本來是設計及製造用以 藉由CFC-11進行運轉的螺桿式冷象器中。 抑或是在此替換HCFC-123或CFC-11之方法中, 本文揭露的包括順-HFO-1336mzz及HFE-236eaEbg之 組成物可用於新型設備中,例如新型浸沒式蒸發冷凍器 或新型直接膨脹式冷凍器在此種新型設備中,可使用離 心式壓縮機或定排量式壓縮機,例如螺桿式壓縮機,以 及搭配使用的蒸發器及冷凝器。 動力循環 以下定義特別適用於動力循環(例如有機朗肯循 環: 淨循環動力輸出為膨脹機(例如渦輪)處的機械功 產生率減去壓縮機(例如液體泵)所消耗的機械功率。 44 201219349 _ —,力循環之容積為在該循環中進行循環之工作流 體每單位體積的淨循環動力輸出(在膨脹 件下量測)。 处怿 循環效率(又稱為熱效率)為淨循環動 加熱階段被工作流體接受的熱比率。 】出除以 _本文所揭露之組成物也可用作為動力循環工作流 體,例如有機朗肯循環(ORC)流體。據此,本發明中包 = -HF〇-l336mzz及臓_236恤§之組成物在熱回 =方法方面係稱為工作流體。圖3繪示一 0RC系統之 :實施例的示意圖,其係利用來自熱源的熱來產生機械 2電動力。熱交換器40傳遞熱源46供應的熱至〇rc 盘^的工作流體以液相進入該熱交換器。熱交換器40 =·,、、源46熱性相連通。換言之,熱交換器4〇以任一 了傳手段接收來自熱源46的熱能。〇Rc系統工作流體 以液相進入熱回收熱交換器4〇並在熱 内循環而藉此獲得熱。至少—部分的液相 回收熱交換器40 (蒸發器)内轉換成蒸氣。 …、 此8^蒸氣形式的工作流體被導向至膨脹機32,卜 程會使至少—部份由鱗46供應的熱能轉換 成機械轴能。根據理想的速度及職扭矩,此軸能可藉 由使用皮帶、滑輪、齒輪、傳動及類似 而作任何機械功。在一實施例中,該轴亦可連 力產生I置’例如感應發電機30。所產生的電力可於 局部使用或傳送至柵極。 、 •wt 45 201219349 離開膨脹機之仍處於蒸氣形式的工作流體繼續導 向至冷凝器34,於該處充分的排熱可使流體冷凝成液 體。 理想上是具有一液體缓衝槽36位於冷凝器與泵38 之間,以確保常時可充分供應液相之工作流體至泵吸入 口。液相之工作流體流到泵38,其將流體壓力提高, 使流體可被導回到熱回收熱交換器内,藉此完成朗肯循 環迴圈。 在另一實施例中,亦可使用在熱源及ORC系統間 運轉的第二熱交換迴圈。此種配置提供另一種自熱源移 除熱並將其傳送至ORC系統的手段。此種配置藉由促 進各種用於顯熱傳遞之流體的使用而提供了彈性。事實 上,本發明之工作流體可用作為第二熱交換迴圈流體, 若迴圈内的壓力係維持在大於或等於迴圈内流體溫度 的流體飽和壓力。另一方面,本發明之工作流體可用作 為第二熱交換迴圈流體或熱載流體,以自運轉模式中的 熱源抽出熱,其中工作流體可在熱交換過程中蒸發,藉 此產生大的流體密度差異而足以維持流體流動(熱虹吸 效應)。此外,可使用高沸點流體例如二醇類及其鹽、 聚矽氧或其他實質上非揮發性流體以於上述第二迴圈 配置中進行顯熱傳遞。第二熱交換迴圈可使熱源或ORC 系統之維護更為容易,因為這兩個系統可更容易地隔離 或分開。與具有一包括高質量流/低熱通量部與緊跟著 的高熱通量/低質量流部之熱交換器相比,此種作法可 簡化熱交換器設計。有機化合物通常具有溫度上限,高 於此溫度上限會發生熱分解。熱分解的開始與化學物質 46 201219349 構有關,因此對於不同化合物 了恥夠利用經由工作流體進行直接埶 馮 述的埶福旦請〜 換的向溫源,前 、叼热通置及質量流設計考量被 時將工作、^^ 不促進熱交換,同 作桃體、准持在低於其熱分解開始溫度。於此 形中的直接熱交換通常需要有額外的工程學及機械特 點’因此會增加成本。於此種情形巾,籍由溫度控管, 第二迴圈的設計可促進高溫熱源的利用,同時避免直接 熱交換情形下所引發的問題。 其他用於第二熱交換迴圈實施例的〇Rc系統元件 實質上與圖3所示者相同。液體泵42使第二^體在第 二迴圈内循環’使其進入熱源46内的迴圈部分而由其 獲得熱。流體之後通過熱交換器40,而第二流體於^匕 處將熱交給ORC工作流體。 本發明係關於一種回收熱的方法,包括於—和—供 熱糸統接觸之熱父換益内洛發一包括本文所揭露之矣且 成物的液相工作流體’藉此以產生氣相工作流體,以及 將該氣相工作流體傳送至一產生機械能之膨脹機。兮方 法可進一步包括冷凝該氣相工作流體以形成液相2作 流體。該方法可進一步包括回收该液相工作流體至兮第 一步驟及重複該循環。 提供熱的系統可基於一選自各種熱源的熱源,包括 來自熱源的廢熱,選自燃料電池、内燃機、内壓機、夕卜 燃機及渦輪、熱電共生廠、熱、電及熱水共生薇、工業 及畜牧製程(例如有機產品發酵)、烘箱及加熱爐排熱^ 煙道氣冷凝、交通工具排氣、壓縮系統中間冷卻或另 動力循環之冷凝器。其他熱源可來自於下列場所< g 47 201219349 轉:煉油腐:、石化廠、石油及煤氣管線、化學工業、商 用建築、飯店、購物中心、超級市場、烘焙業、食品處 理工業、餐廳、塗料硬化烘箱、傢俱製造、塑料模製機、 水泥黧、木材黧、锻燒運轉、鋼鐵工業、玻璃工業、禱 造廠、熔煉、生質燃燒、地熱、太陽能貯池、空調、冷 束及中央加熱。 此外,本發明之組成物可用於〇RC系統中,以自 以下來源抽出之低階熱產生機械能,例如低壓蒸氣、工 業廢熱、太陽能、地熱水、低壓地熱蒸氣(主要或次要 配置)或分散式動力產生設備,其利用燃料電池或原動 機,例如渦輪、微型渦輪或内燃機。低壓蒸氣的一種來 源可為稱為二元地熱朗肯循環之製程中。大量的低壓蒸 氣可在許多場所發現,例如化石燃料驅動的電力產生電 廠。本發明之工作流體可設計成適合電廠冷卻劑,據此 使二元循環之效能最大化。 其他熱源包括回收自移動式内燃機(例如貨車或執 道柴油引擎)排放氣體之廢熱、固定式内燃機(例如固 定式柴油引擎發電機)排放氣體之廢熱、來自燃料電池 之廢熱、得自熱、冷及電力共生或區域性冷熱共生廠之 熱、生質能源驅動引擎之廢熱、天然氣或甲烷氣體燃燒 器或甲烷燃燒鍋爐或甲烷燃料電池(例如位於分散式發 電設備者)之熱,其係利用各種來源之甲烷運轉,包括 生物沼氣、掩埋氣體及煤床甲烷,以及來自造紙/紙漿 廠之樹皮或木質素燃燒產生之熱、來自焚化爐之熱、來 自太陽能板陣列(包括拋物面太陽能板陣列)之太陽 熱、來自聚光式太陽能廠之太陽熱、為冷卻光伏(pV) 48 201219349 系統以維持高PV系統效能而自PV太陽能系統移除之 熱。 於所述動力循環中,係將氣相工作流體導入膨脹機 以產生機械軸動力。根據理想的速度及所需扭矩,此軸 動力可藉由使用皮帶、滑輪、齒輪、傳動及類似裝置的 傳統配置而作任何機械功。該軸亦可連接至一電力產生 裝置’例如感應發電機。所產生的電力可於局部使用或 傳送至拇極。 在一實施例中,本發明係關於自熱源回收熱之方 法,其係使用有機朗肯循環(ORC),且使用包括順 -HFO-1336mzz及HFE-236eaEbg之工作流體。特別是 在方法中用來回收熱者為包括約1重量百分比至約99 重罝百分比之2-二氟甲氧基-l,i,i,2-四氟乙烷及約% 重量百分比至約1重量百分比之順-^,«冬六氟_2_ 丁烯的組成物。在另一實施例中,在方法中用來回收熱 者為包括約20重量百分比至約8〇重量百分比之一氣 甲氧基-1,1,1,2-四氟乙烷及約80重量百分比至約2〇 = 量百分比之順-1,1,1,4,4,4-六氟-2-丁烯的組成物。在另 一實施例中,在方法中用來回收熱者為包括約5〇重量 百分比至、約80 f量百分比之2-二氟甲氧基十u,2_四 氟乙烷及約80重量百分比至約5〇重量百分比之順 _1,1,1,4,4,4_六氟-2-丁烯的組成物。 、 在-實施例中,朗肯循環為次臨界有機朗肯循環。 為本發明之目的,次臨界有獅f循鶴定義 s 德% t使用之工作流體的臨界塵力之勤下抽出熱的 有機朗肯循環。次臨界朗肯循環之最大蒸發器溫度 49 201219349 (Tevap_max)實務上將受到工作流體臨界溫度的最大容許 進近值的限制。舉例而言,Tevap max = 0·97 X Tcr,其中T 單位為凱氏溫度。 低價設備組件的使用實質上提升了有機朗肯循環 的實務上可用性(可見 j〇〇st J. Brasz,Bruce P. Biederman and Gwen Holdmann: “Power Production from a Moderate-Temperature Geothermal Resource”, GRC Annual Meeting, September 25-28th, 2005; Reno, NV, USA)。舉例而言,將最大蒸發壓力限制在約2.18 MPa 可讓該類低價設備組件的使用廣泛的應用在HVAC工 業。 對於任何給定的最大可容許蒸發器工作壓力,順 -HFO-1336mzz/HFE-236eaEbg摻合物可使朗肯循環在 比HFC-245fa更高的蒸發器溫度運轉。在一實施例中, 對於使用順_HFO-1336mzz/HFE-236eaEbg摻合物的循 環’蒸發器可在高於146Ϊ之溫度運轉,而蒸發壓力並 不會超過約2.18MPa。對於使用HFC-245fa的循環’蒸 發器無法在不造成蒸發壓力超過約2.18 MPa的條件下 在尚於126°C之溫度運轉。因此,較高的蒸發器溫度可 對應至以較高的效率將熱轉換成機械能。 在一實施例中’對於使用包括順_HF〇_1336mzz及 HFE-236eaEbg之組成物從回收熱產生動力的方法,蒸 發壓力為約2 MPa或更低。 … 在一實施例中,朗肯循環為跨臨界有機朗肯循環。 為本發明之目的,跨臨界有機朗肯循環係定義為在高於 50 201219349 循環中使用之工作流體的臨界壓力之壓力下抽出熱的 有機朗肯循環。 在本發明—實施例中,包括順-HFO-1336mzz及 HFE-236eaEbg之組成物可用於產生動力之方法◊在另 一實施例中’包括順-HFO-1336mzzandHFE-236eaEbg 之組成物可用於從熱源收集的熱產生動力之方法。此方 法抽出熱能並將其轉換成機械能。 由接收自一熱源之熱產生動力之方法包括以下步 驟: ⑷ (b) (c) ⑷ 將一液相工作流體壓縮至高於該工作流體之臨 界壓力; ft步驟(a)之該卫作流體通過—熱交換器或 极γ加熱器,並將該工作流體加熱至一高於 :低於°亥工作流體之臨界溫度的溫度,其中該 熱交換器或今、、* μ t ^ X邊流體加熱器係與供應該熱之熱源 自A熱X換II或流體加熱器移除至少—部分的 經加熱之工作流體; ,°亥至夕一部分的經加熱之工作流體傳送至一 膨脹機, ^至;一部分的熱被轉換成機械能,以及 二°亥、盈加熱之工作流體之壓力被降低至低於 广奸作如'體的臨界壓力,藉此使該至少一部分 ϋ經加熱之卫作流體成為-工作流體蒸氣或-H及㈣U作流航合物; 201219349 (e) 將該工作流體蒸氣或蒸氣及液體之工作流體混 合物從該膨脹機傳送至一冷凝器,其中該至少 ._ 一部分的該工作流體蒸氣或該蒸氣及液體之工 . 作流體混合物被完全冷凝成工作流體液體; (f) 視需要將該工作流體液體與步驟(a)的該第一工 作流體液體混合; (g) 視需要重複步驟(a)至(f)至少一次; 其中該工作流體包括順-HFO-1336mzz及 HFE-236eaEbg。 於現有用於有機朗肯循環之設備中,有時會使用 HFC-245fa (1,1,1,3,3-五氟丙烷,CF3CH2CHF2)。經發 現’包括順-HFO-1336mzz及HFE-236eaEbg之組成物 可於該種系統中作為HFC_245fa的替代工作流體。因 此’在本發明另一實施例中,係提供一種於動力循環系 統中替換HFC-245fa之方法,該方法包括提供一包括順 •HFO-1336mzz及HFE-236eaEbg之組成物至該動力循 環系統以取代HFC-245fa。 在動力循環系統内取代HFC-245fa的方法中特別 有用者為包括約1重量百分比至約99重量百分比之2_ 一氣甲氧基-1,1,1,2-四氟乙烷及約99重量百分比至約1 重里=分比之順六氟_2_丁烯的組成物。在 另—實施例中,在動力循環系統内取代HFC_245fa的方 法中使用者為包括約2〇重量百分比至約8〇重量百分比 之2_—氟曱氧基-1,1,1,2_四氟乙烷及約8〇重量百分比 至約2〇重量百分比之順-U山4,4,4-六氟-2-丁烯的組成 物在另一實施例中,在動力循環系統内取代包 52 201219349 的方法中使用者為包括約50重量百分比至約8Q重量百 分比之2-—氟甲氧基.m2,氟乙烧及約5G重量百 分比至約2G重量百分比之順·U,M,4,4•六氟_2•丁缔的 組成物。在另-實施例中’在動力循環系統内取代 HFC_245fa的方法中使用者為包括約5〇重量百分比至 約80重量百分比之2·二氟甲氧基·1,1,1,2·四氟乙燒及 約50重^百分比至約2G重量百分比之順_U l,4,4,4· 六氟-2-丁浠的組成物。 ’ ’ 在本發明另-實施例中,係提供—種於—動力循環 裝置中將熱轉換為機械能之方法,該裝置具有⑷—熱交 換器’其中係_來自―熱源之熱將—液相卫作流體汽 化;以及(b卜_機,其中係彻來自熱交換器之經汽 ^之工作雜來產生機械能該方法包括:(丨)於該熱交換 ^中斤化作為工作流體之液相E_HF〇_1438mzz;將 >飞化之E-HF(M438mzz由該熱交換器傳送至該膨脹 機;以及(iii)於該膨脹機中將來自汽化之 E-HFO_1438mzz的熱轉換為機械能。 在將熱轉換為機械能之方法的另一實施例中,其中 β動力循%裝置具有—冷凝器,其中來自該膨脹機之氣 相工作流體被冷凝為液相工作流體,該方法進一步包括 在該冷凝器中將氣相E-HFO-1438mzz冷凝為液相 E-HFO-1438mzz。 在將熱轉換為機械能之方法的另一實施例中,係使 ,相E-HFO-1438mzz返回該熱交換器。在此實施例中, °亥循環重複且持續再使用該工作流體。 53 201219349 在動力循環系統内將熱轉換為機械能之方法中特 別有用者為包括約1重量百分比至約99重量百分比之 2-二氟曱氧基-1,1,1,2-四氟乙烷及約99重量百分比至約 1重量百分比之順-1,1,1,4,4,4-六氟-2-丁烯的組成物。在 另一實施例中,在動力循環系統内將熱轉換為機械能之 方法中所使用者為包括約20重量百分比至約80重量百 分比之2-二氟甲氧基-1,1,1,2-四氟乙烷及約80重量百 分比至約20重量百分比之順-1,1,1,4,4,4-六氟-2-丁烯的 組成物。在另一實施例中,在動力循環系統内將熱轉換 為機械能之方法中所使用者為包括約50重量百分比至 約80重量百分比之2-二氣曱氧基-1,1,1,2-四氣乙烧及 約50重量百分比至約20重量百分比之順-1,1,1,4,4,4-六氟-2-丁烯的組成物。在又一實施例中,在動力循環系 統内將熱轉換為機械能之方法中所使用者為包括約4 0 重量百分比至約70重量百分比之2-二氟甲氧基 -1,1,1,2_四氟乙烷及約60重量百分比至約30重量百分 比之順-U,l,4,4,4-六氟-2-丁烯的組成物。 實例 本文中所揭露之概念將以下列實例進一步說明 之,該等實例不限制申請專利範圍中所描述之本發明範 轉。 實例1 蒸氣洩漏之影響 54 201219349 於特定溫度將初始組成物加入容器内,並量測該組 成物之初始蒸氣壓。使該組成物自容器洩漏,同時使溫 度維持怪定,直到50重量百分比的初始組成物被移 除,此時量測容器内剩餘組成物之蒸氣壓。於4.4及37.8 °C之特定溫度的初始及最終蒸氣壓的估計值如表1及2 所示。 表13,3'-Dipudyl thiodipropionate, available from Ciba under the trademark Irganox® PS 800; bis-(2,2,6,6-tetramethyl-4-pyranyl)癸Diacid ester, available from Ciba under the trademark Tinuvin® 770; poly-(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidinyl succinate, available From Ciba, its trademark is Tinuvin® 622LD (Ciba); methyl double tallow amine, double tallow amine, phenol-α-naphthylamine, bis(dimethylamino)methyl decane (DMAMS), tris(trimethyl decyl) Decane (TTMSS), vinyl triethoxy decane, vinyl trimethoxy decane, 2,5-difluorodiphenyl ketone, 2'55'-dihydroxyacetophenone, 2-aminodiphenyl ketone , 2-chlorodiphenyl ketone, benzyl S 25 201219349 phenyl sulfide, diphenyl sulfide, dibasic sulfide, ionic liquid and other substances. Similarly, stabilizers such as antioxidants, free radicals can be used. Scavengers and water scavengers. Compounds in this class may include, but are not limited to, butylated hydroxytoluene (BHT), epoxides and mixtures thereof. Residual inhibitors include dodecyl succinic acid (DDSA), amine phosphate (AP), oil-based sarcosine, imiline (imi) Dazone) derivatives and substituted sulfonicates. Metal surface deactivators include areoxalyl bis (benzylidene) hydrazide (CAS No. 6629-10-3), N, N'-bis(3,5-di-tertiary butyl-4-hydroxyhydrocinnamate oxime (CAS No. 32687-78-8), 2,2, '-oxalyldiyl-ethyl-( 3,5-di-tertiary butyl-4-hydroxyhydrocinnamate (CAS No. 70331-94-1), N,N,-(disalilidyl)-1,2-diaminopropane (CAS number 94-91 -7) and ethylenediaminetetraacetic acid (CAS No. 60-00-4) and salts thereof and mixtures thereof. The ionic liquid is an organic salt having a melting point below 1 ° C. In another embodiment The ionic liquid stabilizer includes a salt containing a cation and an anion, wherein the cation is selected from the group consisting of pyridine rust, sputum + well rust, pyrimidine oxime, pyridinium + well 镔, imidazole rust, pyrazoline rust, a group consisting of thiazolium, saponin and triazoline rust; and an anion selected from [BF4]·, [PF6]-, [SbF6]-, [CF3S〇3]-, [HCF2CF2S03]-, [CF3HFCCF2S03]-, [HCC1FCF2S03]-, [(cf3so2)2n]_, [(CF3cf2so2)2n> , [(cf3s〇2)3c]-, [CF3C〇2]_ and F-groups. Representative ionic liquid stabilizers include emim BF4 (1-ethyl-3-mercaptoimidazole rust of tetrafluoroborate); bmimBF4 (tetrabutylborate _3_mercaptoimidazole rust); emimPF〆6 26 201219349 fluorophosphate 1-ethyl-3-methylimidazolium rust); and bmim PF6 (1-butyl-3-methylimidazolium hexafluorophosphate), all of which are commercially available from Fluka (Sigma-Aldrich) 0 in certain embodiments The disclosed composition includes at least one tracer. In certain embodiments, the tracer additive in the disclosed compositions is comprised of two or more tracer compounds, which may be derived from the same compound or a different class of compounds. In certain embodiments, the ' tracer component or tracer blend is present in the composition at a total concentration of from about 50 parts per million (ppm) to about 1 〇〇〇 ppm by weight. In other embodiments the 'radical compound or extender blend is present at a total concentration of from about 50 ppm to about 500 ppm. In other embodiments, the tracer compound or tracer blend is present at a total concentration of from about 1 〇〇 ppm to about 300 ppm. In one embodiment, the compositions can be used with from about 1% by weight to about 5% by weight of a stabilizer, radical scavenger or antioxidant. As desired, in another embodiment, certain refrigeration or air conditioning system additives may be added to the composition including cis-IiF〇_1336mzz and HFE-236eaEbg as needed to improve performance and system stability. These additives are known in the art of refrigeration and air conditioning and include, but are not limited to, antiwear agents, extreme pressure lubricants, corrosion and oxidation inhibitors, metal surface deactivators, free radical scavengers, and foam control agents. In general, these additives may be present in small amounts in the compositions of the present invention relative to the overall composition. Typical concentrations are from less than about 〇 i by weight up to about 3 weight percent of each additive. The choice of additives is based on the requirements of each system. 27 201219349 These additives include members of the triarylphosphonium phosphate group of EP (extreme pressure) lubricity additives, such as butylated triphenyl phosphate (BTpp), or other alkylated triaryl phosphates, such as those available from Akz〇 Chemicals Syn-0-Ad 8478, tricresyl phosphate and related compounds. In addition, δ 些 些 金属 | 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 。 。 。 。 。 。 。 。 。 。 Antiwear additives include natural product oils and asymmetric polymer based lubricating additives, such as Synerg〇i tmS (International Lubricants) °. In other embodiments, the compositions disclosed herein may not further comprise perfluoropolyether. Perfluoropoly One of the common characteristics of ethers is the presence of perfluoroalkyl ether moieties. Perfluoropolyethers are synonymous with perfluoropolyalkylene. Other commonly used synonyms include "PFPE", "PFAE,", "PFPE oil", PFPE fluid and "PFPAE". In certain embodiments, the perfluoropolyether has the formula CF3-(CF2)2-0-[CF(CF3)-CF2-0]j, -R,f, and Available from DuPont' under the trademark Krytox®. In the above formula, j' is 2 to 100 and includes terminal values, and R'f is CF2CF3, C3 to C6 perfluoroalkyl or a combination thereof. Other PFPEs may also be used. 'It is available from Ausimont (Milan, Italy) and Montedison SpA, (Milan, Italy) under the trademarks Fomblin® and Galden®' are prepared by photooxidation of perfluoroolefins. The PFPE product of the trademark Fomblin®-Y can have the formula CF30(CF2CF(CF3)-0-)m(CF2-0-)n> -R1f. CFsOtCFlCFCCI^C^n^CFKFzCOJCFsCOyl^f is also applicable. In the formula, CF3, C2F5, C3F7 or a combination of two or more of them 2012 19349; (m, + η') is 8 to 45 And includes end values; and m/n is 20 to 1000 and includes end values; 〇 ' is 1; (m' + n' + o') is 8 to 45 and includes end values; m'/n' is 20 to 1000 and inclusive. The PFPE product of the trademark Fomblin®-Z may have the formula CF30(CF2CF2-0-)p, (CF2-0)q'CF3, where (p, + q,) is 40 to 180 and p '/q' is from 0.5 to 2, both of which contain terminal values. Another family of PFPEs, available from Daikin Industries, Japan, under the trademark DemnumTM can be used. It can be polymerized by sequential oligomerization and fluorination 2,2 , 3,3-tetrafluoropropene oxide, and the formula F-[(CF2)3-〇]t, -R2f ' wherein R2f is CF3, C2F5 or a combination of the above, and t' is 2 to 200 (including The end value). In certain embodiments, the PFPE is unfunctionalized. In an unfunctionalized perfluoropolyether, the terminal group can be a branched or straight-bonded perfluoroalkyl group terminal group. Examples of such perfluoropolyethers may have the formula Cr, F(2r, +l)-A-Cr, F(2r, + i), wherein each r' is independently from 3 to 6; A may be 0-(CF (CF3)CF2_0)w,,〇-(CF2-〇)x, (CF2CF2-0)y,, 0-(C2F4_0)w, , 〇-(C2F4-0)x <C3F6-0)y^, 0_(CF(CF3)CF2-0)x, (CF2_0)y, 〇_(cf2CF2CF2-0)w,, 0-(CF(CF3)CF2-0)x, (CF2CF2-〇) broad (cf2-0)z, or a combination of two or more; preferably A-system 〇-(CF(CF3)CF2-0)w,, 0-(C2F4-0)w ', 0-(C2F4_0)x, (C3F6-0)y, , 0-(CF2CF2CF2_0)w' or a combination of two or more; w' is 4 to 100; X' and y' are each independently 1 to 100. Specific examples include, but are not limited to, f(cf(cf3)-ct2-o)9-ct2ct3, F(CF(CF3)-CF2-0)9-CF(CF3)2, and combinations thereof. In such PFPEs 29 201219349, up to 30% of the halogen atoms may be non-fluorine halogen atoms, such as, for example, helium atoms. In other embodiments, the two terminal groups of the perfluoropolyether can be functionalized independently of the same or different groups. The monofunctional PFPE is a PFPE in which at least one of the two terminal groups of the perfluoropoly bond has at least one of its atoms substituted by a group selected from the group consisting of an ester and a hydroxyl group. a group consisting of an amine, a guanamine, a cyano group, a carboxylic acid, a sulfonic acid, and a combination of the above. And R&lt In certain embodiments, representative hydroxy terminal groups include -cf2oh, -cf2cf2oh, -cf2ch2oh, -cf2cf2ch2oh, -cf2ch2ch2oh, -cf2cf2ch2ch2oh. In certain embodiments, representative amine terminal groups include -CF2NR1R2, -CF2CF2NR1R2, -C¥2CH2^RlR2 > -cf2cf2ch2nr1r2, -cf2ch2ch2nr1r2, -CFfFaCHza^NR^R2, wherein R1 and R2 are independently H, CH3 Or ch2ch3. And X. NR1R2 ' -CF2CF2CH2CH2C(0)NR1R2 » wherein R1 and R2 are independently H, CH3 or CH2CH3. In certain embodiments, representative cyano terminal groups include -cf2cn, -cf2cf2cn, -cf2ch2cn, -cf2cf2ch2cn, -cf2ch2ch2cn, -cf2cf2ch2ch2cn. And R&lt The group consisting of: -S(0)(0)0R3, -S(0)(0)R4, -CF20S(0)(0)0R3, -cf2cf2os(o)(o)or3, - Cf2ch2os(o)(o)or3, _cf2cf2ch2os(o)(o)or3, -cf2ch2ch2os(o)(o)or3, -cf2cf2ch2ch2os(o)(o)or3, -cf2s(o)(o)or3, -CF2CF2S (0)(0)0R3, -CF2CH2S(0)(0)0R3, -CF2CF2CH2S(0)(0)0R3, -CF2CH2CH2S(0)(0)0R3' -CF2CF2CH2CH2S(0)(0)0R3 > - CF20S(0)(0)R4, -CF2CF20S(0)(0)R4, CF2CH20S(0)(0)R4, -CF2CF2CH20S(0)(0)R4, -cf2ch2ch2os(o)(o)r4, -cf2cf2ch2ch2os (o) (o) r4, where R3 is H, CH3, CH2CH3, CH2CF3, CF3 or CF2CF3, and R4 is CH3, CH2CH3, CH2CF3, CF3 or CF2CF3. Preparation of Compositions 31 201219349 In one embodiment, the compositions disclosed herein can be prepared by any convenient method to combine the individual components in the desired amounts. A preferred method is to weigh the desired component weights and then combine the components in a suitable container. Stirring can be used if needed. In another embodiment, the compositions disclosed herein can be prepared by a method comprising: (1) recovering one volume of one or more components of the refrigerant composition disclosed herein from at least one refrigerant container; The impurities are sufficiently removed to achieve reuse of one or more of the recovered components described above; and (iii) combining all or a portion of the foregoing recovered volume components with at least one additional refrigerant composition or component, as desired. A refrigerant container can be any container for storing a refrigerant blending composition. The composition is for a freezer, air conditioner or heat pump unit. The refrigerant container may be a freezing device, an air conditioning device or a heat pump device, in which a refrigerant blend is used. Additionally, the refrigerant container can be a storage container that collects recycled refrigerant blend components, including but not limited to pressurized gas cylinders. The remaining refrigerant is any amount of refrigerant blend or refrigerant blend component that can be removed from the refrigerant vessel by any of the methods known for transporting the refrigerant blend or refrigerant blend component. The impurities may be any component in the refrigerant blend or refrigerant blend component which occurs due to its use in a refrigeration unit, air conditioning unit or heat pump unit. Such impurities include, but are not limited to, a chilled lubricant (described above), particles present in the chilling device, air conditioning device, or heat pump device, including but not limited to metal, metal salt or elastomer particles, and any Contaminants that adversely affect the performance of the refrigerant blend composition. 32 201219349 These impurities can be adequately removed to achieve reuse of the refrigerant blend or refrigerant blend components without adversely affecting the equipment or performance of the refrigerant blend or refrigerant blend components. It may be necessary to provide additional refrigerant blend or refrigerant blend components to the residual refrigerant blend or refrigerant blend component to produce a composition that meets the specifications required for a particular product. For example, if the refrigerant blend has three components in a particular weight percentage range, it may be necessary to add a certain amount of one or more components to return the composition to the limits of the manual. The compositions of the present invention have zero ozone depletion potential and low global warming potential (GWP). The GWP of the cis-HFO-1336mzz ("GWPHF0") estimates an GWP of approximately 9〇HFE_236eaEbg (‘‘GWPe,,)) is estimated to be approximately 960. In addition, the compositions disclosed herein may have a global warming potential that is lower than many currently used fluorinated refrigerants. One aspect of the invention provides a refrigerant having a global warming potential of less than 1000, or less than 300, or less than 100, or less than 30. In accordance with an embodiment of the present invention, an air conditioning or freezing apparatus is also disclosed herein, particularly a cold beam apparatus comprising a composition comprising cis-HFO-1336mzz and HFE-236eaEbg. In one embodiment, a composition comprising cis-HFO-1336mzz and HFE-236eaEbg, as disclosed herein, may be used in combination with a desiccant in a refrigeration or air conditioning apparatus (including a freezer) to facilitate removal of moisture . The desiccant may consist of molecular sieves dominated by activated alumina, silica or zeolite. In certain embodiments, molecular sieves having a pore size of about 3 angstroms, 4 angstroms, or 5 angstroms are most useful. A representative molecular sieve package 33 201219349 includes MOLSIV XH-7, XH-6, XH-9 and XH-ll (UOP LLC, Des Plaines, IL). Freezer Apparatus In one embodiment, an air conditioning or freezing apparatus comprising a composition comprising cis-HFO-1336mzz and HFE-236eaEbg is provided. Such a device may be a closed loop heat transfer system, such as that disclosed in U.S. Patent Publication No. US 2008/0314073, the disclosure of which is incorporated herein by reference. In one embodiment, the air conditioning or freezer comprising a composition comprising cis-HFO-1336mzz and HFE-236eaEbg is a freezer. The colder is a type of air conditioning/cold beam device. This disclosure relates to a vapor compression freezer. The vapor compression freezer can be an immersion evaporator freezer, an embodiment of which is shown, for example. The chiller can also be a direct expansion chiller, an embodiment of which is shown in Figure 2. Immersed evaporative frozen and direct expansion chillers can be air-cooled or water-cooled. In embodiments where the community is water-cooled, such chillers are typically spliced to the cooling tower to remove heat from the system. In the embodiment where the cold III is an air-cooled crucible, the freezer is equipped with a condenser coil and a fan of a refrigerant-to-air finned_tube, and is discharged from the hot pack system. Air-cooled cold scrubber systems are generally less costly than water-cooled cutters that include the same cold materials and cores. Due to its more condensing temperatures, many operations such as 201219349 with dehumidified air are given to large commercial buildings, including hotels, office buildings, hospitals, universities and the like. In another embodiment, the freezer, most likely an air-cooled direct expansion chiller, has been found to have additional utility in naval submarines and surface vessels. To illustrate how the freezer operates, please refer to the schema. The water-cooled immersion evaporator is shown in Figure 1. In this freezer, a first heat transfer medium, a warm fluid comprising water, and in some embodiments an additive such as a glycol such as ethylene glycol or propylene glycol is comprised of a cooling system (eg, a building cooling system) Entering the cold beamer, as entered at arrow 3, passes through the coil 9 of the evaporator 6, which has an inlet and an outlet. The warm first heat transfer medium is delivered to the evaporator where it is cooled by a liquid refrigerant which is shown in the lower portion of the evaporator. The liquid refrigerant evaporates at a lower temperature than the warm first heat transfer medium flowing through the coil 9. The cooled first heat transfer medium is again circulated into the building cooling system via the return portion of the coil 9 as indicated by arrow 4. As shown in the lower portion of the evaporator 6 of Figure 1, the liquid refrigerant evaporates and enters the compressor 7, which increases the pressure and temperature of the refrigerant vapor. The compressor compresses the vapor so that when it leaves the evaporator, it can condense in a condenser 5 at a pressure and temperature higher than the pressure and temperature of the refrigerant vapor. The second heat transfer medium (liquid in the case of a water-cooled freezer) enters the condenser from the cooling tower at arrow 1 in Figure 1 via coil 10 in condenser 5. The second heat transfer medium is warmed during the process and returned to the cooling tower or environment via the return loop of the coil 10 and arrow 2. This second heat transfer medium cools the vapor in the condenser and condenses the vapor into a liquid refrigerant, so that there is a liquid refrigerant in the lower portion of the condenser, as shown in FIG. The condensed liquid refrigerant in the condenser flows back to the evaporator via the expansion device 8, and the expansion 201219349 can be an orifice, capillary or expansion valve. The expansion device 8 reduces the pressure of the liquid refrigerant in the liquid and converts the (10) refrigerant portion into steam. That is, the liquid refrigerant has a pressure difference between the condenser and the evaporator of six seconds, and the refrigerant is cooled, that is, evaporated. The pressure τ causes the liquid refrigerant to reach the saturation temperature, and both the liquid refrigerant and the refrigerant vapor are stored in the evaporator. It should be noted that for a single component refrigerant composition, the composition of the vapor refrigerant in the evaporation crucible is the same as the composition of the liquid in the evaporator. In this case, the evaporation will be carried out at a constant temperature, and if the refrigerant blend (or mixture) is used, the liquid refrigerant and the refrigerant vapor in the stripper (or condenser) may be as described in the present invention. Has a different composition. This situation can lead to inefficiencies in the system and difficulties in the use of the device, so it is desirable to use a one-component refrigerant. A total of j or azeotrope-like composition can basically act as a single, and knife-cooling medium in a freezer, so the liquid composition and the vapor composition are substantially the same to reduce the use of non-azeotropic or abundance The effect caused by the object is not good. Freezers with a cooling capacity of more than 700 kW typically use an immersion evaporator in which the refrigerant in the evaporator and condenser surrounds the coil or other heat, medium conduit (ie, the refrigerant is on the shell side). Immersion evaporators require a relatively high amount of refrigerant, but achieve nearer temperatures and higher efficiencies. A chiller having a cooling capacity of less than 700 kW is generally used with an evaporator that has a refrigerant flowing into the tubes and a heat transfer medium (in the evaporator and condenser) that surrounds the tubes, that is, a heat transfer medium. On the side of the shell. This type of freezer is called a direct expansion (DX) freezer. 36 201219349 Figure 2 illustrates one embodiment of a water-cooled direct expansion chiller. In the freezer shown in Figure 2, a first liquid heat transfer medium (which is a warm liquid such as warm water) enters the evaporator 6' at the inlet 14. The liquid refrigerant (having a small amount of refrigerant vapor) mostly enters the coil 9' in the evaporator at the arrow 3' and evaporates into a vapor. As a result, the first liquid heat transfer medium is cooled in the evaporator, and the cooled first liquid heat transfer medium exits the evaporator at the outlet 16 and is sent to a body to be cooled, such as a building. In the embodiment of Figure 2, the cooled first liquid heat transfer medium cools the building or other body to be cooled. The refrigerant vapor exits the evaporator at arrow 4' and is sent to a compressor 7' where the vapor is compressed and exits as a high temperature, high pressure refrigerant vapor. This refrigerant vapor enters the condenser 5' via the condenser coil 10' at the crucible. The refrigerant vapor is cooled in the condenser by a second liquid heat transfer medium (e.g., water) to become a liquid. The second liquid heat transfer medium is passed to the condenser via the condenser heat transfer medium inlet 20. The second liquid heat transfer medium draws heat from the condensed refrigerant vapor that becomes the liquid refrigerant, which warms the second liquid heat transfer medium in the condenser. The second liquid heat transfer medium exits the condenser via the condenser heat transfer medium outlet 18. The condensed refrigerant liquid exits the condenser via a down-rotating tube 10' as shown in Figure 2 and flows through an expansion device 12, which may be an orifice, capillary or expansion valve. The expansion device 12 reduces the pressure of the liquid refrigerant. A small amount of vapor generated by the expansion enters the evaporator, and the liquid refrigerant passes through the coil 9', and this cycle is repeated. Centrifugal compressors 37 201219349 A centrifugal compressor uses a rotating element to radially accelerate the refrigerant, and typically includes an impeller and diffuser that is capped in a shroud. Centrifugal compressors typically draw fluid at an impener eye or a central inlet of a circulating impeller and accelerate it radially outward. In the leaf, there is some static pressure rise (StatiC pressure rise), but this pressure rise mostly occurs in the diffuser section of the shroud, where the speed is converted to static pressure ❶ each impeller_diffuser group For the compressor, one of the I1 white # separate from the ~ compact machine is constructed with 1 to 12 or more stages, depending on the desired final pressure and the cold media product to be treated. The pressure ratio or compression ratio of a compressor is the ratio of absolute discharge pressure to absolute inlet pressure. The pressure delivered by a centrifugal compressor is determined over a relatively wide range of capacities. - The pressure that can be emitted from the compressor depends on the tip speed of the impeller. The tip speed is the speed at which the tip of the impeller is measured, and the diameter of the impeller is related to the number of revolutions per minute. The capacity of the centrifuge (four) machine is determined by the size of the passage through the impeller. The pressure, the size of the machine depends more on the pressure required than the capacity. • Gas preparation (4) Cold beamers can be distinguished by the type of compressor they use. In the examples, s-HFO-1336mZZ and HFE_236eaEbg, which are s-HFO-1336mZZ and HFE_236eaEbg, can be used to use the cold-to-drinking machine, which is also referred to herein as a centrifugal cold. Methods of Use and Processes In many applications, certain embodiments of the disclosed compositions can be used as a refrigerant to reduce the cooling performance of the refrigerant to the alternative - particularly to mean cooling capacity and/or energy efficiency. ). In particular, 201219349, the compositions disclosed herein demonstrate an effective alternative to R-123 (2,2-dichloro-1,1,1-trifluoroethane, CF3CHC12). In certain embodiments, the foregoing disclosure of the use of the composition includes using the composition as a heat transfer composition for heating in a process, including condensing the composition disclosed herein near the body to be heated, and then evaporating the composition. Also disclosed herein is the use of the above composition as a heat transfer composition for refrigeration in a process comprising condensing the composition disclosed herein and then evaporating the composition adjacent the body to be cooled. In the vicinity of the body to be heated or to be cooled, it is meant, for example, that the evaporator can be placed in the vicinity of or in the interior of a room, cold/dongyi or cold machine or supermarket display case (which is the body to be cooled). 〃 In certain embodiments, the use of the composition disclosed above includes the use of the composition as a heat transfer composition for refrigeration in a process wherein the composition is cooled and stored prior to pressure 'when it is exposed to a warmer In the environment, 'the group of money will suck (4) and the ambient heat (10) will swell, and the temperature will be cooled. . . . The small heat transfer system contains the refrigerant and the lubricant to be replaced, and the method includes removing the refrigerant to be replaced from the heat transfer system. In the case of a sub-lubricant, and the compositions disclosed herein are directed to another embodiment, a system comprising the == system disclosed herein is provided. The system is selected from the following list: immersion ir, cold h, cold; Dongji, hot chestnut, water cooling, cold expansion, direct expansion, cold east, walk-in cold..., mobile cold machine, Mobile air conditioning unit and its group 39 201219349 system. Moreover, the compositions disclosed herein can be used in a second loop system wherein the compositions provide cooling to the second heat transfer fluid as the first refrigerant and the distal region is cooled by the second heat transfer fluid. The p-fluorinated compressed cold/east, air conditioning or heat pump system includes an evaporator, a compressor, a condenser, and an expansion device. A vapor compression cycle reuses the refrigerant in multiple stages, with one cooling effect occurring in one step and one heating effect being produced in another step. The cycle can be briefly described as follows: (1) The liquid refrigerant enters the evaporator via the expansion device, and the liquid refrigerant boils in the evaporator by taking heat from the low temperature environment to form a gas and to cool. (ii) The low pressure gas enters the compressor and is compressed therein to raise its temperature and pressure. (iii) The higher pressure (compressed) refrigerant vapor enters the condenser, which condenses in the condenser and discharges it to the environment. (iv) the refrigerant returns to the expansion device whereby the liquid expands from a high pressure state within the condenser to a low pressure state within the evaporator, thus repeating the cycle. 4 In an embodiment, the provided one is contained herein. The heat transfer system of the composition is disclosed. In another embodiment, a refrigeration, air conditioning or heat pump device incorporating the compositions disclosed herein is disclosed. In another embodiment, a stationary cold bundle or air conditioning unit containing the compositions disclosed herein is disclosed. In yet another embodiment, the disclosed person is a mobile refrigeration or air conditioning unit containing the compositions disclosed herein. In yet another embodiment, the disclosed method is a method of using the composition of the present invention as a heat transfer fluid composition. The method includes transporting the composition from a heat source to a heat sink. In another embodiment, the present invention is directed to a foam expansion agent 40 201219349 composition comprising a cis-HFO-1336mzz/HFE-236eaEbg blend as described herein for use in the preparation of a foam. In other embodiments, the present invention provides a foamable composition, preferably a polyurethane and a polyisocyanate foaming composition' and a method of making the foam. In the foam embodiment, the composition comprising the cis-HFO-1336mzz/HFE-236eaEbg blend is present in the foamable composition in the form of a foaming expander, and the composition preferably comprises one or more The reaction and foaming are carried out under appropriate conditions to form a foam or other component of the cell structure. The invention more particularly relates to a method of forming a foam comprising: (a) adding a composition comprising a cis-HFO-1336mzz/HFE-236eaEbg blend to a foamable composition; and (b) The foamable composition is reacted under conditions effective to form a foam. Another embodiment of the invention is directed to the use of a composition comprising a cis-HFO-1336mZZ/HFE-236eaEbg blend, as described herein, as a propellant in a sprayable composition. Furthermore, the present invention is directed to sprayable compositions comprising a cis HFO-1336mZZ/HFE-236eaEbg blend, as described herein. Active ingredients to be sprayed together with inert ingredients, solvents and other materials may also be present in the sprayable composition. The sprinkle composition preferably forms an aerosol. Suitable active materials to be sprayed include, but are not limited to, cosmetic materials such as deodorants, perfumes, hair gels, cleansers and polishes, and pharmaceutical materials such as anti-asthmatic and anti-bad breath medications. The invention further relates to a method of making an aerosol product comprising the steps of adding a composition comprising a blend of a bis #FO-1336mZz/HFE_236eaEbg as described herein to an active ingredient in an aerosol container, wherein the composition The system of matter is used as a propellant. ι 201219349 In one embodiment, a method of refrigeration includes evaporating a composition comprising cis_HFO_1336mzz and HFE-236eaEbg in an evaporator adjacent a body to be cooled to thereby cool. The method of cooling further comprises compressing the composition comprising cis_HF〇_1336mzz and HFE-236eaEbg in a compressor, and then condensing the composition comprising cis-HFO-1336mzz and HFE-236eaEbg. In one embodiment, a body to be cooled can be any space, object or fluid that can be cooled. In one embodiment, a body to be cooled may be a room, a building, a passenger compartment in a car, a freezer, a freezer, or a supermarket or convenience store display case. Alternatively, in another embodiment, the body to be cooled may be a heat transfer medium or a heat transfer fluid. In one embodiment, the method of refrigeration includes refrigeration in the immersion evaporator of Figure 1 above. In this method, a composition comprising cis-HFO_1336mzz and HFE_236eaEbg is evaporated to form a refrigerant vapor in the vicinity of a first heat transfer medium. The heat transfer medium is a warm liquid such as water which is delivered from a cooling system to the evaporator via a line. The warm liquid system is cooled and transferred to a body to be cooled, such as a building. The refrigerant vapor is then condensed in the vicinity of a second heat transfer medium which is a cooled liquid and which can be carried out, for example, from a cooling tower. The second heat transfer medium cools the refrigerant vapor so that it condenses to form a liquid refrigerant. In this method, an immersion evaporator chiller can also be used to cool hotels, office buildings, hospitals and universities. In another embodiment, the method of refrigeration includes refrigeration in the direct expansion chiller of Figure 2 above. In this method, a composition comprising cis-HFO-1336mzz and HFE-236eaEbg is passed through an evaporator and evaporated to produce a refrigerant vapor. A first liquid heat transfer medium system 42 201219349 is cooled by the evaporated refrigerant. The first liquid heat transfer medium is transferred from the evaporator to a body to be cooled. In this method, the direct expansion type can also be used to cool hotels, office buildings, hospitals, and naval submarines or naval surface ships. Whether it is cooling in an immersion chiller or a direct expansion chiller, the chiller is a compressor, which can be a centrifugal, reciprocating, screw or scroll compressor. Any one. Based on the GWP calculations published by Intergovernmental Panel on Climate Change (IPCC), the refrigerants and heat transfer fluids that need to be replaced include, but are not limited to, HCFC-123. Thus, in accordance with the present invention, a method of replacing HCFC-123 in a submerged evaporative freezer or direct expansion cryostat is provided. The method comprises providing a composition comprising cis-HFO-1336mzz and HFE-236eaEbg to a submerged cold hair; a dung or direct expansion cold; and replacing the HCFC-123 in the east. In the replacement method of HCFC-123, the composition including cis-HFO-1336mzz and HFE-236eaEbg can be applied to a centrifugal chiller originally designed and manufactured to operate with HCFC-123 to replace HCFC in existing equipment. In the course of 123, additional benefits can be achieved by adjusting equipment or operating conditions or both. For example, in a centrifugal chiller using a composition comprising cis-HFO-1336mzz and HFE-236eaEbg as a replacement refrigerant, the impeller diameter and the impeller speed can be adjusted. Another type of refrigerant that needs to be replaced because of ODP (ODP=l) and GWP (GWP=4750) is CFC-11°HCFC-123, which was originally used in the cold bundler as a substitute for CFC-11. But CFC-11 in the world $ 43 201219349 Some areas may still be in use. Thus, in accordance with the present invention, a method of replacing CFC-11 in an immersion evaporative cold bundler or a direct expansion cryophore is provided. The method includes providing a composition comprising cis-HFO-1336mzz and HFE-236eaEbg to an immersion vaporizer or a direct expansion cold bundler to replace CFC-11. Among the methods for replacing CFC-11, compositions comprising cis_HF〇-1336mzz and HFE-236eaEbg can be used in centrifugal chillers which are originally designed and manufactured for operation by CFC-11. Additional benefits can be achieved by adjusting equipment or operating conditions or both during the replacement of CFC-11 in existing equipment. For example, in a centrifugal chiller using a composition comprising cis-HFO-1336mzz and HFE-236eaEbg as a replacement refrigerant, the impeller diameter and the impeller speed can be adjusted. In another embodiment, the composition can be used in a screw-type still imager that is originally designed and manufactured for operation by CFC-11. Or in the method of replacing HCFC-123 or CFC-11, the compositions disclosed herein including cis-HFO-1336mzz and HFE-236eaEbg can be used in new equipment, such as a novel immersion chiller or a new direct expansion type. Freezers In this new type of equipment, centrifugal compressors or fixed displacement compressors, such as screw compressors, and evaporators and condensers can be used. Power Cycle The following definitions are particularly applicable to power cycles (eg, organic Rankine cycles: net cycle power output is the mechanical power production rate at the expander (eg, turbine) minus the mechanical power consumed by the compressor (eg, liquid pump). 44 201219349 _ —, the volume of the force cycle is the net cycle power output per unit volume of the working fluid circulating in the cycle (measured under the expansion member). The cycle efficiency (also known as thermal efficiency) is the net cycle heating stage. The heat ratio accepted by the working fluid. The composition disclosed herein can also be used as a power cycle working fluid, such as an organic Rankine cycle (ORC) fluid. Accordingly, the present invention includes - -HF〇-l336mzz The composition of the 臓 236 236 is referred to as the working fluid in terms of heat return = method. Figure 3 illustrates an OC system: a schematic of an embodiment that utilizes heat from a heat source to generate mechanical 2 electric power. The exchanger 40 transfers the heat supplied by the heat source 46 to the working fluid of the 〇rc disk to enter the heat exchanger in a liquid phase. The heat exchanger 40 =·, , , and the source 46 are thermally connected. In other words, The exchanger 4 receives thermal energy from the heat source 46 by any means of transfer. The Rc system working fluid enters the heat recovery heat exchanger 4 in a liquid phase and circulates in the heat thereby obtaining heat. At least a portion of the liquid phase The recovery heat exchanger 40 (evaporator) is converted into a vapor. ..., the working fluid in the form of vapor is directed to the expander 32, which converts at least a portion of the thermal energy supplied by the scale 46 into mechanical shaft energy. Depending on the desired speed and job torque, the shaft can be used for any mechanical work by using belts, pulleys, gears, transmissions and the like. In one embodiment, the shaft can also be combined to produce an I-position such as induction. Motor 30. The generated power can be used locally or delivered to the grid. • wt 45 201219349 The working fluid leaving the expander still in vapor form continues to be directed to condenser 34 where sufficient heat is removed to allow fluid Condensation into a liquid. Ideally having a liquid buffer tank 36 between the condenser and the pump 38 to ensure that the working fluid of the liquid phase is sufficiently supplied to the pump suction port at all times. The working fluid of the liquid phase flows to the pump 38, The fluid pressure is increased so that the fluid can be directed back into the heat recovery heat exchanger, thereby completing the Rankine cycle loop. In another embodiment, a second heat exchange between the heat source and the ORC system can also be used. This configuration provides another means of removing heat from the heat source and transferring it to the ORC system. This configuration provides flexibility by facilitating the use of various fluids for sensible heat transfer. In fact, the present invention The working fluid can be used as the second heat exchange loop fluid if the pressure in the loop is maintained at a fluid saturation pressure greater than or equal to the fluid temperature in the loop. On the other hand, the working fluid of the present invention can be used as the second heat exchange. The loop fluid or the hot carrier fluid extracts heat from a heat source in the self-operating mode, wherein the working fluid can evaporate during the heat exchange process, thereby creating a large difference in fluid density sufficient to maintain fluid flow (thermosiphon effect). In addition, high boiling fluids such as glycols and salts thereof, polyfluorene oxide or other substantially non-volatile fluids may be used to effect sensible heat transfer in the second loop configuration described above. The second heat exchange loop makes maintenance of the heat source or ORC system easier because the two systems can be more easily isolated or separated. This approach simplifies heat exchanger design as compared to a heat exchanger having a high mass flow/low heat flux portion followed by a high heat flux/low mass flow portion. Organic compounds usually have an upper temperature limit, and thermal decomposition occurs above the upper limit of the temperature. The beginning of thermal decomposition is related to the chemical substance 46 201219349, so for the different compounds, the shame is enough to use the working fluid to directly 埶 述 埶 请 请 请 请 换 换 换 换 换 换 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前When the consideration is taken, it will work, ^^ does not promote heat exchange, and the same as the peach, the temperature is lower than the thermal decomposition start temperature. Direct heat exchange in this form usually requires additional engineering and mechanical features' thus increasing costs. In this case, the temperature control is used, and the design of the second loop can promote the utilization of high-temperature heat sources while avoiding the problems caused by direct heat exchange. Other 〇Rc system components for the second heat exchange loop embodiment are substantially identical to those shown in FIG. The liquid pump 42 circulates the second body within the second loop to cause it to enter the loop portion of the heat source 46 to obtain heat therefrom. The fluid then passes through heat exchanger 40, while the second fluid delivers heat to the ORC working fluid. The present invention relates to a method for recovering heat, comprising: heating and heating a contact with a heating system to provide a liquid phase working fluid comprising the liquid phase working fluid disclosed herein to generate a gas phase The working fluid, and the vapor phase working fluid is delivered to an expander that produces mechanical energy. The helium method can further include condensing the vapor phase working fluid to form a liquid phase 2 as a fluid. The method can further include recovering the liquid phase working fluid to the first step and repeating the cycle. The system providing heat may be based on a heat source selected from various heat sources, including waste heat from the heat source, selected from the group consisting of a fuel cell, an internal combustion engine, an internal pressure machine, an Xiwu gas turbine and a turbine, a cogeneration plant, and a heat, electricity, and hot water symbiosis. , industrial and livestock processes (eg organic product fermentation), oven and furnace heat • flue gas condensation, vehicle exhaust, compression system intermediate cooling or another power cycle condenser. Other heat sources can come from the following locations < g 47 201219349 Turn: refining rot: petrochemical plant, oil and gas pipeline, chemical industry, commercial building, restaurant, shopping center, supermarket, baking industry, food processing industry, restaurant, paint hardening oven, furniture manufacturing, plastic Molding machines, cement concrete, wood crucibles, calcining operations, steel industry, glass industry, prayer plants, smelting, biomass burning, geothermal, solar storage, air conditioning, cold beam and central heating. In addition, the composition of the present invention can be used in a ruthenium RC system to generate mechanical energy from low-order heat extracted from the following sources, such as low pressure steam, industrial waste heat, solar energy, geothermal water, low pressure geothermal steam (primary or secondary configuration). Or a decentralized power generating device that utilizes a fuel cell or prime mover, such as a turbine, a micro-turbine, or an internal combustion engine. One source of low pressure vapor may be in the process known as the binary geothermal Rankine cycle. A large amount of low pressure steam can be found in many places, such as fossil fuel-driven power generation plants. The working fluid of the present invention can be designed to be suitable for power plant coolants, thereby maximizing the effectiveness of the binary cycle. Other heat sources include waste heat from exhaust gas from mobile internal combustion engines (such as trucks or diesel engines), waste heat from stationary internal combustion engines (such as stationary diesel engine generators), waste heat from fuel cells, heat and cold. And the heat of the electricity symbiosis or regional hot and cold symbiosis plant, the waste heat of the biomass energy-driven engine, the heat of natural gas or methane gas burners or methane combustion boilers or methane fuel cells (such as those located in decentralized power generation equipment) Methane operations from sources, including biogas, landfill gas and coal bed methane, as well as heat from the burning of bark or lignin from paper/pulp mills, heat from incinerators, arrays from solar panels (including parabolic solar panels) Solar heat, solar heat from concentrating solar plants, heat removed from PV solar systems to cool photovoltaic (pV) 48 201219349 systems to maintain high PV system performance. In the power cycle, a vapor phase working fluid is introduced into the expander to produce mechanical shaft power. Depending on the desired speed and required torque, this shaft power can be used for any mechanical work by using the traditional configuration of belts, pulleys, gears, transmissions and similar devices. The shaft can also be connected to a power generating device such as an induction generator. The generated electricity can be used locally or transmitted to the thumb pole. In one embodiment, the invention relates to a method of recovering heat from a heat source using an organic Rankine cycle (ORC) and using a working fluid comprising cis-HFO-1336mzz and HFE-236eaEbg. In particular, the method used to recover heat in the process comprises from about 1 weight percent to about 99 weight percent of 2-difluoromethoxy-l,i,i,2-tetrafluoroethane and from about % by weight to about 1% by weight of the composition of cis-^, «winter hexafluoro-2-ene. In another embodiment, the method for recovering heat in the process comprises from about 20 weight percent to about 8 weight percent of one gas methoxy-1,1,1,2-tetrafluoroethane and about 80 weight percent. A composition of cis-1,1,1,4,4,4-hexafluoro-2-butene to a percentage of about 2 〇. In another embodiment, the method for recovering heat in the process comprises from about 5 weight percent to about 80 percent by weight of 2-difluoromethoxy decyl, 2 -tetrafluoroethane and about 80 weight percent. Percentage to about 5% by weight of the composition of cis_1,1,1,4,4,4-hexafluoro-2-butene. In the embodiment, the Rankine cycle is a subcritical organic Rankine cycle. For the purpose of the present invention, the subcritical is defined by the lion f-fighting crane s de % t using the critical dust force of the working fluid to extract the hot organic Rankine cycle. The maximum evaporator temperature of the subcritical Rankine cycle 49 201219349 (Tevap_max) is practically limited by the maximum allowable approach value of the critical temperature of the working fluid. For example, Tevap max = 0·97 X Tcr, where T is the Kjeldahl temperature. The use of low-cost equipment components substantially enhances the practical usability of the organic Rankine cycle (see j〇〇st J. Brasz, Bruce P. Biederman and Gwen Holdmann: “Power Production from a Moderate-Temperature Geothermal Resource”, GRC Annual Meeting, September 25-28th, 2005; Reno, NV, USA). For example, limiting the maximum evaporation pressure to approximately 2.18 MPa allows the use of such low-cost equipment components for a wide range of applications in the HVAC industry. For any given maximum allowable evaporator operating pressure, the cis-HFO-1336mzz/HFE-236eaEbg blend allows the Rankine cycle to operate at a higher evaporator temperature than HFC-245fa. In one embodiment, a recycle' evaporator using a cis_HFO-1336mzz/HFE-236eaEbg blend can be operated at temperatures above 146 Torr without evaporating pressure exceeding about 2.18 MPa. For the cycle using the HFC-245fa, the evaporator could not be operated at a temperature of 126 ° C without causing the evaporation pressure to exceed about 2.18 MPa. Therefore, a higher evaporator temperature can correspond to converting heat to mechanical energy with higher efficiency. In one embodiment, the evaporation pressure is about 2 MPa or less for a method of generating power from heat recovery using a composition comprising cis_HF〇_1336mzz and HFE-236eaEbg. ... In one embodiment, the Rankine cycle is a transcritical organic Rankine cycle. For the purposes of the present invention, a transcritical organic Rankine cycle is defined as an organic Rankine cycle that extracts heat at a pressure above the critical pressure of the working fluid used in the 50 201219349 cycle. In the present invention - examples, a composition comprising cis-HFO-1336mzz and HFE-236eaEbg can be used to generate power. In another embodiment, a composition comprising cis-HFO-1336mzzandHFE-236eaEbg can be used from a heat source. The method of collecting heat to generate power. This method extracts thermal energy and converts it into mechanical energy. The method of generating power from heat received from a heat source comprises the steps of: (4) (b) (c) (4) compressing a liquid phase working fluid to a critical pressure above the working fluid; ft step (a) of the turbine fluid passing - a heat exchanger or a very gamma heater, and heating the working fluid to a temperature above: a critical temperature below the working fluid of the hemisphere, wherein the heat exchanger or the current heating of *, * μ t ^ X And the heat supplied to the heat is derived from A hot X-switch II or a fluid heater to remove at least a portion of the heated working fluid; a portion of the heated working fluid is transferred to an expander, to a part of the heat is converted into mechanical energy, and the pressure of the working fluid at 2°H, the surplus heating is lowered below the critical pressure of the mass, such that the at least a portion of the heated body is heated. a working fluid vapor or -H and (d) U as a flow compound; 201219349 (e) transferring the working fluid vapor or a working fluid mixture of vapor and liquid from the expander to a condenser, wherein the at least Working fluid Gas or the work of the vapor and liquid. The fluid mixture is completely condensed into a working fluid liquid; (f) mixing the working fluid liquid with the first working fluid liquid of step (a) as needed; (g) repeating as needed Steps (a) to (f) at least once; wherein the working fluid comprises cis-HFO-1336mzz and HFE-236eaEbg. HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2) is sometimes used in existing equipment for organic Rankine cycles. It has been found that compositions comprising cis-HFO-1336mzz and HFE-236eaEbg can be used as an alternative working fluid for HFC_245fa in such systems. Thus, in another embodiment of the present invention, there is provided a method of replacing HFC-245fa in a power cycle system, the method comprising providing a composition comprising cisHFO-1336mzz and HFE-236eaEbg to the power cycle system Replace HFC-245fa. Particularly useful in the process of replacing HFC-245fa in a power cycle system is from about 1 weight percent to about 99 weight percent of 2-methoxy methoxy-1,1,1,2-tetrafluoroethane and about 99 weight percent. A composition of about hexafluoro-2-butene to about 1 liter. In another embodiment, the method of substituting HFC_245fa in the power cycle system comprises from about 2% by weight to about 8% by weight of 2_-fluorodecyloxy-1,1,1,2-tetrafluoroethylene. Ethane and a composition of from about 8 weight percent to about 2 weight percent of cis-U mountain 4,4,4-hexafluoro-2-butene. In another embodiment, the package 52 is replaced in the power cycle system. The method of 201219349 is intended to include from about 50 weight percent to about 8 weight percent of 2-fluoromethoxy.m2, fluoroethene and from about 5G weight percent to about 2G weight percent of S, U, M, 4, 4• Composition of hexafluoro_2•butylene. In another embodiment, the method of substituting HFC_245fa in a power cycle system comprises from about 5 weight percent to about 80 weight percent of 2 difluoromethoxy-1,1,1,2.tetrafluoroethylene. Ethylene and a composition of about 50% by weight to about 2G by weight of cis-Ul,4,4,4·hexafluoro-2-butane. In another embodiment of the present invention, there is provided a method for converting heat into mechanical energy in a power cycle apparatus, the device having (4) - a heat exchanger 'a system thereof - a heat source from a heat source The vaporization of the fluid is carried out; and (b), wherein the mechanical action is generated by the operation of the steam from the heat exchanger, the method comprises: (丨) in the heat exchange, the working fluid is used as the working fluid a liquid phase E_HF〇_1438mzz; a > aerospaced E-HF (the M438mzz is transferred from the heat exchanger to the expander; and (iii) the heat from the vaporized E-HFO_1438mzz is converted into a machine in the expander In another embodiment of the method of converting heat to mechanical energy, wherein the beta power cycling device has a condenser, wherein the gas phase working fluid from the expander is condensed into a liquid phase working fluid, the method further Including condensation of the gas phase E-HFO-1438mzz into liquid phase E-HFO-1438mzz in the condenser. In another embodiment of the method of converting heat to mechanical energy, the phase E-HFO-1438mzz is returned The heat exchanger. In this embodiment, the cycle is repeated The working fluid is continuously reused. 53 201219349 Particularly useful in methods for converting heat to mechanical energy in a power cycle system is from about 1 weight percent to about 99 weight percent 2-difluorodecyloxy-1,1 1,2-tetrafluoroethane and a composition of from about 99 weight percent to about 1 weight percent of cis-1,1,1,4,4,4-hexafluoro-2-butene. In another embodiment In the method of converting heat into mechanical energy in a power cycle system, the user includes from about 20 weight percent to about 80 weight percent of 2-difluoromethoxy-1,1,1,2-tetrafluoroethane. Alkane and a composition of from about 80 weight percent to about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene. In another embodiment, in the power cycle system The method of heat conversion to mechanical energy is comprised of from about 50 weight percent to about 80 weight percent of 2-dimethoxymethoxy-1,1,1,2-tetraethylene, and about 50 weight percent to about a composition of 20% by weight of cis-1,1,1,4,4,4-hexafluoro-2-butene. In yet another embodiment, in the method of converting heat to mechanical energy in a power cycle system Place The user comprises from about 40% by weight to about 70% by weight of 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and from about 60% by weight to about 30% by weight of cis-U, Composition of l,4,4,4-hexafluoro-2-butene. EXAMPLES The concepts disclosed herein will be further illustrated by the following examples, which do not limit the scope of the invention described in the claims. Example 1 Effect of Vapor Leakage 54 201219349 The initial composition was added to a vessel at a specific temperature and the initial vapor pressure of the composition was measured. The composition is allowed to leak from the container while maintaining the temperature until the 50% by weight of the initial composition is removed, at which time the vapor pressure of the remaining composition in the container is measured. The estimated initial and final vapor pressures at specific temperatures of 4.4 and 37.8 °C are shown in Tables 1 and 2. Table 1

蒸氣洩漏測試@T = 4.4°C 初始摻合組成物順 -HFO-1336mzz 重 量百分比 初始壓力P1 psia 最終壓力P2 psia 壓力變化 % GWPmix 99 4.53 4.46 -1.40 19 90 5.14 4.74 -7.76 104 80 5.59 5.16 -7.67 200 70 5.91 5.59 -5.42 295 60 6.14 5.94 -3.28 390 50 6.32 6.21 -1.75 485 40 6.45 6.40 -0.76 580 30 6.54 6.52 -0.21 675 20 6.58 6.58 -0.01 770 10 6.57 6.57 -0.02 865 1 6.52 6.52 -0.01 950 表2Vapor leak test @T = 4.4°C Initial blend composition cis-HFO-1336mzz Weight percent Initial pressure P1 psia Final pressure P2 psia Pressure change % GWPmix 99 4.53 4.46 -1.40 19 90 5.14 4.74 -7.76 104 80 5.59 5.16 -7.67 200 70 5.91 5.59 -5.42 295 60 6.14 5.94 -3.28 390 50 6.32 6.21 -1.75 485 40 6.45 6.40 -0.76 580 30 6.54 6.52 -0.21 675 20 6.58 6.58 -0.01 770 10 6.57 6.57 -0.02 865 1 6.52 6.52 -0.01 950 2

蒸氣洩漏測試@ T = 37.78°C 初始摻合組成物順 -HFO-1336mzz 重 量百分比 初始壓力P1 psia 最终壓力P2 psia 壓力變化 % GWPmiJI 99 17.45 17.25 -1.15 19 90 19.56 18.30 -6.44 104 80 21.17 19.78 -6.54 200 70 22.33 21.26 -4.80 295 60 23.21 22.50 -3.03 390 55 201219349 50 23.88 23.47 -1.70 485 40 24.38 24.19 -0.80 580 30 24.74 24.67 -0.27 675 20 24.95 24.94 -0.04 770 10 24.99 24.99 0.00 865 1 24.88 24.88 0.00 950 表1及表2中的混合物GWP值係利用根據混合物 内的重量份稱重之混合物組分的GWP值的平均值來估 計。順-HFO-1336mzz 之 GWP 為 9.4,而 HFE-236eaEbg 之 GWP 為 960。 包含16.14重量百分比之順-HFO-1336mzz及83.86 重量百分比之HFE-236eaEbg的摻合物在4.4。(:為共沸 物,其平衡蒸氣塵等於6.60 psia ^包含12.25重量百分 比之順-HFO-1336mzz 及 87.75 wt%之 HFE-236eaEbg 的 摻合物在37.78°C為共沸物’其平衡蒸氣壓等於25.00 psia。 表1及2之數據顯示,包括及 HFE-236eaEbg之組成物,在1至99重量百分比之順 -HFO-1336mzz 及 99 至 1 重量百分比之 HFE-236eaEbg 的整個範圍内均為類共沸物,其於洩漏後具有少於8〇/〇 的蒸氣壓變化。 實例2 熱力循環性能-空調條件 表3顯不本發明之各種冷媒組成物相較於CFC-11 及HCFC-123在典型空調應用之條件下的性能。於表3 中’EvapPres為蒸發器壓力、c〇ndpres為冷凝器壓力、 56 201219349Vapor Leak Test @ T = 37.78°C Initial Blend Composition cis-HFO-1336mzz Weight Percent Initial Pressure P1 psia Final Pressure P2 psia Pressure Change % GWPmiJI 99 17.45 17.25 -1.15 19 90 19.56 18.30 -6.44 104 80 21.17 19.78 -6.54 200 70 22.33 21.26 -4.80 295 60 23.21 22.50 -3.03 390 55 201219349 50 23.88 23.47 -1.70 485 40 24.38 24.19 -0.80 580 30 24.74 24.67 -0.27 675 20 24.95 24.94 -0.04 770 10 24.99 24.99 0.00 865 1 24.88 24.88 0.00 950 The GWP values of the mixtures in Tables 1 and 2 were estimated using the average of the GWP values of the components of the mixture weighed according to the parts by weight of the mixture. The GWP of cis-HFO-1336mzz is 9.4, while the GWP of HFE-236eaEbg is 960. A blend comprising 16.14 weight percent cis-HFO-1336mzz and 83.86 weight percent HFE-236eaEbg is at 4.4. (: is an azeotrope whose equilibrium vapor dust is equal to 6.60 psia ^ a blend containing 12.25 weight percent of cis-HFO-1336mzz and 87.75 wt% of HFE-236eaEbg is an azeotrope at 37.78 ° C's equilibrium vapor pressure Is equal to 25.00 psia. The data in Tables 1 and 2 shows that the composition including HFE-236eaEbg is in the range of 1 to 99% by weight of cis-HFO-1336mzz and 99 to 1% by weight of HFE-236eaEbg. An azeotrope having a vapor pressure change of less than 8 〇/〇 after leakage. Example 2 Thermal Cycle Performance - Air Conditioning Conditions Table 3 shows that the various refrigerant compositions of the present invention are comparable to CFC-11 and HCFC-123. Performance under typical air conditioning applications. In Table 3 'EvapPres is the evaporator pressure, c〇ndpres is the condenser pressure, 56 201219349

CompDischT為壓縮機排放溫度、AverageTGlide為蒸 發器與冷凝器之間的平均溫度滑移、COP為性能係數 (能量效率之量測值)以及CAP為冷卻容積。數據係基於 以下條件: 冷媒 Evap Press (kPa) Cond Press (kPa) Compr Disch T (c) Avg T Glide (c) CAP (kJ/m3) CAP相 對於 R123 (%) COP COP 相對於 R123 (%) 對照 HCFC-123 40 144 44.1 0.0 386 100 5.09 100 對照 CFC-11 48 162 58.6 0.0 463 120 5.26 103 順-HFO-1336mzz/ HFE-236eaEbg (0.1/99.9 wt%) 45 171 39.0 0.0 430 111 4.89 96.1 順-HFO-1336mzz/ HFE-236eaEbg (10/90 wt%) 43 165 39.0 0.3 417 108 4.90 96.3 順-HFO-13 3 6mzz/ HFE-236eaEbg (12/88 wt%) 43 164 39.0 0.3 414 107 4.91 96.5 順-HFO-1336mzz/ HFE-236eaEbg (16/84 wt%) 42 162 39.0 0.3 408 106 4.91 96.5 順-HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) 42 159 39.0 0.4 403 104 4.91 96.5 順-HFO-1336m;zz/ 40 154 39.1 0.6 389 101 4.92 96.7 蒸發器溫度 4.4。。 冷凝器溫度 37.8〇C 過冷量 o°c 過熱量 o°c 壓縮機效率為 70% 表3 57 201219349 冷媒 Evap Press (kPa) Cond Press (kPa) Compr Disch T (c) Avg T Glide (c) CAP (kJ/m3) CAP相 對於 R123 (%) COP cop 相對於 R123 (%) HFE-236eaEbg (30/70 wt%) 順-HFO-1336mzz/ HFE-236eaEbg (40/60 wt%) 39 148 39.1 0.7 376 97.4 4.93 96.9 順-HFO-1336mzz/ HFE-236eaEbg (50/50 wt%) 37 143 39.0 0.7 363 94.0 4.94 97.1 順-HFO-1336mzz/ HFE-236eaEbg (60/40 wt%) 36 138 39.0 0.7 350 90.7 4.94 97.1 順-HFO-1336mzz/ HFE-236eaEbg (70/30 wt%) 34 133 38.8 0.6 338 87.6 4.95 ·— ·— 97.2 順-HFO-1336mzz/ HFE-236eaEbg (80/20 wt%) 33 128 38.8 0.5 326 84.5 4.96 97.4 順-HFO-1336mzz/ HFE-236eaEbg (90/10 wt%) 32 123 38.6 0.3 315 81.6 4.96 97.4 順-HFO-1336mzz/ HFE-236eaEbg (99.9/0.1 wt%) 31 119 38.5 0.0 305 79.0 4.97 一 -97.6 結果顯示’本發明數種組成物具有類似於 HCFC-123且亦可與CFC-11相比較之冷卻能力及能量 效率。所有的組成物都具有非常低的溫度滑移,這特別 可提供用於冷凍器之安定性。所有的組成物也都具有比 HCFC-123更低的壓縮機排放溫度(因此不會縮短壓縮 機壽命)。對HCFC-123達成與冷卻能力及能量效率之 接近相配,同時維持相對低GWP之摻合物具有包含2〇 至80重量百分比之HFO-l336mmz_順及80至20重量 58 201219349 百分比之HFE-236eaEb的組成物。另一方面,包含40 至70重量百分比之HFO-1336mmz-順及60至30重量 百分比之HFE-236eaEbg的組成物則提供性能與 HCFC-123相配之組成〇 實例3CompDischT is the compressor discharge temperature, AverageTGlide is the average temperature slip between the evaporator and the condenser, COP is the coefficient of performance (measurement of energy efficiency), and CAP is the cooling volume. The data is based on the following conditions: Refrigerant Evap Press (kPa) Cond Press (kPa) Compr Disch T (c) Avg T Glide (c) CAP (kJ/m3) CAP vs. R123 (%) COP COP vs. R123 (%) Control HCFC-123 40 144 44.1 0.0 386 100 5.09 100 Control CFC-11 48 162 58.6 0.0 463 120 5.26 103 cis-HFO-1336mzz/ HFE-236eaEbg (0.1/99.9 wt%) 45 171 39.0 0.0 430 111 4.89 96.1 顺- HFO-1336mzz/ HFE-236eaEbg (10/90 wt%) 43 165 39.0 0.3 417 108 4.90 96.3 cis-HFO-13 3 6mzz/ HFE-236eaEbg (12/88 wt%) 43 164 39.0 0.3 414 107 4.91 96.5 顺- HFO-1336mzz/ HFE-236eaEbg (16/84 wt%) 42 162 39.0 0.3 408 106 4.91 96.5 cis-HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) 42 159 39.0 0.4 403 104 4.91 96.5 cis-HFO- 1336m; zz/ 40 154 39.1 0.6 389 101 4.92 96.7 Evaporator temperature 4.4. . Condenser temperature 37.8〇C Undercooling o°c Overheating o°c Compressor efficiency 70% Table 3 57 201219349 Refrigerant Evap Press (kPa) Cond Press (kPa) Compr Disch T (c) Avg T Glide (c) CAP (kJ/m3) CAP vs. R123 (%) COP cop vs. R123 (%) HFE-236eaEbg (30/70 wt%) cis-HFO-1336mzz/ HFE-236eaEbg (40/60 wt%) 39 148 39.1 0.7 376 97.4 4.93 96.9 cis-HFO-1336mzz/ HFE-236eaEbg (50/50 wt%) 37 143 39.0 0.7 363 94.0 4.94 97.1 cis-HFO-1336mzz/ HFE-236eaEbg (60/40 wt%) 36 138 39.0 0.7 350 90.7 4.94 97.1 cis-HFO-1336mzz/ HFE-236eaEbg (70/30 wt%) 34 133 38.8 0.6 338 87.6 4.95 ·—·— 97.2 cis-HFO-1336mzz/ HFE-236eaEbg (80/20 wt%) 33 128 38.8 0.5 326 84.5 4.96 97.4 cis-HFO-1336mzz/ HFE-236eaEbg (90/10 wt%) 32 123 38.6 0.3 315 81.6 4.96 97.4 cis-HFO-1336mzz/ HFE-236eaEbg (99.9/0.1 wt%) 31 119 38.5 0.0 305 79.0 4.97 A-97.6 The results show that the several compositions of the present invention have similar cooling capacity and energy efficiency as HCFC-123 and can also be compared to CFC-11. All compositions have very low temperature slip which is particularly useful for the stability of the freezer. All compositions also have a lower compressor discharge temperature than HCFC-123 (and therefore do not shorten compressor life). Achieving close compatibility with HCFC-123 with cooling capacity and energy efficiency while maintaining a relatively low GWP blend with HFO-136eaEb containing from 2 to 80 weight percent HFO-l336mmz to 80 to 20 weight 58 201219349 percent Composition. On the other hand, a composition comprising 40 to 70 weight percent of HFO-1336 mmz-to 60 to 30 weight percent of HFE-236eaEbg provides a composition that matches the performance of HCFC-123. Example 3

使用順-HFO-1336mzz/HFE-236eaEbg 摻合物於 Tevap = i35°C 之次臨界朗肯彳盾壞。表4顯不本發明各種冷媒組成 物相較於HFC-245fa於次臨界朗肯循環中的性能。於4 .中’能量效率(ORC) = {膨脹機之功產生率[j/s]-液體 泵之功消耗率[^]}/{熱供應至蒸發器之速率[j/s]}。數 HFC- 245fa 順 -HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) 順 -HFO-1336mzz/ HF£-236eaEbg (50/50 wt%) 順 -HFO-1336mzz/ HF£-236ea£bg (80/20 wt%) GWPi〇〇 1030 770 485 200 P s[MPa] 2.58 1.77 1.66 1.56 P _[MPa] 0.25 0.17 0.15 0.14 能量效率 0.141 0.136 0.138 0.141 膨脹機出口之 容積[kJ/m3] 432 307 283 260 據係基於以下條件。 蒸發器溫度 =135.0°C 冷凝器溫度 =40.0°C 泵效率 =0.85 膨脹機效率 =0.85 膨脹機入口之過熱 =o.o°c 冷凝器出口之過冷 =o.o°c 表4 59 201219349 表4顯示,作為朗肯循環之工作流體的順 -HFO-1336mzz 與 HFE-236eaEbg 之換合物在 GWP 及能 量效率值提供了吸引人的組合。 實例4 使用順-HFO-1336mzz/HFE-236eaEbg摻合物於蒸發 溫度對臨界溫度最大進近值之次臨界朗肯循環 表5顯不6¾界溫度及對應至選定組成物之順 -HFO-1336mzz/HFE-236eaEbg 掺合物與 HFC-245fa 之 0.97減溫的溫度T〇.97cr,以°〇表示。溫度T〇97cr可視為 是使用選定工作流體之次臨界朗肯循環之蒸發器可被 實際上操作的最大溫度。 表5 HFC- 245fa (100 wt%) 順 -HFO-133 6mzzHFE- 236ea£bg (0/100 wt%) 順 -HFO-133 6mzzHFE- 236ea£bg (20/80 wt%) 順 -HFO-133 6mzzHFE- 236ea£bg (50/50 wt%) 順 -HFO-133 6mzzHFE- 236ea£bg (80/20 wt%) 順 -HFO-133 6mzzHFE- 236eaEbg (100/0 wt%) Tcr, °C (凱氏溫 度) 154 (427) 156 (429) 159 (432) 164 (437) 168 (441) 171 (444) T〇.97Tcr, °c (#) 141 143 146 151 155 158 (#)T〇.97Tcr[°C]=〇.97x(Tcr[〇C J+273.15)-273.15 表 5 顯示順-HFO-1336mzz/HFE-236eaEbg摻合物之 臨界溫度Tcr係高於HFC-245fa之臨界溫度,此外,表 60 201219349 5顯不使用順-HFO-13 3 6mzz/HFE-23 6eaEbg摻合物作為 工作流體的次臨界朗肯循環一般來說可在比HFC_245fa 更高的蒸發器溫度進行運轉。 表 6 比較使用 HFC-245fa及順 -HFO-1336mzz/HFE-236eaEbg摻合物於蒸發器之減溫 0.97下進行運轉之朗肯循環性能。於表6中,能量效率 (ORC) = {膨脹機之功產生率[J/s] _液體泵之功消耗率 [J/s]}/·(熱供應至蒸發器之速率[J/s]}。數據係基於以下 條件: 冷凝器溫度 =40.0°C 泵效率 =0.85 膨脹機效率 =0.85 膨脹機入口之過熱 =o.o°c 冷凝器出口之過冷 =o.o°c 表6 f HFC- 245fa 順 -HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) 順 -HFO-1336mzz/ HF£-236ea£bg (50/50 wt%) 順 -HFO-1336mzz/ HFE-236eaEbg (80/20 wt%) GWPi〇〇 1030 770 485 200 T s [MPa] 141 146 151 155 P s[MPa] 2.89 2.14 2.19 2.25 P s[MPa] 0.25 0.17 0.15 0.14 能量效率 0.145 0.142 0.147 0.153 膨脹機出口之 容積[kJ/m3] 444 325 306 288 比較表4及6顯示,蒸發溫度的增加會增加循環能 量效率及容積。表 6 顯示,順 *Κ- 61 201219349 -HFO-1336mzz/HFE-236eaEbg 摻合物在 GWP 及能量效 率值提供了吸引人的組合。舉例而言,具有GWP為200 (即比1^0245€&之〇\¥?低80.6%)的 80/20 >^°/〇之順 -HFO-1336mzz/HFE-236eaEbg摻合物可達成能量效率 為15.3%的朗肯循環(即比使用HFC-245fa之能量效率 14.5%高出約 5.5%)。 實例5 於2.18 MPa之蒸發壓力下使用順 -HFO-1336mzz/HFE-236eaEbg摻合物之次臨界朗肯循環 一般來說,包括順-HFO-1336mzz/HFE-236eaEbg 之 摻合物在常見的有機朗肯循環蒸發器溫度產生比 HFC-245fa更低的蒸氣壓。表7顯示溫度T2.18 MPa,此 時選定組成物之順-HFO-133 6mzz/HFE-236eaEbg摻合 物及HFC-245fa之蒸氣壓達到數值2.18 MPa。 表7 HFC- 245fa 順 -HFO-133 6mzz HFE-236e aEbg (0/100 wt%) 順 -HFO-133 6mzz HFE-236e aEbg (20/80 wt%) 順 -HFO-133 6mzz HFE-236e aEbg (50/50 wt%) 順 -HFO-133 6mzz HFE-236e a£bg (80/20 wt%) 順 -HFO-133 6mzz HFE-236e aEbg (100/0 wt%) Ter, °C (凱氏溫 度) 154 (427) 156 (429) 159 (432) 164 (437) 168 (441) 171 (444) T2.I8 MPa °c 126 145 147 150 153 155 62 201219349 表 7 顯示,使用順-HFO-1336mzz/HFE-236eaEbg 摻 合物作為工作流體的朗肯循環可在比使用HFC-245fa 者更高的蒸發溫度運轉,而不會超出蒸發壓力2.18 MPa。 表8比較HFC-245fa及使用選定順 -HFO-1336mzz/HFE-236eaEbg 摻合物於 2.18 MPa 之蒸 發壓力下運轉之朗肯循環的性能。於表8中,能量效率 (ORC) = {膨脹機之功產生率[J/S]-液體果之功消耗率 [%]}/{熱供應至蒸發器之速率[J/s]}。數據係基於以下 條件: 冷凝器溫度 =40°C 泵效率 =0.85 膨脹機效率 =0.85 膨脹機入口之過熱 =o.o°c 冷凝器出口之過冷 =o.o°c 表8 順 順 順 HFC- -HFO-1336mzz/ -HFO-1336mzz/ -HFO-1336mzz/ 245fa HF£-236ea£bg HFE-236eaEbg HFE-236eaEbg (20/80 wt%) (50/50 wt%) (80/20 wt%) GWPi〇〇 1030 770 485 200 T s [MPa] 126 147 150 153 P s [MPa] 2.18 2.18 2.18 2.18 P g [MPa] • 25 0.17 0.15 0.14 能量效率 0.135 0.143 0.147 0.152 膨脹機出口之 容積[kJ/m3] 410 327 306 286 63 201219349 表 8 顯示,順-HFO-1336mzz/HFE-236eaEbg 摻合物 可讓藉由廣泛使用之相對便宜HVAC型設備所組成的 朗肯循環在溫和的蒸發器壓力(例如不超過約2.18 MPa)下運轉,同時提供吸引人的能量效率及環境特 性。舉例而言,具有GWP為200 (即比HFC-245fa之 GWP 低 80.6%)的 80/20 wt% 之順 -HFO-1336mzz/HFE-236eaEbg掺合物可達成能量效率 為15.2%的朗肯循環(即比使用HFC-245fa之能量效率 13.5%高出約 12.5%)。 實例6 使用順-HFO-1336mzz/HFE-236eaEbg捧合物之跨臨界朗肯 循環 表9顯示’相較於HFC-245fa,本發明之80/20 wt% 順-HFO-1336mZZ/HFE-236eaEbg摻合物於跨臨界朗肯 循環中的性能。於表9中,能量效率(〇Rc) ={膨脹機 之功產生率[J/S] _液體泵之功消耗率[j/s] }/{熱供應至 洛發器之速率[J/s]}。數據係基於以下條件:The sub-critical Rankine 彳 shield at Tevap = i35 °C was used with the cis-HFO-1336mzz/HFE-236eaEbg blend. Table 4 shows the performance of the various refrigerant compositions of the present invention over the HFC-245fa in the subcritical Rankine cycle. In 4. Energy efficiency (ORC) = {expansion machine power generation rate [j/s] - liquid pump power consumption rate [^]} / {heat supply to evaporator rate [j/s]}. Number HFC-245fa cis-HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) cis-HFO-1336mzz/ HF£-236eaEbg (50/50 wt%) cis-HFO-1336mzz/ HF£-236ea£bg ( 80/20 wt%) GWPi〇〇1030 770 485 200 P s[MPa] 2.58 1.77 1.66 1.56 P _[MPa] 0.25 0.17 0.15 0.14 Energy efficiency 0.141 0.136 0.138 0.141 Volume of expander outlet [kJ/m3] 432 307 283 260 is based on the following conditions. Evaporator temperature = 135.0 ° C Condenser temperature = 40.0 ° C Pump efficiency = 0.85 Expander efficiency = 0.85 Expansion of the expander inlet = oo °c Cooling of the condenser outlet = oo °c Table 4 59 201219349 Table 4 shows The substitution of cis-HFO-1336mzz and HFE-236eaEbg as a working fluid for the Rankine cycle provides an attractive combination of GWP and energy efficiency values. Example 4 Sub-critical Rankine cycle using cis-HFO-1336mzz/HFE-236eaEbg blend at evaporation temperature versus critical temperature maximum approach value Table 5 shows the 63⁄4 boundary temperature and corresponds to the selected composition of cis-HFO-1336mzz The temperature of the /HFE-236eaEbg blend and the 0.97 desuperheat of HFC-245fa is T〇.97cr, expressed in °〇. The temperature T〇97cr can be considered as the maximum temperature at which the evaporator of the subcritical Ranken cycle of the selected working fluid can be actually operated. Table 5 HFC-245fa (100 wt%) cis-HFO-133 6mzzHFE-236ea£bg (0/100 wt%) cis-HFO-133 6mzzHFE- 236ea£bg (20/80 wt%) cis-HFO-133 6mzzHFE - 236ea£bg (50/50 wt%) cis-HFO-133 6mzzHFE- 236ea£bg (80/20 wt%) cis-HFO-133 6mzzHFE- 236eaEbg (100/0 wt%) Tcr, °C (Kjeldahl Temperature) 154 (427) 156 (429) 159 (432) 164 (437) 168 (441) 171 (444) T〇.97Tcr, °c (#) 141 143 146 151 155 158 (#)T〇.97Tcr[ °C]=〇.97x(Tcr[〇C J+273.15)-273.15 Table 5 shows that the critical temperature Tcr of the cis-HFO-1336mzz/HFE-236eaEbg blend is higher than the critical temperature of HFC-245fa, in addition, the table 60 201219349 5 The use of cis-HFO-13 3 6mzz/HFE-23 6eaEbg blend as a working fluid's subcritical Rankine cycle can generally operate at higher evaporator temperatures than HFC_245fa. Table 6 compares the Rankine cycle performance of HFC-245fa and cis-HFO-1336mzz/HFE-236eaEbg blends operating at a desuperheater of 0.97 on the evaporator. In Table 6, energy efficiency (ORC) = {expansion machine power generation rate [J / s] _ liquid pump power consumption rate [J / s] / / (heat supply to the evaporator rate [J / s ]}. The data is based on the following conditions: Condenser temperature = 40.0 ° C Pump efficiency = 0.85 Expander efficiency = 0.85 Overheat at expander inlet = oo °c Supercool at condenser outlet = oo °c Table 6 f HFC- 245fa cis-HFO-1336mzz/ HFE-236eaEbg (20/80 wt%) cis-HFO-1336mzz/ HF£-236ea£bg (50/50 wt%) cis-HFO-1336mzz/ HFE-236eaEbg (80/20 wt% ) GWPi〇〇1030 770 485 200 T s [MPa] 141 146 151 155 P s[MPa] 2.89 2.14 2.19 2.25 P s[MPa] 0.25 0.17 0.15 0.14 Energy efficiency 0.145 0.142 0.147 0.153 Expansion machine outlet volume [kJ/m3 ] 444 325 306 288 Comparison Tables 4 and 6 show that the increase in evaporation temperature increases the cycle energy efficiency and volume. Table 6 shows that cis*Κ- 61 201219349 -HFO-1336mzz/HFE-236eaEbg blend in GWP and energy efficiency The value provides an attractive combination. For example, 80/20 >^°/〇之顺-HFO-1336mzz with a GWP of 200 (ie 80.6% lower than 1^0245€&\¥?) /HFE-236eaEbg blend The material can achieve a Rankine cycle with an energy efficiency of 15.3% (ie about 5.5% higher than the energy efficiency of 14.5% using HFC-245fa). Example 5 Using cis-HFO-1336mzz/HFE-236eaEbg at an evaporation pressure of 2.18 MPa Subcritical Ranken Cycles of Blends In general, blends comprising cis-HFO-1336mzz/HFE-236eaEbg produce lower vapor pressures than HFC-245fa at common organic Rankine cycle evaporator temperatures. The temperature was shown to be T2.18 MPa, and the vapor pressure of the cis-HFO-133 6mzz/HFE-236eaEbg blend and HFC-245fa of the selected composition reached a value of 2.18 MPa. Table 7 HFC-245fa cis-HFO-133 6mzz HFE -236e aEbg (0/100 wt%) cis-HFO-133 6mzz HFE-236e aEbg (20/80 wt%) cis-HFO-133 6mzz HFE-236e aEbg (50/50 wt%) cis-HFO-133 6mzz HFE-236e a£bg (80/20 wt%) cis-HFO-133 6mzz HFE-236e aEbg (100/0 wt%) Ter, °C (Kjeldahl) 154 (427) 156 (429) 159 (432 ) 164 (437) 168 (441) 171 (444) T2.I8 MPa °c 126 145 147 150 153 155 62 201219349 Table 7 shows the use of cis-HFO-1336mzz/HFE-236eaEbg blend as a working fluid for Rankine Loops can be used in comparison to HFC-245f a Higher evaporation temperature operation without exceeding the evaporation pressure of 2.18 MPa. Table 8 compares the performance of HFC-245fa and the Rankine cycle using the selected cis-HFO-1336mzz/HFE-236eaEbg blend operating at an evaporation pressure of 2.18 MPa. In Table 8, energy efficiency (ORC) = {expansion machine work rate [J/S] - liquid fruit work rate [%]} / {heat supply to evaporator rate [J/s]}. The data is based on the following conditions: Condenser temperature = 40 ° C Pump efficiency = 0.85 Expander efficiency = 0.85 Expansion of the expander inlet = oo °c Cooling of the condenser outlet = oo °c Table 8 Shun Shun HFC- -HFO -1336mzz/ -HFO-1336mzz/ -HFO-1336mzz/ 245fa HF£-236ea£bg HFE-236eaEbg HFE-236eaEbg (20/80 wt%) (50/50 wt%) (80/20 wt%) GWPi〇〇 1030 770 485 200 T s [MPa] 126 147 150 153 P s [MPa] 2.18 2.18 2.18 2.18 P g [MPa] • 25 0.17 0.15 0.14 Energy efficiency 0.135 0.143 0.147 0.152 Expander outlet volume [kJ/m3] 410 327 306 286 63 201219349 Table 8 shows that the cis-HFO-1336mzz/HFE-236eaEbg blend allows for a gentle evaporator pressure (eg, no more than about 2.18) consisting of a relatively inexpensive HVAC-type device that is widely used. Operates under MPa) while providing attractive energy efficiency and environmental characteristics. For example, a 80/20 wt% cis-HFO-1336mzz/HFE-236eaEbg blend with a GWP of 200 (ie 80.6% lower than the GFC of HFC-245fa) achieves a Rankine cycle with an energy efficiency of 15.2%. (ie about 12.5% higher than the energy efficiency of 13.5% using HFC-245fa). Example 6 A cross-critical Rankine cycle using a cis-HFO-1336mzz/HFE-236eaEbg compound. Table 9 shows '80/20 wt% cis-HFO-1336mZZ/HFE-236eaEbg incorporation compared to HFC-245fa. The performance of the compound in a transcritical Rankine cycle. In Table 9, energy efficiency (〇Rc) = {expansion machine power generation rate [J / S] _ liquid pump power consumption rate [j / s] } / {heat supply to the speed of the hair loss device [J / s]}. The data is based on the following conditions:

膨脹機入口溫度 =200 °C 流體加熱器壓力 =4.0 MPa 冷凝器溫度 =40.0°C 泵效率 =0.85 膨脹機效率 =0.85 冷凝器出口之過冷 =0.0eC 64 201219349 表9 HFC-245fa 順-HFO-1336mzz/HFE_236eaEbg (80/20 wt%) GWP100 1030 200 P 冷凝 s [MPa] 0.25 0.14 能量效率 0.158 0.167 膨脹機出口之容積 [kJ/m3] 530 330 表9顯示,具有GWP為200(即比HFC-245fa之 GWP 低 80_6%)的 80/20 wt% 之順 -HF〇-1336mzz/HFE-236eaEbg換合物可讓跨臨界朗肯 循環系統在相對高溫(T 膨脹機入口 = 200°C)下將所得之熱 以16.7%的效率(即在相同運轉條件下比HFC-245fa之 15.8%高出5.7%)轉換成機械能。 【圖式簡單說明】 圖1為利用一包括順-1,1,1,4,4,4-六氟-2-丁埽及2-二氟甲氧基2-四氟乙烷之組成物的浸沒式蒸發冷 凍器之一實施例示意圖。 圖2為利用一包括順-1,1,M,4,4-六氟-2-丁烯及2-二氟甲氧基-1,1,1,2-四氟乙烧之組成物的直接膨脹冷束 器之一實施例示意圖。 圖3為根據本發明進行直接熱交換之有機朗肯循 環系統與熱源之一實施例的方塊圖。 65 201219349 【主要元件符號說明】 1 ' V... 箭頭 2、 T... 箭頭 3 ' 3'··· 箭頭 4、 4'... 箭頭 5 > 5,·.. 冷凝器 6、 6'... 蒸發器 7、 7'··· 壓縮機 8 ' 12.· .膨脹裝置 9、 9’...旋管 10 、10 旋管 14 '20 …入口 16 、18 …出口 30. ..感應發電機 32. ..膨脹機 34. ..冷凝器 36. ..液體缓衝槽 38 '42 • ·.栗 40 ..熱交換器 46 ..熱源 66Expander inlet temperature = 200 °C Fluid heater pressure = 4.0 MPa Condenser temperature = 40.0 °C Pump efficiency = 0.85 Expander efficiency = 0.85 Cooling at the condenser outlet = 0.0eC 64 201219349 Table 9 HFC-245fa cis-HFO -1336mzz/HFE_236eaEbg (80/20 wt%) GWP100 1030 200 P Condensation s [MPa] 0.25 0.14 Energy efficiency 0.158 0.167 Volume of expander outlet [kJ/m3] 530 330 Table 9 shows that GWP is 200 (ie than HFC) -245fa's GWP 80-6% lower 80/20 wt% cis-HF〇-1336mzz/HFE-236eaEbg blend allows the transcritical Rankine cycle system to be at relatively high temperatures (T expander inlet = 200 °C) The heat obtained was converted to mechanical energy at an efficiency of 16.7% (i.e., 5.7% higher than 15.8% of HFC-245fa under the same operating conditions). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the use of a composition comprising cis-1,1,1,4,4,4-hexafluoro-2-butane and 2-difluoromethoxy-2-tetrafluoroethane. A schematic of one embodiment of an immersion effluent freezer. Figure 2 is a composition comprising a composition comprising cis-1,1,M,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane. A schematic diagram of one embodiment of a direct expansion cold bundle. 3 is a block diagram of one embodiment of an organic Rankine cycle system and heat source for direct heat exchange in accordance with the present invention. 65 201219349 [Explanation of main component symbols] 1 ' V... Arrow 2, T... Arrow 3 ' 3'··· Arrow 4, 4'... Arrow 5 > 5, ·.. Condenser 6, 6'... Evaporator 7, 7'··· Compressor 8 ' 12.· . Expansion device 9, 9'... Coil 10, 10 Coil 14 '20 ... inlet 16 , 18 ... outlet 30. .. induction generator 32.. expander 34.. condenser 36. .. liquid buffer tank 38 '42 • ·. chestnut 40.. heat exchanger 46.. heat source 66

Claims (1)

201219349 七、申請專利範圍: 1· 一種組成物,包括順-U,M,4,4_六氟_2_ 丁烯(順 -HFCM336mZZ)以及2-二氟甲氧基十112_四氟乙燒 (HFE-236eaEbg)。 2. 如請求項1所述之組成物,包括_共沸或類共沸組合物, 其係由約1重量百分比至約99重量百分比之2•二氣甲氧 基-U,l,2-四氟乙烷及約99重量百分比至約!重量百分比 之順-1,1,1,4,4,4-六氟-2-丁烯所組成。 3. 如请求項2所述之組成物,包括約丨至71重量百分比之 順-1,1,1,4,4,4-六氟-2·丁烯及約99至29重量百分比之2· 一氟甲氧基-1,1,1,2-四氟乙烧;或約至重量百分比 之順-1,1,1,4,4,4-六氟-2-丁烯及約5至i重量百分比:2_ 二氟甲氧基_1,1,1,2·四氟乙烧;其中該組成物為一順 -1,1,1,4,4,4-六氟-2-丁烯及2_二氟甲氧基_11,12,氟乙烷 之共滞或類共彿組合物。 4·如請求項1所述之組成物’包括一共沸混合物,其在約〇 C至約40°C之溫度及6 psia至25 psia之壓力下包括約 12.2至約16·2重量百分比之順^丄444•六氟_2_丁烯及 約87.8至約83.8重量百分比之2_二氟甲氧基十u,2_四 乙烷。 ’ ’ 5_如請求項1所述之組成物,更包括至少一適用於一熱 統之潤滑劑。 、...... 67 201219349 6. 如請求項1所述之組成物,更包括至少一安定劑。 7. 如請求項6所述之組成物’其中該安定劑係選自於由以下 所列者所組成之群組:受阻酚、硫代磷酸鹽、丁基化三苯 基硫代磷酸酯、有機磷酸鹽或亞磷酸鹽、芳基烷基醚、萜、 類喊、環氧化物、氣化丨衣氧化物、壞氧丙烧、抗壞血酸、 硫醇、内酯、硫醚、胺、硝曱烧、烷基矽燒、二苯基酮衍 生物、芳基硫化物、二乙烯基對苯二甲酸、二苯基對苯二 甲酸、離子液體及其混合物。 8. —種製冷之方法,包括在一待冷卻主體附近之一蒸發器内 將請求項1所述之組成物蒸發,以藉此製冷。 9. —種於一冷凍器内製冷之方法,包括在一蒸發器内將請求 項1所述之組成物蒸發;使一熱傳介質通過該蒸發器,其 中該蒸發步驟冷卻該熱傳介質,以及使該熱傳介質離開該 蒸發器而傳送至一待冷卻主體。 Λ 10. 如請求項9所述之方法,其中該蒸發該組成物之步驟產 生一蒸氣組成物,進一步包括於一塵縮機内塵縮該蒸氣 組成物之步驟,其中該壓縮機為一離心壓縮機。 U. —種於一冷凍器内替換HCFC-123、CFC-11或CFC_113 之方法,該方法包括提供請求項丨所述之組成物至該冷 來 以取代 HCFC-123、CFC-11 或 CFC-113。 68 201219349 12. —種由熱產生動力之方法,包括於一與一供熱系統接觸 之熱交換器中將一包括如請求項1所述之組成物的液相 工作流體蒸發,以產生一氣相工作流體,以及將該氣相 工作流體傳送至一產生機械能之膨脹機。 13. 如請求項12所述之方法,更包括冷凝該氣相工作流體, 以形成一液相工作流體。 14. 如請求項13所述之方法,更包括回收該液相工作流體用 以再次蒸發。 15. —種由接收自一熱源之熱產生動力之方法,包括: (a) 將一液相工作流體壓縮至高於該工作流體之臨界壓 力; (b) 將來自步驟⑻之該工作流體通過一熱交換器或一 流體加熱器,並將該工作流體加熱至一高於或低於 該工作流體之臨界溫度的溫度,其中該熱交換器或 該流體加熱器係與供應該熱之熱源相連通; (c) 自該熱交換器或流體加熱器移除至少一部分的經加 熱之工作流體; (d) 將該至少一部分的經加熱之工作流體傳送至一膨脹 機, 其中至少一部分的熱被轉換成機械能,以及 其中該經加熱之工作流體之壓力被降低至低於該工 作流體的臨界壓力,藉此使該至少一部分的經加熱玉 69 201219349 之工作流體成為一工作流體蒸氣或一蒸氣及液體之 工作流體混合物; (e) 將該工作流體蒸氣或蒸氣及液體之工作流體混合物 從該膨脹機傳送至一冷凝器,其中該至少一部分的 該工作流體蒸氣或該蒸氣及液體之工作流體混合物 被完全冷凝成工作流體液體; (f) 視需要將該工作流體液體與步驟(a)的該第一工作 流體液體混合; (g) 視需要重複步驟(a)至(f)至少一次; 其中該工作流體包括請求項1所述之組成物。 16. 如請求項15所述之方法,其中該蒸發壓力係約2.18 MPa 或更低。 17. 如請求項15所述之方法,其中該熱交換器或蒸發器係於 146°C之最低溫度下運作。 18. —種於動力循環系統中替換HFC-245fa之方法,該方法 包括提供如請求項1所述之組成物至該動力循環系統以 取代 HFC-245fa。 19.如請求項18所述之方法,其中該動力循環系統為一有機 朗肯(Rankine)系統。 70 201219349 2〇H求項18所述之方法,其中該組_&_ % i % 一里百π比之順-1,1,1,4,4,4-六氣-2-丁;|^及約8〇至2〇重 量百分比之2-二氟甲氧基-U,^-四氟乙烷。 21. ΓΠ12或15所述之方法,其中該組成物包括約2〇 重!百分比之順-1,1,1,4,4,4-六氟_2十席及約8〇至 20重量百分比之2_二氟甲氧基{山,敦乙烧。 22. 如,求項18所述之方法,其中該組成物包括約仙至川 重ϊ百分比之順-1,1,154,4,4-六氟-2-丁缔及約6〇至3〇重 量百分比之2-二氟曱氧基_1,1,1,2_四氟乙烷。 23. 如請求項U或15所述之方法,其中該組成物包括約4〇 直川重量百分比之順^⑷+六氟么丁烯及約⑼至 3〇重量百分比之2·二氟甲氧基·U,u_四氟乙燒。 24. 〆種於一動力循環裝置中將熱轉換為機械能之方法,該 裝置具有⑷-熱交換器,其中係利用來自一熱源之熱將 /液相工作流體汽化;以及(1))一膨脹機,其中係利用來 自該熱交換器之經汽化之工作流體來產生機械能,該方 法包括:⑴於該熱交換器中汽化作為工作流體之液相 g-HFO-1438mzz; (ii)將汽化之 E-HFO-1438mzz 由該熱交 換器傳送至該膨脹機;以及(iii)於該膨脹機中將來自汽化 么E-HFO-1438mzz的熱轉換為機械能。 201219349 25. 如請求項24所述之方法,其中該動力循環裝置具有一冷 凝器,其中來自該膨脹機之氣相工作流體被冷凝為液相 工作流體,進一步包括在該冷凝器中將氣相 E-HFO-1438mzz 冷凝為液相 E-HFO-1438mzz。 26. 如請求項25所述之方法,其中液相E-HFO-1438mzz係 返回該熱交換器。 27. 如請求項24所述之方法,其中該組成物包括約20至80 重量百分比之順-1,1,1,4,4,4-六氟-2-丁烯及約80至20重 量百分比之2-二氣甲乳基-1,1,1,2-四氣乙烧。 28. 如請求項27所述之方法,其中該組成物包括約40至70 重量百分比之順-1,1,1,4,4,4-六氟-2-丁烯及約60至30重 量百分比之2-二氣甲氧基-1,1,1,2-四氣乙烧。 72201219349 VII. Patent application scope: 1. A composition including cis-U, M, 4, 4-hexafluoro-2-butene (cis-HFCM336mZZ) and 2-difluoromethoxy-10-112-tetrafluoroethane (HFE-236eaEbg). 2. The composition of claim 1 comprising an azeotrope or azeotrope-like composition comprising from about 1 weight percent to about 99 weight percent of 2 • dimethoxymethoxy-U,l,2- Tetrafluoroethane and about 99% by weight to about! The weight percentage consists of cis-1,1,1,4,4,4-hexafluoro-2-butene. 3. The composition of claim 2, comprising from about 重量 to 71 weight percent of cis-1,1,1,4,4,4-hexafluoro-2.butene and from about 99 to 29 weight percent of 2 · fluoromethoxy-1,1,1,2-tetrafluoroethane; or about 5% by weight of cis-1,1,1,4,4,4-hexafluoro-2-butene and about 5 To i by weight: 2_difluoromethoxy-1,1,1,2·tetrafluoroethane; wherein the composition is monocis-1,1,1,4,4,4-hexafluoro-2- A co-stagnation or a combination of butene and 2-difluoromethoxy-11,12, fluoroethane. 4. The composition of claim 1 comprising an azeotrope comprising from about 12.2 to about 16.2 weight percent at a temperature of from about 〇C to about 40 °C and a pressure of from 6 psia to 25 psia. ^ 丄 444 hexafluoro-2-butene and from about 87.8 to about 83.8 weight percent of 2-difluoromethoxy decyl, 2-tetraethane. The composition of claim 1 further comprising at least one lubricant suitable for use in a heat system. ...... 67 201219349 6. The composition of claim 1 further comprising at least one stabilizer. 7. The composition of claim 6 wherein the stabilizer is selected from the group consisting of hindered phenols, thiophosphates, butylated triphenyl thiophosphates, Organophosphate or phosphite, aryl alkyl ether, hydrazine, sulphur, epoxide, gasified smelting oxide, oxypropylene, ascorbic acid, mercaptan, lactone, thioether, amine, nitrate Burning, alkyl oxime, diphenyl ketone derivatives, aryl sulfides, divinyl terephthalic acid, diphenyl terephthalic acid, ionic liquids, and mixtures thereof. 8. A method of refrigeration comprising evaporating the composition of claim 1 in an evaporator adjacent a body to be cooled to thereby cool. 9. A method of cooling in a freezer comprising evaporating the composition of claim 1 in an evaporator; passing a heat transfer medium through the evaporator, wherein the evaporating step cools the heat transfer medium, And transferring the heat transfer medium away from the evaporator to a body to be cooled. 10. The method of claim 9, wherein the step of evaporating the composition produces a vapor composition, further comprising the step of dusting the vapor composition in a dust-reducing machine, wherein the compressor is a centrifugal compression machine. U. A method of replacing HCFC-123, CFC-11 or CFC_113 in a freezer, the method comprising providing the composition of claim 至 to the cold to replace HCFC-123, CFC-11 or CFC- 113. 68 201219349 12. A method of generating heat by heat, comprising: evaporating a liquid phase working fluid comprising the composition of claim 1 in a heat exchanger in contact with a heating system to produce a gas phase The working fluid, and the vapor phase working fluid is delivered to an expander that produces mechanical energy. 13. The method of claim 12, further comprising condensing the vapor phase working fluid to form a liquid phase working fluid. 14. The method of claim 13 further comprising recovering the liquid phase working fluid for evaporation again. 15. A method of generating power from heat received from a heat source, comprising: (a) compressing a liquid phase working fluid to a critical pressure above the working fluid; (b) passing the working fluid from step (8) through a a heat exchanger or a fluid heater that heats the working fluid to a temperature above or below a critical temperature of the working fluid, wherein the heat exchanger or the fluid heater is in communication with a heat source that supplies the heat (c) removing at least a portion of the heated working fluid from the heat exchanger or fluid heater; (d) transferring the at least a portion of the heated working fluid to an expander, wherein at least a portion of the heat is converted Mechanical energy, and wherein the pressure of the heated working fluid is reduced below a critical pressure of the working fluid, thereby causing the at least a portion of the heated working fluid of the jade 69 201219349 to be a working fluid vapor or a vapor a liquid working fluid mixture; (e) transferring the working fluid vapor or vapor and liquid working fluid mixture from the expander to a condenser, The at least a portion of the working fluid vapor or the vapor and liquid working fluid mixture is completely condensed into a working fluid liquid; (f) mixing the working fluid liquid with the first working fluid liquid of step (a) as needed; (g) repeating steps (a) through (f) at least once as needed; wherein the working fluid comprises the composition of claim 1. 16. The method of claim 15 wherein the evaporation pressure is about 2.18 MPa or less. 17. The method of claim 15 wherein the heat exchanger or evaporator is operated at a minimum temperature of 146 °C. 18. A method of replacing HFC-245fa in a power cycle system, the method comprising providing the composition of claim 1 to the power cycle system to replace HFC-245fa. 19. The method of claim 18, wherein the power cycle system is an organic Rankine system. 70 201219349 2 〇H. The method of claim 18, wherein the group _&_% i % is one hundred π cis-1,1,1,4,4,4-hexa-2-butan; |^ and about 8 〇 to 2 〇 by weight of 2-difluoromethoxy-U,^-tetrafluoroethane. 21. The method of paragraph 12 or 15, wherein the composition comprises about 2 〇! Percentage of cis-1,1,1,4,4,4-hexafluoro_2, ten seats and about 8 to 20% by weight of 2-difluoromethoxy {Mountain, Dunyi. 22. The method of claim 18, wherein the composition comprises cis-1,1,154,4,4-hexafluoro-2-butane and about 6 to 3 ϊ of the percentage of the genus to the genus Weight percent of 2-difluoromethoxyl-1,1,1,2-tetrafluoroethane. 23. The method of claim U or 15, wherein the composition comprises about 4% by weight of cis-(4)+hexafluoromethanebutene and about (9) to 3% by weight of 2·difluoromethoxy · U, u_tetrafluoroethane. 24. A method of converting heat into mechanical energy in a power cycle apparatus having a (4) heat exchanger wherein the liquid/liquid working fluid is vaporized by heat from a heat source; and (1)) An expander in which mechanical energy is generated using a vaporized working fluid from the heat exchanger, the method comprising: (1) vaporizing a liquid phase g-HFO-1438mzz as a working fluid in the heat exchanger; (ii) The vaporized E-HFO-1438mzz is transferred from the heat exchanger to the expander; and (iii) the heat from the vaporized E-HFO-1438mzz is converted to mechanical energy in the expander. The method of claim 24, wherein the power cycle device has a condenser, wherein a vapor phase working fluid from the expander is condensed into a liquid phase working fluid, further comprising a gas phase in the condenser E-HFO-1438mzz is condensed into liquid phase E-HFO-1438mzz. 26. The method of claim 25, wherein the liquid phase E-HFO-1438mzz is returned to the heat exchanger. 27. The method of claim 24, wherein the composition comprises from about 20 to 80 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene and from about 80 to 20 weight Percent of 2-2-air methyl-lactyl-1,1,1,2-tetra-ethylene b-firing. 28. The method of claim 27, wherein the composition comprises from about 40 to 70 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene and from about 60 to 30 weight Percent of 2-dimethoxymethoxy-1,1,1,2-four gas E-sinter. 72
TW100139287A 2010-11-10 2011-10-28 Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof TW201219349A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39482710P 2010-11-10 2010-11-10

Publications (1)

Publication Number Publication Date
TW201219349A true TW201219349A (en) 2012-05-16

Family

ID=45034159

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100139287A TW201219349A (en) 2010-11-10 2011-10-28 Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof

Country Status (2)

Country Link
TW (1) TW201219349A (en)
WO (1) WO2012064477A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618792B (en) * 2012-08-24 2018-03-21 杜邦股份有限公司 Processes and compositions for organic rankine cycles for generating mechanical energy from heat
TWI817211B (en) * 2020-10-15 2023-10-01 日商力森諾科股份有限公司 How to store fluorobutene

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2643419T3 (en) 2010-11-25 2019-09-30 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
FR2968009B1 (en) 2010-11-25 2012-11-16 Arkema France REFRIGERANT FLUIDS CONTAINING (E) -1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE
FR2968310B1 (en) 2010-12-03 2012-12-07 Arkema France COMPOSITIONS BASED ON 1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE AND 3,3,4,4,4-PENTAFLUOROBUT-1-ENE
FR2977256B1 (en) * 2011-07-01 2013-06-21 Arkema France COMPOSITIONS OF 2,4,4,4-TETRAFLUOROBUT-1-ENE AND CIS-1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE
DE102011056055B4 (en) * 2011-12-05 2013-11-28 Uas Messtechnik Gmbh Method and device for generating electricity from waste heat
EP2794804A1 (en) * 2011-12-21 2014-10-29 E. I. Du Pont de Nemours and Company Use of e-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally 1,1,1,2,3-pentafluoropropane in high temperature heat pumps
FR2989084B1 (en) 2012-04-04 2015-04-10 Arkema France COMPOSITIONS BASED ON 2,3,3,4,4,4-HEXAFLUOROBUT-1-ENE
TW201414823A (en) * 2012-09-19 2014-04-16 Du Pont Compositions comprising Z-1,1,1,4,4,4-hexafluoro-2-butene and 2,2-dichloro-1,1,1-trifluoroethane and methods of use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892522B2 (en) * 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
ES2406004T3 (en) 2005-01-12 2013-06-04 Halocarbon Products Corporation Synthesis of fluorinated ethers
US7708903B2 (en) * 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
MX2009011471A (en) * 2007-04-27 2009-11-10 Du Pont Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene.
CN101688817A (en) 2007-06-21 2010-03-31 纳幕尔杜邦公司 Method for leak detection in heat transfer system
US7795482B2 (en) 2007-07-03 2010-09-14 E. I. Du Pont De Nemours And Company Method of hydrodechlorination to produce dihydrofluorinated olefins
US8454853B2 (en) * 2008-03-07 2013-06-04 Arkema Inc. Halogenated alkene heat transfer composition with improved oil return

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618792B (en) * 2012-08-24 2018-03-21 杜邦股份有限公司 Processes and compositions for organic rankine cycles for generating mechanical energy from heat
TWI817211B (en) * 2020-10-15 2023-10-01 日商力森諾科股份有限公司 How to store fluorobutene

Also Published As

Publication number Publication date
WO2012064477A3 (en) 2012-07-26
WO2012064477A2 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
US20190211247A1 (en) Use of Alkyl Perfluoroalkene Ethers and Mixtures Thereof in High Temperature Heat Pumps
TW201219349A (en) Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof
JP6462672B2 (en) Compositions containing difluoromethane, pentafluoroethane, tetrafluoroethane and tetrafluoropropene, and uses thereof
TWI507379B (en) Compositions comprising tetrafluoropropene and difluoromethane and uses thereof
CA2820077C (en) Combinations of e-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating
US20130104575A1 (en) Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in high temperature heat pumps
JP6005056B2 (en) Use of a refrigerant comprising E-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane for cooling
US20150191639A1 (en) Use of e-1,1,1,4,4,4-hexafluoro-2-butene in heat pumps
TW201414823A (en) Compositions comprising Z-1,1,1,4,4,4-hexafluoro-2-butene and 2,2-dichloro-1,1,1-trifluoroethane and methods of use thereof