TWI615994B - Diode for a printable composition - Google Patents

Diode for a printable composition Download PDF

Info

Publication number
TWI615994B
TWI615994B TW100131614A TW100131614A TWI615994B TW I615994 B TWI615994 B TW I615994B TW 100131614 A TW100131614 A TW 100131614A TW 100131614 A TW100131614 A TW 100131614A TW I615994 B TWI615994 B TW I615994B
Authority
TW
Taiwan
Prior art keywords
microns
diode
layer
diodes
micrometers
Prior art date
Application number
TW100131614A
Other languages
Chinese (zh)
Other versions
TW201216506A (en
Inventor
馬克D 洛文索
威廉 約翰斯頓 雷
尼爾O 莎頓
理查A 布蘭查德
布萊德 歐羅
Original Assignee
無限科技全球公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 無限科技全球公司 filed Critical 無限科技全球公司
Publication of TW201216506A publication Critical patent/TW201216506A/en
Application granted granted Critical
Publication of TWI615994B publication Critical patent/TWI615994B/en

Links

Abstract

二極體液體或膠體懸浮液之例示性可印組成物包含複數個二極體、第一溶劑及/或黏度調節劑。例示性二極體包含:發光或光吸收區域,直徑為介於約20微米至30微米之間且高度為介於2.5微米至7微米之間;複數個第一端子,其間隔開且在第一面上周邊耦接至該發光區域,該複數個第一端子中之各第一端子之高度為介於約0.5微米至2微米之間;及一個第二端子,其在該第一面上中心耦接至該發光區域之台面區域,該第二端子之高度為介於1微米至8微米之間。 An exemplary printable composition of a diode liquid or colloidal suspension comprises a plurality of diodes, a first solvent, and/or a viscosity modifier. An exemplary diode includes: a luminescent or light absorbing region having a diameter between about 20 microns and 30 microns and a height between 2.5 microns and 7 microns; a plurality of first terminals spaced apart and at a peripheral portion is coupled to the light emitting region, a height of each of the plurality of first terminals is between about 0.5 micrometers and 2 micrometers; and a second terminal is disposed on the first surface The center is coupled to the mesa region of the light emitting region, and the height of the second terminal is between 1 micrometer and 8 micrometers.

Description

用在可印組成物的二極體 Diode used in printable compositions

【版權聲明與許可】[Copyright Notice and License]

此專利文件之一部分揭示內容含有受版權保護之材料。版權所有者不反對任何人傳真複製專利與商標局(Patent and Trademark Office)專利檔案或記錄中出現之該專利文件或該專利揭示內容,但在其他任何情況下均保留所有版權。以下聲明應適用於此文件、如下文所述之資料及內容,以及其圖式:Copyright © 2010-2011,NthDegree Technologies Worldwide公司。 A portion of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the disclosure of the patent in the Patent and Trademark Office patent file or record, but retains all copyrights in all other cases. The following statement shall apply to this document, the materials and content as described below, and its schema: Copyright © 2010-2011, NthDegree Technologies Worldwide.

【交叉申請】[Cross application]

本申請案為William Johnstone Ray等發明人在2010年9月1日申請之題為「Printable Composition of a Liquid or Gel Suspension of Diodes」之美國臨時專利申請案第61/379,225號之轉換案且主張其優先權,該專利申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application is a conversion of US Provisional Patent Application No. 61/379,225, entitled "Printable Composition of a Liquid or Gel Suspension of Diodes", filed on September 1, 2010, by the inventor of the s. The patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety herein right.

本申請案為William Johnstone Ray等發明人在2010年9月1日申請之題為「Light Emitting,Photovoltaic and Other Electronic Apparatus」之美國臨時專利申請案第61/379,284號之轉換案且主張其優先權,該專利申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application is a conversion of US Provisional Patent Application No. 61/379,284, entitled "Light Emitting, Photovoltaic and Other Electronic Apparatus", filed on September 1, 2010, by the inventor of the s. This patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in the the the the the the the the

本申請案為William Johnstone Ray等發明人在2010年9月3日申請之題為「Printable Composition of a Liquid or Gel Suspension of Diodes and Method of Making Same」之美國臨時專利申請案第61/379,830號之轉換案且主張其優先權,該專利申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 U.S. Provisional Patent Application Serial No. 61/379,830, entitled "Printable Composition of a Liquid or Gel Suspension of Diodes and Method of Making Same", filed on September 3, 2010 by the inventor of the s. The present invention is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety herein in The subject matter claims priority.

本申請案為William Johnstone Ray等發明人在2010年9月3日申請之題為「Light Emitting,Photovoltaic and Other Electronic Apparatus」之美國臨時專利申請案第61/379,820號之轉換案且主張其優先權,該專利申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application is a conversion of US Provisional Patent Application No. 61/379,820, entitled "Light Emitting, Photovoltaic and Other Electronic Apparatus", filed on September 3, 2010 by the inventor of the s. This patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in the the the the the the the the

本申請案為William Johnstone Ray等發明人在2007年5月31日申請之題為「Method of Manufacturing Addressable and Static Electronic Displays」之美國專利申請案第11/756,616號之部分接續申請案且主張其優先權,該專利申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application is a continuation-in-part of U.S. Patent Application Serial No. 11/756,616, filed on May 31, 2007, which is hereby incorporated by and assigned to the entire entire entire entire entire disclosure This patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in the the the the the the the the .

本申請案為William Johnstone Ray等發明人在2009年11月22日申請之題為「Method of Manufacturing Addressable and Static Electronic Displays,Power Generating and Other Electronic Apparatus」之美國專利申請案第12/601,268號之部分接續申請案且主張其優先權,美國專利申請案第12/601,268號為William Johnstone Ray等發明人在2007年5月31日申請之題為「Method of Manufacturing Addressable and Static Electronic Displays」之美國專利申請案第11/756,616號之部分接續申請案且主張其優先權,且為William Johnstone Ray等發明人在2008年5月30日申請之題為「Method of Manufacturing Addressable and Static Electronic Displays,Power Generating and Other Electronic Apparatus」之國際申請案PCT/US2008/65237遵循35 U.S.C.第371章節之美國國家階段申請案且主張其優先權,國際申請案PCT/US2008/65237主張2007年5月31日申請之美國專利申請案第11/756,616號之優先權,該等申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application was filed on November 22, 2009 by the inventor of William Johnstone Ray and entitled "Method of Manufacturing U.S. Patent Application Serial No. 12/601,268, the entire disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all U.S. Patent Application Serial No. 11/756,616, entitled "Method of Manufacturing Addressable and Static Electronic Displays," filed on May 31, 2007, and which claims priority, and is the inventor of William Johnstone Ray et al. The international application PCT/US2008/65237, entitled "Method of Manufacturing Addressable and Static Electronic Displays, Power Generating and Other Electronic Apparatus", filed on May 30, 2008, follows the US National Phase III application of 35 USC Section 371 and Claiming priority, the international application PCT/US2008/65237 claims priority to U.S. Patent Application Serial No. 11/756,616, filed on May 31, 2007, which is assigned to The content is incorporated herein by reference as if it were set forth herein The text of the same general full force and effect and the priority claimed for all commonly disclosed the subject matter.

本申請案亦為William Johnstone Ray等發明人在2011年5月31日申請之題為「Addressable or Static Light Emitting or Electronic Apparatus」之美國專利申請案第13/149,681號之部分接續申請案且主張其優先權,美國專利申請案第13/149,681號為William Johnstone Ray等發明人在2007年5月31日申請且在2011年7月5日頒佈為美國 專利第US 7,972,031 B2號之題為「Addressable or Static Light Emitting or Electronic Apparatus」之美國專利申請案第11/756,619號之接續申請案且主張其優先權,該等申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。本申請案為William Johnstone Ray等發明人在2009年11月22日申請之題為「Addressable or Static Light Emitting,Power Generating or Other Electronic Apparatus」之美國專利申請案第12/601,271號之部分接續申請案且主張其優先權,美國專利申請案第12/601,271號為William Johnstone Ray等發明人在2007年5月31日申請之題為「Addressable or Static Light Emitting or Electronic Apparatus」之美國專利申請案第11/756,619號之部分接續申請案且主張其優先權,且為William Johnstone Ray等發明人在2008年5月30日申請之題為「Addressable or Static Light Emitting,Power Generating or Other Electronic Apparatus」之國際申請案PCT/US2008/65230遵循35 U.S.C.第371章節之美國國家階段申請案且主張其優先權,國際申請案PCT/US2008/65230主張2007年5月31日申請之美國專利申請案第11/756,619號之優先權,該等申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權。 This application is also a part of the continuation application of U.S. Patent Application Serial No. 13/149,681, filed on Jan. Priority, U.S. Patent Application Serial No. 13/149,681, filed on May 31, 2007 by the inventor of William Johnstone Ray, and issued to the United States on July 5, 2011. U.S. Patent Application Serial No. 11/756,619, entitled "Addressable or Static Light Emitting or Electronic Apparatus", which claims the priority of the present application, which is assigned to the present application. The entire content of the disclosure is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety herein This application is part of a continuation application of U.S. Patent Application Serial No. 12/601,271, entitled "Addressable or Static Light Emitting, Power Generating or Other Electronic Apparatus", filed on November 22, 2009 by the inventor of the s. And U.S. Patent Application Serial No. 12/601,271, filed on May 31, 2007, entitled "Addressable or Static Light Emitting or Electronic Apparatus", filed on May 31, 2007. /756, Part 619, which continues the application and claims its priority, and is an international application for the "Addressable or Static Light Emitting, Power Generating or Other Electronic Apparatus" filed by the inventor of William Johnstone Ray on May 30, 2008. PCT/US2008/65230, in accordance with the US National Application No. 371 of the 35 USC, Section 371, and claims its priority, the International Patent Application No. PCT/US2008/65230, filed on May 31, 2007 Priority, these applications are co-assigned with this application, and the entire contents of which are incorporated herein by reference. Having completely the same as if set forth in their entirety herein effect of ships and filed for all commonly disclosed subject matter may.

本申請案亦與隨其同時申請之下列專利申請案有關,該等申請案與本申請案共同讓渡,且其全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力且針對所有共同揭示之標的物主張優先權:(1)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Printable Composition of a Liquid or Gel Suspension of Diodes」之美國專利申請案第________號;(2)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Light Emitting,Power Generating or Other Electronic Apparatus」之美國專利申請案第________號;(3)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Method of Manufacturing a Printable Composition of a Liquid or Gel Suspension of Diodes」之美國專利申請案第________號;(4)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Method of Manufacturing a Light Emitting,Power Generating or Other Electronic Apparatus」之美國專利申請案第________號;(5)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Diode For a Printable Composition」之美國專利申請案第________號;以及(6)Mark D.Lowenthal等發明人在2011年8月31日申請之題為「Printable Composition of a Liquid or Gel Suspension of Two-Terminal Integrated Circuits and Apparatus」之美國專利申請案第________號。 The present application is also related to the following patent applications which are hereby incorporated by reference in its entirety herein in its entirety in the the the the the the the the the the the the The same full effect and priority is claimed for all commonly disclosed subject matter: (1) The United States, entitled "Printable Composition of a Liquid or Gel Suspension of Diodes", filed on August 31, 2011 by Mark D. Lowenthal et al. Patent Application No. ________; (2) US Patent Application No. ________, entitled "Light Emitting, Power Generating or Other Electronic Apparatus", filed on August 31, 2011 by Mark D. Lowenthal et al. No. (3) US Patent Application No. ________, entitled "Method of Manufacturing a Printable Composition of a Liquid or Gel Suspension of Diodes", filed on August 31, 2011 by the inventor, et al. (4) The United States, such as Mark D. Lowenthal, applied for the "Method of Manufacturing a Light Emitting, Power Generating or Other Electronic Apparatus" on August 31, 2011. Patent Application No. ________; (5) US Patent Application No. ________, entitled "Diode For a Printable Composition", filed on August 31, 2011 by Mark D. Lowenthal et al; 6) U.S. Patent Application Serial No. ________, entitled "Printable Composition of a Liquid or Gel Suspension of Two-Terminal Integrated Circuits and Apparatus", filed on August 31, 2011.

本發明大體關於發光及光電技術,且尤其關於發光或光電二極體或其他二端積體電路懸浮於液體或膠體中且能夠經印刷之組成物,以及製造發光、光電或其他二極體或二端積體電路懸浮於液體或膠體中之組成物的方法。 The present invention relates generally to luminescence and optoelectronic technology, and more particularly to luminescent or photodiode or other two-terminal integrated circuits suspended in a liquid or colloid and capable of being printed, and for the manufacture of luminescent, optoelectronic or other diodes or A method in which a two-terminal integrated circuit is suspended in a composition in a liquid or a gel.

具有發光二極體(「LED」)之照明器件通常需要使用積體電路製程步驟在半導體晶圓上形成LED。所得LED實質上呈平面且相當大,寬200微米或200微米以上之量級。每一此種LED為二端器件,通常在LED之同一側上具有兩個金屬端以為LED之p型部分與n型部分提供歐姆接觸(Ohmic contact)。接著通常經由機械製程(諸如鋸切)將LED晶圓分成個別LED。接著將個別LED置於反射外殼中,且將接線個別地附接至LED之兩個金屬端中之各者。此製程耗時、勞動密集且昂貴,使得基於LED之照明器件對於多數消費者應用而言一般過於昂貴。 Lighting devices with light-emitting diodes ("LEDs") typically require the use of integrated circuit processing steps to form LEDs on a semiconductor wafer. The resulting LED is substantially planar and relatively large, on the order of 200 microns or more. Each such LED is a two-terminal device, typically having two metal ends on the same side of the LED to provide an Ohmic contact for the p-type and n-type portions of the LED. The LED wafer is then typically divided into individual LEDs via a mechanical process such as sawing. Individual LEDs are then placed in the reflective housing and the wires are individually attached to each of the two metal ends of the LED. This process is time consuming, labor intensive, and expensive, making LED-based lighting devices generally too expensive for most consumer applications.

同樣,能量生成器件(諸如光電面板)亦通常需要使用積體電路製程步驟在半導體晶圓或其他基板上形成光電二極體。接著封裝且組裝所得晶圓或其他基板以形成光電面板。此製程亦耗時、勞動密集且昂貴,使得光電器件在無第三方資助或無其他政府鼓勵下廣泛使用亦過於昂貴。 Likewise, energy generating devices, such as photovoltaic panels, also typically require the use of integrated circuit processing steps to form photodiodes on semiconductor wafers or other substrates. The resulting wafer or other substrate is then packaged and assembled to form a photovoltaic panel. This process is also time consuming, labor intensive and expensive, making optoelectronic devices too expensive to use widely without third party funding or without other government incentives.

已運用各種技術試圖形成用於發光或能量生成目的的新型二極體或其他半導體器件。舉例而言,已提出可印刷經有機分子官能化或封端從而可混溶於有機樹脂及溶劑中之量子點以形成圖形,接著在該等圖形經第二光激發 (pump)時發光。各種形成器件之方法亦已使用半導體奈米粒子,諸如處於約1.0nm至約100nm(十分之一微米)範圍內之粒子進行。另一方法已利用大量分散於溶劑-黏合劑載劑中之矽粉,其中利用所得矽粉膠態懸浮液形成印刷電晶體中之活性層。另一不同方法已使用形成於GaAs晶圓上之極平坦之AlInGaP LED結構,其中各LED具有至晶圓上之兩個相鄰LED中之每一者的脫離光阻錨,且接著取放各LED以形成所得器件。 Various techniques have been employed to attempt to form novel diodes or other semiconductor devices for illuminating or energy generating purposes. For example, it has been proposed to print quantum dots functionalized or capped with organic molecules so as to be miscible in organic resins and solvents to form a pattern, followed by second light excitation in the patterns Lights up (pump). Various methods of forming devices have also been performed using semiconductor nanoparticles, such as particles in the range of from about 1.0 nm to about 100 nm (tenths of micrometers). Another method has utilized a large amount of tantalum powder dispersed in a solvent-adhesive carrier, wherein the resulting tantalum powder colloidal suspension is used to form the active layer in the printed transistor. Another different approach has used an extremely flat AlInGaP LED structure formed on a GaAs wafer, where each LED has a detached photoresist anchor to each of two adjacent LEDs on the wafer, and then each The LEDs form the resulting device.

其他途徑使用「鎖與鑰(lock and key)」流體自組裝,其中將梯形二極體置放於溶劑中,接著將其傾注於具有用以將梯形二極體捕獲且固持於適當位置之匹配之梯形孔之基板上。然而,溶劑中之梯形二極體並非懸浮及分散於溶劑內。反之,梯形二極體快速沉降成相互黏附之二極體塊,無法維持懸浮或分散於溶劑內,且在臨用前須要活性音波處理或攪拌。溶劑中之此種梯形二極體不能用作能夠儲存、封裝或用作墨水之基於二極體之墨水,且進一步不適用於印刷製程中。 Other approaches use a "lock and key" fluid self-assembly in which the trapezoidal diode is placed in a solvent and then poured into a match that is used to capture and hold the trapezoidal diode in place. On the substrate of the trapezoidal hole. However, the trapezoidal diode in the solvent is not suspended and dispersed in the solvent. On the contrary, the trapezoidal diode rapidly settles into mutually adhered diode blocks, which cannot be suspended or dispersed in the solvent, and requires active sonication or agitation before use. Such a trapezoidal diode in a solvent cannot be used as a diode-based ink capable of being stored, packaged, or used as an ink, and is further unsuitable for use in a printing process.

此等方法均未利用真正分散且懸浮於液體或膠體介質中,諸如以形成墨水之含有二端積體電路或其他半導體器件之液體或膠體,其中二端積體電路懸浮成粒子,完成半導體器件且其能夠起作用,且該含有二端積體電路或其他半導體器件之液體或膠體可使用印刷製程在非惰性大氣空氣環境中形成裝置或系統。 None of these methods utilize liquids or colloids that are truly dispersed and suspended in a liquid or colloidal medium, such as a two-terminal integrated circuit or other semiconductor device that forms an ink, wherein the two-terminal integrated circuit is suspended into particles to complete the semiconductor device. And it can function, and the liquid or colloid containing the two-terminal integrated circuit or other semiconductor device can form a device or system in a non-inert atmospheric air environment using a printing process.

對於基於LED之器件以及光電器件而言,此等基於二 極體之技術的新近發展仍過於複雜且昂貴而無法達成商業上可行性。因此,仍須要經設計成在併入之組件以及製造簡便性方面成本較低的發光及/或光電裝置。亦仍需要使用成本較低且較穩固之製程製造該等發光或光電器件,從而產生可供廣泛使用且為消費者及商業所接受之基於LED之照明器件以及光電面板的方法。因此,對能夠經印刷以形成基於LED之器件及光電器件的完成之能夠起作用之二極體或其他二端積體電路的液體或膠體懸浮液、形成該等基於LED之器件及光電器件之印刷方法以及所得之印刷之基於LED之器件及光電器件仍有各種需求。 For LED-based devices and optoelectronic devices, these are based on The recent developments in polar technology are still too complex and expensive to achieve commercial viability. Therefore, there is still a need for an illuminating and/or optoelectronic device that is designed to be less costly in terms of incorporated components and ease of manufacture. There is still a need to fabricate such illuminating or optoelectronic devices using less costly and more robust processes, thereby producing LED-based lighting devices and photovoltaic panels that are widely available and acceptable to consumers and businesses. Thus, a liquid or colloidal suspension of a diode or other two-terminal integrated circuit capable of being printed to form a completed LED-based device and optoelectronic device, forming such LED-based devices and optoelectronic devices The printing method and the resulting printed LED-based devices and optoelectronic devices still have various needs.

例示性具體實例提供一種「二極體墨水」,即能夠諸如經由例如網版印刷或快乾印刷術印刷的二極體或其他二端積體電路的液體或膠體懸浮液及分散液。如下文所更詳細描述,二極體自身在包括於二極體墨水組成物中之前為完全成形之半導體器件,其在通電時能夠起作用以發光(在具體化為LED時)或在曝露於光源時提供電力(在具體化為光電二極體時)。例示性方法亦包含製造二極體墨水之方法,如下文所更詳細論述,該方法使複數個二極體分散及懸浮於溶劑及黏性樹脂或聚合物混合物中,且可印刷該二極體墨水以製造基於LED之器件及光電器件。亦揭示藉由印刷該種二極體墨水而形成之例示性裝置及系統。 Illustrative embodiments provide a "diode ink," a liquid or colloidal suspension and dispersion that can be printed, for example, via a diode or other two-end integrated circuit, such as screen printing or fast-drying printing. As described in more detail below, the diode itself is a fully formed semiconductor device prior to inclusion in the diode ink composition that can function to illuminate (when embodied as an LED) or to be exposed to light upon energization Power is supplied when the light source is used (when embodied as a photodiode). The exemplary method also includes a method of making a diode ink, as discussed in more detail below, which disperses and suspends a plurality of diodes in a solvent and a viscous resin or polymer mixture, and prints the diode Ink to manufacture LED-based devices and optoelectronic devices. Exemplary devices and systems formed by printing such a diode ink are also disclosed.

雖然描述內容集中於作為一種類型之二端積體電路的二極體,然而熟習此項技術者應瞭解可等效地替換成其他 類型之半導體器件以形成更廣泛稱作「半導體器件墨水」之物,且所有該等變化應視作等效且處於本發明範疇內。因此,本文中任何對「二極體」之提及應理解為意謂且包括任何種類之任何二端積體電路,諸如電阻器、電感器、電容器、RFID電路、感測器、壓電器件等,以及可使用兩個端子或電極操作之任何其他積體電路。 Although the description focuses on the diode as a type of two-terminal integrated circuit, those skilled in the art should understand that it can be equivalently replaced with other Semiconductor devices of the type are formed to be more broadly referred to as "semiconductor device inks" and all such variations are considered equivalent and are within the scope of the invention. Therefore, any reference to "diode" in this document should be understood to mean and include any two-terminal integrated circuit of any kind, such as resistors, inductors, capacitors, RFID circuits, sensors, piezoelectric devices. Etc., and any other integrated circuit that can be operated with two terminals or electrodes.

一例示性具體實例提供一種組成物,其包含:複數個二極體;第一溶劑;以及黏度調節劑。 An exemplary embodiment provides a composition comprising: a plurality of diodes; a first solvent; and a viscosity modifier.

在一例示性具體實例中,第一溶劑包含至少一種選自由以下組成之群的溶劑:水;醇,諸如甲醇、乙醇、正丙醇(包括1-丙醇、2-丙醇(異丙醇)、1-甲氧基-2-丙醇)、丁醇(包括1-丁醇、2-丁醇(異丁醇))、戊醇(包括1-戊醇、2-戊醇、3-戊醇)、辛醇、正辛醇(包括1-辛醇、2-辛醇、3-辛醇)、四氫糠醇、環己醇、松香醇;醚,諸如甲基乙基醚、乙醚、乙基丙基醚及聚醚;酯,諸如乙酸乙酯、己二酸二甲酯、丙二醇單甲醚乙酸酯、戊二酸二甲酯、丁二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、四氫呋喃(THF)、二甲基甲醯胺(DMF)、N-甲基甲醯胺(NMF)、二甲亞碸(DMSO);及其混合物。第一溶劑可以例如約0.3重量%至50重量%或60重量%之量存在。 In an exemplary embodiment, the first solvent comprises at least one solvent selected from the group consisting of: water; alcohols such as methanol, ethanol, n-propanol (including 1-propanol, 2-propanol (isopropanol) ), 1-methoxy-2-propanol), butanol (including 1-butanol, 2-butanol (isobutanol)), pentanol (including 1-pentanol, 2-pentanol, 3- Pentanol), octanol, n-octanol (including 1-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol, cyclohexanol, rosin alcohol; ether, such as methyl ethyl ether, diethyl ether, Ethyl propyl ether and polyether; esters such as ethyl acetate, dimethyl adipate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, glycerol acetate; Alcohols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ethers, glycol ether acetates; carbonates such as propyl carbonate; glycerols such as glycerol; acetonitrile, Tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), dimethyl hydrazine (DMSO); and mixtures thereof. The first solvent may be present, for example, in an amount from about 0.3% to 50% or 60% by weight.

在各個例示性具體實例中,複數個二極體中之各二極體具有介於約20微米至30微米之間之直徑及介於約5微 米至15微米之間之高度;或具有介於約10微米至50微米之間之直徑及介於約5微米至25微米之間之高度;或具有各自為介於約10微米至50微米之間之寬度及長度以及介於約5微米至25微米之間之高度;或具有各自為介於約20微米至30微米之間之寬度及長度以及介於約5微米至15微米之間之高度。複數個二極體可為例如發光二極體或光電二極體。 In various exemplary embodiments, each of the plurality of diodes has a diameter between about 20 microns and 30 microns and is between about 5 microns a height between 15 and 15 microns; or a diameter between about 10 microns and 50 microns and a height between about 5 microns and 25 microns; or each having between about 10 microns and 50 microns Width and length therebetween and a height between about 5 microns and 25 microns; or having a width and length of between about 20 microns and 30 microns and a height between about 5 microns and 15 microns . The plurality of diodes can be, for example, a light emitting diode or a photodiode.

例示性組成物可進一步包含複數個實質上光學透明且化學惰性之粒子,其尺寸範圍介於約10微米與約50微米之間且以約0.1重量%至2.5重量%之量存在。另一例示性組成物可進一步包含複數個實質上光學透明且化學惰性之粒子,其尺寸範圍介於約10微米與約30微米之間且以約0.1重量%至2.5重量%之量存在。 Exemplary compositions can further comprise a plurality of substantially optically transparent and chemically inert particles having a size ranging between about 10 microns and about 50 microns and present in an amount from about 0.1% to about 2.5% by weight. Another exemplary composition can further comprise a plurality of substantially optically transparent and chemically inert particles having a size ranging between about 10 microns and about 30 microns and present in an amount from about 0.1% to about 2.5% by weight.

在一例示性具體實例中,黏度調節劑包含至少一種選自由以下組成之群的黏度調節劑:黏土,諸如鋰膨潤石黏土、膨潤土黏土(garamite clay)、有機改質黏土;醣及多醣,諸如瓜爾膠(guar gum)、三仙膠;纖維素及改質纖維素,諸如羥甲基纖維素、甲基纖維素、乙基纖維素、丙基甲基纖維素、甲氧基纖維素、甲氧基甲基纖維素、甲氧基丙基甲基纖維素、羥丙基甲基纖維素、羧甲基纖維素、羥乙基纖維素、乙基羥乙基纖維素、纖維素醚、纖維素乙醚、聚葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酯聚合物及共聚物;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;煙霧狀二氧 化矽、二氧化矽粉;改質尿素;及其混合物。黏度調節劑可以例如約0.30重量%至5重量%或約0.10重量%至3重量%之量存在。 In an exemplary embodiment, the viscosity modifier comprises at least one viscosity modifier selected from the group consisting of clay, such as lithium bentonite clay, garamite clay, organically modified clay; sugars and polysaccharides, such as Guar gum, Sanxian gum; cellulose and modified cellulose, such as hydroxymethyl cellulose, methyl cellulose, ethyl cellulose, propyl methyl cellulose, methoxy cellulose, Methoxymethylcellulose, methoxypropylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, cellulose ether, Cellulose ether, polyglucamine; polymers such as acrylate and (meth) acrylate polymers and copolymers; glycols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol , glycol ether, glycol ether acetate; smog-like oxygen Plutonium, bismuth dioxide powder; modified urea; and mixtures thereof. The viscosity modifier may be present, for example, in an amount from about 0.30% to about 5% by weight or from about 0.10% to about 3% by weight.

組成物可進一步包含不同於第一溶劑之第二溶劑。第二溶劑以例如約0.1重量%至60重量%之量存在。 The composition may further comprise a second solvent different from the first solvent. The second solvent is present in an amount of, for example, about 0.1% to 60% by weight.

在一例示性具體實例中,第一溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約5重量%至50重量%之量存在;黏度調節劑包含甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其混合物,且以約0.10重量%至5.0重量%之量存在;且第二溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約0.3重量%至50重量%之量存在。 In an exemplary embodiment, the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrogen a sterol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 5% by weight to 50% by weight; the viscosity modifier comprises a methoxypropylmethylcellulose resin or a hydroxypropylmethylcellulose resin or a mixture thereof And present in an amount of from about 0.10% by weight to 5.0% by weight; and the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1 An octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 0.3% to about 50% by weight.

在另一例示性具體實例中,第一溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約5重量%至30重量%之量存在;黏度調節劑包含甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其混合物,且以約1.0重量%至3.0重量%之量存在;且第二溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約0.2重量%至8.0重量%之量存在;且其中組成物之其餘部分進一步包含水。 In another illustrative embodiment, the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetra Hydroquinol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 5% by weight to 30% by weight; the viscosity modifier comprises methoxypropylmethylcellulose resin or hydroxypropylmethylcellulose resin or a mixture, and is present in an amount of from about 1.0% by weight to 3.0% by weight; and the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount from about 0.2% to 8.0% by weight; and wherein the remainder of the composition further comprises water.

在另一例示性具體實例中,第一溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約40重量%至60重量%之量存在;黏度調節劑包含甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其混合物,且以約0.10重量%至1.5重量%之量存在;且第二溶劑包含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約40重量%至60重量%之量存在。 In another illustrative embodiment, the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetra Hydroquinol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 40% to 60% by weight; the viscosity modifier comprises methoxypropylmethylcellulose resin or hydroxypropylmethylcellulose resin or a mixture, and is present in an amount of from about 0.10% to about 1.5% by weight; and the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 40% to about 60% by weight.

製備組成物之例示性方法可包含:混合複數個二極體與第一溶劑;將第一溶劑與複數個二極體之混合物添加至黏度調節劑中;添加第二溶劑;及在空氣氛圍中混合複數個二極體、第一溶劑、第二溶劑及黏度調節劑約25至30分鐘。例示性方法可進一步包含自晶圓釋放複數個二極體,且自晶圓釋放複數個二極體之步驟包含例如蝕刻晶圓之背面,研磨且拋光晶圓之背面,或自晶圓背面雷射剝離。 An exemplary method of preparing a composition can include: mixing a plurality of diodes with a first solvent; adding a mixture of the first solvent and the plurality of diodes to the viscosity modifier; adding a second solvent; and in an air atmosphere The plurality of diodes, the first solvent, the second solvent, and the viscosity modifier are mixed for about 25 to 30 minutes. The exemplary method can further include releasing a plurality of diodes from the wafer, and the step of releasing the plurality of diodes from the wafer includes, for example, etching the back side of the wafer, grinding and polishing the back side of the wafer, or Shot peeling.

在各個例示性具體實例中,組成物在約25℃下具有實質上介於約50cps與約25,000cps之間的黏度,或在約25℃下具有實質上介於約100cps與約25,000cps之間的黏度,或在約25℃下具有實質上介於約1,000cps與約10,000cps之間的黏度,或在約25℃下具有實質上介於約10,000cps與約25,000cps之間的黏度。 In various exemplary embodiments, the composition has a viscosity substantially between about 50 cps and about 25,000 cps at about 25 ° C, or substantially between about 100 cps and about 25,000 cps at about 25 ° C. The viscosity, either having a viscosity between about 1,000 cps and about 10,000 cps at about 25 °C, or a viscosity between about 10,000 cps and about 25,000 cps at about 25 °C.

在各個例示性具體實例中,複數個二極體中之各二極體可包含GaN且其中複數個二極體中之各二極體之GaN部 分為實質上六角形、正方形、三角形、矩形、葉形、星形或超環形。在一例示性具體實例中,複數個二極體之各二極體之發光或光吸收區域可具有選自由以下組成之群的表面紋理:複數個圓環、複數個實質上曲邊梯形、複數個平行條紋、星形圖案及其混合物。 In various exemplary embodiments, each of the plurality of diodes may include GaN and a GaN portion of each of the plurality of diodes Divided into substantially hexagonal, square, triangular, rectangular, lobed, star or super-circular. In an exemplary embodiment, the illuminating or light absorbing region of each of the plurality of diodes may have a surface texture selected from the group consisting of a plurality of rings, a plurality of substantially curved trapezoids, and a plurality of Parallel stripes, star patterns and mixtures thereof.

在一例示性具體實例中,複數個二極體中之各二極體在二極體之第一面上具有第一金屬端子且在二極體之第二面(背面)上具有第二金屬端子,且第一端子與第二端子之高度各自為介於約1至6微米之間。在另一例示性具體實例中,複數個二極體中之各二極體具有介於約20微米至30微米之間之直徑及介於5微米至15微米之間之高度,且複數個二極體中之各二極體在第一面上具有複數個第一金屬端子且在第一面上具有一個第二金屬端子,第二金屬端子之接點與複數個第一金屬端子之接點在高度上間隔約2微米至5微米。在一例示性具體實例中,複數個第一金屬端子中之各第一金屬端子的高度為介於約0.5微米至2微米之間且第二金屬端子之高度為介於約1微米至8微米之間。在另一例示性具體實例中,複數個二極體中之各二極體具有介於約10微米至50微米之間之直徑及介於5微米至25微米之間之高度,且複數個二極體中之各二極體在第一面上具有複數個第一金屬端子且在第一面上具有一個第二金屬端子,第二金屬端子之接點與複數個第一金屬端子之接點在高度上間隔約1微米至7微米。 In an exemplary embodiment, each of the plurality of diodes has a first metal terminal on a first side of the diode and a second metal on a second side (back side) of the diode a terminal, and the heights of the first terminal and the second terminal are each between about 1 and 6 microns. In another exemplary embodiment, each of the plurality of diodes has a diameter between about 20 microns and 30 microns and a height between 5 microns and 15 microns, and the plurality of two Each of the diodes has a plurality of first metal terminals on the first surface and a second metal terminal on the first surface, and a junction of the contacts of the second metal terminals and the plurality of first metal terminals They are spaced about 2 microns to 5 microns apart in height. In an exemplary embodiment, the height of each of the plurality of first metal terminals is between about 0.5 microns and 2 microns and the height of the second metal terminals is between about 1 microns and 8 microns. between. In another illustrative embodiment, each of the plurality of diodes has a diameter between about 10 microns and 50 microns and a height between 5 microns and 25 microns, and a plurality of two Each of the diodes has a plurality of first metal terminals on the first surface and a second metal terminal on the first surface, and a junction of the contacts of the second metal terminals and the plurality of first metal terminals They are spaced about 1 micron to 7 microns apart in height.

在另一例示性具體實例中,複數個二極體中之各二極 體具有至少一個金屬導孔結構於二極體之第一面上之至少一個p+型或n+型GaN層與二極體之第二面(背面)之間延伸。金屬導孔結構包含例如中心導孔、周邊導孔或周圍導孔。 In another illustrative embodiment, each of the plurality of diodes The body has at least one metal via structure extending between at least one p+ type or n+ type GaN layer on the first side of the diode and a second side (back side) of the diode. The metal via structure includes, for example, a central via, a peripheral via, or a surrounding via.

在各個例示性具體實例中,複數個二極體中之各二極體之任何尺寸均小於約30微米。在另一例示性具體實例中,二極體具有介於約20微米至30微米之間之直徑及介於約5微米至15微米之間之高度;或介於約10微米至50微米之間之直徑及介於約5微米至25微米之間之高度;或在側向上實質上為六角形,具有介於約10微米至50微米之間之相對面對面量測之直徑,及介於約5微米至25微米之間之高度;或在側向上實質上為六角形,具有介於約20微米至30微米之間之相對面對面量測之直徑,及介於約5微米至15微米之間之高度;或具有各自為介於約10微米至50微米之間之寬度及長度以及介於約5微米至25微米之間之高度;或具有各自為介於約20微米至30微米之間之寬度及長度以及介於約5微米至15微米之間之高度。在各個例示性具體實例中,複數個二極體中之各二極體之側面的高度小於約10微米。在另一例示性具體實例中,複數個二極體中之各二極體之側面的高度為介於約2.5微米至6微米之間。在另一例示性具體實例中,複數個二極體中之各二極體之側面實質上為S形且終止於彎曲點。 In various exemplary embodiments, each of the plurality of diodes has a size less than about 30 microns. In another exemplary embodiment, the diode has a diameter between about 20 microns and 30 microns and a height between about 5 microns and 15 microns; or between about 10 microns and 50 microns. Diameter and a height between about 5 microns and 25 microns; or substantially hexagonal in the lateral direction, having a relative face-to-face diameter between about 10 microns and 50 microns, and between about 5 a height between microns and 25 microns; or substantially hexagonal in the lateral direction, having a relative face-to-face diameter between about 20 microns and 30 microns, and between about 5 microns and 15 microns. Height; or having a width and length of between about 10 microns and 50 microns and a height of between about 5 microns and 25 microns; or having a width of between about 20 microns and 30 microns each. And length and a height between about 5 microns and 15 microns. In various exemplary embodiments, the height of the sides of each of the plurality of diodes is less than about 10 microns. In another illustrative embodiment, the height of the sides of each of the plurality of diodes is between about 2.5 microns and 6 microns. In another exemplary embodiment, the sides of each of the plurality of diodes are substantially S-shaped and terminate at a bend point.

在各個例示性具體實例中,黏度調節劑進一步包含黏著黏度調節劑。黏度調節劑在乾燥或固化時可實質上圍繞 複數個二極體中之各二極體周邊形成聚合物或樹脂網格或結構。組成物例如在濕潤時可為視覺上不透明的而在乾燥或固化時為實質上光學透明的。組成物之接觸角可大於約25度或大於約40度。組成物之相對蒸發率可小於1,其中該蒸發率係相對於乙酸丁酯而言,後者之蒸發率為1。使用組成物之方法可包含在基底上或在耦接至基底之第一導體上印刷組成物。 In various exemplary embodiments, the viscosity modifier further comprises an adhesion viscosity modifier. The viscosity modifier substantially surrounds when dried or cured A polymer or resin mesh or structure is formed around each of the plurality of diodes. The composition may be visually opaque, for example, when wet, and substantially optically clear when dried or cured. The contact angle of the composition can be greater than about 25 degrees or greater than about 40 degrees. The relative evaporation rate of the composition may be less than 1, wherein the evaporation rate is relative to butyl acetate, and the evaporation rate of the latter is 1. The method of using the composition can include printing the composition on the substrate or on the first conductor coupled to the substrate.

在一例示性具體實例中,複數個二極體中之各二極體包含至少一種選自由以下組成之群的無機半導體:矽、砷化鎵(GaAs)、氮化鎵(GaN)、GaP、InAlGaP、InAlGaP、AlInGaAs、InGaNAs及AlInGASb。在另一例示性具體實例中,複數個二極體中之各二極體包含至少一種選自由以下組成之群的有機半導體:π共軛聚合物、聚(乙炔)、聚(吡咯)、聚(噻吩)、聚苯胺、聚噻吩、聚(對苯硫醚)、聚(對伸苯基伸乙烯基)(PPV)及PPV衍生物、聚(3-烷基噻吩)、聚吲哚、聚芘、聚咔唑、聚甘菊藍、聚氮呯、聚(茀)、聚萘、聚苯胺、聚苯胺衍生物、聚噻吩、聚噻吩衍生物、聚吡咯、聚吡咯衍生物、聚苯并噻吩、聚苯并噻吩衍生物、聚對伸苯基、聚對伸苯基衍生物、聚乙炔、聚乙炔衍生物、聚二乙炔、聚二乙炔衍生物、聚對伸苯基伸乙烯基、聚對伸苯基伸乙烯基衍生物、聚萘、聚萘衍生物、聚異苯并噻吩(polyisothianaphthene,PITN)、伸雜芳基為噻吩、呋喃或吡咯之聚伸雜芳基伸乙烯基(ParV)、聚苯硫(PPS)、聚迫位萘(polyperinaphthalene,PPN)、聚酞菁(PPhc),及其 衍生物、其共聚物及其混合物。 In an exemplary embodiment, each of the plurality of diodes includes at least one inorganic semiconductor selected from the group consisting of germanium, gallium arsenide (GaAs), gallium nitride (GaN), GaP, InAlGaP, InAlGaP, AlInGaAs, InGaNAs, and AlInGASb. In another illustrative embodiment, each of the plurality of diodes comprises at least one organic semiconductor selected from the group consisting of π-conjugated polymers, poly(acetylene), poly(pyrrole), poly (thiophene), polyaniline, polythiophene, poly(p-phenylene sulfide), poly(p-phenylene vinylene) (PPV) and PPV derivatives, poly(3-alkylthiophene), polyfluorene, polyfluorene , polycarbazole, poly camomile blue, polyazabarium, poly(fluorene), polynaphthalene, polyaniline, polyaniline derivative, polythiophene, polythiophene derivative, polypyrrole, polypyrrole derivative, polybenzothiophene , polybenzothiophene derivatives, polyparaphenylene, polyparaphenylene derivatives, polyacetylene, polyacetylene derivatives, polydiacetylene, polydiacetylene derivatives, polyparaphenylene vinyl, polypair Phenyl extended vinyl derivatives, polynaphthalene, polynaphthalene derivatives, polyisothianaphthene (PITN), heteroaryl groups are thiophene, furan or pyrrole poly(arylene) vinyl (ParV), poly Phenyl sulfide (PPS), polyperinaphthalene (PPN), polyphthalocyanine (PPhc), and Derivatives, copolymers thereof and mixtures thereof.

另一例示性具體實例提供一種組成物,其包含:複數個二極體;第一溶劑;及黏度調節劑;其中該組成物在約25℃下之黏度實質上為約100cps至約25,000cps。另一例示性具體實例提供一種組成物,其包含:複數個二極體,複數個二極體中之各二極體之任何尺寸均小於約50微米;第一溶劑;不同於第一溶劑之第二溶劑;及黏度調節劑;其中該組成物在約25℃下之黏度實質上為約50cps至約25,000cps。另一例示性具體實例提供一種組成物,其包含任何尺寸均小於約50微米之複數個二極體;及黏度調節劑,以使組成物在約25℃下之黏度實質上為介於約100cps至約20,000cps之間。另一例示性具體實例提供一種組成物,其包含:複數個二極體;選自由以下組成之群的第一溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇、環己醇及其混合物;選自由以下組成之群的黏度調節劑:甲氧基丙基甲基纖維素樹脂、羥丙基甲基纖維素樹脂及其混合物;及不同於第一溶劑之第二溶劑,該第二溶劑選自由以下組成之群:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇、環己醇及其混合物。 Another illustrative embodiment provides a composition comprising: a plurality of diodes; a first solvent; and a viscosity modifier; wherein the composition has a viscosity of from about 100 cps to about 25,000 cps at about 25 °C. Another illustrative embodiment provides a composition comprising: a plurality of diodes, each of the plurality of diodes having any size less than about 50 microns; a first solvent; different from the first solvent a second solvent; and a viscosity modifier; wherein the composition has a viscosity of from about 50 cps to about 25,000 cps at about 25 °C. Another illustrative embodiment provides a composition comprising a plurality of diodes of any size less than about 50 microns; and a viscosity modifier such that the composition has a viscosity at about 25 ° C of substantially between about 100 cps. Up to about 20,000 cps. Another illustrative embodiment provides a composition comprising: a plurality of diodes; a first solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1 - methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier selected from the group consisting of methoxypropyl methylcellulose resins, a hydroxypropyl methylcellulose resin and a mixture thereof; and a second solvent different from the first solvent, the second solvent being selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, Propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof.

另一例示性具體實例提供一種裝置,其包含:複數個二極體;至少痕量之第一溶劑;及至少部分圍繞複數個二極體中之各二極體的聚合物或樹脂膜。在一例示性具體實 例中,聚合物或樹脂膜包含厚度為介於約10nm至300nm之間之甲基纖維素樹脂。在另一例示性具體實例中,聚合物或樹脂膜包含甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其混合物。該裝置可進一步包含至少痕量之不同於第一溶劑之第二溶劑。 Another illustrative embodiment provides a device comprising: a plurality of diodes; at least a trace amount of a first solvent; and a polymer or resin film at least partially surrounding each of the plurality of diodes. In an exemplary case In one embodiment, the polymer or resin film comprises a methylcellulose resin having a thickness of between about 10 nm and 300 nm. In another illustrative embodiment, the polymer or resin film comprises a methoxypropyl methylcellulose resin or a hydroxypropyl methylcellulose resin or a mixture thereof. The apparatus can further comprise at least a trace amount of a second solvent different from the first solvent.

在一例示性具體實例中,聚合物或樹脂膜包含固化、乾燥或聚合之黏度調節劑,該黏度調節劑選自由以下組成之群:黏土,諸如鋰膨潤石黏土、膨潤土黏土、有機改質黏土;醣及多醣,諸如瓜爾膠、三仙膠;纖維素及改質纖維素,諸如羥甲基纖維素、甲基纖維素、乙基纖維素、丙基甲基纖維素、甲氧基纖維素、甲氧基甲基纖維素、甲氧基丙基甲基纖維素、羥丙基甲基纖維素、羧甲基纖維素、羥乙基纖維素、乙基羥乙基纖維素、纖維素醚、纖維素乙醚、聚葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酯聚合物及共聚物;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;煙霧狀二氧化矽、二氧化矽粉;改質尿素;及其混合物。 In an exemplary embodiment, the polymer or resin film comprises a cured, dried or polymerized viscosity modifier selected from the group consisting of clays such as lithium bentonite clay, bentonite clay, and organically modified clay. Sugars and polysaccharides, such as guar gum, tricyon; cellulose and modified cellulose, such as hydroxymethyl cellulose, methyl cellulose, ethyl cellulose, propyl methyl cellulose, methoxy fiber , methoxymethylcellulose, methoxypropylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, cellulose Ether, cellulose ether, polyglucamine; polymers such as acrylate and (meth) acrylate polymers and copolymers; glycols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, Dipropylene glycol, glycol ether, glycol ether acetate; aerosolized cerium oxide, cerium oxide powder; modified urea; and mixtures thereof.

例示性裝置可進一步包含複數個實質上光學透明且化學惰性之粒子,複數個實質上光學透明且化學惰性之粒子中之各惰性粒子介於約10微米與約50微米之間;其中聚合物或樹脂膜進一步至少部分圍繞複數個實質上光學透明且化學惰性之粒子中之各惰性粒子。 An exemplary device can further comprise a plurality of substantially optically transparent and chemically inert particles, each of the plurality of substantially optically transparent and chemically inert particles being between about 10 microns and about 50 microns; wherein the polymer or The resin film further at least partially surrounds each of the plurality of substantially optically transparent and chemically inert particles.

例示性裝置可進一步包含:基底;一或多個耦接至第一端子之第一導體;至少一個耦接至一或多個第一導體之 介電層;及一或多個耦接至第二端子且耦接至介電層的第二導體。在一例示性具體實例中,複數個二極體中之至少一個二極體具有耦接至至少一個第二導體之第一端子及耦接至至少一個第一導體之第二端子。在另一例示性具體實例中,第一部分複數個二極體具有耦接至至少一個第一導體之第一端子及耦接至至少一個第二導體之第二端子,且其中第二部分複數個二極體具有耦接至至少一個第二導體之第一端子及耦接至至少一個第一導體之第二端子。例示性裝置可進一步包含:耦接至一或多個第一導體且耦接至一或多個第二導體之介面電路,該介面電路進一步可耦接至電源。 The exemplary device can further include: a substrate; one or more first conductors coupled to the first terminal; at least one coupled to the one or more first conductors a dielectric layer; and one or more second conductors coupled to the second terminal and coupled to the dielectric layer. In an exemplary embodiment, at least one of the plurality of diodes has a first terminal coupled to the at least one second conductor and a second terminal coupled to the at least one first conductor. In another exemplary embodiment, the first portion of the plurality of diodes has a first terminal coupled to the at least one first conductor and a second terminal coupled to the at least one second conductor, and wherein the second portion is plural The diode has a first terminal coupled to the at least one second conductor and a second terminal coupled to the at least one first conductor. The exemplary device can further include: a interface circuit coupled to the one or more first conductors and coupled to the one or more second conductors, the interface circuit being further operably coupled to the power source.

在各個例示性具體實例中,一或多個第一導體可進一步包含:第一電極,其包含第一匯流排及自第一匯流排延伸之第一複數個延長導體;及第二電極,其包含第二匯流排及自第二匯流排延伸之第二複數個延長導體。第二複數個延長導體可與第一複數個延長導體相間錯雜。一或多個第二導體可進一步耦接至第二複數個延長導體。 In various exemplary embodiments, the one or more first conductors may further include: a first electrode including a first bus bar and a first plurality of elongated conductors extending from the first bus bar; and a second electrode A second bus bar and a second plurality of extension conductors extending from the second bus bar are included. The second plurality of elongated conductors may be misaligned with the first plurality of elongated conductors. The one or more second conductors can be further coupled to the second plurality of elongate conductors.

在各個例示性具體實例中,該裝置可摺疊且可彎曲。該裝置可為實質上平坦的且總厚度小於約3mm。裝置可用刀模切割且摺疊成所選形狀。裝置之複數個二極體的平均表面積濃度可為每平方公分約25個至50,000個二極體。在各個例示性具體實例中,裝置不包括散熱片或散熱片組件。 In various exemplary embodiments, the device is foldable and bendable. The device can be substantially flat and have a total thickness of less than about 3 mm. The device can be cut with a die and folded into a selected shape. The plurality of diodes of the device may have an average surface area concentration of from about 25 to 50,000 diodes per square centimeter. In various exemplary embodiments, the device does not include a heat sink or fin assembly.

在另一例示性具體實例中,裝置包含:基底;複數個二極體,複數個二極體中之各二極體具有第一端子及第二 端子,複數個二極體中之各二極體的任何尺寸均小於約50微米;實質上圍繞複數個二極體中之各二極體之膜,該膜包含聚合物或樹脂且厚度為介於約10nm至300nm之間;一或多個耦接至第一複數個第一端子之第一導體;耦接至一或多個第一導體之第一介電層;及一或多個耦接至第一複數個第二端子之第二導體。 In another exemplary embodiment, the device includes: a substrate; a plurality of diodes, each of the plurality of diodes having a first terminal and a second The terminal, each of the plurality of diodes has a size of less than about 50 microns; substantially surrounding the film of each of the plurality of diodes, the film comprising a polymer or a resin and having a thickness Between about 10 nm and 300 nm; one or more first conductors coupled to the first plurality of first terminals; a first dielectric layer coupled to the one or more first conductors; and one or more couplings Connected to the second conductor of the first plurality of second terminals.

在另一例示性具體實例中,裝置包含:基底;一或多個第一導體;耦接至一或多個第一導體之介電層;一或多個第二導體;複數個二極體,該複數個二極體中之各二極體的任何尺寸均小於約50微米,第一部分該複數個二極體以正向偏壓定向耦接至一或多個第一導體且耦接至一或多個第二導體,且複數個二極體中之至少一個二極體以反向偏壓定向耦接至一或多個第一導體且耦接至一或多個第二導體;及實質上圍繞複數個二極體中之各二極體的膜,該膜包含聚合物或樹脂且厚度為介於約10nm至300nm之間。 In another illustrative embodiment, a device includes: a substrate; one or more first conductors; a dielectric layer coupled to the one or more first conductors; one or more second conductors; and a plurality of diodes Any of the plurality of diodes having a size less than about 50 microns, the first portion of the plurality of diodes being coupled to the one or more first conductors in a forward bias direction and coupled to One or more second conductors, and at least one of the plurality of diodes is coupled to the one or more first conductors in a reverse bias direction and coupled to the one or more second conductors; A film that substantially surrounds each of the plurality of diodes, the film comprising a polymer or resin and having a thickness between about 10 nm and 300 nm.

在各個例示性具體實例中,二極體包含:直徑為介於約20微米至30微米且高度為介於約2.5微米至7微米之間之發光或光吸收區域;在第一面上耦接至發光區域之第一端子,該第一端子之高度為介於約1微米至6微米之間;及在與第一面相對之第二面上耦接至發光區域的第二端子,該第二端子之高度為介於約1微米至6微米之間。 In various exemplary embodiments, the diode comprises: a luminescent or light absorbing region having a diameter between about 20 microns and 30 microns and a height between about 2.5 microns and 7 microns; coupled on the first side a first terminal to the light emitting region, the first terminal having a height of between about 1 micrometer and 6 micrometers; and a second terminal coupled to the light emitting region on a second surface opposite the first surface, the first terminal The height of the two terminals is between about 1 micrometer and 6 micrometers.

在另一例示性具體實例中,二極體包含:直徑為介於約6微米至30微米之間且高度為介於約1微米至7微米之間之發光或光吸收區域;在第一面上耦接至發光區域的第 一端子,該第一端子之高度為介於約1微米至6微米之間;及在與第一面相對之第二面上耦接至發光區域的第二端子,該第二端子之高度為介於約1微米至6微米之間;其中該二極體在側向上實質上為六角形,具有介於約10微米至50微米之間之相對面對面量測之直徑及介於約5微米至25微米之間之高度,且其中二極體之各側面之高度小於約10微米,二極體之各側面具有實質上S形彎曲且終止於彎曲點。 In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a diameter between about 6 microns and 30 microns and a height between about 1 micron and 7 microns; on the first side The upper coupling to the light emitting area a terminal having a height between about 1 micrometer and 6 micrometers; and a second terminal coupled to the light emitting region on a second surface opposite the first surface, the height of the second terminal being Between about 1 micrometer and 6 micrometers; wherein the diode is substantially hexagonal in the lateral direction, having a relative face-to-face diameter between about 10 micrometers and 50 micrometers, and between about 5 micrometers to A height between 25 microns, and wherein the height of each side of the diode is less than about 10 microns, each side of the diode has a substantially S-shaped bend and terminates at a point of curvature.

在另一例示性具體實例中,二極體包含:直徑為約6微米至30微米且高度為約1微米至7微米之發光或光吸收區域;在第一面上耦接至發光區域的第一端子,該第一端子之高度為約1微米至6微米;及在與第一面相對之第二面上耦接至發光區域的第二端子,該第二端子之高度為約1微米至6微米;其中該二極體具有各自為介於約10微米至50微米之間之寬度及長度以及介於約5微米至25微米之間之高度,且其中二極體之各側面之高度小於約10微米,二極體之各側面具有實質上S形彎曲且終止於彎曲點。 In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a diameter of from about 6 microns to 30 microns and a height of from about 1 micron to 7 microns; a first surface coupled to the illuminating region a terminal having a height of about 1 micrometer to 6 micrometers; and a second terminal coupled to the light emitting region on a second surface opposite to the first surface, the second terminal having a height of about 1 micron to 6 microns; wherein the diodes each have a width and length between about 10 microns and 50 microns and a height between about 5 microns and 25 microns, and wherein the height of each side of the diode is less than About 10 microns, each side of the diode has a substantially S-shaped bend and terminates at a bend point.

在各個例示性具體實例中,二極體包含:直徑為約6微米至30微米且高度為約2.5微米至7微米之發光或光吸收區域;在第一面上耦接至發光區域的第一端子,該第一端子之高度為約3微米至6微米;及在與第一面相對之第二面上耦接至發光區域的第二端子,該第二端子之高度為約3微米至6微米;其中該二極體具有各自為約10微米至30微米之寬度及長度以及介於約5微米至15微米之間之高 度,且其中二極體之各側面之高度小於約10微米,二極體之各側面具有實質上S形彎曲且終止於彎曲點。 In various exemplary embodiments, the diode comprises: a luminescent or light absorbing region having a diameter of between about 6 microns and 30 microns and a height of between about 2.5 microns and 7 microns; a first coupled to the illuminating region on the first side a terminal having a height of about 3 micrometers to 6 micrometers; and a second terminal coupled to the light emitting region on a second surface opposite to the first surface, the second terminal having a height of about 3 micrometers to 6 Micron; wherein the diodes each have a width and length of between about 10 microns and 30 microns and a height between about 5 microns and 15 microns And wherein the height of each side of the diode is less than about 10 microns, each side of the diode has a substantially S-shaped bend and terminates at a point of curvature.

在另一例示性具體實例中,二極體包含:直徑為介於約20微米至30微米之間且高度為介於2.5微米至7微米之間之發光或光吸收區域;在第一面上間隔開且周邊耦接至發光區域的複數個第一端子,複數個第一端子中之各第一端子的高度為約0.5微米至2微米;以及在第一面上中心耦接至發光區域之台面區域的一個第二端子,該第二端子之高度為1微米至8微米。 In another exemplary embodiment, the diode comprises: a luminescent or light absorbing region having a diameter between about 20 microns and 30 microns and a height between 2.5 microns and 7 microns; on the first side a plurality of first terminals spaced apart and peripherally coupled to the light emitting region, each of the plurality of first terminals having a height of about 0.5 micrometers to 2 micrometers; and a center coupled to the light emitting region on the first surface A second terminal of the mesa region, the second terminal having a height of from 1 micron to 8 microns.

在另一例示性具體實例中,二極體包含:具有台面區域之發光或光吸收區域,該台面區域之高度為0.5微米至2微米且直徑為約6微米至22微米;在第一面上間隔開且耦接至發光區域且周邊耦接至台面區域之複數個第一端子,複數個第一端子中之各第一端子的高度為約0.5微米至2微米;以及在第一面上中心耦接至發光區域之台面區域的一個第二端子,該第二端子之高度為1微米至8微米;其中二極體之側向尺寸為約10微米至50微米且高度為約5微米至25微米。 In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a mesa region having a height of from 0.5 microns to 2 microns and a diameter of from about 6 microns to 22 microns; on the first side a plurality of first terminals spaced apart from each other and coupled to the mesa region, the first terminals of the plurality of first terminals having a height of about 0.5 micrometers to 2 micrometers; and a center on the first surface a second terminal coupled to the mesa region of the light emitting region, the second terminal having a height of 1 micrometer to 8 micrometers; wherein the lateral dimension of the diode is about 10 micrometers to 50 micrometers and the height is about 5 micrometers to 25 micrometers Micron.

在另一例示性具體實例中,二極體包含:直徑為約20微米至30微米且高度為2.5微米至7微米之發光或光吸收區域;在第一面上間隔開且周邊耦接至發光區域之複數個第一端子,各第一端子之高度為約0.5微米至2微米;以及在第一面上中心耦接至發光區域之台面區域的一個第二端子,該第二端子之高度為3微米至6微米;其中該二極體 在側向上實質上為六角形,具有約20至30微米之直徑及介於約5微米至15微米之間之高度,其中二極體之各側面的高度小於約10微米,二極體之各側面具有實質上S形彎曲且終止於彎曲點。 In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a diameter of from about 20 microns to 30 microns and a height of from 2.5 microns to 7 microns; spaced apart on the first side and peripherally coupled to the luminescence a plurality of first terminals of the region, each of the first terminals having a height of about 0.5 micrometers to 2 micrometers; and a second terminal centrally coupled to the mesa region of the light emitting region on the first surface, the height of the second terminal being 3 microns to 6 microns; wherein the diode It is substantially hexagonal in the lateral direction, has a diameter of about 20 to 30 micrometers, and a height of between about 5 micrometers and 15 micrometers, wherein the height of each side of the diode is less than about 10 micrometers, and each of the diodes The sides have a substantially S-shaped bend and terminate at a bend point.

在另一例示性具體實例中,二極體包含:具有台面區域之發光或光吸收區域,該台面區域之高度為0.5微米至2微米且直徑為約6微米至22微米;在第一面上間隔開且耦接至發光區域且周邊耦接至台面區域之複數個第一端子,複數個第一端子中之各第一端子之高度為約0.5微米至2微米;以及在第一面上中心耦接至發光區域之台面區域之一個第二端子,該第二端子之高度為1微米至8微米,該第二金屬端子具有一個接點,且第二端子之一個接點與複數個第一金屬端子之接點在高度上間隔約1微米至7微米;其中二極體在側向上實質上為六角形,具有介於約10微米至50微米之間之直徑及介於介於約5微米至25微米之間之高度,其中二極體之各側面之高度小於約15微米,二極體之各側面具有實質上S形彎曲且終止於彎曲點。 In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a mesa region having a height of from 0.5 microns to 2 microns and a diameter of from about 6 microns to 22 microns; on the first side a plurality of first terminals spaced apart from each other and coupled to the mesa region, the first terminals of the plurality of first terminals having a height of about 0.5 micrometers to 2 micrometers; and a center on the first surface a second terminal coupled to the mesa region of the light emitting region, the second terminal having a height of 1 micrometer to 8 micrometers, the second metal terminal having a contact, and a contact of the second terminal and the plurality of first The contacts of the metal terminals are spaced apart by a height of between about 1 micron and 7 microns; wherein the dipoles are substantially hexagonal in the lateral direction, have a diameter between about 10 microns and 50 microns, and are between about 5 microns. To a height of between 25 microns, wherein the height of each side of the diode is less than about 15 microns, each side of the diode has a substantially S-shaped bend and terminates at a point of curvature.

製備供印刷之二極體液體或膠體懸浮液的例示性方法包含:將黏度調節劑添加至第一溶劑中之複數個二極體中;及混合複數個二極體、第一溶劑及黏度調節劑以形成含複數個二極體之液體或膠體懸浮液。 An exemplary method of preparing a liquid or colloidal suspension for printing includes: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing a plurality of diodes, a first solvent, and viscosity adjustment The agent forms a liquid or colloidal suspension containing a plurality of diodes.

在另一例示性具體實例中,製備供印刷之二極體液體或膠體懸浮液之方法包含:將第二溶劑添加至第一溶劑中之複數個二極體中,第二溶劑不同於第一溶劑;將黏度調 節劑添加至複數個二極體、第一溶劑及第二溶劑中;將複數個實質上化學惰性的粒子添加至複數個二極體、第一溶劑、第二溶劑及黏度調節劑中;及混合複數個二極體、第一溶劑、第二溶劑、黏度調節劑及複數個實質上化學惰性的粒子直至在約25℃下量測之黏度為至少約100厘泊(cps)為止以形成含複數個二極體之液體或膠體懸浮液。 In another illustrative embodiment, a method of preparing a liquid or colloidal suspension for printing includes: adding a second solvent to a plurality of diodes in a first solvent, the second solvent being different from the first Solvent; adjust viscosity Adding a plurality of diodes to the plurality of diodes, the first solvent and the second solvent; adding a plurality of substantially chemically inert particles to the plurality of diodes, the first solvent, the second solvent, and the viscosity modifier; Mixing a plurality of diodes, a first solvent, a second solvent, a viscosity modifier, and a plurality of substantially chemically inert particles until a viscosity of at least about 100 centipoise (cps) is measured at about 25 ° C to form a A liquid or colloidal suspension of a plurality of diodes.

在另一例示性具體實例中,製備供印刷之二極體液體或膠體懸浮液之方法包含:將黏度調節劑添加至複數個二極體、第一溶劑及第二溶劑中,第二溶劑不同於第一溶劑,其中複數個二極體中之各二極體的側向尺寸為約10微米至50微米且高度為約5微米至25微米;將複數個實質上化學惰性的粒子添加至複數個二極體、第一溶劑、第二溶劑及黏度調節劑中,其中複數個實質上化學惰性的粒子中之各粒子之任何尺寸為約10微米至約70微米;以及混合複數個二極體、第一溶劑、第二溶劑、黏度調節劑及複數個實質上化學惰性的粒子直至在約25℃下量測之黏度為至少約1,000厘泊(cps)為止以形成含複數個二極體之液體或膠體懸浮液。 In another illustrative embodiment, a method of preparing a liquid or colloidal suspension for printing includes: adding a viscosity modifier to a plurality of diodes, a first solvent, and a second solvent, the second solvent being different In the first solvent, wherein each of the plurality of diodes has a lateral dimension of about 10 micrometers to 50 micrometers and a height of about 5 micrometers to 25 micrometers; and a plurality of substantially chemically inert particles are added to the plurality Of the plurality of diodes, the first solvent, the second solvent, and the viscosity modifier, wherein each of the plurality of substantially chemically inert particles has a size of from about 10 microns to about 70 microns; and mixing the plurality of diodes And a first solvent, a second solvent, a viscosity modifier, and a plurality of substantially chemically inert particles until a viscosity measured at about 25 ° C is at least about 1,000 centipoise (cps) to form a plurality of diodes Liquid or colloidal suspension.

在一例示性具體實例中,製造電子器件之方法包含:沉積一或多個第一導體;以及沉積懸浮於第一溶劑與黏度調節劑之混合物中之複數個二極體。 In an exemplary embodiment, a method of fabricating an electronic device includes: depositing one or more first conductors; and depositing a plurality of diodes suspended in a mixture of the first solvent and the viscosity modifier.

在另一例示性具體實例中,方法包含:在光學透射性基底之第一面上沉積懸浮於第一溶劑與黏度調節劑之混合物中之複數個二極體,複數個二極體中之各二極體在第一 面上具有複數個第一端子且在第一面上具有一個第二端子,複數個二極體中之各二極體的側向尺寸為約10微米至50微米且高度為5微米至25微米;沉積一或多個耦接至第一端子之第一導體;沉積至少一個耦接至一或多個第一導體之介電層;沉積一或多個耦接至第二端子之第二導體;以及在光學透射性基底之第二面上沉積第一磷光體層。 In another illustrative embodiment, the method includes depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier on a first side of the optically transmissive substrate, each of the plurality of diodes Diode in the first The surface has a plurality of first terminals and has a second terminal on the first surface, and each of the plurality of diodes has a lateral dimension of about 10 micrometers to 50 micrometers and a height of 5 micrometers to 25 micrometers. Depositing one or more first conductors coupled to the first terminal; depositing at least one dielectric layer coupled to the one or more first conductors; depositing one or more second conductors coupled to the second terminals And depositing a first phosphor layer on the second side of the optically transmissive substrate.

在另一例示性具體實例中,方法包含:在基底之第一面上沉積一或多個第一導體;在一或多個第一導體上沉積懸浮於第一溶劑與黏度調節劑之混合物中之複數個二極體,複數個二極體中之各二極體在第一面上具有第一端子且在第二面上具有第二端子,複數個二極體中之各二極體的側向尺寸為約10微米至50微米且高度為5微米至25微米;在複數個二極體及一或多個第一導體上沉積至少一個介電層;在介電層上沉積一或多個光學透射性第二導體;以及沉積第一磷光體層。 In another illustrative embodiment, the method includes depositing one or more first conductors on a first side of the substrate; depositing one or more first conductors in a mixture of the first solvent and the viscosity modifier a plurality of diodes, each of the plurality of diodes having a first terminal on a first side and a second terminal on a second side, each of the plurality of diodes The lateral dimension is from about 10 microns to 50 microns and the height is from 5 microns to 25 microns; at least one dielectric layer is deposited on the plurality of diodes and the one or more first conductors; one or more deposited on the dielectric layer An optically transmissive second conductor; and a first phosphor layer deposited.

在另一例示性具體實例中,組成物包含:複數個二端積體電路,複數個二端積體電路中之各二端積體電路的任何尺寸均小於約75微米;第一溶劑;不同於第一溶劑之第二溶劑;以及黏度調節劑;其中該組成物在約25℃下之黏度實質上為約50cps至約25,000cps。在各個例示性具體實例中,複數個二端積體電路包含選自由以下組成之群的二端積體電路:二極體、發光二極體、光電二極體、電阻器、電感器、電容器、RFID積體電路、感測器積體電路以及壓電積體電路。 In another illustrative embodiment, the composition comprises: a plurality of two-terminal integrated circuits, each of the two-terminal integrated circuits of the plurality of two-terminal integrated circuits having a size less than about 75 microns; the first solvent; a second solvent in the first solvent; and a viscosity modifier; wherein the composition has a viscosity of from about 50 cps to about 25,000 cps at about 25 °C. In various exemplary embodiments, the plurality of two-terminal integrated circuits comprise a two-terminal integrated circuit selected from the group consisting of: a diode, a light emitting diode, a photodiode, a resistor, an inductor, and a capacitor. , an integrated IC circuit, a sensor integrated circuit, and a piezoelectric integrated circuit.

在另一例示性具體實例中,裝置包含:基底;複數個二端積體電路,複數個二端積體電路中之各二端積體電路的任何尺寸均小於約75微米;至少痕量之第一溶劑;實質上圍繞複數個二極體中之各二極體的膜,該膜包含甲基纖維素樹脂且具有約10nm至300nm之厚度;一或多個耦接至複數個二端積體電路之第一導體;耦接至一或多個第一導體之第一介電層;以及一或多個耦接至複數個二端積體電路之第二導體。 In another illustrative embodiment, the apparatus includes: a substrate; a plurality of two-terminal integrated circuits, each of the two-terminal integrated circuits of the plurality of two-terminal integrated circuits having a size less than about 75 microns; at least trace amounts a first solvent; a film substantially surrounding each of the plurality of diodes, the film comprising a methylcellulose resin and having a thickness of about 10 nm to 300 nm; and one or more coupled to the plurality of two-terminal products a first conductor of the bulk circuit; a first dielectric layer coupled to the one or more first conductors; and one or more second conductors coupled to the plurality of two-terminal integrated circuits.

在另一例示性具體實例中,組成物包含:複數個二端積體電路,複數個二端積體電路中之各二端積體電路的任何尺寸均小於約75微米;第一溶劑;不同於第一溶劑之第二溶劑;複數個實質上化學惰性的粒子,其尺寸範圍介於約10微米至約100微米之間且以約0.1重量%至2.5重量%之量存在;以及黏度調節劑;其中該組成物在約25℃下之黏度實質上為約50cps至約25,000cps。 In another illustrative embodiment, the composition comprises: a plurality of two-terminal integrated circuits, each of the two-terminal integrated circuits of the plurality of two-terminal integrated circuits having a size less than about 75 microns; the first solvent; a second solvent in the first solvent; a plurality of substantially chemically inert particles having a size ranging from about 10 microns to about 100 microns and present in an amount from about 0.1% to about 2.5% by weight; and a viscosity modifier Wherein the composition has a viscosity at about 25 ° C of from about 50 cps to about 25,000 cps.

本發明之多種其他優勢及特徵經由下列對本發明及其具體實例之詳細描述、申請專利範圍以及隨附圖式將容易地變得顯而易見。 The various other advantages and features of the invention are apparent from the description and appended claims appended claims

在連同隨附圖式一起考慮時參閱下列揭示內容後,將更容易地瞭解本發明之目的、特徵及優勢,其中在各個視圖中,使用相同參考數字來標識相同組件,且其中在各個視圖中,利用帶有字母字符之參考數字來標識所選組件具體實例之其他類型、示例或變化形式。 The objects, features, and advantages of the present invention will become more apparent from the aspects of the <RTIgt; Reference numerals with alphabetic characters are used to identify other types, examples, or variations of specific examples of selected components.

雖然本發明容許有呈多種不同形式之具體實例,但僅其特定例示性具體實例展示於圖式中且在本文中將加以詳細描述,應瞭解本發明揭示內容應被視作本發明原理之例證而非意欲將本發明限於所說明之特定具體實例。就此而言,在詳細說明符合本發明之至少一個具體實例之前,應瞭解本發明在其應用方面並非限於上下文所闡述、圖式中所說明或如實施例中所述的組件之構造細節及配置。符合本發明之方法及裝置能夠達成其他具體實例且能夠以各種方式實踐及進行。亦應瞭解,本文所用之措辭及術語以及下文所包括之抽象名詞(abstract)係出於描述之目的,而不應被認為具限制性。 The present invention is to be construed as being limited to the details of the embodiments of the invention. It is not intended to limit the invention to the particular embodiments disclosed. In this regard, it is to be understood that the invention is not limited by the scope of the application, the details . The method and apparatus in accordance with the present invention can be embodied in other specific embodiments and can be practiced and carried out in various ways. It is also to be understood that the phraseology and terminology used herein, and the abstract,

本發明之例示性具體實例提供二極體100、100A、100B、100C、100D、100E、100F、100G、100H、100I、100J、100K、100L(在本文及圖中統稱作「二極體100-100L」)之液體及/或膠體分散液及懸浮液,其能夠經印刷且在本文中可等效地稱作「二極體墨水」,應瞭解「二極體墨水」意謂且係指二極體或其他二端積體電路(諸如例示性二極體100-100L)之液體及/或膠體懸浮液。如下文所更詳細描述,二極體100-100L自身在包括於二極體墨水組成物中之前為完全成形之半導體器件,其在通電時能夠起作用以發光(在具體化為LED時)或在曝露於光源時提供電力(在具體化為光電二極體時)。本發明之例示性方法亦包含製造二極體墨水之方法,如下文所更詳細論述,該二極體墨水分散及懸浮複數個二極體100-100L於溶劑及黏性樹脂或聚合物混 合物中,其中二極體100-100L或其他二端積體電路在室溫(25℃)或冷藏條件(5℃至10℃)下維持分散及懸浮達較長時段,諸如一或多個月,對於較高黏度、較呈膠體狀之組成物及冷凍誘導之膠體狀組成物尤其如此,且該液體或膠體懸浮液能夠經印刷以製造基於LED之器件及光電器件。雖然描述內容集中於作為一種類型二端積體電路之二極體100-100L,但熟習此項技術者應瞭解可等效地替換為其他類型之半導體器件以形成更廣泛稱作「半導體器件墨水」之物,該等其他類型之半導體器件諸如(但不限於)任何類型之電晶體(場效電晶體(FET)、金屬氧化物半導體場效電晶體(MOSFET)、接面場效電晶體(JFET)、雙極接面電晶體(BJT)等)、二端交流開關(diac)、三端雙向可控矽元件(triac)、矽控整流器等。 Exemplary embodiments of the present invention provide diodes 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H, 100I, 100J, 100K, 100L (collectively referred to herein as "diode 100-" 100L") liquid and / or colloidal dispersions and suspensions, which can be printed and equivalently referred to herein as "diode ink", it should be understood that "diode ink" means and refers to A liquid and/or colloidal suspension of a polar body or other two-terminal integrated circuit, such as the exemplary diode 100-100L. As described in more detail below, the diodes 100-100L themselves are fully formed semiconductor devices prior to being included in the diode ink composition, which can function to illuminate when energized (when embodied as LEDs) or Power is provided when exposed to a light source (when embodied as a photodiode). Exemplary methods of the present invention also include methods of making a diode ink, as discussed in more detail below, the diode ink dispersing and suspending a plurality of diodes 100-100L in a solvent and a viscous resin or polymer mixture. In the composition, wherein the diode 100-100L or other two-end integrated circuit maintains dispersion and suspension for a long period of time, such as one or more, at room temperature (25 ° C) or refrigerated conditions (5 ° C to 10 ° C) This is especially true for higher viscosity, more colloidal compositions and freeze induced colloidal compositions, and the liquid or colloidal suspension can be printed to produce LED based devices and optoelectronic devices. Although the description focuses on a diode 100-100L as a type of two-terminal integrated circuit, those skilled in the art will appreciate that it can be equivalently replaced with other types of semiconductor devices to form a more widely known "semiconductor device ink." Such other types of semiconductor devices such as, but not limited to, any type of transistor (field effect transistor (FET), metal oxide semiconductor field effect transistor (MOSFET), junction field effect transistor ( JFET), bipolar junction transistor (BJT), etc., two-terminal AC switch (diac), three-terminal bidirectional controllable triac, trim rectifier.

二極體墨水(或半導體器件墨水)可經沉積、印刷或以其他方式塗覆以形成下文更詳細論述之各種產品中之任一者,諸如裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770具體實例或系統350、375、800、810,或可經沉積、印刷或以其他方式塗覆至任何種類之任何產品或以形成任何種類之任何產品,包括用於產品封裝之標牌或標記,諸如消費產品、個人產品、商業產品、工業產品、建築產品、建設產品等。 The diode ink (or semiconductor device ink) can be deposited, printed, or otherwise coated to form any of a variety of products discussed in more detail below, such as devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 embodiments or systems 350, 375, 800, 810, or may be deposited, printed or otherwise applied to any product of any kind or to form any kind Any product, including signs or markings for product packaging, such as consumer products, personal products, commercial products, industrial products, construction products, construction products, and the like.

圖1為說明例示性第一二極體100具體實例之透視圖。圖2為說明例示性第一二極體100具體實例之平面圖(或俯視圖)。圖3為說明例示性第一二極體100具體實例 之橫截面圖(穿過圖2之10-10'平面)。圖4為說明例示性第二二極體100A具體實例之透視圖。圖5為說明例示性第二二極體100A具體實例之平面圖(或俯視圖)。圖6為說明例示性第三二極體100B具體實例之透視圖。圖7為說明例示性第三二極體100B具體實例之平面圖(或俯視圖)。圖8為說明例示性第四二極體100C具體實例之透視圖。圖9為說明例示性第四二極體100C具體實例之平面圖(或俯視圖)。圖10為說明例示性第二、第三及/或第四二極體100A、100B、100C具體實例之橫截面圖(穿過圖5、7、9之20-20'平面)。圖11為說明例示性第五及第六二極體100D、100E具體實例之透視圖。圖12為說明例示性第五及第六二極體100D、100E具體實例之平面圖(或俯視圖)。圖13為說明例示性第五二極體100D具體實例之橫截面圖(穿過圖12之40-40'平面)。圖14為說明例示性第六二極體100E具體實例之橫截面圖(穿過圖12之40-40'平面)。圖15為說明例示性第七二極體100F具體實例之透視圖。圖16為說明例示性第七二極體100F具體實例之平面圖(或俯視圖)。圖17為說明例示性第七二極體100F具體實例之橫截面圖(穿過圖16之42-42'平面)。圖18為說明例示性第八二極體100G具體實例之透視圖。圖19為說明例示性第八二極體100G具體實例之平面圖(或俯視圖)。圖20為說明例示性第八二極體100G具體實例之橫截面圖(穿過圖19之43-43'平面)。圖21為說明例示性第十二極體100K具體實例之透視圖。圖22為說明例示性第十二極體100K具體 實例之橫截面圖(穿過圖21之47-47'平面)。圖23為說明例示性第十一二極體100L具體實例之透視圖。圖24為說明例示性第十一二極體100L具體實例之橫截面圖(穿過圖23之48-48'平面)。第九、第十二及第十三二極體100H、100I及100J具體實例之橫截面圖分別說明於圖44、50及66中,作為對例示性製造製程之說明的一部分。圖110為例示性第二二極體100A具體實例之掃描電子顯微照片。圖111為複數個例示性第二二極體100A具體實例之掃描電子顯微照片。 FIG. 1 is a perspective view illustrating an exemplary first diode 100 embodiment. 2 is a plan view (or top view) illustrating an exemplary first diode 100 embodiment. FIG. 3 is a specific example of an exemplary first diode 100 A cross-sectional view (through the 10-10' plane of Figure 2). 4 is a perspective view illustrating an exemplary second diode 100A embodiment. FIG. 5 is a plan view (or top view) illustrating an exemplary second diode 100A embodiment. FIG. 6 is a perspective view illustrating an exemplary third diode 100B embodiment. FIG. 7 is a plan view (or top view) illustrating an exemplary third diode 100B embodiment. FIG. 8 is a perspective view illustrating an exemplary fourth diode 100C embodiment. FIG. 9 is a plan view (or top view) illustrating an exemplary fourth diode 100C embodiment. 10 is a cross-sectional view (through the 20-20' plane of FIGS. 5, 7, 9) illustrating an exemplary second, third, and/or fourth diode 100A, 100B, 100C. Figure 11 is a perspective view illustrating an exemplary fifth and sixth diode 100D, 100E embodiment. FIG. 12 is a plan view (or top view) illustrating an exemplary fifth and sixth diode 100D, 100E embodiment. Figure 13 is a cross-sectional view (through the 40-40' plane of Figure 12) illustrating an exemplary fifth diode 100D embodiment. 14 is a cross-sectional view (through the 40-40' plane of FIG. 12) illustrating an exemplary sixth diode 100E embodiment. Figure 15 is a perspective view illustrating an exemplary seventh diode 100F embodiment. FIG. 16 is a plan view (or top view) illustrating an exemplary seventh diode 100F embodiment. 17 is a cross-sectional view (through the 42-42' plane of FIG. 16) illustrating an exemplary seventh diode 100F embodiment. FIG. 18 is a perspective view illustrating a specific example of an exemplary eighth diode 100G. 19 is a plan view (or top view) illustrating a specific example of an exemplary eighth diode 100G. 20 is a cross-sectional view (through the 43-43' plane of FIG. 19) illustrating an exemplary eighth diode 100G embodiment. Figure 21 is a perspective view illustrating an exemplary twelfth polar body 100K embodiment. Figure 22 is a diagram illustrating an exemplary twelfth polar body 100K. A cross-sectional view of the example (through the 47-47' plane of Figure 21). 23 is a perspective view illustrating a specific example of an exemplary eleventh diode 100L. Figure 24 is a cross-sectional view (through the 48-48' plane of Figure 23) illustrating an exemplary eleventh diode 100L embodiment. Cross-sectional views of specific examples of ninth, twelfth and thirteenth diodes 100H, 100I and 100J are illustrated in Figures 44, 50 and 66, respectively, as part of an illustration of an exemplary manufacturing process. Figure 110 is a scanning electron micrograph of an exemplary second diode 100A embodiment. Figure 111 is a scanning electron micrograph of a specific example of an exemplary second diode 100A.

在透視圖及平面圖(或俯視圖)圖1、2、4-9、11、12、15、16、18、19、21及23中,省去對外部鈍化層135之說明以提供關於其他下伏層及結構的視圖,該等下伏層及結構否則將由該鈍化層135覆蓋(因此不可見)。在圖3、10、13、14、17、20、22、24、44、50、57、62、63及66-69橫截面圖中說明鈍化層135,且熟習電子技術者應瞭解,所製造之二極體100-100L一般將包括至少一個該種鈍化層135。另外,參考圖1-69、74、76-85及87-103,熟習此項技術者亦應瞭解,各圖係出於描述及說明之目的,而非按比例繪製。 In the perspective and plan view (or top view) of Figures 1, 2, 4-9, 11, 12, 15, 16, 18, 19, 21 and 23, the description of the external passivation layer 135 is omitted to provide additional relief. A view of the layers and structures that would otherwise be covered by the passivation layer 135 (and therefore not visible). Passivation layer 135 is illustrated in cross-sectional views of Figures 3, 10, 13, 14, 17, 20, 22, 24, 44, 50, 57, 62, 63, and 66-69, and those skilled in the art will appreciate that The diode 100-100L will generally include at least one such passivation layer 135. In addition, with reference to Figures 1-69, 74, 76-85, and 87-103, those skilled in the art should understand that the drawings are not intended to be

如下文所更詳細描述,例示性第一至第十三二極體具體實例100-100L主要在以下方面有所不同:可使用之基板105及晶圓150、150A之形狀、材料、摻雜及其他組成;所製造之二極體發光區域形狀;導孔(130、131、132、133、134、136)之深度及位置(諸如淺或「盲」、深或「貫穿」、 中心、周邊及周圍);在第一面(頂面或前面)上具有第一端子125或具有第一端子及第二端子125、127;為形成第一端子125或第二端子127之背面(第二面)金屬化層(122)的使用及尺寸;其他接點金屬之形狀、範圍及位置;且亦可在其他特徵之形狀或位置方面有所不同,如下文所更詳細描述。製造例示性二極體100-100L之例示性方法及方法變化形式亦描述於下文中。一或多個例示性二極體100-100L亦可自Tempe,Arizona,USA之NthDegree Technologies Worldwide公司得到且可經由其獲得。 As described in more detail below, exemplary first to thirteenth dipole embodiments 100-100L differ primarily in the following aspects: the shape, material, doping, and use of substrate 105 and wafers 150, 150A that can be used. Other composition; the shape of the diode-emitting region to be fabricated; the depth and position of the vias (130, 131, 132, 133, 134, 136) (such as shallow or "blind", deep or "through", Center, periphery, and surroundings; having a first terminal 125 on the first side (top or front) or having a first terminal and a second terminal 125, 127; forming a back surface of the first terminal 125 or the second terminal 127 ( The second side) the use and size of the metallization layer (122); the shape, extent and location of the other contact metal; and may also differ in the shape or position of other features, as described in more detail below. Exemplary methods and method variations for making exemplary diodes 100-100L are also described below. One or more exemplary diodes 100-100L are also available from and available from NthDegree Technologies Worldwide, Inc. of Tempe, Arizona, USA.

參考圖1至24,例示性二極體100-100L使用基板105形成,諸如重摻雜之n+型或p+型基板105,例如重摻雜之n+型或p+型矽基板,其可為矽晶圓或可為更複雜之基板或晶圓,諸如包含例如(但不限於)絕緣體上之矽基板(105)(「SOI」),或藍寶石(106)晶圓150A上之氮化鎵(GaN)基板105(圖11至20中所說明)。亦可等效地使用其他類型之基板(及/或形成或具有基板之晶圓)105,包括例如(但不限於)Ga、GaAs、GaN、SiC、SiO2、藍寶石、有機半導體等,且如下文所更詳細論述。因此,對基板105或105A之提及應廣泛地理解為亦包括任何類型之基板,諸如n+型或p+型矽、n+型或p+型GaN,諸如使用矽晶圓150形成之n+型或p+型矽基板或在藍寶石晶圓105A上製造之n+型或p+型GaN(下文參考圖11-20及38-50所述)。在圖21至24中所說明之具體實例中,在製造期間移除基板後,可忽略至無基板105、105A(及緩衝層145)保留(在適當位置 留下複合GaN異質結構,下文更詳細論述),且可使用例如(但不限於)任一基板105、105A。在使用矽具體化時,基板105通常具有<111>或<110>晶體結構或定向,儘管可等效地使用其他結晶結構。通常在矽基板105上製造視情況存在之緩衝層145(諸如氮化鋁或氮化矽)以有助於後續製造具有不同晶格常數的GaN層。 Referring to Figures 1 through 24, exemplary diodes 100-100L are formed using substrate 105, such as a heavily doped n+ type or p+ type substrate 105, such as a heavily doped n+ type or p+ type germanium substrate, which may be twinned The circle may be a more complex substrate or wafer, such as, for example, but not limited to, a germanium substrate (105) on insulator ("SOI"), or gallium nitride (GaN) on sapphire (106) wafer 150A. Substrate 105 (illustrated in Figures 11-20). Other types of substrates (and/or wafers having or having substrates) 105 can also be used equivalently, including, for example, but not limited to, Ga, GaAs, GaN, SiC, SiO 2 , sapphire, organic semiconductors, etc., and as follows The article is discussed in more detail. Thus, reference to substrate 105 or 105A is to be broadly understood to also include any type of substrate, such as n+ or p+ type germanium, n+ type or p+ type GaN, such as n+ type or p+ type formed using germanium wafer 150. A germanium substrate or n+ type or p+ type GaN fabricated on sapphire wafer 105A (described below with reference to Figures 11-20 and 38-50). In the specific examples illustrated in Figures 21 through 24, after removal of the substrate during fabrication, negligible to the absence of substrate 105, 105A (and buffer layer 145) remains (remaining composite GaN heterostructure in place, as described in more detail below) Discussion), and for example, but not limited to, any of the substrates 105, 105A can be used. Substrate 105 typically has a <111> or <110> crystal structure or orientation when used with germanium, although other crystalline structures may equally be used. A buffer layer 145 (such as aluminum nitride or tantalum nitride), which is optionally present, is typically fabricated on the germanium substrate 105 to facilitate subsequent fabrication of GaN layers having different lattice constants.

在緩衝層145上,諸如經由磊晶成長來製造GaN層以形成複合GaN異質結構,一般性說明為n+型GaN層110、量子井區185及p+型GaN層115。在其他具體實例中,不使用或可能不使用緩衝層145,諸如當在GaN基板105上(或直接在藍寶石(106)晶圓105A上)製造複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)時,如圖15-17中作為更特定可選方案所說明。熟習電子技術者應瞭解,可能存在多個量子井(內部)及可能多個含多種摻雜劑之p+型、n+型、其他GaN層,且可能存在含各種摻雜劑中之任一者之非GaN層以形成發光(或光吸收)區域140,其中n+型GaN層110、量子井區185及p+型GaN層115僅具說明性且僅提供對形成一或多個發光(或光吸收)區域140之複合GaN異質結構或任何其他半導體結構之概括性或簡要描述。熟習電子技術者亦應瞭解,諸如對於使用p+型矽或GaN基板105而言,n+型GaN層110及p+型GaN層115之位置可能相同或可能等效地顛倒,且可使用其他組成及材料形成一或多個發光(或光吸收)區域140(其中多者描述於下文中),且所有該等變化處於本發 明之範疇內。雖然參考GaN作為用以形成發光或光吸收區域140的一組具有不同化合物、摻雜劑及結構之例示性材料進行描述,但熟習此項技術者應瞭解可等效地使用任何其他適合之半導體材料且其處於本發明之範疇內。另外,熟習此項技術者應瞭解任何對GaN之提及不應視作「純」GaN,而應理解為意謂且包括所有各種其他可用以形成發光或光吸收區域140及/或允許發光或光吸收區域140沉積之化合物、摻雜劑及層,包括任何中間非GaN層。 On the buffer layer 145, a GaN layer is formed, such as by epitaxial growth, to form a composite GaN heterostructure, generally illustrated as an n+ type GaN layer 110, a quantum well region 185, and a p+ type GaN layer 115. In other embodiments, buffer layer 145 is not used or may not be used, such as when a composite GaN heterostructure (n+ type GaN layer 110, quantum well) is fabricated on GaN substrate 105 (or directly on sapphire (106) wafer 105A) Region 185 and p+ type GaN layer 115) are illustrated as more specific alternatives in Figures 15-17. Those skilled in the art should appreciate that there may be multiple quantum wells (internal) and possibly multiple p+, n+, and other GaN layers containing multiple dopants, and may have any of various dopants. a non-GaN layer to form a light-emitting (or light-absorbing) region 140, wherein the n+-type GaN layer 110, the quantum well region 185, and the p+-type GaN layer 115 are merely illustrative and provide only one or more pairs of light (or light absorption). A general or brief description of the composite GaN heterostructure of region 140 or any other semiconductor structure. Those skilled in the art will also appreciate that, for example, for the use of a p+ type germanium or GaN substrate 105, the locations of the n+ type GaN layer 110 and the p+ type GaN layer 115 may be the same or may be equivalently reversed, and other compositions and materials may be used. Forming one or more illuminating (or light absorbing) regions 140 (some of which are described below), and all such variations are in the present Within the scope of the Ming Dynasty. While reference GaN is described as a set of exemplary materials having different compounds, dopants, and structures for forming luminescent or light absorbing regions 140, those skilled in the art will appreciate that any other suitable semiconductor can be used equivalently. Materials and they are within the scope of the invention. In addition, those skilled in the art will appreciate that any reference to GaN should not be considered "pure" GaN, but rather is meant to include and encompass all of the various other things that may be used to form the illuminating or light absorbing region 140 and/or to allow illumination or The light absorbing region 140 deposits compounds, dopants, and layers, including any intermediate non-GaN layers.

亦應注意,雖然論述各種二極體(二極體100-100L)中有多個二極體中矽及GaN可能為或為所選半導體,但可等效地使用其他無機或有機半導體且其處於本發明範疇內。無機半導體之實例包括(但不限於):矽、鍺及其混合物;二氧化鈦、二氧化矽、氧化鋅、氧化銦錫、氧化銻錫及其混合物;第II-VI族半導體,其為含至少一種二價金屬(鋅、鎘、汞及鉛)及至少一種二價非金屬(氧、硫、硒及碲)之化合物,諸如氧化鋅、硒化鎘、硫化鎘、硒化汞及其混合物;第III-V族半導體,其為含至少一種三價金屬(鋁、鎵、銦及鉈)與至少一種三價非金屬(氮、磷、砷及銻)之化合物,諸如砷化鎵、磷化銦及其混合物;以及第IV族半導體,包括氫封端之矽、碳、鍺及α-錫,及其組合。 It should also be noted that although it is discussed that a plurality of diodes in a plurality of diodes (dipoles 100-100L) may be or may be selected semiconductors, other inorganic or organic semiconductors may be equivalently used and It is within the scope of the invention. Examples of inorganic semiconductors include, but are not limited to, ruthenium, osmium, and mixtures thereof; titanium dioxide, ruthenium dioxide, zinc oxide, indium tin oxide, antimony tin oxide, and mixtures thereof; Group II-VI semiconductors, which contain at least one a compound of a divalent metal (zinc, cadmium, mercury, and lead) and at least one divalent nonmetal (oxygen, sulfur, selenium, and tellurium), such as zinc oxide, cadmium selenide, cadmium sulfide, mercury selenide, and mixtures thereof; a III-V semiconductor, which is a compound containing at least one trivalent metal (aluminum, gallium, indium, and antimony) and at least one trivalent nonmetal (nitrogen, phosphorus, arsenic, and antimony), such as gallium arsenide, indium phosphide And mixtures thereof; and Group IV semiconductors, including hydrogen terminated ruthenium, carbon, ruthenium and alpha-tin, and combinations thereof.

除GaN發光/光吸收區域140(例如,沉積於基板105(諸如n+型或p+型矽)上或沉積於矽晶圓150或藍寶石(106)晶圓150A上之GaN(105)上的GaN異質結構)之外,複數個二極體100-100L亦可包含任何類型之半導體元 件、材料或化合物,諸如矽、砷化鎵(GaAs)、氮化鎵(GaN),或任何無機或有機半導體材料,且呈任何形式,包括例如(但不限於)GaP、InAlGaP、InAlGaP、AlInGaAs、InGaNAs、AlInGASb。另外,用以製造二端積體電路之晶圓亦可為任何類型或種類,例如(但不限於)矽、GaAs、GaN、藍寶石、碳化矽。 In addition to GaN luminescence/light absorbing regions 140 (eg, GaN heterostructure deposited on substrate 105 (such as n+ or p+ type germanium) or GaN (105) deposited on germanium wafer 150 or sapphire (106) wafer 150A In addition to the structure), the plurality of diodes 100-100L may also contain any type of semiconductor element A material, material, or compound, such as germanium, gallium arsenide (GaAs), gallium nitride (GaN), or any inorganic or organic semiconductor material, and in any form including, but not limited to, GaP, InAlGaP, InAlGaP, AlInGaAs , InGaNAs, AlInGASb. In addition, the wafer used to fabricate the two-terminal integrated circuit may be of any type or kind, such as, but not limited to, germanium, GaAs, GaN, sapphire, tantalum carbide.

本發明之範疇因此應理解為涵蓋半導體基板上之任何磊晶或化合物半導體,包括(但不限於)使用半導體基板製造之此項技術中已知或即將知曉之任何種類之任何LED或光電半導體。 The scope of the invention is therefore to be understood to cover any epitaxial or compound semiconductor on a semiconductor substrate, including but not limited to any LED or optoelectronic semiconductor of any kind known or to be known in the art using semiconductor substrate fabrication.

在各個例示性具體實例中,n+型或p+型基板105傳導電流,該電流如所說明流至n+型GaN層110。再次應注意,發光或光吸收區域140之所說明之各個層中之任一者可等效地顛倒或不同排序,諸如顛倒所說明之n+型與p+型GaN層110、115之位置。電流路徑亦穿過形成一或多個導孔(130)之金屬層(其亦可用以提供介於n+型或p+型基板105與n+型GaN層110之間的極薄(約25埃)緩衝層145的電旁路(electrical bypass))。下文描述提供與導電層之其他連接的其他類型之導孔131-134及136。一或多個金屬層120(說明為兩個(或兩個以上)各別沉積之金屬層120A及120B)(其亦可用於形成導孔(130、131、132、133、134、136))提供與p+型GaN層115、與第二其他金屬層120B(諸如用以形成「凸塊」或突出結構之模用金屬)、與形成各個二極體100-100L之第一電端子(或接點)125或第二端子 127之金屬層120A、120B的歐姆接觸。如下文所論述亦可使用其他金屬層。對於所說明之例示性二極體100、100A、100B、100C具體實例,電端子125可為在製造期間形成於二極體100、100A、100B、100C上唯一之歐姆金屬端子以用於後續電力(電壓)輸送(對於LED應用)或接收(對於光電應用),n+型或p+型基板105用以提供二極體100、100A、100B、100C之第二電端子以用於電力輸送或接收。應注意,電端子125與n+型或p+型基板105處於二極體100、100A、100B、100C各自之相對側(即頂面(第一面)與底面(或背面、第二面))上,而非處於同一側上。作為此等二極體100、100A、100B、100C具體實例之可選方案且如對於其他例示性二極體具體實例所說明,在二極體(例如二極體100D、100F、100G、100J)之第二面(背面)上使用金屬層122形成視情況存在之第二歐姆金屬端子127。作為圖21及22中所說明之二極體100K具體實例之可選方案,在二極體100K之第二面(背面)上使用金屬層122形成第一歐姆金屬端子125,接著翻轉或反轉二極體100K以供使用。作為圖23及24中對於例示性二極體100L所說明之另一可選方案,第一端子125與第二端子127皆處於二極體100L之同一第一面(頂面)上。尤其使用氮化矽鈍化層135(或任何其他等效鈍化層)以達成電絕緣、環境穩定及可能其他結構完整性。不作單獨說明,如下文所論述,在製造期間沿二極體100-100L之側面形成複數個渠溝155,其用以使二極體100-100L在晶圓150、150A上彼此 分離(單體化)且用以使二極體100-100L與晶圓150、150A之其餘部分分離。 In various exemplary embodiments, the n+ type or p+ type substrate 105 conducts a current that flows to the n+ type GaN layer 110 as illustrated. Again, it should be noted that any of the various layers illustrated by the illuminating or light absorbing region 140 may be equivalently reversed or otherwise ordered, such as reversing the position of the illustrated n+ and p+ GaN layers 110, 115. The current path also passes through a metal layer forming one or more vias (130) (which may also be used to provide an extremely thin (about 25 angstroms) buffer between the n+ type or p+ type substrate 105 and the n+ type GaN layer 110. Electrical bypass of layer 145. Other types of vias 131-134 and 136 that provide additional connections to the conductive layer are described below. One or more metal layers 120 (illustrated as two (or more) separately deposited metal layers 120A and 120B) (which may also be used to form vias (130, 131, 132, 133, 134, 136)) Providing a p+ type GaN layer 115, a second other metal layer 120B (such as a mold metal for forming a "bump" or a protruding structure), and a first electrical terminal forming each of the diodes 100-100L (or Point) 125 or second terminal Ohmic contact of the metal layers 120A, 120B of 127. Other metal layers can also be used as discussed below. For the illustrated exemplary diode 100, 100A, 100B, 100C embodiment, the electrical terminal 125 can be the only ohmic metal terminal formed on the diode 100, 100A, 100B, 100C during fabrication for subsequent power (Voltage) delivery (for LED applications) or reception (for optoelectronic applications), an n+ or p+ type substrate 105 is used to provide a second electrical terminal of the diode 100, 100A, 100B, 100C for power delivery or reception. It should be noted that the electrical terminal 125 and the n+ type or p+ type substrate 105 are on opposite sides (i.e., the top surface (first surface) and the bottom surface (or back surface, second surface)) of the diodes 100, 100A, 100B, and 100C. Instead of being on the same side. As an alternative to the specific examples of such diodes 100, 100A, 100B, 100C and as illustrated for other exemplary diode embodiments, in a diode (eg, diodes 100D, 100F, 100G, 100J) A second ohmic metal terminal 127, as the case may be, is formed on the second side (back side) using a metal layer 122. As an alternative to the specific example of the diode 100K illustrated in FIGS. 21 and 22, the first ohmic metal terminal 125 is formed on the second side (back side) of the diode 100K using the metal layer 122, and then flipped or reversed. The diode 100K is for use. As another alternative illustrated in FIGS. 23 and 24 for the exemplary diode 100L, the first terminal 125 and the second terminal 127 are both on the same first side (top surface) of the diode 100L. In particular, a tantalum nitride passivation layer 135 (or any other equivalent passivation layer) is used to achieve electrical insulation, environmental stability, and possibly other structural integrity. Without being separately described, as discussed below, a plurality of trenches 155 are formed along the sides of the diode 100-100L during fabrication to cause the diodes 100-100L to be on the wafers 150, 150A to each other. Separated (monomerized) and used to separate the diodes 100-100L from the rest of the wafers 150, 150A.

圖1-24亦說明一或多個發光(或光吸收)區域140(其說明為GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115))之各種形狀及形態因數(form factor)以及基板105及/或複合GaN異質結構之各種形狀及形態因數中之一些形狀及形態因數。亦如所說明,雖然例示性二極體100-100L在x-y平面上實質上為六角形(具有彎曲或拱形側面121、凹出或凸入(或兩者,形成更複雜之S形形狀),如下文所更詳細論述),以提供每個矽晶圓更大之器件密度,但其他二極體形狀及形態視作等效且處於所主張之本發明範疇內,諸如正方形、圓形、卵圓形、橢圓形、矩形、三角形、八角形、環形等。亦如例示性具體實例中所說明,六角形側面121亦可略微彎曲或呈拱形,諸如凸出(圖1、2、4、5)或凹入(圖6-9),以便在自晶圓釋放且懸浮於液體中時,二極體100-100L可避免彼此黏著或黏附。另外,對於裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770製造,使用厚度相對較小之二極體100-100L以防止個別晶粒(個別二極體100-100L)在其側面或側緣(121)上豎立。亦如例示性具體實例中所說明,六角形側面121亦可略微彎曲或呈拱形以在各側面121之中心或中心部分周圍凸出而周邊/側向凹入,從而形成更複雜之S形形狀(重疊之雙「S」形狀),產生比較尖銳或突出之頂點114(圖11至24),以便在自晶 圓釋放且懸浮於液體中時,二極體100-100L亦可避免彼此黏著或黏附且可在相對於另一二極體滾動或移動時彼此推開。二極體100-100L之不同於平坦表面型態的變化(亦即非平坦表面型態)亦有助於防止晶粒在懸浮於液體或膠體中時彼此黏著。再次,亦對於裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770製造,厚度或高度相對較小之二極體100-100L(或二極體100K及100L之發光區域)(與其側向尺寸(直徑或寬度/長度)相比)趨於防止個別晶粒(個別二極體100-100L)在其側面或側緣(121)上豎立。 1-24 also illustrate various shapes and form factors of one or more luminescent (or light absorbing) regions 140 (described as GaN heterostructures (n+ GaN layer 110, quantum well region 185, and p+ GaN layer 115)). Form factor and some of the shapes and form factors of the various shapes and form factors of the substrate 105 and/or the composite GaN heterostructure. As also illustrated, although the exemplary diode 100-100L is substantially hexagonal in shape on the xy plane (having curved or arched sides 121, concave or convex (or both, forming a more complex S-shape) , as discussed in more detail below, to provide a greater device density per wafer, but other diode shapes and modalities are considered equivalent and within the scope of the claimed invention, such as square, circular, Oval, oval, rectangular, triangular, octagonal, ring, etc. As also illustrated in the illustrative embodiments, the hexagonal side 121 may also be slightly curved or arched, such as convex (Figs 1, 2, 4, 5) or concave (Figs. 6-9) for self-crystallisation When the circle is released and suspended in the liquid, the diodes 100-100L can avoid sticking or sticking to each other. In addition, for the fabrication of the devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, a relatively small thickness of the diode 100-100L is used to prevent individual grains. (Individual diodes 100-100L) are erected on their sides or side edges (121). As also illustrated in the illustrative embodiments, the hexagonal sides 121 may also be slightly curved or arched to project around the center or central portion of each side 121 while being peripherally/laterally recessed to form a more complex S-shape. Shapes (overlapping double "S" shapes) produce sharper or protruding vertices 114 (Figures 11 through 24) for self-crystallisation When the circle is released and suspended in the liquid, the diodes 100-100L can also avoid sticking or sticking to each other and can push away from each other when rolling or moving relative to the other diode. The variation of the diodes 100-100L from the flat surface profile (i.e., the non-flat surface profile) also helps prevent the grains from sticking to one another when suspended in a liquid or gel. Again, for devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, diodes 100-100L (or two) of relatively small thickness or height are fabricated. The polar regions 100K and 100L of the illuminating region) (compared to their lateral dimensions (diameter or width/length)) tend to prevent individual dies (individual diodes 100-100L) from erecting on their sides or side edges (121) .

亦說明發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115)之各種形狀及形態因數,其中圖1-3說明實質上圓形或圓盤形發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115),且圖4及5說明實質上圓環形(或超環形)發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115),其中第二金屬層120B延伸至超環狀體中心(且可能提供反射表面)。在圖6及7中,發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115)具有實質上圓形內(側)表面及實質上葉形的外(側)表面,而在圖8及9中,發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115)亦具有實質上圓形內(側)表面,而外(側)表面實質上為星形。在圖11-24中,一或多個發光(或光吸收)區域140具有實 質上六角形(側)表面(其可能或可能不延伸至晶粒周圍)且可能具有(至少部分具有)實質上圓形或橢圓形內(側)表面。在未單獨說明之其他例示性具體實例中,可能存在多個發光(或光吸收)區域140,其在晶粒上可為連續的或可間隔開。可建構具有圓形內表面之一或多個發光(或光吸收)區域140(n+型GaN層110、量子井區185及p+型GaN層115)的此等各種組態以提高光輸出(對於LED應用而言)及光吸收(對於光電應用而言)之潛能。如下文所更詳細論述,n+型GaN層110或p+型GaN層115中任一者之內表面及/或外表面亦可具有例如(但不限於)各種表面紋理或表面幾何形狀中之任一者。 Various shapes and form factors of the illuminating (or light absorbing) region 140 (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) are also illustrated, wherein Figures 1-3 illustrate substantially circular or disc-shaped illumination. (or light absorbing) regions 140 (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115), and FIGS. 4 and 5 illustrate substantially circular (or super-annular) luminescent (or light absorbing) regions 140 (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115), wherein the second metal layer 120B extends to the center of the super-annular body (and possibly provides a reflective surface). In FIGS. 6 and 7, the light-emitting (or light-absorbing) region 140 (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) has a substantially circular inner (side) surface and a substantially leaf-shaped outer surface. (side) surface, while in FIGS. 8 and 9, the illuminating (or light absorbing) region 140 (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) also has a substantially circular inner (side) surface And the outer (side) surface is substantially star-shaped. In Figures 11-24, one or more of the illuminating (or light absorbing) regions 140 have real A hexagonal (side) surface (which may or may not extend around the die) and may have (at least partially) a substantially circular or elliptical inner (side) surface. In other illustrative embodiments not separately illustrated, there may be multiple illuminating (or light absorbing) regions 140 that may be continuous or spaced apart on the die. Various configurations having one or a plurality of luminescent (or light absorbing) regions 140 (n+ type GaN layer 110, quantum well region 185, and p+ GaN layer 115) having a circular inner surface can be constructed to increase light output (for The potential for LED applications) and light absorption (for optoelectronic applications). As discussed in more detail below, the inner and/or outer surface of any of the n+-type GaN layer 110 or the p+-type GaN layer 115 may also have, for example, but not limited to, any of various surface textures or surface geometries. By.

在一例示性具體實例中,第一端子125(或二極體100K之第二端子127)包含一或多個金屬層120A、120B且具有凸塊或突出結構,以使二極體100-100L之一顯著部分由一或多個絕緣或介電層覆蓋(在由第一導體310或310A與n+型或p+型矽基板105(或與由金屬層122形成之第二端子,或與由金屬層128形成之第二端子)形成電接觸之後),同時為一或多個其他導電層(諸如下文論述之第二導體320)與電端子125接觸提供充足結構。另外,端子125之凸塊或突出結構可能亦可為除側面121之彎曲度及側面121之厚度(高度)之外影響二極體100-100L於二極體墨水內旋轉及其隨後在所製造之裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770中之定向(頂部朝上(正向偏壓)或底部朝上(反向偏壓))的 複數個因素中之一者。 In an exemplary embodiment, the first terminal 125 (or the second terminal 127 of the diode 100K) includes one or more metal layers 120A, 120B and has a bump or protruding structure to make the diode 100-100L One significant portion is covered by one or more insulating or dielectric layers (either by the first conductor 310 or 310A with the n+ or p+ type germanium substrate 105 (or with the second terminal formed by the metal layer 122, or with metal) The second terminal formed by layer 128) is formed after electrical contact, while providing sufficient structure for one or more other conductive layers, such as second conductor 320 discussed below, to contact electrical terminal 125. In addition, the bump or protruding structure of the terminal 125 may also affect the rotation of the diode 100-100L in the diode ink and the subsequent manufacture thereof, in addition to the curvature of the side surface 121 and the thickness (height) of the side surface 121. Orientation in device 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 (top up (forward bias) or bottom up (reverse bias) Press)) One of a plurality of factors.

參考圖11-22,例示性二極體100D、100E、100F、100G、100K以各種組合說明若干其他及視情況存在之特徵。如所說明,通常由模用金屬製造之形成凸塊或突出結構的金屬層120B之周緣實質上為橢圓形(或卵圓形)(及圖21中之實質上六角形)而非實質上圓形,儘管端子125之其他形狀及形態因數亦處於本發明範疇內。另外,形成凸塊或突出結構之金屬層120B可具有兩個或兩個以上延長延伸件124,其在裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770製造中用於若干其他目的,諸如有助於與第二導體320形成電接觸及有助於絕緣介電質315(及/或第一導體310)遠離端子125(金屬層120B或金屬122)流動。橢圓形形態因數亦可允許沿形成凸塊或突出結構之橢圓形金屬層120B之長軸側自發光(或光吸收)區域140另外發光(或光吸收)或向發光(或光吸收)區域140另外發光(或光吸收)。對於所選具體實例而言,與p+型GaN層115形成歐姆接觸之亦可在多個步驟中沉積為多層之金屬層120A在p+型GaN層115上亦具有延長延伸件,其在圖11、12、15、16、18及19中說明為彎曲之金屬接點延伸件126,有助於向p+型GaN層115傳導電流,同時允許(而非過度阻遏)發光(或光吸收)區域140發光或光吸收之潛能。可等效地使用無數其他形狀之金屬接點延伸件126,諸如網格圖案、其他曲邊形狀等。雖然未單獨說明,但在圖1-10及21-24中所說明之其他具 體實例中亦可使用該等延長金屬接點延伸件。亦可使用其他晶種或反射金屬層,如下文所更詳細描述。 Referring to Figures 11-22, exemplary diodes 100D, 100E, 100F, 100G, 100K illustrate several other and optionally features in various combinations. As illustrated, the perimeter of the metal layer 120B, which is typically formed of a mold metal to form a bump or protrusion, is substantially elliptical (or oval) (and substantially hexagonal in Figure 21) rather than substantially circular. Shape, although other shapes and form factors of the terminal 125 are within the scope of the present invention. Additionally, the metal layer 120B forming the bump or protruding structure may have two or more elongated extensions 124 at the devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 are used in manufacturing for several other purposes, such as to facilitate electrical contact with the second conductor 320 and to help insulate the dielectric 315 (and/or the first conductor 310) away from the terminal 125 (metal layer 120B) Or metal 122) flows. The elliptical form factor may also allow for additional illumination (or light absorption) or illumination (or light absorption) regions 140 along the long axis side self-luminous (or light absorbing) region 140 of the elliptical metal layer 120B forming the bump or protrusion structure. Additional luminescence (or light absorption). For the selected specific example, the metal layer 120A which is in ohmic contact with the p+ type GaN layer 115 and which may be deposited as a plurality of layers in a plurality of steps also has an extended extension on the p+ type GaN layer 115, which is shown in FIG. 12, 15, 16, 18, and 19 are illustrated as curved metal contact extensions 126 that facilitate conduction of current to the p+ type GaN layer 115 while allowing (rather than excessively repressing) illumination (or light absorbing) regions 140 to illuminate. Or the potential of light absorption. Numerous other shapes of metal contact extensions 126, such as grid patterns, other curved shapes, and the like, can be used equivalently. Although not separately stated, the other features illustrated in Figures 1-10 and 21-24 The extended metal contact extensions can also be used in the body examples. Other seed or reflective metal layers can also be used, as described in more detail below.

圖11-22中亦說明除先前所描述之在所製造之二極體100、100A、100B、100C中延伸穿過緩衝層145且進入基板105中但並非比較深地進入或穿過基板105中之周邊(亦即偏心)比較淺或「盲」導孔130之外其他類型之導孔結構(131、132、133、134、136)。如圖13(及圖44、66)中所說明,中心(或位於中心)之比較深之「貫穿」導孔131延伸完全穿過基板105,且用以與n+型GaN層110形成歐姆接觸且在第二面(背面)金屬層122與n+型GaN層110之間傳導電流(或以其他方式形成電接觸)。如圖22中所說明,中心(或位於中心)之深度較小或較淺之「貫穿」導孔136延伸完全穿過複合GaN異質結構(115、185、110),且用以與n+型GaN層110形成歐姆接觸且在第二面(背面)金屬層122與n+型GaN層110之間傳導電流(或以其他方式形成電接觸)。如圖14中所說明,中心(或位於中心)之比較淺或盲導孔132(亦稱為「盲」導孔132)延伸穿過緩衝層145且進入基板105中,且其用以與n+型GaN層110形成歐姆接觸且在n+型GaN層110與基板105之間傳導電流(或以其他方式形成電接觸)。如圖15-17及49-50中所說明,周圍之比較深或貫穿導孔133沿側面121(儘管由鈍化層135覆蓋)自n+型GaN層110延伸且延伸至二極體100F之第二面(背面),在此具體實例中二極體100F亦包括第二面(背面)金屬層122,完全圍繞基板105之側面,且其 用以與n+型GaN層110形成歐姆接觸且在第二面(背面)金屬層122與n+型GaN層110之間傳導電流(或以其他方式形成電接觸)。如圖18-20中所說明,周邊之比較深之「貫穿」導孔134延伸完全穿過基板105,且其用以與n+型GaN層110形成歐姆接觸且在第二面(背面)金屬層122與n+型GaN層110之間傳導電流(或以其他方式形成電接觸)。在不使用第二面(背面)金屬層122的具體實例中,該等貫穿導孔結構(131、133、134、136)可用以與導體310A形成電接觸(在裝置300、300A、300B、300C、300D、720、730、760中)且在導體310A與n+型GaN層110之間傳導電流(或以其他方式形成電接觸)。此等貫穿導孔結構(131、133、134、136)在製造期間,在經由背面研磨及拋光或雷射剝離(下文參考圖64及65所論述)單體化二極體後暴露於二極體110D、100F、100G、100K之第二面(背面)上,且可保持暴露或可由第二面(背面)金屬層122覆蓋(且與第二面(背面)金屬層122形成電接觸)(如圖66中所說明)。 Also shown in FIGS. 11-22, in the fabricated diodes 100, 100A, 100B, 100C, which extend through the buffer layer 145 and into the substrate 105, but not deeper into or through the substrate 105, as previously described. The surrounding (i.e., eccentric) is a shallow or "blind" guide hole structure other than the type of pilot hole 130 (131, 132, 133, 134, 136). As illustrated in FIG. 13 (and FIGS. 44 and 66), a relatively deep "through" via 131 at the center (or at the center) extends completely through the substrate 105 and is used to form an ohmic contact with the n+ type GaN layer 110 and Current is conducted (or otherwise formed into electrical contact) between the second (back) metal layer 122 and the n+ type GaN layer 110. As illustrated in Figure 22, a "through" via 136 having a smaller or shallower center (or center) extends completely through the composite GaN heterostructure (115, 185, 110) and is used with n+ GaN. Layer 110 forms an ohmic contact and conducts (or otherwise forms electrical contact) between second side (back) metal layer 122 and n+ type GaN layer 110. As illustrated in FIG. 14, a shallower or blind via 132 (also referred to as a "blind" via 132) at the center (or at the center) extends through the buffer layer 145 and into the substrate 105, and is used in conjunction with the n+ type. The GaN layer 110 forms an ohmic contact and conducts (or otherwise forms electrical contact) between the n+ type GaN layer 110 and the substrate 105. As illustrated in Figures 15-17 and 49-50, the surrounding deeper or through vias 133 extend along the side 121 (although covered by the passivation layer 135) from the n+ type GaN layer 110 and extend to the second of the diode 100F. Face (back), in this embodiment the diode 100F also includes a second (back) metal layer 122 that completely surrounds the side of the substrate 105 and It is used to form an ohmic contact with the n+ type GaN layer 110 and to conduct (or otherwise form an electrical contact) between the second (back) metal layer 122 and the n+ type GaN layer 110. As illustrated in Figures 18-20, the relatively deep "through" vias 134 extend completely through the substrate 105 and are used to form an ohmic contact with the n+ type GaN layer 110 and a second (back) metal layer. Current is conducted between 122 and the n+ type GaN layer 110 (or otherwise forms electrical contact). In a specific example where the second (back) metal layer 122 is not used, the through via structures (131, 133, 134, 136) can be used to make electrical contact with the conductor 310A (at devices 300, 300A, 300B, 300C). , 300D, 720, 730, 760) and conduct current (or otherwise form electrical contact) between conductor 310A and n+ type GaN layer 110. These through-via structures (131, 133, 134, 136) are exposed to the poles during fabrication after singulation of the diodes by back grinding and polishing or laser stripping (discussed below with reference to Figures 64 and 65). On the second side (back side) of the body 110D, 100F, 100G, 100K, and may remain exposed or may be covered by the second side (back) metal layer 122 (and in electrical contact with the second side (back) metal layer 122) ( As illustrated in Figure 66).

貫穿導孔結構(131、133、134、136)比此項技術中已知之典型導孔窄得多。貫穿導孔結構(131、133、134)之深度(延伸穿過基板105之高度)大致為約7微米至9微米,且貫穿導孔結構136之深度(延伸穿過複合GaN異質結構之高度)大致為約2微米至4微米,且其寬度為約3微米至5微米,與傳統導孔約30微米或大於30微米之寬度比較。 The through via structures (131, 133, 134, 136) are much narrower than the typical vias known in the art. The depth through the via structure (131, 133, 134) (the height extending through the substrate 105) is approximately 7 microns to 9 microns, and the depth through the via structure 136 (extending through the height of the composite GaN heterostructure) It is approximately 2 microns to 4 microns and has a width of between about 3 microns and 5 microns compared to a width of about 30 microns or greater than 30 microns for conventional vias.

圖11-13、17、18、20-22、66及68中亦說明視情況存在的形成第二端子或接點127或第一端子125(二極體100K)之第二面(背面)金屬層122。該第二端子或接點127例如(但不限於)可用以有助於電流諸如經由各種貫穿導孔結構(131、133、134、136)傳導至n+型GaN層110,及/或有助於與導體310A形成電接觸。 11-13, 17, 18, 20-22, 66, and 68 also illustrate the second (back) metal forming the second terminal or contact 127 or the first terminal 125 (diode 100K) as the case may be. Layer 122. The second terminal or contact 127 can be used, for example, but not limited to, to facilitate current conduction to the n+ type GaN layer 110, such as via various through via structures (131, 133, 134, 136), and/or to facilitate Electrical contact is made with conductor 310A.

參考圖21-22,例示性二極體100K說明若干其他及視情況存在之特徵。圖22說明製造層橫截面,以說明如何製造例示性二極體100K;接著翻轉或反轉例示性二極體100K以使其如圖21中所說明正面向上,以用於例示性裝置300、300A、300B、300C、300D、720、730、760具體實例中,其中光穿過上部n+型GaN層110發射(在LED具體實例中)。因此,第一端子125由第二面(背面)金屬122形成,n+型GaN層110與p+型GaN層115之定向同樣可顛倒(在圖21中n+型GaN層110現為上層)(相較於其他具體實例100-100J),其中第二端子127由一或多個金屬層120B形成。說明極少甚至無基板105、105A或緩衝層145,其在製造期間已經實質上移除,在適當位置留下複合GaN異質結構(p+型GaN層115、量子井區185及p+型GaN層115),且可能亦移除一定量的其他GaN層或基板。側面或側緣(121)比其他所說明之具體實例相對較薄(或厚度較小),在例示性具體實例中為10微米以下,或更尤其為約2微米至8微米,或更尤其為約2微米至6微米,或更尤其為約2微米至4微米,或更尤其為2.5微米至3.5微米,或為約3 微米,亦用以防止個別二極體100K在裝置300、300A、300B、300C、300D、720、730、760製造期間在其側面或側緣(121)上豎立。 Referring to Figures 21-22, the exemplary diode 100K illustrates a number of other and optional features. Figure 22 illustrates a fabrication layer cross section to illustrate how to fabricate the exemplary diode 100K; then flip or invert the exemplary diode 100K to face up as illustrated in Figure 21 for the illustrative device 300, In the specific examples 300A, 300B, 300C, 300D, 720, 730, 760, light is emitted through the upper n+ type GaN layer 110 (in the LED embodiment). Therefore, the first terminal 125 is formed by the second surface (back surface) metal 122, and the orientation of the n + -type GaN layer 110 and the p + -type GaN layer 115 can be reversed as well (the n + -type GaN layer 110 is now the upper layer in FIG. 21) In other specific examples 100-100J), wherein the second terminal 127 is formed from one or more metal layers 120B. There is little or no substrate 105, 105A or buffer layer 145 that has been substantially removed during fabrication, leaving a complex GaN heterostructure (p+ type GaN layer 115, quantum well region 185, and p+ type GaN layer 115) in place. And possibly also removing a certain amount of other GaN layers or substrates. The side or side edges (121) are relatively thinner (or less thick) than the other illustrated embodiments, in the illustrative embodiments, 10 microns or less, or more specifically about 2 microns to 8 microns, or more particularly From about 2 microns to 6 microns, or more specifically from about 2 microns to 4 microns, or more specifically from 2.5 microns to 3.5 microns, or about 3 The micron is also used to prevent the individual diodes 100K from standing up on their sides or side edges (121) during manufacture of the device 300, 300A, 300B, 300C, 300D, 720, 730, 760.

形成第一端子125之第二面(背面)金屬122比較厚,在例示性具體實例中為約3微米至6微米,或4.5微米至約5.5微米,或約5微米,以使二極體100K之高度為約11微米至15微米,或12微米至14微米,或約13微米,以允許介電層315沉積且與第二導體320接觸,且呈例如(但不限於)長軸為約14微米且短軸為約6微米之橢圓形形狀。形成第一端子125之第二面(背面)金屬122亦不延伸越過整個背面以便於背面對準及二極體100K單體化。第二端子127由金屬層120B形成,且在例示性具體實例中,其厚度一般亦為約3微米至6微米,或厚度為4.5微米至約5.5微米,或厚度為約5微米。亦如所說明,絕緣(鈍化)層135A亦用以使金屬層120B與導孔136電絕緣或電隔離,且可以獨立於圍繞周邊沉積鈍化(氮化物)層135的步驟沉積,因此說明為135A。在例示性具體實例中,二極體100K之寬度(一般呈六角形之形狀的面與面之間的距離而非頂點與頂點之間的距離)為例如(但不限於)約10微米至50微米,或更尤其為約20微米至30微米,或更尤其為約22微米至28微米,或更尤其為約25微米至27微米,或更尤其為約25.5微米至26.5微米,或更尤其為約26微米。未作單獨說明,在製造第二端子127過程中亦可包括金屬層120A。在製造二極體100K期間(且在其他例示性 二極體100-100L具體實例中),頂部GaN層(說明為p+型GaN層115,但亦可為其他類型之GaN層,如圖25中所說明)亦可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(未作單獨說明)(諸如厚度約100埃之鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於歐姆接觸形成(且可能提供朝向n+型GaN層110之光反射),其中一些接著與其他GaN層一起諸如在形成GaN台面期間移除。 The second side (back) metal 122 forming the first terminal 125 is relatively thick, in the illustrative embodiment, from about 3 microns to 6 microns, or from 4.5 microns to about 5.5 microns, or about 5 microns, to provide the diode 100K. The height is from about 11 microns to 15 microns, or from 12 microns to 14 microns, or about 13 microns to allow the dielectric layer 315 to be deposited and in contact with the second conductor 320, and has a long axis of, for example, but not limited to about 14 The micrometer and minor axis are elliptical in shape of about 6 microns. The second (back) metal 122 forming the first terminal 125 also does not extend across the entire back surface to facilitate back alignment and singulation of the diode 100K. The second terminal 127 is formed of a metal layer 120B, and in an exemplary embodiment, typically has a thickness of from about 3 microns to 6 microns, or a thickness of from 4.5 microns to about 5.5 microns, or a thickness of about 5 microns. As also illustrated, the insulating (passivation) layer 135A is also used to electrically or electrically isolate the metal layer 120B from the vias 136 and may be deposited independently of the step of depositing a passivation (nitride) layer 135 around the perimeter, thus illustrated as 135A. . In an illustrative embodiment, the width of the diode 100K (the distance between the face and the face of the generally hexagonal shape rather than the distance between the apex and the apex) is, for example, but not limited to, about 10 microns to 50. Micron, or more specifically from about 20 microns to 30 microns, or more specifically from about 22 microns to 28 microns, or more specifically from about 25 microns to 27 microns, or more specifically from about 25.5 microns to 26.5 microns, or more particularly About 26 microns. The metal layer 120A may also be included in the process of fabricating the second terminal 127, unless otherwise specified. During the manufacture of the diode 100K (and in other exemplary In the diode 100-100L specific example), the top GaN layer (illustrated as p+ type GaN layer 115, but may be other types of GaN layers, as illustrated in FIG. 25) may also pass through a very thin optically reflective metal layer. Metallized (described as silver layer 103 in FIG. 25) and/or optically transmissive metal layer (not separately illustrated) (such as nickel-gold or nickel-gold-nickel having a thickness of about 100 angstroms) and alloyed therewith, It facilitates ohmic contact formation (and possibly provides light reflection towards the n+ type GaN layer 110), some of which are then removed along with other GaN layers, such as during formation of GaN mesas.

參考圖23及24,例示性第十一二極體100L具體實例與所有其他所說明之二極體100-100K具體實例的不同之處在於在二極體100L之同一側(上面或頂面)上具有第一及第二端子125、127。當用於例示性裝置700、700A、700B、740、750、770具體實例中時,光將穿過(下部)n+型GaN層110,通常穿過實質上光學透明之基底305A發射(在LED具體實例中)或吸收(對於光電具體實例而言),如圖80-82中所說明。由於在二極體100L之同一側(上面或頂面)上具有第一及第二端子125、127,所以此例示性二極體100L不使用任何第二面(背面)金屬122,且一般不需要任何先前所論述之各種導孔結構。說明極少甚至無基板105、105A或緩衝層145,其亦在製造期間已經實質上移除,在適當位置上留下複合GaN異質結構(p+型GaN層115、量子井區185及p+型GaN層115),且可能亦移除一定量的其他GaN。側面或側緣(121)亦比其他所說明之具體實例相對較薄(或厚度較小),在例示性具體實例中為約2微米至4微米,或 更尤其2.5微米至3.5微米,或約3微米,亦用以防止個別二極體100L在裝置700、700A、700B、740、750、770製造期間在其側面或側緣(121)上豎立。未作單獨說明,在製造二極體100L期間(及在其他例示性二極體100-100K具體實例中),頂部GaN層(說明為p+型GaN層115,但亦可為其他類型之GaN層,如圖25中所說明)亦可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(未作單獨說明)(諸如厚度約100埃之鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於歐姆接觸形成(且可能提供朝向n+型GaN層110之光反射),其中一些接著與其他GaN層一起諸如在形成GaN台面期間移除。 Referring to Figures 23 and 24, the exemplary eleventh diode 100L embodiment differs from all other illustrated diode 100-100K embodiments in that it is on the same side (top or top) of the diode 100L. There are first and second terminals 125, 127 thereon. When used in the illustrative device 700, 700A, 700B, 740, 750, 770 embodiments, light will pass through the (lower) n+ type GaN layer 110, typically through a substantially optically transparent substrate 305A (in the LED specific In the examples) or absorption (for photovoltaic specific examples), as illustrated in Figures 80-82. Since the first and second terminals 125, 127 are on the same side (upper or top) of the diode 100L, the exemplary diode 100L does not use any second (back) metal 122, and generally does not Any of the various via structures previously discussed are required. There is little or no substrate 105, 105A or buffer layer 145, which has also been substantially removed during fabrication, leaving a complex GaN heterostructure (p+ type GaN layer 115, quantum well region 185, and p+ type GaN layer) in place. 115), and may also remove a certain amount of other GaN. The side or side edges (121) are also relatively thinner (or less thick) than the other illustrated embodiments, in the illustrative embodiment, from about 2 microns to 4 microns, or More particularly from 2.5 microns to 3.5 microns, or about 3 microns, also serves to prevent individual diodes 100L from standing up on their sides or side edges (121) during manufacture of device 700, 700A, 700B, 740, 750, 770. Not separately stated, during the fabrication of the diode 100L (and in other exemplary diode 100-100K specific examples), the top GaN layer (illustrated as a p+ type GaN layer 115, but may be other types of GaN layers) , as illustrated in FIG. 25, may also pass through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or an optically transmissive metal layer (not separately illustrated) (such as a thickness of about 100 angstroms). Nickel-gold or nickel-gold-nickel are metallized and alloyed therewith to aid in ohmic contact formation (and possibly provide light reflection towards the n+ type GaN layer 110), some of which are then formed along with other GaN layers, such as in formation Removed during GaN mesa.

如圖23及24中所說明,GaN台面(p+型GaN層115及量子井層185)一般呈非典型形狀,有點類似於頂部經修平之三角形(例如,藉由自六角形或圓形提供複數個(三個)劃出部分而形成),以在n+型GaN層110之上表面上為金屬接點128(說明三個金屬接點128)提供空間,該等金屬接點128在二極體100L之上面或頂面上形成第二端子127。在各個例示性具體實例中,GaN台面之高度一般為約0.5微米至1.5微米,或更尤其為0.8微米至1.2微米,或更尤其為0.9至1.1微米,或更尤其為約1.0微米。金屬接點128可由導孔金屬形成,高度約為約0.75微米至1.5微米,或高度更尤其為約0.9微米至1.1微米,或高度更尤其為約1.0微米,諸如約100埃之鈦、500nm之鋁、500nm之鎳 及100nm之金,且寬度為約2.5至3.5微米(徑向量測)。在各個例示性具體實例中,由金屬層120A及120B形成之第一端子125形狀類似於GaN台面但小於GaN台面,其高度一般為約4微米至8微米,或更尤其為5微米至7微米,或更尤其為約6微米,以允許沉積與金屬接點128接觸之第一導體310A且允許沉積介電層315,繼而第一端子125與第二導體320接觸(圖80-82中所說明)。在此例示性具體實例中,由金屬層120A及120B形成之第一端子125亦經鈍化(135),該鈍化除提供絕緣及保護以免接觸第一導體310之外,亦可用以有助於第一端子125之結構完整性,適用於抵禦印刷製程中所施加之各種力。在例示性具體實例中,二極體100L之寬度(一般呈六角形之形狀之面與面之間的距離而非頂點與頂點之間的距離)為約10微米至50微米,或更尤其為約20微米至30微米,或更尤其為約22微米至28微米,或更尤其為約25微米至27微米,或更尤其為約25.5微米至26.5微米,或更尤其為約26微米。在例示性具體實例中,二極體100L之高度一般為約8微米至15微米,或更尤其為9微米至12微米,或更尤其為約10.5微米至11.5微米。 As illustrated in Figures 23 and 24, the GaN mesas (p+-type GaN layer 115 and quantum well layer 185) are generally atypical in shape, somewhat similar to the top-triangled triangle (e.g., by providing a plurality from a hexagon or a circle) (three) drawn portions are formed to provide space on the upper surface of the n + -type GaN layer 110 as metal contacts 128 (illustrating three metal contacts 128), the metal contacts 128 being in the diode A second terminal 127 is formed on the upper or top surface of 100L. In various exemplary embodiments, the height of the GaN mesas is typically from about 0.5 microns to 1.5 microns, or more specifically from 0.8 microns to 1.2 microns, or more specifically from 0.9 to 1.1 microns, or more specifically about 1.0 microns. The metal contacts 128 may be formed of a via metal having a height of about 0.75 microns to 1.5 microns, or more particularly about 0.9 microns to 1.1 microns, or more particularly about 1.0 microns, such as about 100 angstroms of titanium, 500 nm. Aluminum, 500nm nickel And gold of 100 nm, and a width of about 2.5 to 3.5 microns (radial measurement). In various exemplary embodiments, the first terminal 125 formed from metal layers 120A and 120B is shaped similar to a GaN mesa but smaller than a GaN mesa, typically having a height of between about 4 microns and 8 microns, or more specifically between 5 microns and 7 microns. , or more particularly about 6 microns, to allow deposition of the first conductor 310A in contact with the metal contacts 128 and to allow deposition of the dielectric layer 315, which in turn is in contact with the second conductor 320 (illustrated in Figures 80-82) ). In this exemplary embodiment, the first terminal 125 formed by the metal layers 120A and 120B is also passivated (135). In addition to providing insulation and protection from contact with the first conductor 310, the passivation can also be used to facilitate The structural integrity of a terminal 125 is suitable for resisting the various forces applied in the printing process. In an exemplary embodiment, the width of the diode 100L (the distance between the face and the face of the generally hexagonal shape rather than the distance between the apex and the apex) is from about 10 microns to 50 microns, or more particularly From about 20 microns to 30 microns, or more specifically from about 22 microns to 28 microns, or more specifically from about 25 microns to 27 microns, or more specifically from about 25.5 microns to 26.5 microns, or more specifically about 26 microns. In an exemplary embodiment, the height of the diode 100L is typically from about 8 microns to 15 microns, or more specifically from 9 microns to 12 microns, or more specifically from about 10.5 microns to 11.5 microns.

應注意,二端器件之尺寸更一般可為較大的,諸如直徑(寬度或長度,視形狀而定,亦為面對面量測)為約10微米至75微米,且高度為約5至25微米。 It should be noted that the size of the two-terminal device can be more generally larger, such as diameter (width or length, depending on shape, also for face-to-face measurement) of about 10 microns to 75 microns, and a height of about 5 to 25 microns. .

圖25為穿過一部分複合GaN異質結構(或GaN台面)(n+型GaN層110、量子井區185、p+型GaN層115)及金 屬層120A、120B之橫截面圖,其說明複合GaN異質結構之外表面及/或內表面(例如,p+型GaN層115或n+型GaN層110或其他銀或鏡面層(103)之表面)的視情況呈現之幾何形狀及紋理。圖25中所說明之各種特徵中之任一者可用作各種例示性二極體100-100L中之任一者的可選方案。如圖1-24中所說明,複合GaN異質結構之外表面及/或內表面可比較平滑。如圖25中所說明,複合GaN異質結構之各種外表面及/或內表面中之任一者可製造成具有各種紋理、幾何形狀、鏡面、反射器或其他表面處理中之任一者。舉例而言(但不加以限制),複合GaN異質結構之外表面(上表面或頂表面)(說明為n+型GaN層110)可經蝕刻以提供表面粗糙結構112(說明為鋸齒狀圓錐形或錐形結構),諸如以減少內部反射且提高二極體100-100L具體實例內之光提取。另外,複合GaN異質結構之外表面(例如p+型GaN層115或n+型GaN層110之表面)可經遮蓋且蝕刻或以其他方式製造成具有各種幾何結構,亦例如(但不限於)穹隆形或透鏡形狀116;超環狀體、蜂巢或華夫餅乾(waffle)形狀118;條紋113或其他幾何形狀(例如六角形、三角形等)117。另外,側面121亦可包括各種鏡面或反射器109,諸如介電反射器(例如SiO2/Si3N4)或金屬反射器。多種表面處理及反射器已描述於例如Fujii等人之美國專利第7,704,763號(2010年4月27日頒予)、Chu等人之美國專利第7,897,420號(2011年3月1日頒予)、Kang等人之美國專利申請公開案第2010/0295014 A1號(2010年11月25 日公開)及Shum之美國專利第7,825,425號(2010年11月2日頒予)中,上述所有專利均以引用方式併入本文中。其他表面紋理及幾何形狀說明於圖104-108中。 25 is a cross-sectional view through a portion of a composite GaN heterostructure (or GaN mesa) (n+-type GaN layer 110, quantum well region 185, p+-type GaN layer 115) and metal layers 120A, 120B illustrating a composite GaN heterostructure The geometry and texture of the outer surface and/or inner surface (eg, the surface of the p+ type GaN layer 115 or the n+ type GaN layer 110 or other silver or mirror layer (103)) as appropriate. Any of the various features illustrated in Figure 25 can be used as an alternative to any of the various exemplary diodes 100-100L. As illustrated in Figures 1-24, the outer and/or inner surface of the composite GaN heterostructure can be relatively smooth. As illustrated in Figure 25, any of the various outer and/or inner surfaces of the composite GaN heterostructure can be fabricated to have any of a variety of textures, geometries, mirrors, reflectors, or other surface treatments. By way of example, but not limitation, the outer surface (upper surface or top surface) of the composite GaN heterostructure (illustrated as n+ type GaN layer 110) may be etched to provide surface roughness 112 (illustrated as a serrated cone or Tapered structure, such as to reduce internal reflection and enhance light extraction within the specific embodiment of the diode 100-100L. Additionally, the outer surface of the composite GaN heterostructure (eg, the surface of the p+ type GaN layer 115 or the n+ type GaN layer 110) may be masked and etched or otherwise fabricated to have various geometries, such as, but not limited to, a dome shape Or lens shape 116; super-annular, honeycomb or waffle shape 118; stripes 113 or other geometric shapes (eg, hexagons, triangles, etc.) 117. Additionally, side 121 may also include various mirrors or reflectors 109, such as dielectric reflectors (e.g., SiO 2 /Si 3 N 4 ) or metal reflectors. A variety of surface treatments and reflectors are described, for example, in U.S. Patent No. 7,704,763 to Fujii et al. (issued on Apr. 27, 2010), and U.S. Patent No. 7,897,420 (issued on March 1, 2011). U.S. Patent Application Publication No. 2010/0295014 A1 to Kang et al. (published on Nov. 25, 2010), and U.S. Patent No. 7,825,425 (issued on Nov. 2, 2010), all of which are incorporated by reference. The manner is incorporated herein. Other surface textures and geometries are illustrated in Figures 104-108.

繼續參考圖25,複合GaN異質結構(或更一般,二極體100-100L)之內表面亦可製造成具有各種紋理、幾何形狀、鏡面、反射器或其他表面處理中之任一者。如所說明,舉例而言(但不加以限制),反射層103可用於諸如藉由使用在製造期間(在製造金屬層102A、102B之前)塗覆之銀層而提供朝向二極體100-100L之暴露表面向外之光反射且提高光提取,該反射層103可為平滑(111)或具有帶紋理(107)表面。亦舉例而言(但不加以限制),複合GaN異質結構之內表面亦可為平滑的或諸如藉由使用可為例如漫射n型InGaN材料之其他層108而具有帶紋理表面。另外,此等各種視情況呈現之表面幾何形狀及紋理中之任一者可單獨使用或彼此組合使用,諸如具有外表面紋理112與內表面紋理(107)及/或反射層103之複漫射結構。亦可出於其他原因使用各種視情況存在之層,諸如在層108中使用n型InGaN材料以提供較佳之歐姆接觸,與可能使用或可能不使用之任何表面處理無關。 With continued reference to FIG. 25, the inner surface of the composite GaN heterostructure (or more generally, the diode 100-100L) can also be fabricated to have any of a variety of textures, geometries, mirrors, reflectors, or other surface treatments. As illustrated, by way of example and not limitation, reflective layer 103 can be used to provide orientation toward diodes 100-100L, such as by using a silver layer applied during fabrication (before fabrication of metal layers 102A, 102B) The exposed surface reflects outward and enhances light extraction, and the reflective layer 103 can be smooth (111) or have a textured (107) surface. Also by way of example, but not limitation, the inner surface of the composite GaN heterostructure can also be smooth or have a textured surface, such as by using other layers 108 that can be, for example, diffuse n-type InGaN materials. In addition, any of these various surface textures and textures as may be present may be used alone or in combination with one another, such as having a complex diffusion of outer surface texture 112 and inner surface texture (107) and/or reflective layer 103. structure. Various layers may optionally be used for other reasons, such as the use of n-type InGaN material in layer 108 to provide a preferred ohmic contact, regardless of any surface treatment that may or may not be used.

二極體100-100L之所有尺寸一般小於約450微米,且所有尺寸更尤其小於約200微米,且所有尺寸更尤其小於約100微米,且所有尺寸更尤其小於50微米。在所說明之例示性具體實例中,二極體100-100L之寬度一般大致為約10微米至50微米,或寬度更尤其為約20微米至30微米, 且高度為約5微米至25微米,或高度更尤其為5微米至15微米,或直徑為約25微米至28微米(側面對側面而非頂點對頂點量測)且高度為10微米至15微米。在例示性具體實例中,二極體100-100L不包括形成凸塊或突出結構之金屬層120B或122在內的高度(亦即,包括GaN異質結構之側面121之高度)視具體實例而定大致為約2微米至15微米,或更尤其為約2微米至4微米,或更尤其為7微米至12微米,或更尤其為8微米至11微米,或更尤其為9微米至10微米,或更尤其小於10微米至30微米,而形成凸塊或突出結構之金屬層120B之高度一般大致為約3微米至7微米。由於二極體之尺寸經工程改造成處於器件製造期間之所選容許度範圍內,所以可例如(但不限於)使用光學顯微鏡(其亦可包括量測軟體)、掃描電子顯微鏡(SEM)或Horiba LA-920(例如,在粒子處於稀溶液中,其可處於二極體墨水或任何其他液體或膠體中時使用夫朗和裴繞射(Fraunhofer diffraction)及光散射來量測粒徑(及粒徑分佈))來量測二極體之尺寸。二極體100-100L之所有尺寸或其他量測值應視作複數個二極體100-100L之平均值(例如平均值及/或中值),且將視所選具體實例而顯著變化(例如二極體110-100J或100K或100L一般將皆具有不同之各別尺寸)。 All dimensions of the diode 100-100L are generally less than about 450 microns, and all dimensions are more particularly less than about 200 microns, and all dimensions are more particularly less than about 100 microns, and all dimensions are more particularly less than 50 microns. In the illustrated exemplary embodiment, the width of the diode 100-100L is generally from about 10 microns to 50 microns, or more specifically from about 20 microns to 30 microns. And heights from about 5 microns to 25 microns, or heights more particularly from 5 microns to 15 microns, or diameters from about 25 microns to 28 microns (side to side rather than apex versus apex) and heights from 10 microns to 15 microns . In an exemplary embodiment, the height of the diode 100-100L that does not include the metal layer 120B or 122 forming the bump or protruding structure (ie, the height of the side 121 including the GaN heterostructure) depends on the specific example. Roughly from about 2 microns to 15 microns, or more specifically from about 2 microns to 4 microns, or more specifically from 7 microns to 12 microns, or more specifically from 8 microns to 11 microns, or more specifically from 9 microns to 10 microns, Or more particularly less than 10 microns to 30 microns, and the height of the metal layer 120B forming the bumps or protruding structures is generally from about 3 microns to 7 microns. Since the dimensions of the diode are engineered to be within a selected tolerance range during device fabrication, for example, but not limited to, using an optical microscope (which may also include measurement software), a scanning electron microscope (SEM), or Horiba LA-920 (for example, using Fraunhofer diffraction and light scattering to measure particle size when the particles are in a dilute solution, which can be in a diode ink or any other liquid or colloid (and Particle size distribution)) to measure the size of the diode. All dimensions or other measurements of the diode 100-100L shall be considered as the average of the plurality of diodes 100-100L (eg, mean and/or median) and will vary significantly depending on the particular instance selected ( For example, diodes 110-100J or 100K or 100L will generally have different individual sizes).

二極體100-100L可使用當前已知或將來開發之任何半導體製造技術來製造。圖26-66說明製造例示性二極體100-100L之複數個例示性方法且說明若干其他例示性二極 體100H、100I及100J(在橫截面上)。熟習此項技術者應瞭解,製造二極體100-100L之各個步驟中之多個步驟可按各種次序中之任一者進行,在其他次序中可省去或納入,且可產生除所說明之結構之外的諸多二極體結構。舉例而言,圖38-44說明在視情況存在或不存在第二面(背面)金屬層122下分別包括中心及周邊貫穿(或深)導孔131及134的二極體100H之形成(組合二極體100D及100G之特徵),而圖45-50說明在視情況存在或不存在第二面(背面)金屬層122下包括周圍導孔133之二極體100I的形成,且其可與其他所說明之製造步驟組合以包括中心或周邊貫穿導孔131及134,例如以形成二極體100F。 The diode 100-100L can be fabricated using any semiconductor fabrication technology currently known or developed in the future. Figures 26-66 illustrate a plurality of exemplary methods of fabricating exemplary diodes 100-100L and illustrating several other exemplary dipoles Body 100H, 100I and 100J (in cross section). Those skilled in the art will appreciate that the various steps in the various steps of making the diode 100-100L can be performed in any of a variety of orders, in other orders, omitted or incorporated, and can be Many diode structures outside the structure. For example, Figures 38-44 illustrate the formation of a diode 100H including central and peripheral through (or deep) vias 131 and 134, respectively, in the presence or absence of a second (back) metal layer 122, as appropriate. The features of the diodes 100D and 100G, and FIGS. 45-50 illustrate the formation of the diode 100I including the surrounding vias 133 under the presence or absence of the second (back) metal layer 122, as appropriate, and which may be Other illustrated manufacturing steps are combined to include a center or perimeter through the vias 131 and 134, for example to form a diode 100F.

圖26、27及29-37為說明根據本發明之教示製造二極體100、100A、100B、100C之例示性方法的橫截面圖,其中圖26-29說明在晶圓150層級上製造且圖30-37說明在二極體100、100A、100B、100C層級上製造。所說明之各個製造步驟亦可用以形成其他二極體100D-100L,圖26-32適用於任何二極體100-100L,視所選基板105、105A而定。圖26及圖27為具有二氧化矽(或「氧化物」)層190之晶圓150(諸如矽晶圓)之橫截面圖。圖28為具有蝕刻成網格圖案之二氧化矽層190之矽晶圓150的平面圖(或俯視圖)。氧化物層190(厚度一般為約0.1微米)沉積或生長於晶圓150上,如圖26所示。如圖27中所說明,經由如此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,已移除部分氧化物層190,留下呈網格圖案(亦稱為「路狀物 (street)」)之氧化物190,如圖28中所說明。 26, 27 and 29-37 are cross-sectional views illustrating an exemplary method of fabricating diodes 100, 100A, 100B, 100C in accordance with the teachings of the present invention, wherein Figures 26-29 illustrate fabrication and fabrication at wafer 150 level 30-37 illustrates fabrication on the level of diodes 100, 100A, 100B, 100C. The various fabrication steps illustrated may also be used to form other diodes 100D-100L, and Figures 26-32 are applicable to any of the diodes 100-100L, depending on the selected substrate 105, 105A. 26 and 27 are cross-sectional views of a wafer 150 (such as a germanium wafer) having a cerium oxide (or "oxide") layer 190. 28 is a plan (or top) view of a germanium wafer 150 having a ceria layer 190 etched into a grid pattern. An oxide layer 190 (typically about 0.1 microns thick) is deposited or grown on wafer 150 as shown in FIG. As illustrated in Figure 27, a portion of the oxide layer 190 has been removed via a suitable or standard mask and/or photoresist layer and etch as known in the art, leaving a grid pattern (also known as a "road" Object The oxide 190 of (street)") is as illustrated in FIG.

圖29為具有緩衝層145、二氧化矽(或「氧化物」)層190及GaN層(在一例示性具體實例中,通常磊晶生長或沉積至約1.25微米至2.50微米之厚度,儘管較小或較大之厚度亦處於本發明範疇內)之晶圓150(諸如矽晶圓)的橫截面圖,該等GaN層係說明為氧化物190上之多晶GaN 195,以及如上所述形成複合GaN異質結構之n+型GaN層110、量子井區185及p+型GaN層115。如上所示,將緩衝層145(諸如氮化鋁或氮化矽且厚度一般為約25埃)沉積於矽晶圓150上以有助於後續GaN沉積。使用生長或沉積於氧化物190上之多晶GaN 195降低通常具有單晶結構之複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)中之應力及/或應變(例如因GaN與矽晶圓之熱失配所致)。處於本發明範疇內使該應力及/或應變降低之其他等效方法例如(但不限於)包括使矽晶圓150及/或緩衝層145所選區域之表面變粗糙,以使相應GaN區域不為單晶體,或在矽晶圓150中蝕刻渠溝以使得在整個晶圓150上亦不存在連續之GaN晶體。在其他例示性製造方法中,諸如當使用其他基板,諸如藍寶石晶圓150A上之GaN(基板105)時,可省去該路狀物形成及應力降低製造步驟。為形成複合GaN異質結構的GaN沉積或生長可經由如此項技術中已知或即將知曉之任何所選製程來提供及/或可為器件製造者所專有。在一例示性具體實例中,包含n+型GaN層110、量子井區185及p+型GaN層115之複合GaN異質 結構可自例如(但不限於)Walnut,California,USA之Blue Photonics公司及其他供應商獲得。 29 is a buffer layer 145, a hafnium oxide (or "oxide") layer 190, and a GaN layer (in an exemplary embodiment, typically epitaxially grown or deposited to a thickness of between about 1.25 microns and 2.50 microns, although A cross-sectional view of a wafer 150 (such as a germanium wafer) having a small or large thickness also within the scope of the present invention, the GaN layer being illustrated as polycrystalline GaN 195 on oxide 190, and formed as described above The n + -type GaN layer 110 of the GaN heterostructure is combined, the quantum well region 185, and the p + -type GaN layer 115. As indicated above, a buffer layer 145, such as aluminum nitride or tantalum nitride, and typically about 25 angstroms thick, is deposited over the germanium wafer 150 to facilitate subsequent GaN deposition. The use of polycrystalline GaN 195 grown or deposited on oxide 190 reduces stress and/or strain in a composite GaN heterostructure (n+ type GaN layer 110, quantum well region 185, and p+ type GaN layer 115) that typically has a single crystal structure. (eg due to thermal mismatch between GaN and germanium wafers). Other equivalent methods that reduce the stress and/or strain within the scope of the present invention, such as, but not limited to, include roughening the surface of selected regions of germanium wafer 150 and/or buffer layer 145 such that the corresponding GaN regions are not The trench is etched for a single crystal, or in the germanium wafer 150 such that there are no continuous GaN crystals throughout the wafer 150. In other exemplary fabrication methods, such as when other substrates, such as GaN (substrate 105) on sapphire wafer 150A, are used, the road formation and stress reduction fabrication steps may be omitted. GaN deposition or growth to form a composite GaN heterostructure can be provided by any selected process known or to be known in the art and/or can be proprietary to device manufacturers. In an exemplary embodiment, the composite GaN heterojunction including the n+ type GaN layer 110, the quantum well region 185, and the p+ type GaN layer 115 is heterogeneous. The structure is available, for example, but not limited to, Blue Photonics, Inc. of Walnut, California, USA, and other suppliers.

圖30為根據本發明之教示具有緩衝層145及複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)之基板105之橫截面圖,其說明晶圓150之一極小部分(諸如圖29之區域191)以說明單個二極體100-100L之製造。經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)經蝕刻以形成GaN台面結構187,如圖31及32中所說明,其中圖32說明具有相對較傾斜之側面的GaN台面結構187A,其可能會有助於光產生及/或吸收。亦可建構其他GaN台面結構187,諸如部分或實質上超環形之GaN台面結構187,如圖10、13、14、17、20、22、39-44及66中所說明。在蝕刻GaN台面(亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻)後,進行(淺或盲)導孔蝕刻,如圖33中所說明,形成穿過GaN層及緩衝層145且進入矽基板105中之比較淺之渠溝186。 30 is a cross-sectional view of a substrate 105 having a buffer layer 145 and a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) in accordance with the teachings of the present invention, illustrating one of wafers 150. A very small portion (such as region 191 of Figure 29) is used to illustrate the fabrication of a single diode 100-100L. The composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) is etched to form a GaN mesa structure via appropriate or standard mask and/or photoresist layers and etching known in the art. 187, as illustrated in Figures 31 and 32, wherein Figure 32 illustrates a GaN mesa structure 187A having relatively sloping sides that may contribute to light generation and/or absorption. Other GaN mesa structures 187, such as partially or substantially hyper-annular GaN mesa structures 187, may also be constructed, as illustrated in Figures 10, 13, 14, 17, 20, 22, 39-44, and 66. After etching the GaN mesas (also known or known as standard or masks and/or photoresist layers and etching), a (shallow or blind) via etch is performed, as illustrated in FIG. A shallow trench 186 is formed through the GaN layer and buffer layer 145 and into the germanium substrate 105.

亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,接著沉積金屬化層,形成與p+型GaN層115之金屬接點120A且形成導孔130,如圖34中所說明。在例示性具體實例中,沉積若干層金屬,第一層或初始層與p+型GaN層115形成歐姆接觸,其通常包含各自約50埃至200埃之兩個金屬層(鎳層,繼而金層),繼而在約450℃至500℃下 於含約20%氧氣及80%氮氣之氧化氛圍中退火,使得鎳上升至頂部成為氧化鎳層,且形成與p+型GaN層115具有比較優良之歐姆接觸的金屬層(作為120A之一部分)。作為另一實施例,在製造二極體100L期間(及在其他例示性二極體100-100K具體實例中),頂部GaN層(說明為p+型GaN層115,但亦可為其他類型之GaN層,如圖25中所說明)亦可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(未作單獨說明)(諸如厚度約100埃之鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於歐姆接觸形成(且可能提供朝向n+型GaN層110之光反射),其中一些接著與其他GaN層一起諸如在形成GaN台面期間移除。亦可沉積另一金屬化層,諸如以形成較厚之互連金屬從而塑造且完全形成金屬層120A(例如用於電流分佈)及形成導孔130。在另一例示性具體實例(圖45-50中所說明)中,與p+型GaN層115形成歐姆接觸之金屬接點120A可在GaN台面蝕刻之前形成,繼而進行GaN台面蝕刻、導孔蝕刻等。諸多其他金屬化製程及構成金屬層120A及120B之相應材料亦處於本發明範疇內,其中不同製造設施常使用不同製程及材料選擇。舉例而言(但不加以限制),任一或兩個金屬層120A及120B可藉由沉積鈦以形成厚度通常為50埃至200埃之黏著層或晶種層,繼而沉積2微米至4微米之鎳層及金薄層或「快閃層」(金「快閃層」為厚度為約50埃至500埃之層)、沉積3微米至5微米之鋁,繼而沉積鎳(約0.5微米,物理氣相沉積或電鍍)及金 「快閃層」,或藉由沉積鈦,繼而沉積金,繼而沉積鎳(對於120B,厚度通常為3微米至5微米),繼而沉積金,或藉由沉積鋁,繼而沉積鎳,繼而沉積金等而形成。另外,形成凸塊或突出結構之金屬層120B之高度亦可變化,在例示性具體實例中通常介於約3.5微米至5.5微米之間,視基板105之厚度而定(例如,約7微米至8微米之GaN相對於約10微米之矽),以使所得二極體100-100L具有實質上均勻之高度及形態因數。 The vias 130A are formed and formed by the appropriate or standard mask and/or photoresist layer and etch as known in the art, followed by deposition of a metallization layer to form a via 130 with the p+ type GaN layer 115, as in FIG. Explained. In an exemplary embodiment, a plurality of layers of metal are deposited, the first or initial layer forming an ohmic contact with the p+ type GaN layer 115, which typically comprises two metal layers (nickel layer, followed by a gold layer) each of about 50 angstroms to 200 angstroms ), and then at about 450 ° C to 500 ° C Annealing in an oxidizing atmosphere containing about 20% oxygen and 80% nitrogen causes the nickel to rise to the top to form a nickel oxide layer and form a metal layer (as part of 120A) having a relatively good ohmic contact with the p+ type GaN layer 115. As another embodiment, during the fabrication of the diode 100L (and in other exemplary diode 100-100K embodiments), the top GaN layer (illustrated as a p+ type GaN layer 115, but may be other types of GaN) The layer, as illustrated in Figure 25, may also pass through a very thin optically reflective metal layer (illustrated as silver layer 103 in Figure 25) and/or an optically transmissive metal layer (not separately illustrated) (such as a thickness of about 100 angstroms) Nickel-gold or nickel-gold-nickel is metallized and alloyed therewith to aid in ohmic contact formation (and possibly to provide light reflection towards the n+ type GaN layer 110), some of which are then along with other GaN layers such as Removed during formation of GaN mesas. Another metallization layer can also be deposited, such as to form a thicker interconnect metal to shape and fully form metal layer 120A (eg, for current distribution) and to form vias 130. In another exemplary embodiment (illustrated in FIGS. 45-50), the metal contact 120A that forms an ohmic contact with the p+ type GaN layer 115 can be formed prior to GaN mesa etching, followed by GaN mesa etching, via etching, etc. . Many other metallization processes and corresponding materials that make up the metal layers 120A and 120B are also within the scope of the present invention, with different manufacturing facilities often using different processes and material choices. By way of example and not limitation, any one or two of the metal layers 120A and 120B may be deposited by depositing titanium to form an adhesive or seed layer having a thickness of typically 50 angstroms to 200 angstroms, followed by deposition of 2 micrometers to 4 micrometers. Nickel layer and gold thin layer or "flash layer" (gold "flash layer" is a layer having a thickness of about 50 angstroms to 500 angstroms), depositing 3 micrometers to 5 micrometers of aluminum, followed by deposition of nickel (about 0.5 micrometers, Physical vapor deposition or electroplating) and gold "flash layer", or by depositing titanium, followed by deposition of gold, followed by deposition of nickel (typically 3 microns to 5 microns for 120B), followed by deposition of gold, or by depositing aluminum, followed by deposition of nickel, followed by deposition of gold And formed. In addition, the height of the metal layer 120B forming the bump or protruding structure may also vary, typically between about 3.5 microns and 5.5 microns in the exemplary embodiment, depending on the thickness of the substrate 105 (eg, about 7 microns to The 8 micron GaN is relative to about 10 microns, such that the resulting diode 100-100L has a substantially uniform height and form factor.

對於後續將二極體100-100L彼此單體化及自晶圓150單體化,經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如圖35及其他圖40及48中所說明,圍繞各二極體100-100L周邊形成渠溝155(例如,亦如圖2、5、7及9中所說明)。渠溝155之寬度一般為約3微米至5微米且其深度為10微米至12微米。接著亦使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如圖36中所說明,諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽來生長或沉積氮化物鈍化層135,一般達約0.35微米至1.0微米之厚度,繼而沉積光阻且進行蝕刻步驟以移除不必要之氮化矽區域。在其他例示性具體實例中,該等單體化渠溝之側壁可能經鈍化或可能未經鈍化。接著經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,形成具有凸塊或突出結構之金屬層120B,其通常具有3微米至5微米之高度,如圖37中所說明。在一例示性具體實例中,金屬層120B之形成以若干步驟,使用金屬晶 種層,繼而使用電鍍或剝離製程再沉積金屬,移除抗蝕劑並清潔晶種層區域來進行。除後續自晶圓150單體化二極體(在此狀況下,二極體100、100A、100B、100C)以外,如下文所述,以其他方式完成二極體100、100A、100B、100C,且應注意,此等完成之二極體100、100A、100B、100C在各二極體100、100A、100B、100C之上表面上僅具有一個金屬接點或端子(第一端子125)。作為可選方案,可如下文所述且如上文參考其他例示性二極體所提及,可製造第二面(背面)金屬層122以形成第二端子127。 For subsequent singulation of the diodes 100-100L from each other and singulation from the wafer 150, via appropriate or standard masking and/or photoresist layers and etching known in the art, as shown in FIG. 35 and other figures 40. As described in and at 48, a trench 155 is formed around the perimeter of each of the diodes 100-100L (e.g., as also illustrated in Figures 2, 5, 7, and 9). The trenches 155 generally have a width of from about 3 microns to 5 microns and a depth of from 10 microns to 12 microns. Appropriate or standard masking and/or photoresist layers and etching known in the art are then also used, as illustrated in Figure 36, such as by, for example, but not limited to, plasma enhanced chemical vapor deposition (PECVD) nitrogen. The ruthenium is grown to deposit or deposit a nitride passivation layer 135, typically up to a thickness of about 0.35 microns to 1.0 microns, followed by deposition of photoresist and an etching step to remove unnecessary tantalum nitride regions. In other exemplary embodiments, the sidewalls of the monolithic trenches may be passivated or may not be passivated. A metal layer 120B having bumps or protruding structures, typically having a height of from 3 microns to 5 microns, is formed via appropriate or standard masking and/or photoresist layers and etching known in the art, as shown in FIG. Description. In an exemplary embodiment, metal layer 120B is formed in several steps using metal crystals The seed layer is then deposited using an electroplating or stripping process to re-deposit the metal, remove the resist and clean the seed layer region. In addition to subsequent singulation of the diodes from the wafer 150 (in this case, the diodes 100, 100A, 100B, 100C), the diodes 100, 100A, 100B, 100C are otherwise completed as described below. It should be noted that the completed diodes 100, 100A, 100B, 100C have only one metal contact or terminal (first terminal 125) on the upper surface of each of the diodes 100, 100A, 100B, 100C. As an alternative, the second side (back) metal layer 122 can be fabricated to form the second terminal 127 as described below and as mentioned above with reference to other exemplary diodes.

圖38-44說明製造二極體100-100L之另一例示性方法,其中圖38說明在晶圓150A層級上製造且圖39-44說明在二極體100-100L層級上製造。圖38為具有基板105且具有複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)之晶圓150A的橫截面圖。在此例示性具體實例中,於藍寶石(106)(藍寶石晶圓150A之藍寶石(106))上生長或沉積比較厚之GaN層(以形成基板105),繼而沉積或生長GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)。 Figures 38-44 illustrate another exemplary method of fabricating a diode 100-100L, wherein Figure 38 illustrates fabrication on the wafer 150A level and Figures 39-44 illustrate fabrication on the diode 100-100L level. 38 is a cross-sectional view of a wafer 150A having a substrate 105 and having a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115). In this illustrative embodiment, a relatively thick GaN layer is grown or deposited on sapphire (106) (sapphire (106) of sapphire wafer 150A) (to form substrate 105), followed by deposition or growth of a GaN heterostructure (n+ type) The GaN layer 110, the quantum well region 185, and the p+ type GaN layer 115).

圖39為具有第三台面蝕刻之複合GaN異質結構之基板105的橫截面圖,其說明晶圓150A之一極小部分(諸如圖38之區域192)以說明單個二極體(例如二極體100H、100K)之製造。經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,蝕刻複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)以形成GaN台面結構187B。 在GaN台面蝕刻之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻,進行(貫穿或深)導孔渠溝及單體化渠溝蝕刻,如圖40中所說明,形成一或多個穿過GaN異質結構之非台面部分(n+型GaN層110)且穿過GaN基板105至晶圓150A之藍寶石(106)的比較深之導孔渠溝188且形成上文所述之單體化渠溝155。如所說明,形成中心導孔渠溝188及複數個周邊導孔渠溝188。對於二極體100K具體實例,亦可在台面結構187B中心處進行淺或盲導孔蝕刻,而不形成任何周邊導孔或渠溝。 39 is a cross-sectional view of a substrate 105 having a third mesa-etched composite GaN heterostructure, illustrating a very small portion of wafer 150A (such as region 192 of FIG. 38) to illustrate a single diode (eg, diode 100H) , 100K) manufacturing. The composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) is etched via appropriate or standard mask and/or photoresist layer and etching known in the art to form GaN mesa structure 187B . After the GaN mesa etching, the vias and the singulation trenches are etched (through or deep) via appropriate or standard masking and/or photoresist layers and etching known or to be known in the art. As illustrated in FIG. 40, one or more relatively deep vias are formed that pass through the non-mesa portion of the GaN heterostructure (n+-type GaN layer 110) and pass through the GaN substrate 105 to the sapphire (106) of the wafer 150A. The trench 188 and forms the singulated trench 155 described above. As illustrated, a central via trench 188 and a plurality of peripheral via trenches 188 are formed. For the specific example of the diode 100K, shallow or blind via etching may also be performed at the center of the mesa structure 187B without forming any peripheral vias or trenches.

接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積金屬化層,形成中心貫穿導孔131及複數個周邊貫穿導孔134,其亦與n+型GaN層110形成歐姆接觸,如圖41中所說明。在例示性具體實例中,沉積若干層金屬以形成貫穿導孔131、134。舉例而言,可濺鍍鈦及鎢以塗佈渠溝188之側面及底部,形成晶種層,繼而用鍍鎳,形成實心金屬導孔131、134。 The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etching known in the art to form a central through via 131 and a plurality of peripheral vias 134, which are also associated with an n+ type GaN layer. 110 forms an ohmic contact as illustrated in FIG. In an illustrative embodiment, several layers of metal are deposited to form through vias 131, 134. For example, titanium and tungsten may be sputtered to coat the sides and bottom of the trench 188 to form a seed layer, which in turn is plated with nickel to form solid metal vias 131, 134.

接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積金屬化層,形成與p+型GaN層115形成歐姆接觸之金屬層120A,如圖42中所說明。在例示性具體實例中,可如先前所述沉積若干層金屬以形成金屬層120A且與p+型GaN層115形成歐姆接觸。接著亦使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如圖43中所說明,諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽或氮氧化矽來生長或沉積氮化物鈍化層 135,一般達約0.35微米至1.0微米之厚度,繼而沉積光阻且進行蝕刻步驟以移除不必要之氮化矽區域。接著經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,形成具有凸塊或突出結構之金屬層120B,如圖44中所說明。在一例示性具體實例中,亦如上文所述,金屬層120B之形成以若干步驟,使用金屬晶種層,繼而使用電鍍或剝離製程再沉積金屬,移除抗蝕劑並清潔晶種層區域來進行。除後續自晶圓150A單體化二極體(在此狀況下,二極體100H)以外,如下文所述,以其他方式完成二極體100H,且應注意,此等完成之二極體100H在各二極體100H之上表面上亦僅具有一個金屬接點或端子(亦為第一端子125)。同樣作為可選方案,可如下文所述且如上文參考其他例示性二極體所提及,可製造第二面(背面)金屬層122以形成第二端子127。 The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etch as known in the art to form a metal layer 120A that forms an ohmic contact with the p+ type GaN layer 115, as illustrated in FIG. In an illustrative embodiment, several layers of metal may be deposited as previously described to form metal layer 120A and form an ohmic contact with p+ type GaN layer 115. Appropriate or standard masking and/or photoresist layers and etchings known in the art are then also used, as illustrated in Figure 43, such as by, for example, but not limited to, plasma enhanced chemical vapor deposition (PECVD) nitrogen. Growth or deposition of a nitride passivation layer by bismuth or bismuth oxynitride 135, typically up to a thickness of about 0.35 microns to 1.0 microns, is then deposited with photoresist and an etching step is performed to remove unnecessary tantalum nitride regions. Metal layer 120B having bumps or protruding structures is then formed via suitable or standard mask and/or photoresist layers and etching as is known in the art, as illustrated in FIG. In an exemplary embodiment, as also described above, the metal layer 120B is formed in several steps, using a metal seed layer, followed by electroplating or stripping to redeposit the metal, removing the resist and cleaning the seed layer region. Come on. In addition to subsequent singulation of the diode from the wafer 150A (in this case, the diode 100H), the diode 100H is completed in other ways as described below, and it should be noted that such completed diodes The 100H also has only one metal contact or terminal (also the first terminal 125) on the upper surface of each of the diodes 100H. Also as an alternative, the second (back) metal layer 122 can be fabricated to form the second terminal 127 as described below and as mentioned above with reference to other exemplary diodes.

圖45-50說明製造二極體100-100L之另一例示性方法,其中圖45說明在晶圓150或150A層級上製造且圖46-50說明在二極體100-100L層級上製造。圖45為具有緩衝層145、複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)及與p+型GaN層形成歐姆接觸之金屬化層(金屬層120A)之基板105的橫截面圖。如上所述,當基板105為矽(例如,使用矽晶圓150)時通常製造緩衝層145,且對於其他基板(諸如GaN基板105)而言,可省去緩衝層145。另外,藍寶石106說明為可選方案,諸如對於生長或沉積於藍寶石晶圓150A上之厚GaN基板105。亦 如上所述,在製造二極體之較早步驟中,在GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)沉積或生長後,而非在較遲步驟中,沉積金屬層119(作為用於後續沉積金屬層120A之晶種層)。舉例而言,金屬層119可為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(諸如厚度為約100埃之鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於歐姆接觸形成(且可能提供朝向n+型GaN層110之光反射),其中一些接著與其他GaN層一起,諸如在GaN台面形成期間移除。 45-50 illustrate another exemplary method of fabricating a diode 100-100L, wherein FIG. 45 illustrates fabrication on a wafer 150 or 150A level and FIGS. 46-50 illustrates fabrication on a diode 100-100L level. 45 is a substrate having a buffer layer 145, a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) and a metallization layer (metal layer 120A) that forms an ohmic contact with the p+-type GaN layer. A cross-sectional view of 105. As described above, the buffer layer 145 is typically fabricated when the substrate 105 is germanium (eg, using a germanium wafer 150), and for other substrates (such as the GaN substrate 105), the buffer layer 145 may be omitted. Additionally, sapphire 106 is illustrated as an alternative, such as for a thick GaN substrate 105 grown or deposited on sapphire wafer 150A. also As described above, in the earlier step of fabricating the diode, after deposition or growth of the GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115), rather than in a later step, A metal layer 119 is deposited (as a seed layer for subsequent deposition of the metal layer 120A). For example, metal layer 119 can be a nickel and gold flash layer having a total thickness of about a few hundred angstroms, or can be passed through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or optical. A transmissive metal layer, such as nickel-gold or nickel-gold-nickel having a thickness of about 100 angstroms, is metallized and alloyed therewith to aid in ohmic contact formation (and possibly provide light reflection towards the n+ type GaN layer 110) Some of them are then removed along with other GaN layers, such as during GaN mesa formation.

圖46為具有緩衝層、第四台面蝕刻之複合GaN異質結構及與p+型GaN層形成歐姆接觸之金屬化層(金屬層119)之基板的橫截面圖,其說明晶圓150或150A之一極小部分(諸如圖45之區域193),以說明單個二極體(例如二極體100I)之製造。經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,蝕刻複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)(連同金屬層119一起)以形成GaN台面結構187C(連同金屬層119一起)。在GaN台面蝕刻之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層,沉積金屬化層(使用先前所述之任何製程及金屬,諸如鈦及鋁,繼而退火)以形成金屬層120A且亦形成與n+型GaN層110具有歐姆接觸之金屬層129,如圖47中所說明。 46 is a cross-sectional view of a substrate having a buffer layer, a fourth mesa-etched composite GaN heterostructure, and a metallization layer (metal layer 119) forming an ohmic contact with the p+ type GaN layer, illustrating one of the wafers 150 or 150A A very small portion (such as region 193 of Figure 45) is used to illustrate the fabrication of a single diode (e.g., diode 100I). The composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) is etched (along with metal layer 119) via appropriate or standard mask and/or photoresist layers and etching known in the art. ) to form a GaN mesa structure 187C (along with the metal layer 119). After GaN mesa etching, a metallization layer (using any of the processes and metals previously described, such as titanium and aluminum, is also deposited via a suitable or standard mask and/or photoresist layer known or to be known in the art). It is then annealed to form metal layer 120A and also form a metal layer 129 having ohmic contact with n+ type GaN layer 110, as illustrated in FIG.

在金屬化之後,亦經由此項技術中已知或即將知曉之 適當或標準遮罩及/或光阻層及蝕刻,如圖48中所說明,穿過GaN異質結構之非台面部分(n+型GaN層110)且穿過或比較深地進入基板105中(例如如先前所述,穿過GaN基板105至晶圓150A之藍寶石(106)或穿過一部分矽基板105)進行單體化渠溝蝕刻,且形成上文所述之單體化渠溝155。 After metallization, it is also known or will be known by the art. A suitable or standard mask and/or photoresist layer and etch, as illustrated in Figure 48, passes through the non-mesa portion of the GaN heterostructure (n+-type GaN layer 110) and enters or penetrates deeper into the substrate 105 (eg As previously described, the sapphire (106) through the GaN substrate 105 to the wafer 150A or through a portion of the germanium substrate 105) is etched and singulated to form the singulated trench 155 described above.

接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,在渠溝155內沉積金屬化層,形成貫穿或深之周圍導孔133(圍繞二極體(100I)之整個外圍或側圍提供導電性),其亦與n+型GaN層110形成歐姆接觸,如圖49中所說明。在例示性具體實例中,亦可沉積若干層金屬以形成周圍貫穿導孔133。舉例而言,可濺鍍鈦及鎢以塗佈渠溝155之側面及底部,形成晶種層,繼而用鍍鎳,形成實心金屬周圍導孔133。 A metallization layer is then deposited in the trench 155 via a suitable or standard mask and/or photoresist layer and etching known in the art to form a through or deep surrounding via 133 (around the diode (100I)) The entire periphery or side walls provide electrical conductivity) which also forms an ohmic contact with the n+ type GaN layer 110, as illustrated in FIG. In an exemplary embodiment, a plurality of layers of metal may also be deposited to form a peripheral through via 133. For example, titanium and tungsten may be sputtered to coat the sides and bottom of the trench 155 to form a seed layer, which in turn is plated with nickel to form a solid metal surrounding via 133.

接著再次亦使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如圖50中所說明,諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽來生長或沉積氮化物鈍化層135,一般達約0.35微米至1.0微米之厚度,繼而沉積光阻且進行蝕刻步驟以移除不必要之氮化矽區域。接著經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如先前所述形成具有凸塊或突出結構之金屬層120B,如圖50中所說明。除後續自晶圓150或150A單體化二極體(在此狀況下,二極體100I)以外,如下文所述,以其他方式完成二極體100I,且應注意,此等完成之 二極體100I在各二極體100I之上表面上亦僅具有一個金屬接點或端子(亦為第一端子125)。同樣作為可選方案,可如下文所述且如上文參考其他例示性二極體所提及,可製造第二面(背面)金屬層122以形成第二端子127。 Appropriate or standard masking and/or photoresist layers and etchings known in the art are then again used, as illustrated in Figure 50, such as by, for example, but not limited to, plasma enhanced chemical vapor deposition (PECVD). Nitridium nitride is used to grow or deposit a nitride passivation layer 135, typically up to a thickness of about 0.35 microns to 1.0 microns, followed by deposition of photoresist and an etching step to remove unnecessary tantalum nitride regions. Metal layer 120B having bumps or protruding structures is then formed as described previously by suitable or standard masking and/or photoresist layers and etching as is known in the art, as illustrated in FIG. In addition to subsequent singulation of the diode 150 or 150A singulated diode (in this case, the diode 100I), the diode 100I is completed in other ways as described below, and it should be noted that such completion is achieved. The diode 100I also has only one metal contact or terminal (also the first terminal 125) on the upper surface of each of the diodes 100I. Also as an alternative, the second (back) metal layer 122 can be fabricated to form the second terminal 127 as described below and as mentioned above with reference to other exemplary diodes.

圖51-57、67及68說明在圖45中所說明之在晶圓150或150A層級上製造之後製造二極體100K之另一例示性方法。圖51為具有緩衝層、第五台面蝕刻之複合GaN異質結構187D及與p+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。如上所述,當基板105為矽(例如,使用矽晶圓150)時通常製造緩衝層145,且對於其他基板(諸如GaN基板105)而言,可省去緩衝層145。另外,藍寶石106說明為可選方案,諸如對於生長或沉積於藍寶石晶圓150A上之厚GaN基板105,在該狀況下可省去緩衝層145。亦如上所述,在製造二極體之較早步驟中,在GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)沉積或生長後,而非在較遲步驟中,沉積金屬層119(作為用於後續沉積金屬層120A之晶種層)。舉例而言,金屬層119可為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(諸如厚度為約100埃之鎳、鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於與p+型GaN層115形成歐姆接觸(且可能提供朝向n+型GaN層110之光反射),其中一些接著與其他GaN層一起,諸如在GaN台面形成期間移除。經由此項技術中已知之適當或標準遮罩及/或光阻 層及蝕刻,蝕刻複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)(連同金屬層119一起)以形成深度為約1微米之GaN台面結構187D(連同金屬層119一起),其一般具有超環形形狀,內圓直徑為約14微米且外部一般六角形之直徑為約26微米(側面對側面量測)。 Figures 51-57, 67 and 68 illustrate another exemplary method of fabricating a diode 100K after fabrication on a wafer 150 or 150A level as illustrated in Figure 45. 51 is a cross-sectional view of a substrate having a buffer layer, a fifth mesa-etched composite GaN heterostructure 187D, and a metallization layer that forms an ohmic contact with the p+-type GaN layer. As described above, the buffer layer 145 is typically fabricated when the substrate 105 is germanium (eg, using a germanium wafer 150), and for other substrates (such as the GaN substrate 105), the buffer layer 145 may be omitted. Additionally, sapphire 106 is illustrated as an alternative, such as for thick GaN substrate 105 grown or deposited on sapphire wafer 150A, in which case buffer layer 145 may be omitted. As also described above, in the earlier step of fabricating the diode, after deposition or growth of the GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115), rather than in a later step A metal layer 119 is deposited (as a seed layer for subsequently depositing the metal layer 120A). For example, metal layer 119 can be a nickel and gold flash layer having a total thickness of about a few hundred angstroms, or can be passed through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or optical. A transmissive metal layer, such as nickel, nickel-gold or nickel-gold-nickel having a thickness of about 100 angstroms, is metallized and alloyed therewith to help form an ohmic contact with the p+ type GaN layer 115 (and possibly provide towards n+ The light of the GaN layer 110 is reflected, some of which are then removed along with other GaN layers, such as during GaN mesa formation. Suitable or standard masks and/or photoresists known in the art Layer and etching, etching a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) (along with metal layer 119) to form a GaN mesa structure 187D having a depth of about 1 micron (along with a metal layer) 119 together) generally has a toroidal shape with an inner diameter of about 14 microns and an outer generally hexagonal diameter of about 26 microns (side to side measurement).

在GaN台面蝕刻(187D)後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻,進行盲或淺導孔渠溝蝕刻,如圖52中所說明,形成進入GaN異質結構之非台面部分(n+型GaN層110)中之比較淺之中心導孔渠溝211。如所說明,形成深度為約2微米且直徑為6微米之圓形中心導孔渠溝211。 After GaN mesa etching (187D), blind or shallow via trench etching is also performed via appropriate or standard masking and/or photoresist layers and etching known or to be known in the art, as shown in FIG. It is illustrated that a relatively shallow central via trench 211 is formed into the non-mesa portion (n+ type GaN layer 110) of the GaN heterostructure. As illustrated, a circular central via trench 211 having a depth of about 2 microns and a diameter of 6 microns is formed.

接著經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積金屬化層,形成中心導孔136,該中心導孔136亦與n+型GaN層110形成歐姆接觸,如圖53中所說明。在例示性具體實例中,沉積若干層金屬(例如導孔金屬)以形成中心導孔136。舉例而言,可濺鍍或電鍍約100埃之鈦及約1.5微米至2微米之鋁以塗佈渠溝211之側面、底部以及一部分頂部,繼而在約550℃下形成合金,以在n+型GaN層110頂部上形成最大直徑為約10微米之實心金屬導孔136。接著亦使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,如圖54中所說明,諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽或氮氧化矽來生長或沉積第一氮化物鈍化層135A,一般達約0.35微米至1.0微米,或更尤其約0.5微米之厚度以及約18微米 之最大直徑,繼而沉積光阻且進行蝕刻步驟以移除不必要之氮化矽區域。 The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etch as known in the art to form a central via 136 that also forms an ohmic contact with the n+ type GaN layer 110, such as This is illustrated in Figure 53. In an illustrative embodiment, several layers of metal (eg, via metal) are deposited to form a central via 136. For example, about 100 angstroms of titanium and about 1.5 to 2 micrometers of aluminum can be sputtered or plated to coat the sides, bottom, and a portion of the top of the trench 211, and then form an alloy at about 550 ° C for n+ type. A solid metal via 136 having a maximum diameter of about 10 microns is formed on top of the GaN layer 110. Appropriate or standard masking and/or photoresist layers and etchings known in the art are then also used, as illustrated in Figure 54, such as by, for example, but not limited to, plasma enhanced chemical vapor deposition (PECVD) nitrogen. The ruthenium or ruthenium oxynitride is grown or deposited with a first nitride passivation layer 135A, typically up to about 0.35 microns to 1.0 microns, or more specifically about 0.5 microns thick and about 18 microns. The largest diameter, followed by deposition of photoresist and an etching step to remove unnecessary tantalum nitride regions.

接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積金屬化層,形成如圖55中所說明與p+型GaN層115形成接觸之通常使用模用金屬形成之具有凸塊或突出結構之金屬層120B。在例示性具體實例中,可如本文先前所述沉積若干層金屬以形成用於與p+型GaN層115形成接觸之金屬層120A及/或120B,且出於簡要起見,此處將不重複。在一例示性具體實例中,金屬層120B之形狀一般為六角形且直徑為約22微米(側面對側面量測),且包含約100埃之鎳、約4.5微米之鋁、約0.5微米之鎳以及約100nm之金。 The metallization layer is then deposited via appropriate or standard masking and/or photoresist layers and etching as is known in the art to form a commonly used mold metal formed into contact with the p+ type GaN layer 115 as illustrated in FIG. A metal layer 120B having bumps or protruding structures. In an exemplary embodiment, several layers of metal may be deposited as previously described herein to form metal layers 120A and/or 120B for making contact with p+ type GaN layer 115, and for the sake of brevity, will not be repeated here . In an exemplary embodiment, metal layer 120B is generally hexagonal in shape and has a diameter of about 22 microns (side-to-side measurement) and comprises about 100 angstroms of nickel, about 4.5 micrometers of aluminum, and about 0.5 micrometers of nickel. And about 100nm gold.

在金屬化之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層以及蝕刻,如圖56中所說明,使用先前所述之方法,穿過一部分GaN異質結構(進入但不完全穿過n+型GaN層110)(在一例示性具體實例中深度一般為約2微米)進行單體化渠溝蝕刻,且形成上文所述之單體化渠溝155。 After metallization, an appropriate or standard mask and/or photoresist layer and etching are also known or to be known in the art, as illustrated in Figure 56, through a portion of the GaN heterogeneity using the methods previously described. The structure (into but not completely through the n+ type GaN layer 110) (typically about 2 microns deep in an exemplary embodiment) is singulated trench trench etched and forms the singulated trench 155 described above .

如圖57中所說明,接著諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽或氮氧化矽來生長或沉積第二氮化物鈍化層135,一般達約0.35微米至1.0微米,或更尤其約0.5微米之厚度。接著使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,移除不必要之氮化矽區域,諸如以清潔金屬層102B之頂部,其將形成第二 端子127。 As illustrated in FIG. 57, the second nitride passivation layer 135 is then grown or deposited, such as by, but not limited to, plasma enhanced chemical vapor deposition (PECVD) tantalum nitride or hafnium oxynitride, typically up to about 0.35. A thickness of from micron to 1.0 micron, or more specifically about 0.5 micron. The unnecessary tantalum nitride regions are then removed using suitable or standard mask and/or photoresist layers and etching known in the art, such as to clean the top of metal layer 102B, which will form a second Terminal 127.

下文參考圖64、65、67及68描述後續基板移除、第二面(背面)金屬層122之單體化及製造。 Subsequent substrate removal, singulation and fabrication of the second (back) metal layer 122 are described below with reference to Figures 64, 65, 67 and 68.

圖58-63及69說明在圖45中所說明之在晶圓150或150A層級上製造之後製造二極體100L之另一例示性方法。圖58為具有緩衝層、第六台面蝕刻之複合GaN異質結構187E及與p+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。如上所述,當基板105為矽(例如,使用矽晶圓150)時通常製造緩衝層145,且對於其他基板(諸如GaN基板105)而言,可省去緩衝層145。另外,藍寶石106說明為可選方案,諸如對於生長或沉積於藍寶石晶圓150A上之厚GaN基板105,在該狀況下可省去緩衝層145。亦如上所述,在製造二極體之較早步驟中,在GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)沉積或生長後,而非在較遲步驟中,沉積金屬層119(作為用於後續沉積金屬層120A之晶種層)。舉例而言,金屬層119可為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之光學反射金屬層(在圖25中說明為銀層103)及/或光學透射性金屬層(諸如厚度為約100埃至約2.5nm之鎳、鎳-金或鎳-金-鎳)金屬化且與其形成合金,以有助於與p+型GaN層115形成歐姆接觸(且可能提供朝向n+型GaN層110之光反射),其中一些金屬層119接著與其他GaN層一起,諸如在GaN台面形成期間移除。在一例示性具體實例中,沉積約2nm至3nm,或更尤其約2.5nm之鎳或鎳及金且在 500℃下使其形成合金以形成與p+型GaN層115歐姆接觸之金屬層119。經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,蝕刻複合GaN異質結構(n+型GaN層110、量子井區185及p+型GaN層115)(連同金屬層119一起)以形成深度為約1微米之GaN台面結構187E(連同金屬層119一起),其具有上文所論述之修平三角形形狀,至為接點128保留空間之切去區域的第一半徑為約8微米且至三角形頂點/側面之第二半徑為約11微米。 Figures 58-63 and 69 illustrate another exemplary method of fabricating diode 100L after fabrication on wafer 150 or 150A level as illustrated in Figure 45. Figure 58 is a cross-sectional view of a substrate having a buffer layer, a sixth mesa-etched composite GaN heterostructure 187E, and a metallization layer that forms an ohmic contact with the p+-type GaN layer. As described above, the buffer layer 145 is typically fabricated when the substrate 105 is germanium (eg, using a germanium wafer 150), and for other substrates (such as the GaN substrate 105), the buffer layer 145 may be omitted. Additionally, sapphire 106 is illustrated as an alternative, such as for thick GaN substrate 105 grown or deposited on sapphire wafer 150A, in which case buffer layer 145 may be omitted. As also described above, in the earlier step of fabricating the diode, after deposition or growth of the GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115), rather than in a later step A metal layer 119 is deposited (as a seed layer for subsequently depositing the metal layer 120A). For example, metal layer 119 can be a nickel and gold flash layer having a total thickness of about a few hundred angstroms, or can be passed through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or optical. A transmissive metal layer, such as nickel, nickel-gold or nickel-gold-nickel having a thickness of from about 100 angstroms to about 2.5 nm, is metallized and alloyed therewith to facilitate ohmic contact with the p+ type GaN layer 115 (and It is possible to provide light reflection towards the n+ type GaN layer 110, some of which are then removed along with other GaN layers, such as during GaN mesa formation. In an exemplary embodiment, nickel or nickel and gold are deposited from about 2 nm to 3 nm, or more specifically about 2.5 nm, and It is alloyed at 500 ° C to form a metal layer 119 in ohmic contact with the p + -type GaN layer 115. The composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer 115) is etched (along with metal layer 119) via appropriate or standard mask and/or photoresist layers and etching known in the art. Having a GaN mesa structure 187E (along with metal layer 119) having a depth of about 1 micron having the flattened triangular shape discussed above, the first radius of the cut-out region leaving space for contact 128 is about 8 The second radius of the micron and to the apex/side of the triangle is about 11 microns.

在GaN台面蝕刻(187E)之後,接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積第一金屬化層,形成接點128,該等接點128亦與n+型GaN層110形成歐姆接觸,如圖59中所說明。在例示性具體實例中,沉積若干層導孔金屬以形成接點128,該等接點128用作第二端子127。舉例而言(但不加以限制),可濺鍍或電鍍約100埃之鈦、約500nm之鋁、500nm之鎳及100nm之金以形成實心金屬接點128,其厚度各自為約1.1微米,徑向量測之寬度為約3微米,且如圖23中所說明圍繞n+型GaN層110之周邊延伸。在一例示性具體實例中,亦如圖23中所說明,形成三個接點128。 After the GaN mesa etching (187E), the first metallization layer is then deposited via the appropriate or standard mask and/or photoresist layer and etching known in the art to form contacts 128, which are also An ohmic contact is formed with the n+ type GaN layer 110 as illustrated in FIG. In an exemplary embodiment, several layers of via metal are deposited to form contacts 128 that serve as second terminals 127. By way of example and not limitation, about 100 angstroms of titanium, about 500 nm of aluminum, 500 nm of nickel, and 100 nm of gold can be sputtered or plated to form solid metal contacts 128 each having a thickness of about 1.1 microns. The vector is measured to have a width of about 3 microns and extends around the perimeter of the n+ type GaN layer 110 as illustrated in FIG. In an exemplary embodiment, as illustrated in FIG. 23, three contacts 128 are formed.

在沉積接點128之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層,沉積其他金屬化層(使用先前所述之任何製程及金屬,諸如鈦及鋁,繼而退火)以形成金屬層120A作為用於p+型GaN層115之歐姆接觸的一部分,如圖60中所說明。舉例而言,在一例示性具體 實例中,可濺鍍或電鍍約200nm之銀(形成反射層或鏡面層)、200nm之鎳、約500nm之鋁及200nm之鎳,以形成位於中心之金屬層120A,其厚度為約1.1微米且直徑為約8微米。 After depositing the contacts 128, other metallization layers are also deposited via appropriate or standard mask and/or photoresist layers known or to be known in the art (using any of the processes and metals previously described, such as titanium and Aluminum, which in turn is annealed, to form metal layer 120A as part of the ohmic contact for p+ type GaN layer 115, as illustrated in FIG. For example, in an exemplary specific In an example, about 200 nm of silver (forming a reflective or mirror layer), 200 nm of nickel, about 500 nm of aluminum, and 200 nm of nickel can be sputtered or plated to form a centrally located metal layer 120A having a thickness of about 1.1 microns and The diameter is about 8 microns.

接著亦經由此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,沉積其他金屬化層,形成如圖61中所說明與p+型GaN層115形成接觸之通常使用模用金屬形成之具有凸塊或突出結構之金屬層120B。在例示性具體實例中,可如本文先前所述沉積若干層金屬以形成用於與p+型GaN層115形成接觸之金屬層120A及/或120B,且出於簡要起見,此處將不重複。在一例示性具體實例中,金屬層120B一般具有圖23中所說明之修平三角形形狀,其中至切去區域(用於接點128)之第一半徑為約6微米,至三角形頂點/側面之第二半徑為約9微米,其寬度各自為約3.7微米,且其包含約200nm之銀(亦在p+型GaN層115上形成反射層或鏡面層)、約200nm之鎳、約200nm之鋁、約250nm之鎳、約200nm之鋁、約250nm之鎳及約100nm之金,上述金屬各自添加作為連續層,繼而在550℃下於氮氣環境中形成合金約10分鐘,以達成約5微米之總高度(除金屬層120A之約1.1微米高度之外)。應注意,此使第一端子與第二端子125、127之間在高度上隔開約5微米。 Other metallization layers are then deposited via appropriate or standard masking and/or photoresist layers and etching known in the art to form a commonly used mold metal in contact with the p+ type GaN layer 115 as illustrated in FIG. A metal layer 120B having bumps or protruding structures is formed. In an exemplary embodiment, several layers of metal may be deposited as previously described herein to form metal layers 120A and/or 120B for making contact with p+ type GaN layer 115, and for the sake of brevity, will not be repeated here . In an exemplary embodiment, metal layer 120B generally has a flattened triangular shape as illustrated in FIG. 23, wherein the first radius to the dicing region (for contact 128) is about 6 microns, to the apex/side of the triangle The second radius is about 9 microns, each having a width of about 3.7 microns, and it comprises about 200 nm of silver (also forming a reflective or mirror layer on the p+ type GaN layer 115), about 200 nm of nickel, about 200 nm of aluminum, About 250 nm of nickel, about 200 nm of aluminum, about 250 nm of nickel, and about 100 nm of gold, each of the above metals is added as a continuous layer, and then an alloy is formed in a nitrogen atmosphere at 550 ° C for about 10 minutes to achieve a total of about 5 μm. Height (except for a height of about 1.1 microns of metal layer 120A). It should be noted that this places the first terminal and the second terminal 125, 127 at a height of about 5 microns.

如圖62中所說明,接著諸如藉由例如(但不限於)電漿增強化學氣相沉積(PECVD)氮化矽或氮氧化矽來生長或沉積第二氮化物鈍化層135,一般達約0.35微米至1.0 微米,或更尤其約0.5微米之厚度。接著使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,移除不必要之氮化矽區域,諸如以清潔金屬層102B之頂部,其將形成第一端子125。 As illustrated in FIG. 62, the second nitride passivation layer 135 is then grown or deposited, such as by, but not limited to, plasma enhanced chemical vapor deposition (PECVD) tantalum nitride or hafnium oxynitride, typically up to about 0.35. Micron to 1.0 A thickness of micrometers, or more particularly about 0.5 micrometers. The unnecessary tantalum nitride regions are then removed using suitable or standard mask and/or photoresist layers and etching as known in the art, such as to clean the top of metal layer 102B, which will form first terminal 125.

在鈍化之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層以及蝕刻,如圖63中所說明,使用先前所述之方法,穿過一部分GaN異質結構(進入但未完全穿過n+型GaN層110)(在一例示性具體實例中深度一般為約2微米至3.5微米)進行單體化渠溝蝕刻,且形成上文所述之單體化渠溝155。 After passivation, an appropriate or standard mask and/or photoresist layer and etch as known or to be known in the art, as illustrated in Figure 63, through a portion of the GaN heterostructure, as previously illustrated in FIG. (Entering but not completely passing through the n+ type GaN layer 110) (typically about 2 microns to 3.5 microns in depth in an exemplary embodiment) undergoing singulation trench etching and forming the monolithic channels described above Ditch 155.

下文參考圖64、65、67及69描述後續基板移除及單體化。 Subsequent substrate removal and singulation are described below with reference to Figures 64, 65, 67 and 69.

製造二極體100-100L之方法之多種變化形式根據本發明之教示可顯而易見,所有變化形式皆視作等效且處於本發明範疇內。在其他例示性具體實例中,該渠溝155形成及(氮化物)鈍化層形成可在器件製造製程中較早或較遲進行。舉例而言,可在製造過程中較遲,在形成金屬層120B後形成渠溝155,且可留下暴露之基板105或之後可進行第二次鈍化。亦舉例而言,可在製造過程中較早,諸如在GaN台面蝕刻後形成渠溝155,繼而沉積(氮化物)鈍化層135。在後一實施例中,為在器件製造製程之其餘部分期間維持平坦化,鈍化之渠溝155可用氧化物、光阻或其他材料填充(沉積層,繼而使用抗光蝕遮罩及蝕刻或無遮罩蝕刻製程移除不必要區域)或可用抗蝕劑填充(且在金屬接點120A 形成之後可能再填充)。在另一實施例中,氮化矽135沉積(繼之以遮罩及蝕刻步驟)可在GaN台面蝕刻之後且在金屬接點120A沉積之前進行。 Various variations of the method of making the diode 100-100L are apparent from the teachings of the present invention, and all variations are considered equivalent and within the scope of the invention. In other exemplary embodiments, the trench 155 formation and (nitride) passivation layer formation may be performed earlier or later in the device fabrication process. For example, trenches 155 may be formed later in the fabrication process after formation of metal layer 120B, and the exposed substrate 105 may be left or a second passivation may be performed thereafter. Also for example, a trench 155 may be formed earlier in the fabrication process, such as after GaN mesa etching, followed by deposition of a (nitride) passivation layer 135. In the latter embodiment, to maintain planarization during the remainder of the device fabrication process, the passivated trench 155 may be filled with an oxide, photoresist, or other material (deposited layer, followed by a photoresist mask and etched or absent Mask etch process removes unnecessary areas) or can be filled with resist (and at metal contacts 120A It may be refilled after formation). In another embodiment, the deposition of tantalum nitride 135 (followed by a masking and etching step) can be performed after GaN mesa etching and prior to deposition of metal contacts 120A.

圖64為說明黏著至固持裝置160(諸如固持、操作或固持器晶圓)之具有複數個二極體100-100L之例示性矽晶圓150具體實例的橫截面圖。圖65為說明黏著至固持裝置160之例示性二極體藍寶石晶圓150A具體實例的橫截面圖。如圖64及65中所說明,使用任何已知之市售晶圓黏著劑或晶圓黏結劑165將含有複數個未釋放二極體100-100L(出於解說之目的一般性說明而無任何顯著之特徵細節)之二極體晶圓150、150A在二極體晶圓150、150A具有製造之二極體100-100L之第一面上黏著至固持裝置160(諸如晶圓固持器)。如所說明且如上文所述,已在晶圓加工期間,諸如經由蝕刻在各二極體100-100L之間形成單體化或個別化渠溝155,接著使用該等單體化或個別化渠溝155在不進行機械製程(諸如鋸切)下使各二極體100-100L與相鄰二極體100-100L分離。如圖64中所說明,在二極體晶圓150仍黏著至固持裝置160的同時,接著將二極體晶圓150之第二面(背面)180蝕刻(例如,濕式或乾式蝕刻)或機械研磨且拋光至某一位準(以虛線說明),或蝕刻並機械研磨且拋光以暴露渠溝155,或留下某些其他基板,該其他基板接著可經由例如(但不限於)蝕刻移除。當充分蝕刻或研磨且拋光,或充分蝕刻並研磨且拋光(及/或連同任何其他蝕刻一起)時,各個別二極體100-100L已 彼此釋放且自任何剩餘之二極體晶圓150釋放,而仍由黏著劑165黏著至固持裝置160。如圖65中所說明,亦在二極體晶圓150A仍黏著至固持裝置160的同時,接著使二極體晶圓150A之第二面(背面)180曝露於雷射光(說明為一或多個雷射束162),該雷射光接著自晶圓150A之藍寶石106切割GaN基板105(以虛線說明)(亦稱為雷射剝離),亦可繼而進行任何其他化學機械拋光及任何所需之蝕刻(例如濕式或乾式蝕刻),從而使各個別二極體100-100L彼此釋放且自晶圓150A釋放,而仍由黏著劑165黏著至固持裝置160。在此例示性具體實例中,可接著研磨及/或拋光晶圓150A且再使用。 64 is a cross-sectional view illustrating a specific example of an exemplary tantalum wafer 150 having a plurality of diodes 100-100L adhered to a holding device 160, such as a holding, handling or holder wafer. 65 is a cross-sectional view illustrating a specific example of an exemplary diode sapphire wafer 150A adhered to holding device 160. As illustrated in Figures 64 and 65, any known commercially available wafer adhesive or wafer bond 165 will be used to contain a plurality of unreleased diodes 100-100L (for general purposes of illustration purposes without any significant The feature details of the diode wafers 150, 150A are adhered to the holding device 160 (such as a wafer holder) on the first side of the diode 150, 150A having the manufactured diodes 100-100L. As illustrated and as described above, singulated or individualized trenches 155 have been formed between wafers 100-100L during wafer processing, such as via etching, followed by singulation or individualization The trench 155 separates each of the diodes 100-100L from the adjacent diodes 100-100L without performing a mechanical process such as sawing. As illustrated in FIG. 64, while the diode wafer 150 is still adhered to the holding device 160, the second side (back side) 180 of the diode wafer 150 is then etched (eg, wet or dry etched) or Mechanically ground and polished to a certain level (illustrated in dashed lines), or etched and mechanically ground and polished to expose the trenches 155, or leave some other substrate, which may then be etched via, for example, but not limited to, except. When sufficiently etched or ground and polished, or fully etched and ground and polished (and/or along with any other etching), the individual diodes 100-100L have They are released from each other and released from any remaining diode wafer 150 while still being adhered to the holding device 160 by the adhesive 165. As illustrated in FIG. 65, while the diode wafer 150A is still adhered to the holding device 160, the second side (back) 180 of the diode wafer 150A is then exposed to the laser light (illustrated as one or more a laser beam 162), which then cuts the GaN substrate 105 from the sapphire 106 of the wafer 150A (illustrated by dashed lines) (also known as laser stripping), and may be followed by any other chemical mechanical polishing and any desired Etching (eg, wet or dry etching) causes the individual diodes 100-100L to be released from each other and released from the wafer 150A while still being adhered by the adhesive 165 to the holding device 160. In this illustrative embodiment, wafer 150A can then be ground and/or polished and reused.

一般亦圍繞晶圓150之周邊塗覆環氧樹脂珠粒(未作單獨說明)以防止非二極體片段在下文所論述之二極體釋放製程期間自晶圓邊緣釋放至二極體(100-100L)流體中。 Epoxy beads are also typically applied around the perimeter of wafer 150 (not separately illustrated) to prevent non-diode segments from being released from the wafer edge to the diode during the diode release process discussed below (100) -100L) in the fluid.

圖66為說明黏著至固持裝置之例示性二極體100J具體實例的橫截面圖。在單體化二極體100-100K(如上文參考圖64及65所述)之後,且在二極體100-100K仍由黏著劑165黏著至固持裝置160的同時,暴露二極體100-100K之第二面(背面)。如圖66中所說明,可接著諸如經由氣相沉積(傾斜以避免填充渠溝155)沉積金屬化層至第二面(背面),形成第二面(背面)金屬層122及二極體100J具體實例。亦如所說明,二極體100J具有與n+型GaN層110形成歐姆接觸且與第二面(背面)金屬層122形成接觸之一個中心貫穿導孔131以於n+型GaN層110與第二面(背面) 金屬層122之間傳導電流。例示性二極體100D與例示性二極體100J頗為相似,後者具有第二面(背面)金屬層122以形成第二端子127。如先前所提及,第二面(背面)金屬層122(或基板105或各個貫穿導孔131、133、134中之任一者)可用於在裝置300、300A、300B、300C、300D、720、730、760中與第一導體310形成電連接以對二極體100-100K通電。 Figure 66 is a cross-sectional view showing an exemplary embodiment of an exemplary diode 100J adhered to a holding device. After the singulated diode 100-100K (as described above with reference to Figures 64 and 65), and while the diode 100-100K is still adhered to the holding device 160 by the adhesive 165, the diode 100 is exposed. The second side of the 100K (back). As illustrated in FIG. 66, the metallization layer can then be deposited to the second side (back side), such as via vapor deposition (tilting to avoid filling trenches 155), forming a second side (back) metal layer 122 and a diode 100J. Specific examples. As also illustrated, the diode 100J has a central through via 131 formed in ohmic contact with the n+ type GaN layer 110 and in contact with the second side (back) metal layer 122 for the n+ type GaN layer 110 and the second side. (back) Current is conducted between the metal layers 122. The exemplary diode 100D is quite similar to the exemplary diode 100J having a second (back) metal layer 122 to form a second terminal 127. As mentioned previously, the second (back) metal layer 122 (or any of the substrate 105 or each of the through vias 131, 133, 134) can be used in the devices 300, 300A, 300B, 300C, 300D, 720 The first conductor 310 is electrically connected to the 730, 760 to energize the diode 100-100K.

圖67為說明在背面金屬化之前黏著至固持裝置160之例示性第十二極體具體實例的橫截面圖。如圖67中所說明,單體化例示性製程中二極體,其中如上文所述且亦以蝕刻步驟(例如濕式或乾式蝕刻)移除任何基板105、105A,暴露n+型GaN層110及導孔136之表面,留下深度為約2微米至6微米(或更尤其為約2微米至4微米,或更尤其為約3微米)之複合GaN異質結構。接著使用此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,諸如經由濺鍍、電鍍或氣相沉積沉積金屬化層至第二面(背面),形成第二面(背面)金屬層122及二極體100K具體實例,如圖68中所說明。在一例示性具體實例中,金屬層122呈橢圓形,如圖21中所說明,其長軸寬度一般為約12微米至16微米,短軸寬度為約4微米至8微米,且深度為約4微米至6微米,或其長軸寬度更尤其一般為約14微米,短軸寬度為約6微米,且深度為約5微米,且其包含約100埃之鈦、約4.5微米之鋁、約0.5微米之鎳及100nm之金。亦如對於二極體100K所說明,最初為比較淺之中心導孔者現 為與n+型GaN層110形成歐姆接觸且與第二面(背面)金屬層122形成接觸以於n+型GaN層110與第二面(背面)金屬層122之間傳導電流的貫穿導孔136。如先前所提及,對於此例示性二極體100K具體實例,接著翻轉或反轉二極體100K,且第二面(背面)金屬層122形成第一端子125且可用於在裝置300、300A、300B、300C、300D、720、730、760中與第二導體320形成電連接以使二極體100K通電。 Figure 67 is a cross-sectional view illustrating an exemplary twelfth polar body embodiment adhered to holding device 160 prior to back metallization. As illustrated in FIG. 67, the diodes in the exemplary process are singulated, wherein any substrate 105, 105A is removed as described above and also by an etching step (eg, wet or dry etching), exposing the n+ type GaN layer 110 And the surface of via 136, leaving a composite GaN heterostructure having a depth of from about 2 microns to 6 microns (or more specifically from about 2 microns to 4 microns, or more specifically about 3 microns). The second side (back side) is then formed using a suitable or standard mask and/or photoresist layer and etching known in the art, such as by depositing a metallization layer to the second side (back side) via sputtering, electroplating or vapor deposition. Specific examples of the metal layer 122 and the diode 100K are as illustrated in FIG. In an exemplary embodiment, metal layer 122 is elliptical, as illustrated in Figure 21, having a major axis width of generally from about 12 microns to 16 microns, a minor axis width of from about 4 microns to 8 microns, and a depth of about 4 microns to 6 microns, or more preferably having a major axis width of about 14 microns, a minor axis width of about 6 microns, and a depth of about 5 microns, and comprising about 100 angstroms of titanium, about 4.5 microns of aluminum, about 0.5 micron nickel and 100 nm gold. As also explained for the diode 100K, the initial shallow pilot hole is now A through via 136 that forms an ohmic contact with the n+ type GaN layer 110 and contacts the second side (back) metal layer 122 to conduct a current between the n+ type GaN layer 110 and the second side (back) metal layer 122. As mentioned previously, for this exemplary diode 100K embodiment, the diode 100K is then flipped or inverted, and the second (back) metal layer 122 forms the first terminal 125 and can be used in the device 300, 300A , 300B, 300C, 300D, 720, 730, 760 form an electrical connection with the second conductor 320 to energize the diode 100K.

圖69為說明黏著至固持裝置之例示性第十一二極體100L具體實例的橫截面圖。如圖69中所說明,單體化例示性二極體100L,其中如上文所述且以蝕刻步驟移除任何基板105、105A,暴露n+型GaN層110之表面,留下深度為約2微米至6微米(或更尤其為約3微米至5微米,或更尤其為約4微米至5微米,或更尤其為約4.5微米)之複合GaN異質結構。 Figure 69 is a cross-sectional view showing an exemplary embodiment of an exemplary eleventh diode 100L adhered to a holding device. As illustrated in Figure 69, an exemplary diode 100L is singulated, wherein any substrate 105, 105A is removed as described above and in an etch step, exposing the surface of the n+ type GaN layer 110 leaving a depth of about 2 microns A composite GaN heterostructure to 6 microns (or more particularly from about 3 microns to 5 microns, or more specifically from about 4 microns to 5 microns, or more specifically about 4.5 microns).

在單體化二極體100-100L之後,可使用其形成二極體墨水,下文參考圖74及75進行論述。 After the monomerized diode 100-100L, it can be used to form a diode ink, which is discussed below with reference to Figures 74 and 75.

亦應注意,亦可對於各個二極體100-100L中之任一者製造各種表面幾何形狀及/或紋理,以有助於在建構成LED時減少內部反射及提高光提取。此等各種表面幾何形狀中之任一者亦可具有先前參考圖25所論述之各種表面紋理中之任一者。圖104為說明例示性發光或光吸收區域之例示性第一表面幾何形狀的透視圖,其建構為二極體100K之上部發光(或光吸收)表面上複數個同心環或超環形形狀。通常在添加背面金屬122之前或之後,經由此項技術中已 知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻將該幾何形狀蝕刻至二極體100K之第二面(背面)中。圖105為說明例示性發光或光吸收區域之例示性第二表面幾何形狀的透視圖,其建構為二極體100K之上部發光(或光吸收)表面上複數個實質上曲邊梯形形狀。亦通常在添加背面金屬122之前或之後,亦經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻將該幾何形狀蝕刻至二極體100K之第二面(背面)中。 It should also be noted that various surface geometries and/or textures can also be fabricated for each of the diodes 100-100L to help reduce internal reflection and enhance light extraction while constructing the LED. Any of these various surface geometries can also have any of the various surface textures previously discussed with reference to FIG. Figure 104 is a perspective view illustrating an exemplary first surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of concentric rings or super-annular shapes on the upper illuminating (or light absorbing) surface of the diode 100K. Usually before or after the addition of the back metal 122, via this technology The geometry is etched into the second side (back side) of the diode 100K by a suitable or standard mask and/or photoresist layer and etching to be known. Figure 105 is a perspective view illustrating an exemplary second surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of substantially curved trapezoidal shapes on the upper illuminating (or light absorbing) surface of the diode 100K. The geometry is also etched to the second side of the diode 100K, either before or after the addition of the back metal 122, also via a suitable or standard mask and/or photoresist layer and etching known or to be known in the art. (back).

圖106為說明例示性發光或光吸收區域之例示性第三表面幾何形狀的透視圖,其建構為二極體100L之下部(或底部)發光(或光吸收)表面上複數個實質上曲邊梯形形狀。圖107為說明例示性發光或光吸收區域之例示性第四表面幾何形狀的透視圖,其建構為二極體100L之下部(或底部)發光(或光吸收)表面上實質上星形形狀。圖108為說明例示性發光或光吸收區域之例示性第五表面幾何形狀的透視圖,其建構為二極體100L之下部(或底部)發光(或光吸收)表面上複數個實質上平行桿狀或條紋形狀。亦通常經由此項技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻將該等幾何形狀蝕刻至二極體100L之第二面(背面)中,作為先前參考圖69所論述之基板移除製程及/或二極體單體化製程的一部分。 106 is a perspective view illustrating an exemplary third surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of substantially curved edges on a lower (or bottom) illuminating (or light absorbing) surface of a diode 100L. Trapezoidal shape. Figure 107 is a perspective view illustrating an exemplary fourth surface geometry of an exemplary illuminating or light absorbing region constructed to be substantially star shaped on the lower (or bottom) illuminating (or light absorbing) surface of the diode 100L. Figure 108 is a perspective view illustrating an exemplary fifth surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of substantially parallel rods on a lower (or bottom) illuminating (or light absorbing) surface of a diode 100L. Shape or stripe shape. The geometries are also typically etched into the second side (back side) of the diode 100L via a suitable or standard mask and/or photoresist layer and etch known or to be known in the art, as a prior reference Part of the substrate removal process and/or diode singulation process discussed in FIG.

圖70、71、72及73分別為說明用於製造二極體100-100L之例示性第一、第二、第三及第四方法具體實例的流程圖,且提供適用概述。應注意,此等方法中之多個 步驟可按各種次序中之任一者進行,且一個例示性方法之步驟亦可用於其他例示性方法中。因此,各方法將一般性涉及二極體100-100L中任一者之製造,而非特定二極體100-100L具體實例之製造,且熟習此項技術者應知曉哪些步驟可「混合且配合」以形成任何所選之二極體100-100L具體實例。 Figures 70, 71, 72, and 73 are flow diagrams illustrating illustrative first, second, third, and fourth method embodiments for fabricating diodes 100-100L, respectively, and provide a suitable overview. It should be noted that many of these methods The steps can be performed in any of a variety of orders, and the steps of one exemplary method can be used in other exemplary methods. Thus, each method will generally involve the fabrication of any of the diodes 100-100L, rather than the manufacture of specific examples of specific diodes 100-100L, and those skilled in the art should be aware of which steps can be "mixed and matched". To form any selected diode 100-100L specific example.

參考圖70,自起始步驟240開始,於半導體晶圓(諸如矽晶圓)上生長或沉積氧化物層(步驟245)。蝕刻氧化物層(步驟250)諸如以形成網格或其他圖案。生長或沉積緩衝層及發光或光吸收區域(諸如GaN異質結構)(步驟255),接著蝕刻以形成各二極體100-100L之台面結構(步驟260)。接著蝕刻晶圓150以在各二極體100-100L之基板105中形成導孔渠溝(步驟265)。接著沉積一或多個金屬化層以形成各二極體100-100L之金屬接點及導孔(步驟270)。接著在二極體100-100L之間蝕刻單體化渠溝(步驟275)。接著生長或沉積鈍化層(步驟280)。接著於金屬接點上沉積或生長凸塊或突出金屬結構(步驟285)且方法可結束,返回步驟290。應注意,此等製造步驟中之多個步驟可藉由不同實體及試劑進行,且該方法可包括上文所論述之步驟的其他變化形式及排序。 Referring to Figure 70, starting from the initial step 240, an oxide layer is grown or deposited on a semiconductor wafer, such as a germanium wafer (step 245). The oxide layer is etched (step 250) such as to form a grid or other pattern. A buffer layer and a luminescent or light absorbing region (such as a GaN heterostructure) are grown or deposited (step 255), followed by etching to form a mesa structure of each of the diodes 100-100L (step 260). The wafer 150 is then etched to form via trenches in the substrate 105 of each of the diodes 100-100L (step 265). One or more metallization layers are then deposited to form metal contacts and vias for each of the diodes 100-100L (step 270). The singulated trench is then etched between the diodes 100-100L (step 275). A passivation layer is then grown or deposited (step 280). A bump or protruding metal structure is then deposited or grown on the metal contacts (step 285) and the method may end, returning to step 290. It should be noted that multiple of these manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above.

參考圖71,自起始步驟500開始,於晶圓(諸如藍寶石晶圓150A)上生長或沉積比較厚之GaN層(例如7微米至8微米)(步驟505)。生長或沉積發光或光吸收區域(諸如GaN異質結構)(步驟510),接著蝕刻以形成各二極體 100-100L之台面結構(在各二極體100-100L之第一面上)(步驟515)。接著蝕刻晶圓150以在各二極體100-100L之基板105中形成一或多個貫穿或深導孔渠溝及單體化渠溝(步驟520)。接著通常藉由使用上文所述之任何方法沉積晶種層(步驟525),繼而進行其他金屬沉積來沉積一或多個金屬化層以形成各二極體100-100L之貫穿導孔,其可為中心、周邊或周圍貫穿導孔(分別為131、134、133)。亦沉積金屬以形成一或多個與GaN異質結構(諸如與p+型GaN層115或與n+型GaN層110)之金屬接點(步驟535)及形成任何其他電流分佈金屬(例如120A、126)(步驟540)。接著生長或沉積鈍化層(步驟545),其中如先前所述及所說明蝕刻或移除一定區域。接著於金屬接點上沉積或生長凸塊或突出金屬結構(120B)(步驟550)。接著將晶圓150A附接至固持晶圓(步驟555)且移除藍寶石或其他晶圓(例如經由雷射切割)以單體化或個別化二極體100-100L(步驟560)。接著將金屬沉積於二極體100-100L之第二面(背面)上以形成第二面(背面)金屬層122(步驟565),且該方法可結束,返回步驟570。亦應注意,此等製造步驟中之多個步驟可藉由不同實體及試劑進行,且該方法可包括上文所論述之步驟的其他變化形式及排序。 Referring to Figure 71, starting from the initial step 500, a relatively thick GaN layer (e.g., 7 microns to 8 microns) is grown or deposited on a wafer (such as sapphire wafer 150A) (step 505). Growing or depositing a luminescent or light absorbing region (such as a GaN heterostructure) (step 510), followed by etching to form each diode A mesa structure of 100-100 L (on the first side of each of the diodes 100-100L) (step 515). The wafer 150 is then etched to form one or more through or deep via trenches and singulated trenches in the substrate 105 of each of the diodes 100-100L (step 520). The seed layer is then typically deposited by using any of the methods described above (step 525), followed by other metal deposition to deposit one or more metallization layers to form through vias for each of the diodes 100-100L. The guide holes (131, 134, 133, respectively) may be through the center, the periphery or the periphery. Metal is also deposited to form one or more metal contacts with GaN heterostructures (such as with p+ type GaN layer 115 or with n+ type GaN layer 110) (step 535) and to form any other current distribution metal (eg, 120A, 126) (Step 540). A passivation layer is then grown or deposited (step 545) wherein a certain area is etched or removed as previously described and illustrated. A bump or protruding metal structure (120B) is then deposited or grown on the metal contacts (step 550). Wafer 150A is then attached to the holding wafer (step 555) and sapphire or other wafers are removed (eg, via laser cutting) to singulate or individualize diodes 100-100L (step 560). Metal is then deposited on the second side (back side) of the diode 100-100L to form a second side (back) metal layer 122 (step 565), and the method may end, returning to step 570. It should also be noted that the various steps in such manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above.

參考圖72,自起始步驟600開始,於晶圓150(諸如藍寶石晶圓150A)上生長或沉積比較厚之GaN層(例如7微米至8微米)(步驟605)。生長或沉積發光或光吸收區域(諸如GaN異質結構)(步驟610)。沉積金屬以形成一或多 個與GaN異質結構(諸如與p+型GaN層115,如圖45中所說明)之金屬接點(步驟615)。接著蝕刻發光或光吸收區域(諸如GaN異質結構)與金屬接觸層(119),形成各二極體100-100L之台面結構(在各二極體100-100L之第一面上)(步驟620)。沉積金屬以形成一或多個與GaN異質結構之金屬接點(諸如與n+型GaN層110之n+型金屬接觸層129,如圖47中所說明)(步驟625)。接著蝕刻晶圓150A以在各二極體100-100L之基板105中形成一或多個貫穿或深導孔渠溝及/或單體化渠溝(步驟630)。接著使用上文所述之任何金屬沉積方法沉積一或多個金屬化層以形成各二極體100-100L之貫穿導孔,其可為中心、周邊或周圍貫穿導孔(分別為131、134、133)。亦沉積金屬以形成一或多個與GaN異質結構(諸如與p+型GaN層115或與n+型GaN層110)之金屬接點,及形成任何其他電流分佈金屬(例如120A、126)(步驟640)。若先前未形成單體化渠溝(在步驟630中),則蝕刻單體化渠溝(步驟645)。接著生長或沉積鈍化層(步驟650),其中如先前所述及所說明蝕刻或移除一定區域。接著於金屬接點上沉積或生長凸塊或突出金屬結構(120B)(步驟655)。接著將晶圓150、150A附接至固持晶圓(步驟660),且移除藍寶石或其他晶圓(例如經由雷射切割或背面研磨及拋光)以單體化或個別化二極體100-100L(步驟665)。接著將金屬沉積於二極體100-100L之第二面(背面)上以形成第二面(背面)導電(例如金屬)層122(步驟670),且該方法可結束,返回步驟675。 亦應注意,此等製造步驟中之多個步驟可藉由不同實體及試劑進行,且該方法可包括上文所論述之步驟的其他變化形式及排序。 Referring to Figure 72, starting from the initial step 600, a relatively thick GaN layer (e.g., 7 microns to 8 microns) is grown or deposited on the wafer 150 (such as sapphire wafer 150A) (step 605). A luminescent or light absorbing region (such as a GaN heterostructure) is grown or deposited (step 610). Depositing metal to form one or more Metal junctions with GaN heterostructures (such as with p+ type GaN layer 115, as illustrated in Figure 45) (step 615). Next, an illuminating or light absorbing region (such as a GaN heterostructure) and a metal contact layer (119) are etched to form a mesa structure of each of the diodes 100-100L (on the first side of each of the diodes 100-100L) (step 620) ). The metal is deposited to form one or more metal contacts to the GaN heterostructure (such as n+ type metal contact layer 129 with n+ type GaN layer 110, as illustrated in Figure 47) (step 625). The wafer 150A is then etched to form one or more through or deep via trenches and/or singulated trenches in the substrate 105 of each of the diodes 100-100L (step 630). One or more metallization layers are then deposited using any of the metal deposition methods described above to form through vias for each of the diodes 100-100L, which may be through the vias at the center, perimeter, or periphery (131, 134, respectively) , 133). Metal is also deposited to form one or more metal contacts with GaN heterostructures (such as with p+ type GaN layer 115 or with n+ type GaN layer 110) and to form any other current distribution metal (eg, 120A, 126) (step 640) ). If the monolithic trench has not previously been formed (in step 630), the singulated trench is etched (step 645). A passivation layer is then grown or deposited (step 650) wherein a certain area is etched or removed as previously described and illustrated. A bump or protruding metal structure (120B) is then deposited or grown on the metal contacts (step 655). The wafers 150, 150A are then attached to the holding wafer (step 660), and the sapphire or other wafer is removed (eg, via laser cutting or back grinding and polishing) to singulate or individualize the diode 100- 100L (step 665). Metal is then deposited on the second side (back side) of the diode 100-100L to form a second (back) conductive (e.g., metal) layer 122 (step 670), and the method may end, returning to step 675. It should also be noted that the various steps in such manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above.

參考圖73,自起始步驟611開始,於晶圓150(諸如藍寶石晶圓150A)或矽晶圓150之緩衝層145上生長或沉積比較厚之GaN層(例如7微米至8微米)(步驟611)。生長或沉積發光或光吸收區域(諸如GaN異質結構)(步驟616)。沉積金屬以形成一或多個與GaN異質結構(諸如與p+型GaN層115,如圖45中所說明)之金屬接點(步驟621)。接著蝕刻發光或光吸收區域(諸如GaN異質結構)與金屬接觸層(119),形成各二極體100-100L之台面結構(在各二極體100-100L之第一面上)(步驟626)。對於二極體100K具體實例,接著蝕刻GaN異質結構以形成各二極體100K之中心導孔渠溝(步驟631),且在其他情況下可省去步驟631。接著使用上文所述之任何金屬沉積方法沉積一或多個金屬化層以形成各二極體100K之中心導孔136或二極體100L之金屬接點128(步驟636)。對於二極體100K具體實例,接著生長或沉積鈍化層135A(步驟641),其中如先前所述且如所說明蝕刻或移除一定區域,且在其他情況下可省去步驟641。亦沉積金屬以形成一或多個與GaN異質結構(諸如p+型GaN層115)之金屬接點,諸如金屬層120B或金屬層120A及120B(步驟646)。若先前未形成單體化渠溝,則蝕刻單體化渠溝(步驟651)。接著生長或沉積鈍化層(步驟656),其中如先前所述及所說明蝕刻或 移除一定區域。應注意,對於製造二極體100L而言,步驟656與651按相反次序進行,其中先進行鈍化,繼而蝕刻單體化渠溝。接著將晶圓150、150A附接至固持晶圓(步驟661),且移除矽、藍寶石或其他晶圓(例如經由雷射切割或背面研磨及拋光)以單體化或個別化二極體100-100L(步驟666),諸如經由蝕刻移除任何其他GaN。對於二極體100K具體實例,接著將金屬沉積於二極體100K之第二面(背面)上以形成第二面(背面)導電(例如金屬)層122(步驟671),且該方法可結束,返回步驟676。亦應注意,此等製造步驟中之多個步驟可藉由不同實體及試劑進行,且該方法可包括上文所論述之步驟的其他變化形式及排序。舉例而言,步驟611及612可由專門供應商進行。 Referring to FIG. 73, starting from the initial step 611, a relatively thick GaN layer (eg, 7 micrometers to 8 micrometers) is grown or deposited on the wafer 150 (such as sapphire wafer 150A) or the buffer layer 145 of the germanium wafer 150 (steps) 611). A luminescent or light absorbing region (such as a GaN heterostructure) is grown or deposited (step 616). The metal is deposited to form one or more metal contacts with a GaN heterostructure (such as with p+ type GaN layer 115, as illustrated in Figure 45) (step 621). Next, an illuminating or light absorbing region (such as a GaN heterostructure) and a metal contact layer (119) are etched to form a mesa structure of each of the diodes 100-100L (on the first side of each of the diodes 100-100L) (step 626) ). For the diode 100K specific example, the GaN heterostructure is then etched to form a central via trench for each of the diodes 100K (step 631), and in other cases step 631 may be omitted. One or more metallization layers are then deposited using any of the metal deposition methods described above to form the central vias 136 of each of the diodes 100K or the metal contacts 128 of the diodes 100L (step 636). For the diode 100K specific example, passivation layer 135A is then grown or deposited (step 641), where certain regions are etched or removed as previously described and as illustrated, and in other cases step 641 may be omitted. Metal is also deposited to form one or more metal contacts to a GaN heterostructure, such as p+ type GaN layer 115, such as metal layer 120B or metal layers 120A and 120B (step 646). If the monolithic trench has not previously been formed, the singulated trench is etched (step 651). A passivation layer is then grown or deposited (step 656), wherein the etching or Remove a certain area. It should be noted that for the fabrication of the diode 100L, steps 656 and 651 are performed in reverse order, wherein passivation is performed first, followed by etching of the singulated trench. The wafers 150, 150A are then attached to the holding wafer (step 661) and the crucible, sapphire or other wafer is removed (eg, via laser cutting or back grinding and polishing) to singulate or individualize the diode 100-100L (step 666), such as removing any other GaN via etching. For the diode 100K embodiment, metal is then deposited on the second side (back side) of the diode 100K to form a second (back) conductive (eg, metal) layer 122 (step 671), and the method can end Go back to step 676. It should also be noted that the various steps in such manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above. For example, steps 611 and 612 can be performed by a specialized vendor.

圖74為說明個別二極體100-100L(亦出於解說之目的一般性說明而無任何顯著之特徵細節)的橫截面圖,該等二極體不再在二極體晶圓150、150A上耦接在一起(由於二極體晶圓150、150A之第二面現已經研磨或拋光、切割(雷射剝離)及/或蝕刻至完全暴露單體化(個別化)渠溝155),但由晶圓黏著劑165黏著至固持裝置160且懸浮或浸沒於含晶圓黏著劑溶劑170之器皿175中。可使用任何適合之器皿175,諸如皮氏培養皿(petri dish),其中一例示性方法使用聚四氟乙烯(PTFE或鐵氟龍(Teflon))器皿175。晶圓黏著劑溶劑170可為任何市售之晶圓黏著劑溶劑或晶圓黏結劑移除劑,包括(不限於)例如可自Rolla,Missouri USA之Brewer Science公司獲得之2-十二烯晶圓 黏結劑移除劑,或任何其他相對長鏈烷烴或烯烴或短鏈庚烷或庚烯。通常在室溫(例如約65℉-75℉或更高溫度)下將黏著至固持裝置160之二極體100-100L浸沒於晶圓黏著劑溶劑170中約5至約15分鐘,且在例示性具體實例中,亦可進行音波處理。隨著晶圓黏著劑溶劑170溶解黏著劑165,二極體100-100L與黏著劑165及固持裝置160分離且大部分或一般個別地或以群組或團塊形式下沉至器皿175底部。當所有或大部分二極體100-100L已自固持裝置160釋放且沉澱至器皿175之底部時,自器皿175移出固持裝置160及一部分當前使用之晶圓黏著劑溶劑170。接著再添加晶圓黏著劑溶劑170(約120ml至140ml),且通常在室溫或更高溫度下,攪拌晶圓黏著劑溶劑170與二極體100-100L之混合物(例如,使用音波處理器或葉輪混合器)約5至15分鐘,繼而再次使二極體100-100L沉澱至器皿175底部。接著一般至少再次重複此製程,以便當所有或大部分二極體100-100L已沉澱至器皿175之底部時,自器皿175移出一部分當前使用之晶圓黏著劑溶劑170,接著再添加(約120ml至140ml)晶圓黏著劑溶劑170,繼而在室溫或更高溫度下攪拌晶圓黏著劑溶劑170與二極體100-100L之混合物約5至15分鐘,繼而再次使二極體100-100L沉澱至器皿175之底部且移出一部分剩餘晶圓黏著劑溶劑170。在此階段,一般已自二極體100-100L移除足量之任何殘留晶圓黏著劑165,或重複晶圓黏著劑溶劑170製程,直至不再有可能干擾二極體100-100L之印刷或 起作用為止。 Figure 74 is a cross-sectional view showing individual diodes 100-100L (also without any significant feature details for illustrative purposes), the diodes are no longer in the diode wafer 150, 150A Coupling together (since the second side of the diode wafer 150, 150A is now ground or polished, cut (laser stripped) and/or etched to fully exposed singulated (individualized) trench 155), However, the wafer adhesive 165 is adhered to the holding device 160 and suspended or immersed in the vessel 175 containing the wafer adhesive solvent 170. Any suitable vessel 175 can be used, such as a petri dish, wherein one exemplary method uses a polytetrafluoroethylene (PTFE or Teflon) vessel 175. Wafer Adhesive Solvent 170 can be any commercially available wafer adhesive solvent or wafer adhesive remover, including, without limitation, 2-dodecene crystals available from Brewer Science, Inc. of Rolla, Missouri USA. circle A binder remover, or any other relatively long chain alkane or olefin or short chain heptane or heptene. The diode 100-100L adhered to the holding device 160 is typically immersed in the wafer adhesive solvent 170 for about 5 to about 15 minutes at room temperature (eg, about 65 °F - 75 °F or higher), and is illustrated In the specific example, sonic processing can also be performed. As the wafer adhesive solvent 170 dissolves the adhesive 165, the diodes 100-100L are separated from the adhesive 165 and the holding device 160 and are mostly or substantially individually or in groups or clumps down to the bottom of the vessel 175. When all or most of the diodes 100-100L have been released from the holding device 160 and deposited to the bottom of the vessel 175, the vessel 175 is removed from the holding device 160 and a portion of the wafer adhesive solvent 170 currently in use. Then add a wafer adhesive solvent 170 (about 120ml to 140ml), and usually stir the mixture of the wafer adhesive solvent 170 and the diode 100-100L at room temperature or higher (for example, using a sonic processor) Or the impeller mixer) for about 5 to 15 minutes, and then the diode 100-100L is again precipitated to the bottom of the vessel 175. This process is then generally repeated at least once again so that when all or most of the diode 100-100L has settled to the bottom of the vessel 175, a portion of the wafer adhesive solvent 170 currently in use is removed from the vessel 175 and then added (about 120 ml). Up to 140 ml) of the wafer adhesive solvent 170, and then agitating the mixture of the wafer adhesive solvent 170 and the diode 100-100L at room temperature or higher for about 5 to 15 minutes, and then again making the diode 100-100L Precipitates to the bottom of the vessel 175 and removes a portion of the remaining wafer adhesive solvent 170. At this stage, a sufficient amount of any residual wafer adhesive 165 has been removed from the diode 100-100L, or the wafer adhesive solvent 170 process has been repeated until it is no longer possible to interfere with the printing of the diode 100-100L. or It works.

可以各種方式中之任一者移除晶圓黏著劑溶劑170(含溶解之晶圓黏著劑165)或下文所論述之任何其他溶劑、溶液或其他液體。舉例而言,可藉由真空、抽氣、抽吸、抽汲等,諸如經由吸液管移除晶圓黏著劑溶劑170或其他液體。亦舉例而言,可藉由諸如使用具有適當開口或微孔尺寸之篩或多孔矽膜過濾二極體100-100L與晶圓黏著劑溶劑170(或其他液體)之混合物來移除晶圓黏著劑溶劑170或其他液體。亦應提及的是,過濾二極體墨水(及下文所論述之介電墨水)中使用之所有各種流體以移除大於約10微米之粒子。 The wafer adhesive solvent 170 (containing the dissolved wafer adhesive 165) or any other solvent, solution or other liquid discussed below can be removed in any of a variety of ways. For example, the wafer adhesive solvent 170 or other liquid can be removed by vacuum, pumping, pumping, pumping, etc., such as via a pipette. Also for example, the wafer adhesion can be removed by, for example, using a sieve having a suitable opening or micropore size or a porous ruthenium membrane to filter a mixture of the diode 100-100L and the wafer adhesive solvent 170 (or other liquid). Agent solvent 170 or other liquid. It should also be mentioned that all of the various fluids used in the diode ink (and the dielectric ink discussed below) are filtered to remove particles larger than about 10 microns.

二極體墨水實施例1:Diode Ink Example 1:

包含以下之組成物:複數個二極體100-100L;及溶劑。 The composition comprising the following: a plurality of diodes 100-100L; and a solvent.

接著移除實質上所有或大部分晶圓黏著劑溶劑170。在一例示性具體實例中且舉例而言,將溶劑,且更尤其極性溶劑(諸如異丙醇(「IPA」))添加至晶圓黏著劑溶劑170與二極體100-100L之混合物中,繼而一般在室溫下(儘管可等效地使用更高溫度)攪拌IPA、晶圓黏著劑溶劑170及二極體100-100L之混合物約5至15分鐘,繼而再次使二極體100-100L沉澱至器皿175之底部且移出一部分IPA與晶圓黏著劑溶劑170之混合物。再添加IPA(120ml至140ml),且重複該製程兩次或兩次以上,即一般在室溫下攪拌 IPA、晶圓黏著劑溶劑170及二極體100-100L之混合物約5至15分鐘,繼而再次使二極體100-100L沉澱至器皿175之底部,移出一部分IPA與晶圓黏著劑溶劑170之混合物且再添加IPA。在一例示性具體實例中,所得混合物為約100ml至110ml IPA與來自四吋晶圓之約900萬-1000萬個二極體100-100L(每個四吋晶圓150約970萬個二極體100-100L),接著將其轉移至另一較大容器(諸如PTFE杯瓶)中,可包括例如再用IPA再洗滌二極體至杯瓶中。可等效地使用一或多種溶劑,例如(但不限於):水;醇,諸如甲醇、乙醇、正丙醇(「NPA」)(包括1-丙醇、2-丙醇(IPA)、1-甲氧基-2-丙醇)、丁醇(包括1-丁醇、2-丁醇(異丁醇))、戊醇(包括1-戊醇、2-戊醇、3-戊醇)、辛醇、正辛醇(包括1-辛醇、2-辛醇、3-辛醇)、四氫糠醇(THFA)、環己醇、松香醇;醚,諸如甲基乙基醚、乙醚、乙基丙基醚及聚醚;酯,諸如乙酸乙酯、己二酸二甲酯、丙二醇單甲醚乙酸酯、戊二酸二甲酯、丁二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、四氫呋喃(THF)、二甲基甲醯胺(DMF)、N-甲基甲醯胺(NMF)、二甲亞碸(DMSO);及其混合物。二極體100-100L與溶劑(諸如IPA)之所得混合物為二極體墨水之第一實施例作為上述實施例1,且可作為獨立組成物提供,例如用於後續改質或亦例如用於印刷中。在下文論述之其他例示性具體實例中,二極體100-100L與溶劑(諸 如IPA)之所得混合物為中間混合物,其如下文所述經進一步改質以形成用於印刷中之二極體墨水。 Substantially all or most of the wafer adhesive solvent 170 is then removed. In an exemplary embodiment and by way of example, a solvent, and more particularly a polar solvent such as isopropyl alcohol ("IPA"), is added to the mixture of wafer adhesive solvent 170 and diode 100-100L, The mixture of IPA, wafer adhesive solvent 170 and diode 100-100L is then typically stirred at room temperature (although equivalently higher temperatures can be used) for about 5 to 15 minutes, followed by diodes 100-100L again. Precipitate to the bottom of vessel 175 and remove a portion of the mixture of IPA and wafer adhesive solvent 170. Add IPA (120ml to 140ml) and repeat the process twice or more, usually at room temperature A mixture of IPA, wafer adhesive solvent 170 and diode 100-100L for about 5 to 15 minutes, and then again precipitate the diode 100-100L to the bottom of the vessel 175, removing a portion of the IPA and wafer adhesive solvent 170. Mix the mixture and add IPA. In an exemplary embodiment, the resulting mixture is from about 100 ml to 110 ml IPA and from about 9 million to 10 million diodes from four wafers 100-100 L (about 9.7 million diodes per four wafers 150) The body 100-100L), which is then transferred to another larger container, such as a PTFE bottle, can include, for example, re-cleaning the diode into the vial with IPA. One or more solvents may be used equivalently, such as, but not limited to, water; alcohols such as methanol, ethanol, n-propanol ("NPA") (including 1-propanol, 2-propanol (IPA), 1 -Methoxy-2-propanol), butanol (including 1-butanol, 2-butanol (isobutanol)), pentanol (including 1-pentanol, 2-pentanol, 3-pentanol) , octanol, n-octanol (including 1-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol (THFA), cyclohexanol, rosin alcohol; ethers, such as methyl ethyl ether, diethyl ether, Ethyl propyl ether and polyether; esters such as ethyl acetate, dimethyl adipate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, glycerol acetate; Alcohols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ethers, glycol ether acetates; carbonates such as propyl carbonate; glycerols such as glycerol; acetonitrile, Tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), dimethyl hydrazine (DMSO); and mixtures thereof. The first embodiment in which the resulting mixture of diode 100-100L and solvent (such as IPA) is a diode ink is described above as Example 1 and may be provided as a separate composition, for example for subsequent modification or also for example In printing. In other illustrative embodiments discussed below, the diode 100-100L and the solvent (the The resulting mixture, such as IPA), is an intermediate mixture which is further modified as described below to form a diode ink for use in printing.

在各個例示性具體實例中,基於至少兩種特性或特徵來選擇第一(或第二)溶劑。溶劑之第一特徵為其溶於黏度調節劑或黏著黏度調節劑(諸如羥丙基甲基纖維素樹脂、甲氧基丙基甲基纖維素樹脂或其他纖維素樹脂或甲基纖維素樹脂)中之能力或其溶解黏度調節劑或黏著黏度調節劑之能力。第二特徵或特性為其蒸發率,其蒸發率應足夠緩慢以允許二極體墨水充分網版滯留(對於網版印刷)或符合其他印刷參數。在各個例示性具體實例中,例示性蒸發率小於1(<1,與乙酸丁酯相比較之相對速率)或更尤其為0.0001至0.9999。 In various exemplary embodiments, the first (or second) solvent is selected based on at least two characteristics or characteristics. The first characteristic of the solvent is that it is soluble in a viscosity modifier or an adhesive viscosity modifier (such as hydroxypropyl methylcellulose resin, methoxypropyl methylcellulose resin or other cellulose resin or methyl cellulose resin) The ability to disperse viscosity modifiers or adhesion viscosity modifiers. The second characteristic or characteristic is its evaporation rate, which should be slow enough to allow sufficient retention of the screen ink (for screen printing) or other printing parameters. In various exemplary embodiments, the exemplary evaporation rate is less than 1 (<1, relative rate compared to butyl acetate) or more specifically 0.0001 to 0.9999.

二極體墨水實施例2:Diode Ink Example 2:

包含以下之組成物:複數個二極體100-100L;及黏度調節劑。 Contains the following composition: a plurality of diodes 100-100L; and a viscosity modifier.

二極體墨水實施例3:Diode Ink Example 3:

包含以下之組成物:複數個二極體100-100L;及溶劑化劑。 The composition comprising: a plurality of diodes 100-100L; and a solvating agent.

二極體墨水實施例4:Diode Ink Example 4:

包含以下之組成物:複數個二極體100-100L;及濕潤溶劑。 The composition comprises the following: a plurality of diodes 100-100L; and a wetting solvent.

二極體墨水實施例5:Diode Ink Example 5:

包含以下之組成物:複數個二極體100-100L;溶劑;及黏度調節劑。 The composition comprises the following: a plurality of diodes 100-100L; a solvent; and a viscosity modifier.

二極體墨水實施例6:Diode Ink Example 6:

包含以下之組成物:複數個二極體100-100L;溶劑;及黏著黏度調節劑。 The composition comprises the following: a plurality of diodes 100-100L; a solvent; and an adhesive viscosity modifier.

二極體墨水實施例7:Diode Ink Example 7:

包含以下之組成物:複數個二極體100-100L;溶劑;及黏度調節劑;其中該組成物在濕潤時不透明而在乾燥時具實質上光學透射性或另外為透明的。 The composition comprises: a plurality of diodes 100-100L; a solvent; and a viscosity modifier; wherein the composition is opaque when wet and substantially optically transmissive or otherwise transparent when dry.

二極體墨水實施例8:Diode Ink Example 8:

包含以下之組成物:複數個二極體100-100L;第一極性溶劑;黏度調節劑;及第二非極性溶劑(或再濕潤劑)。 The composition comprises: a plurality of diodes 100-100L; a first polar solvent; a viscosity modifier; and a second non-polar solvent (or a rewetting agent).

二極體墨水實施例9:Diode Ink Example 9:

包含以下之組成物:複數個二極體100-100L,複數個二極體100-100L中之各二極體之任何尺寸均小於450微米;及溶劑。 The composition comprises: a plurality of diodes 100-100L, each of the plurality of diodes 100-100L having a size of less than 450 microns; and a solvent.

二極體墨水實施例10:Diode Ink Example 10:

包含以下之組成物:複數個二極體100-100L;及至少一種實質上非絕緣載劑或溶劑。 A composition comprising: a plurality of diodes 100-100L; and at least one substantially non-insulating carrier or solvent.

二極體墨水實施例11:Diode Ink Example 11:

包含以下之組成物:複數個二極體100-100L;溶劑;及黏度調節劑;其中該組成物之抗濕潤(dewetting)或接觸角大於25度或大於40度。 The composition comprises: a plurality of diodes 100-100L; a solvent; and a viscosity modifier; wherein the composition has a dewetting or contact angle of greater than 25 degrees or greater than 40 degrees.

參考二極體墨水實施例1-11,多種例示性二極體墨水組成物處於本發明範疇內。一般而言,如實施例1中,二極體(100-100L)之液體懸浮液包含複數個二極體(100-100L)及第一溶劑(諸如上文所論述之IPA或下文論述之正丙醇、1-甲氧基-2-丙醇、二丙二醇、1-辛醇(或更一般為正辛醇),或二乙二醇);如實施例2中,二極體(100-100L)之液體懸浮液包含複數個二極體(100-100L)及黏度調節劑(諸如下文所論述之黏度調節劑,其亦可為如實施例6中之黏著黏度調節劑);且如實施例3及4中, 二極體(100-100L)之液體懸浮液包含複數個二極體(100-100L)及溶劑化劑或濕潤溶劑(諸如下文所論述之第二溶劑中之一者,例如二元酯)。更特定而言,諸如在實施例2、5、6、7及8中,二極體(100-100L)之液體懸浮液包含複數個二極體(100-100L)(及/或複數個二極體(100-100L)及第一溶劑(諸如正丙醇、1-辛醇、1-甲氧基-2-丙醇、二丙二醇、松香醇或二乙二醇)),以及黏度調節劑(或等效地為黏性化合物、黏性劑、黏性聚合物、黏性樹脂、黏性黏合劑、增稠劑及/或流變改質劑)或黏著黏度調節劑(下文更詳細論述),以例如(但不限於)使二極體墨水在室溫(約25℃)下之黏度為約1,000厘泊(cps)至25,000cps(或在冷藏溫度(例如5℃至10℃)下之黏度為約20,000cps至60,000cps),諸如下文所述之E-10黏度調節劑。視黏度而定,所得組成物可等效地稱作二極體或其他二端積體電路液體懸浮液或膠體懸浮液,且本文中任何對液體或膠體之提及應理解為意謂且包括另一者。 Referring to Diode Ink Examples 1-11, a variety of exemplary diode ink compositions are within the scope of the present invention. In general, as in Example 1, the liquid suspension of the diode (100-100 L) comprises a plurality of diodes (100-100 L) and a first solvent (such as the IPA discussed above or as discussed below) Propanol, 1-methoxy-2-propanol, dipropylene glycol, 1-octanol (or more generally n-octanol), or diethylene glycol); as in Example 2, a diode (100- 100L) of the liquid suspension comprises a plurality of diodes (100-100L) and a viscosity modifier (such as the viscosity modifier discussed below, which may also be an adhesion viscosity modifier as in Example 6); In Examples 3 and 4, The liquid suspension of the diode (100-100 L) comprises a plurality of diodes (100-100 L) and a solvating or wetting solvent (such as one of the second solvents discussed below, such as a dibasic ester). More specifically, such as in Examples 2, 5, 6, 7, and 8, the liquid suspension of the diode (100-100 L) comprises a plurality of diodes (100-100 L) (and/or a plurality of two) Polar body (100-100L) and a first solvent (such as n-propanol, 1-octanol, 1-methoxy-2-propanol, dipropylene glycol, rosin or diethylene glycol), and a viscosity modifier (or equivalently a viscous compound, an adhesive, a viscous polymer, a viscous resin, a viscous adhesive, a thickener, and/or a rheology modifier) or an adhesive viscosity modifier (discussed in more detail below) For example, but not limited to, the viscosity of the diode ink at room temperature (about 25 ° C) is from about 1,000 centipoise (cps) to 25,000 cps (or at a refrigerated temperature (eg, 5 ° C to 10 ° C) The viscosity is from about 20,000 cps to 60,000 cps), such as the E-10 viscosity modifier described below. Depending on the viscosity, the resulting composition may be equivalently referred to as a diode or other two-terminal integrated circuit liquid suspension or colloidal suspension, and any reference to liquid or colloid herein is understood to include and include The other.

另外,二極體墨水之所得黏度一般將視欲使用之印刷製程之類型而變化且亦可視二極體組成(諸如矽基板105或GaN基板105)而變化。舉例而言,二極體100-100L具有矽基板105之用於網版印刷之二極體墨水在室溫下可具有約1,000厘泊(cps)至25,000cps之黏度,或在室溫下可更尤其具有約6,000厘泊(cps)至15,000cps之黏度,或在室溫下可更尤其具有約6,000厘泊(cps)至15,000cps之黏度,或在室溫下可更尤其具有約8,000厘泊(cps)至 12,000cps之黏度,或在室溫下可更尤其具有約9,000厘泊(cps)至11,000cps之黏度。另外舉例而言,二極體100-100L具有GaN基板105之用於網版印刷之二極體墨水在室溫下可具有約10,000厘泊(cps)至25,000cps之黏度,或在室溫下可更尤其具有約15,000厘泊(cps)至22,000cps之黏度,或在室溫下可更尤其具有約17,500厘泊(cps)至20,500cps之黏度,或在室溫下可更尤其具有約18,000厘泊(cps)至20,000cps之黏度。亦舉例而言,二極體100-100L具有矽基板105之用於快乾印刷之二極體墨水在室溫下可具有約1,000厘泊(cps)至10,000cps之黏度,或在室溫下可更尤其具有約1,500厘泊(cps)至4,000cps之黏度,或在室溫下可更尤其具有約1,700厘泊(cps)至3,000cps之黏度,或在室溫下可更尤其具有約1,800厘泊(cps)至2,200cps之黏度。亦舉例而言,二極體100-100L具有GaN基板105之用於快乾印刷之二極體墨水在室溫下可具有約1,000厘泊(cps)至10,000cps之黏度,或在室溫下可更尤其具有約2,000厘泊(cps)至6,000cps之黏度,或在室溫下可更尤其具有約2,500厘泊(cps)至4,500cps之黏度,或在室溫下可更尤其具有約2,000厘泊(cps)至4,000cps之黏度。 In addition, the resulting viscosity of the diode ink will generally vary depending on the type of printing process to be used and may also vary depending on the composition of the diode, such as the germanium substrate 105 or the GaN substrate 105. For example, the diode 100-100L having the ruthenium substrate 105 for screen printing of the diode ink may have a viscosity of about 1,000 centipoise (cps) to 25,000 cps at room temperature, or at room temperature. More particularly having a viscosity of from about 6,000 centipoise (cps) to 15,000 cps, or more particularly from about 6,000 centipoise (cps) to 15,000 cps at room temperature, or more particularly about 8,000 centimeter at room temperature. Park (cps) to The viscosity of 12,000 cps, or more particularly at room temperature, has a viscosity of from about 9,000 centipoise (cps) to 11,000 cps. By way of example, the diode 100-100L having a GaN substrate 105 for screen printing of the diode ink may have a viscosity of about 10,000 centipoise (cps) to 25,000 cps at room temperature, or at room temperature. More particularly, it may have a viscosity of from about 15,000 centipoise (cps) to 22,000 cps, or more particularly at room temperature, having a viscosity of from about 17,500 centipoise (cps) to 20,500 cps, or more particularly about 18,000 at room temperature. Viscosity from centipoise (cps) to 20,000 cps. Also for example, the diode 100-100L has a ruthenium substrate 105 for fast drying printing. The diode ink can have a viscosity of about 1,000 centipoise (cps) to 10,000 cps at room temperature, or at room temperature. More particularly, it may have a viscosity of from about 1,500 centipoise (cps) to 4,000 cps, or more particularly from about 1,700 centipoise (cps) to 3,000 cps at room temperature, or more particularly about 1,800 at room temperature. The viscosity of centipoise (cps) to 2,200 cps. Also for example, the diode 100-100L has a GaN substrate 105 for fast-drying printing. The diode ink may have a viscosity of about 1,000 centipoise (cps) to 10,000 cps at room temperature, or at room temperature. More particularly, it may have a viscosity of from about 2,000 centipoise (cps) to 6,000 cps, or more particularly from about 2,500 centipoise (cps) to 4,500 cps at room temperature, or more particularly about 2,000 at room temperature. Viscosity from centipoise (cps) to 4,000 cps.

可以多種方式量測黏度。出於比較之目的,本文所說明及/或主張之各種黏度範圍皆使用布氏黏度計(Brookfield viscometer)(可獲自Brookfield Engineering Laboratories,Middleboro Massachusetts,USA)以約200帕(或更一般為 190帕至210帕)之剪應力,於水夾套中於約25℃下,使用轉軸SC4-27以約10rpm(或更一般為1rpm至30rpm,尤其對於例如(但不限於)冷藏流體而言)之速度來量測。 Viscosity can be measured in a variety of ways. For comparison purposes, various viscosity ranges described and/or claimed herein are using a Brookfield viscometer (available from Brookfield Engineering Laboratories, Middleboro Massachusetts, USA) at about 200 Pa (or more generally Shear stress of 190 Pa to 210 Pa), at about 25 ° C in a water jacket, using a spindle SC4-27 at about 10 rpm (or more typically 1 rpm to 30 rpm, especially for, for example, but not limited to, refrigerated fluids) The speed of the measurement.

可使用一或多種增稠劑(作為黏度調節劑),例如(但不限於):黏土,諸如鋰膨潤石黏土、膨潤土黏土、有機改質黏土;醣及多醣,諸如瓜爾膠、三仙膠;纖維素及改質纖維素,諸如羥甲基纖維素、甲基纖維素、乙基纖維素、丙基甲基纖維素、甲氧基纖維素、甲氧基甲基纖維素、甲氧基丙基甲基纖維素、羥丙基甲基纖維素、羧甲基纖維素、羥乙基纖維素、乙基羥乙基纖維素、纖維素醚、纖維素乙醚、聚葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酯聚合物及共聚物;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;煙霧狀二氧化矽(諸如Cabosil)、二氧化矽粉;以及改質尿素,諸如BYK® 420(可自BYK Chemie GmbH獲得);及其混合物。可使用其他黏度調節劑,以及添加粒子以控制黏度,如Lewis等人之專利申請公開案第US 2003/0091647號中所述。亦可使用下文參考介電墨水所論述之其他黏度調節劑,包括(不限於)聚乙烯吡咯啶酮、聚乙二醇、聚乙酸乙烯酯(PVA)、聚乙烯醇、聚丙烯酸、聚氧化乙烯、聚乙烯醇縮丁醛(PVB);二乙二醇、丙二醇、2-乙基

Figure TWI615994BD00001
唑啉。 One or more thickeners (as viscosity modifiers) may be used, such as, but not limited to, clays, such as lithium bentonite clay, bentonite clay, organically modified clay; sugars and polysaccharides, such as guar gum, three scented gums Cellulose and modified cellulose, such as hydroxymethyl cellulose, methyl cellulose, ethyl cellulose, propyl methyl cellulose, methoxy cellulose, methoxymethyl cellulose, methoxy Propylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, cellulose ether, cellulose ether, polyglucamine; polymer , such as acrylate and (meth) acrylate polymers and copolymers; glycols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ethers, glycol ether acetate ; fumed cerium oxide (such as Cabosil), cerium oxide powder; and modified urea, such as BYK® 420 (available from BYK Chemie GmbH); and mixtures thereof. Other viscosity modifiers can be used, as well as the addition of particles to control the viscosity, as described in US Patent Application Publication No. US 2003/0091647, the disclosure of which is incorporated herein. Other viscosity modifiers discussed below with reference to dielectric inks may also be used, including (not limited to) polyvinylpyrrolidone, polyethylene glycol, polyvinyl acetate (PVA), polyvinyl alcohol, polyacrylic acid, polyethylene oxide. , polyvinyl butyral (PVB); diethylene glycol, propylene glycol, 2-ethyl
Figure TWI615994BD00001
Oxazoline.

參考二極體墨水實施例6,二極體(100-100L)之液體懸浮液可進一步包含黏著黏度調節劑,即具有另外黏著特性之任何上述黏度調節劑。該黏著黏度調節劑在製造(例 如印刷)裝置(300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770)期間使二極體(100-100L)黏著至第一導體(例如310A)或黏著至基底305、305A,接著進一步提供將二極體(100-100L)固持於裝置(300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770)中之適當位置上的基礎結構(例如聚合物)(當乾燥或固化時)。在提供該黏著的同時,該黏度調節劑亦應具有某種使二極體(100-100L)之接點(諸如端子125及/或127)抗濕潤的能力。該等黏著、黏度以及抗濕潤特性為在各個例示性具體實例中使用甲基纖維素、甲氧基丙基甲基纖維素或羥丙基甲基纖維素樹脂的原因之一。亦可憑經驗選擇其他適合之黏度調節劑。 Referring to the diode ink embodiment 6, the liquid suspension of the diode (100-100 L) may further comprise an adhesion viscosity modifier, i.e., any of the above viscosity modifiers having additional adhesion characteristics. The adhesive viscosity modifier is manufactured (for example) Bonding the diode (100-100L) to the first conductor (eg, as in the printing) device (300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770) (eg 310A) or adhered to the substrate 305, 305A, and then further provided to hold the diode (100-100L) to the device (300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, Infrastructure (eg, polymer) in place at 760, 770) (when dried or cured). While providing the adhesion, the viscosity modifier should also have some resistance to moisture (such as terminals 125 and/or 127) of the contacts of the diode (100-100 L). These adhesion, viscosity and moisture resistance properties are one of the reasons for using methylcellulose, methoxypropylmethylcellulose or hydroxypropylmethylcellulose resins in various exemplary embodiments. Other suitable viscosity modifiers can also be selected based on experience.

黏度調節劑或黏著黏度調節劑之其他特性亦適用且處於本發明範疇內。首先,該黏度調節劑應防止懸浮之二極體(100-100L)在所選溫度下沉澱出來。其次,該黏度調節劑應有助於在製造裝置(300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770)期間以均一方式定向二極體(100-100L)及印刷二極體(100-100L)。第三,在一些具體實例中,黏度調節劑亦應用以在印刷製程期間緩衝或以其他方式保護二極體(100-100L),而在其他具體實例中,另外添加惰性粒子(諸如玻璃珠粒)用以在印刷製程期間保護二極體100-100L(下文所論述之二極體墨水實施例17-19)。 Other characteristics of the viscosity modifier or adhesive viscosity modifier are also suitable and within the scope of the invention. First, the viscosity modifier should prevent the suspended diode (100-100L) from precipitating at the selected temperature. Second, the viscosity modifier should help to orient the diodes in a uniform manner during the manufacturing process (300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770). (100-100L) and printed diode (100-100L). Third, in some embodiments, the viscosity modifier is also applied to buffer or otherwise protect the diode (100-100L) during the printing process, while in other embodiments, additional inert particles (such as glass beads) are additionally added. ) to protect the diode 100-100L during the printing process (diode ink embodiments 17-19 discussed below).

參考二極體墨水實施例3、4及8,二極體(100-100L) 之液體懸浮液可進一步包含第二溶劑(實施例8)或溶劑化劑(實施例3)或濕潤溶劑(實施例4),其中多個實施例更詳細論述於下文中。在後續器件製造期間在印刷二極體墨水且二極體墨水乾燥之後,選擇該(第一或第二)溶劑作為濕潤劑(等效地為溶劑化劑)或再濕潤劑以有助於第一導體(例如310A,其可包含導電聚合物,諸如銀墨水、碳墨水或銀墨水與碳墨水之混合物)與二極體100-100L(經由基板105、貫穿導孔結構(131、133、134)及/或第二面(背面)金屬層122,如圖83中所說明)之間的歐姆接觸,諸如非極性樹脂溶劑,包括亦例如(但不限於)一或多種二元酯。舉例而言,當在第一導體310上印刷二極體墨水時,濕潤劑或溶劑化劑部分溶解第一導體310;隨著濕潤劑或溶劑化劑隨後消散,第一導體310再硬化且與二極體(100-100L)形成接觸。 Reference Diode Ink Examples 3, 4 and 8, Diodes (100-100L) The liquid suspension may further comprise a second solvent (Example 8) or a solvating agent (Example 3) or a wetting solvent (Example 4), wherein various embodiments are discussed in more detail below. After printing the diode ink and drying the diode ink during subsequent device fabrication, the (first or second) solvent is selected as a wetting agent (equivalently a solvating agent) or a rewetting agent to aid in the a conductor (eg, 310A, which may comprise a conductive polymer such as silver ink, carbon ink or a mixture of silver ink and carbon ink) and a diode 100-100L (via substrate 105, through via structure (131, 133, 134) And/or an ohmic contact between the second (back) metal layer 122, as illustrated in FIG. 83, such as a non-polar resin solvent, including, for example, but not limited to, one or more dibasic esters. For example, when the diode ink is printed on the first conductor 310, the wetting agent or solvating agent partially dissolves the first conductor 310; as the wetting agent or solvating agent subsequently dissipates, the first conductor 310 hardens and The diode (100-100 L) forms a contact.

二極體(100-100L)液體或膠體懸浮液之其餘部分一般為另一第三溶劑,諸如去離子水,且本文對百分比之任何描述可假定二極體(100-100L)液體或膠體懸浮液之其餘部分為該第三溶劑(諸如水),且所有所述之百分比皆以重量計而非以體積或某種其他量度計。亦應注意,各種二極體墨水懸浮液皆可在典型大氣環境中混合,而無需任何特定之空氣組成或其他所含或過濾之環境。 The remainder of the liquid (or 100-100 L) liquid or colloidal suspension is typically another third solvent, such as deionized water, and any description of the percentages herein can assume a diode (100-100 L) liquid or colloidal suspension. The remainder of the liquid is the third solvent (such as water), and all of the percentages are by weight rather than by volume or some other measure. It should also be noted that various diode ink suspensions can be mixed in a typical atmosphere without any particular air composition or other contained or filtered environment.

亦可基於溶劑之極性選擇溶劑。在一例示性具體實例中,第一溶劑(諸如醇)可選為極性或親水性溶劑以有助於在製造裝置300、300A、300B、300C、300D、700、700A、 700B、720、730、740、750、760、770期間二極體(100-100L)及其他導體(例如310)抗濕潤,同時伴隨能夠溶於黏度調節劑中或溶解黏度調節劑。 The solvent can also be selected based on the polarity of the solvent. In an exemplary embodiment, the first solvent, such as an alcohol, can be selected as a polar or hydrophilic solvent to aid in manufacturing apparatus 300, 300A, 300B, 300C, 300D, 700, 700A, The diodes (100-100L) and other conductors (e.g., 310) are resistant to wetting during 700B, 720, 730, 740, 750, 760, 770, with the ability to be dissolved in the viscosity modifier or to dissolve the viscosity modifier.

例示性二極體墨水之另一適用特性由實施例7說明。對於此例示性具體實例,二極體墨水在印刷期間在濕潤時可為不透明的,以有助於各種印刷製程,諸如對齊。然而,當乾燥或固化時,乾燥或固化之二極體墨水在所選波長下具實質上光學透射性或另外為透明的,諸如以實質上不干擾由二極體(100-100L)產生之可見光發射。然而,在其他例示性具體實例中,二極體墨水亦可具實質上光學透射性或為透明的。 Another suitable property of an exemplary diode ink is illustrated by Example 7. For this illustrative embodiment, the diode ink can be opaque when wet during printing to aid in various printing processes, such as alignment. However, when dried or cured, the dried or cured diode ink is substantially optically transmissive or otherwise transparent at selected wavelengths, such as to substantially not interfere with the generation of the diode (100-100L). Visible light emission. However, in other exemplary embodiments, the diode ink can also be substantially optically transmissive or transparent.

另一特性化例示性二極體墨水之方式基於二極體(100-100L)之尺寸,如實施例9所說明,其中二極體100-100L之任何尺寸一般小於約450微米,且其任何尺寸更尤其小於約200微米,且其任何尺寸更尤其小於約100微米,且其任何尺寸更尤其小於50微米,且其任何尺寸更尤其小於30微米。在所說明之例示性具體實例中,二極體100-100L之寬度一般大致為約10微米至50微米,或寬度更尤其為約20微米至30微米,且高度為約5微米至25微米,或直徑為約25微米至28微米(側面對側面而非頂點對頂點量測),且高度為8微米至15微米或高度為9微米至12微米。在一些例示性具體實例中,二極體100-100L不包括形成凸塊或突出結構之金屬層120B在內的高度(亦即,包括GaN異質結構之側面121之高度)大致為約5微 米至15微米,或更尤其為7微米至12微米,或更尤其為8微米至11微米,或更尤其為9微米至10微米,或更尤其小於10微米至30微米,而形成凸塊或突出結構之金屬層120B之高度一般大致為約3微米至7微米。 Another way to characterize an exemplary diode ink is based on the size of a diode (100-100 L), as illustrated in Example 9, wherein any of the dimensions of the diode 100-100L is generally less than about 450 microns, and any of them The dimensions are more particularly less than about 200 microns, and any size thereof is more particularly less than about 100 microns, and any of its dimensions are more particularly less than 50 microns, and any size thereof is more particularly less than 30 microns. In the illustrated exemplary embodiment, the width of the diode 100-100L is generally from about 10 microns to 50 microns, or more specifically from about 20 microns to 30 microns, and from about 5 microns to 25 microns in height. Or a diameter of from about 25 microns to 28 microns (side to side rather than apex versus apex) and height from 8 microns to 15 microns or height from 9 microns to 12 microns. In some exemplary embodiments, the height of the diode 100-100L that does not include the metal layer 120B forming the bump or protruding structure (ie, the height of the side 121 including the GaN heterostructure) is approximately 5 micrometers. Meters to 15 microns, or more particularly from 7 microns to 12 microns, or more particularly from 8 microns to 11 microns, or more especially from 9 microns to 10 microns, or more especially from less than 10 microns to 30 microns, forming bumps or The height of the metal layer 120B of the protruding structure is generally from about 3 microns to about 7 microns.

在其他例示性具體實例中,二極體(例如100L)不包括形成凸塊或突出結構之金屬層120B及背面金屬122在內之高度(亦即,包括GaN異質結構之側面121之高度)大致為約小於約10微米,或更尤其小於約8微米,或更尤其為約2微米至6微米,或更尤其為約3微米至5微米,或更尤其為約4.5微米,而形成凸塊或突出結構之金屬層120B之高度一般大致為約3微米至7微米,或更尤其大致為約5微米至7微米,而二極體100L之總高度大致為約小於約15微米,或更尤其小於約12微米,或更尤其為約9微米至11微米,或更尤其為約10微米至11微米,或更尤其為約10.5微米。 In other exemplary embodiments, the diode (eg, 100L) does not include the height of the metal layer 120B and the back metal 122 that form the bump or protrusion structure (ie, the height of the side 121 including the GaN heterostructure). Forming bumps or less than about 10 microns, or more specifically less than about 8 microns, or more specifically from about 2 microns to 6 microns, or more specifically from about 3 microns to 5 microns, or more specifically about 4.5 microns. The height of the metal layer 120B of the protruding structure is generally from about 3 microns to 7 microns, or more particularly about 5 microns to 7 microns, and the total height of the diodes 100L is generally less than about 15 microns, or more specifically less than About 12 microns, or more specifically from about 9 microns to 11 microns, or more specifically from about 10 microns to 11 microns, or more specifically about 10.5 microns.

在其他例示性具體實例中,二極體(例如100K)不包括形成凸塊或突出結構之金屬層120B及背面金屬122在內之高度(亦即,包括GaN異質結構之側面121之高度)大致為約小於約10微米,或更尤其小於約8微米,或更尤其為約2微米至6微米,或更尤其為約2微米至4微米,或更尤其為約3.0微米,而形成凸塊或突出結構之金屬層120B及背面金屬122之高度一般大致為約3微米至7微米,或更尤其大致為約4微米至6微米,或更尤其為約5微米,而二極體100K之總高度大致為約小於約15微米,或更尤 其小於約14微米,或更尤其為約12微米至14微米,或更尤其為約13微米。在其他例示性具體實例中,在不包括形成凸塊或突出結構之背面金屬122之高度但包括金屬層120B之高度下二極體100K之高度大致為約5微米至10微米。 In other exemplary embodiments, the diode (eg, 100K) does not include the height of the metal layer 120B and the back metal 122 that form the bump or protrusion structure (ie, the height of the side 121 including the GaN heterostructure). Forming bumps or less than about 10 microns, or more specifically less than about 8 microns, or more specifically from about 2 microns to 6 microns, or more specifically from about 2 microns to 4 microns, or more specifically about 3.0 microns. The height of the metal layer 120B and the back metal 122 of the protruding structure is generally from about 3 microns to 7 microns, or more specifically about 4 microns to 6 microns, or more specifically about 5 microns, and the total height of the diode 100K. Roughly less than about 15 microns, or more It is less than about 14 microns, or more specifically from about 12 microns to 14 microns, or more specifically about 13 microns. In other exemplary embodiments, the height of the diode 100K is approximately between about 5 microns and 10 microns at a height that does not include the height of the backside metal 122 that forms the bump or protrusion structure but includes the metal layer 120B.

二極體墨水亦可由其電學特性特性化,如實施例10中所說明。在此例示性具體實例中,二極體(100-100L)懸浮於至少一種實質上非絕緣的載劑或溶劑中,與例如絕緣黏合劑形成對比。 The diode ink can also be characterized by its electrical properties, as illustrated in Example 10. In this illustrative embodiment, the diode (100-100L) is suspended in at least one substantially non-insulating carrier or solvent, as opposed to, for example, an insulating binder.

二極體墨水亦可由其表面特性特性化,如實施例11中所說明。在此例示性具體實例中,二極體墨水之抗濕潤或接觸角大於25度,或大於40度,視例如用於量測之基板的表面能(諸如34達因至42達因)而定。 The diode ink can also be characterized by its surface characteristics, as illustrated in Example 11. In this exemplary embodiment, the anti-wetting or contact angle of the diode ink is greater than 25 degrees, or greater than 40 degrees, depending on, for example, the surface energy of the substrate used for measurement (such as 34 dyne to 42 dyne). .

二極體墨水實施例12:Diode Ink Example 12:

包含以下之組成物:複數個二極體100-100L;第一溶劑,其包含約5%至50%之正丙醇、松香醇或二乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物;黏度調節劑,其包含約0.75%至5.0%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;第二溶劑(或再濕潤劑),其包含約0.5%至10%之非極性樹脂溶劑,諸如二元酯;及其餘部分包含第三溶劑,諸如水。 The composition comprises: a plurality of diodes 100-100L; a first solvent comprising about 5% to 50% n-propanol, rosin or diethylene glycol, ethanol, tetrahydrofurfuryl alcohol and/or cyclohexane An alcohol, or a mixture thereof; a viscosity modifier comprising from about 0.75% to 5.0% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or A mixture thereof; a second solvent (or rewetting agent) comprising from about 0.5% to 10% of a non-polar resin solvent, such as a dibasic ester; and the remainder comprising a third solvent, such as water.

二極體墨水實施例13:Diode Ink Example 13:

包含以下之組成物:複數個二極體100-100L;第一溶劑,其包含約15%至40%之正丙醇、松香醇或二乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物;黏度調節劑,其包含約1.25%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;第二溶劑(或再濕潤劑),其包含約0.5%至10%之非極性樹脂溶劑,諸如二元酯;及其餘部分包含第三溶劑,諸如水。 The composition comprises: a plurality of diodes 100-100L; a first solvent comprising about 15% to 40% n-propanol, rosin or diethylene glycol, ethanol, tetrahydrofurfuryl alcohol and/or cyclohexane An alcohol, or a mixture thereof; a viscosity modifier comprising from about 1.25% to 2.5% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or A mixture thereof; a second solvent (or rewetting agent) comprising from about 0.5% to 10% of a non-polar resin solvent, such as a dibasic ester; and the remainder comprising a third solvent, such as water.

二極體墨水實施例14:Diode Ink Example 14:

包含以下之組成物:複數個二極體100-100L;第一溶劑,其包含約17.5%至22.5%之正丙醇、松香醇或二乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物;黏度調節劑,其包含約1.5%至2.25%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;第二溶劑(或再濕潤劑),其包含約0.0%至6.0%之至少一種二元酯;及其餘部分包含第三溶劑,諸如水,其中該組成物在25℃下之黏度實質上為約5,000cps至約20,000cps。 The composition comprises: a plurality of diodes 100-100L; a first solvent comprising about 17.5% to 22.5% n-propanol, rosin or diethylene glycol, ethanol, tetrahydrofurfuryl alcohol and/or cyclohexane An alcohol, or a mixture thereof; a viscosity modifier comprising from about 1.5% to about 2.25% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof; a second solvent (or rewetting agent) comprising from about 0.0% to 6.0% of at least one dibasic ester; and the balance comprising a third solvent, such as water, wherein the composition has a viscosity at 25 ° C. It is from about 5,000 cps to about 20,000 cps.

二極體墨水實施例15:Diode Ink Example 15:

包含以下之組成物:複數個二極體100-100L;第一溶劑,其包含約20%至40%之正丙醇、松香醇或二乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物;黏度調節劑,其包含約1.25%至1.75%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;第二溶劑(或再濕潤劑),其包含約0%至6.0%之至少一種二元酯;及其餘部分包含第三溶劑,諸如水,其中該組成物在25℃下之黏度實質上為約1,000cps至約5,000cps。 The composition comprises: a plurality of diodes 100-100L; a first solvent comprising about 20% to 40% n-propanol, rosin or diethylene glycol, ethanol, tetrahydrofurfuryl alcohol and/or cyclohexane An alcohol, or a mixture thereof; a viscosity modifier comprising from about 1.25% to 1.75% of a methoxypropylmethylcellulose resin or a hydroxypropylmethylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof; a second solvent (or rewetting agent) comprising from about 0% to 6.0% of at least one dibasic ester; and the balance comprising a third solvent, such as water, wherein the composition has a viscosity at 25 ° C. It is from about 1,000 cps to about 5,000 cps.

二極體墨水實施例16:Diode Ink Example 16:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;溶劑;及黏度調節劑。 A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a solvent; and a viscosity modifier.

二極體墨水實施例17:Diode Ink Example 17:

包含以下之組成物:複數個二極體100-100L;溶劑;黏度調節劑;及至少一種機械穩定劑或間隔劑。 The composition comprises: a plurality of diodes 100-100L; a solvent; a viscosity modifier; and at least one mechanical stabilizer or spacer.

二極體墨水實施例18:Diode Ink Example 18:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;溶劑;黏度調節劑;及複數個惰性粒子,其尺寸範圍為約10微米至50微米。 The composition comprises: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 micrometers to 50 micrometers and a height of from 5 micrometers to 25 micrometers; a solvent; a viscosity modifier; and a plurality of inertia The particles range in size from about 10 microns to 50 microns.

二極體墨水實施例19:Diode Ink Example 19:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約20微米至30微米且高度為約9微米至15微米;溶劑;黏度調節劑;及複數個實質上光學透明且化學惰性的粒子,其尺寸範圍為約15微米至約25微米。 The composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 20 microns to 30 microns and a height of from about 9 microns to 15 microns; a solvent; a viscosity modifier; and a plurality of The substantially optically transparent and chemically inert particles range in size from about 15 microns to about 25 microns.

二極體墨水實施例20:Diode Ink Example 20:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;第一溶劑,其包含醇;第二溶劑,其包含二醇;黏度調節劑,其包含約0.10%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;及複數個實質上光學透明且化學惰性的粒子,其尺寸範 圍為約10微米至約50微米。 The composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a first solvent comprising an alcohol; a solvent comprising a diol; a viscosity modifier comprising from about 0.10% to 2.5% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, Or a mixture thereof; and a plurality of substantially optically transparent and chemically inert particles having a size The circumference is from about 10 microns to about 50 microns.

二極體墨水實施例21:Diode Ink Example 21:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;至少第一溶劑與不同於第一溶劑之第二溶劑的混合物,其包含約15%至99.99%之至少兩種選自由以下組成之群之溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;及黏度調節劑,其包含約0.10%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物。 The composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 micrometers to 50 micrometers and a height of from 5 micrometers to 25 micrometers; at least a first solvent different from the first solvent a second solvent mixture comprising from about 15% to 99.99% of at least two solvents selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy a base 2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; and a viscosity modifier comprising from about 0.10% to about 2.5% methoxypropylmethylcellulose resin or hydroxy A propylmethylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof.

二極體墨水實施例22:Diode Ink Example 22:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;至少第一溶劑與不同於第一溶劑之第二溶劑的混合物,其包含約15%至99.99%之至少兩種選自由以下組成之群之溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;黏度調節劑,其包含約0.10%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物;約0.01%至2.5%之複數個實質上光學透明且化學惰性的粒子,其尺寸範圍為約10微米至約50微米。 The composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 micrometers to 50 micrometers and a height of from 5 micrometers to 25 micrometers; at least a first solvent different from the first solvent a second solvent mixture comprising from about 15% to 99.99% of at least two solvents selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy a base 2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising from about 0.10% to about 2.5% methoxypropylmethylcellulose resin or hydroxypropyl Methyl cellulose resin or other cellulose or nail A base cellulose resin, or a mixture thereof; from about 0.01% to 2.5% of a plurality of substantially optically clear and chemically inert particles having a size ranging from about 10 microns to about 50 microns.

二極體墨水實施例23:Diode Ink Example 23:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;至少第一溶劑與不同於第一溶劑之第二溶劑的混合物,其包含約15%至50.0%之至少兩種選自由以下組成之群之溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;黏度調節劑,其包含約1.0%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;約0.01%至2.5%之複數個實質上光學透明且化學惰性的粒子,其尺寸範圍為約10微米至約50微米;及其餘部分包含第三溶劑,諸如水。 The composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 micrometers to 50 micrometers and a height of from 5 micrometers to 25 micrometers; at least a first solvent different from the first solvent a second solvent mixture comprising from about 15% to about 50.0% of at least two solvents selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy a base 2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising from about 1.0% to 2.5% methoxypropyl methylcellulose resin or hydroxypropyl a methylcellulose resin or other cellulose or methylcellulose resin, or mixtures thereof; from about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles having a size ranging from about 10 microns to about 50 Micron; and the remainder contains a third solvent, such as water.

二極體墨水實施例24:Diode Ink Example 24:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;第一溶劑,其包含約15%至40%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二 醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;第二溶劑,其不同於第一溶劑且包含約2%至10%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;第三溶劑,其不同於第一溶劑及第二溶劑且包含約0.01%至2.5%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;黏度調節劑,其包含約1.0%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;及其餘部分包含第三溶劑,諸如水。 A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a first solvent comprising about 15% to 40% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, and propylene Alcohol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; second solvent, which is different from the first solvent and contains about 2% to 10% Free solvent of the following group: n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol And a mixture thereof; a third solvent different from the first solvent and the second solvent and comprising from about 0.01% to 2.5% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol Alcohol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; viscosity modifier comprising from about 1.0% to 2.5% methoxypropyl Methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or mixtures thereof; and the remainder comprising a third solvent, such as water.

二極體墨水實施例25:Diode Ink Example 25:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;第一溶劑,其包含約15%至30%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;第二溶劑,其不同於第一溶劑且包含約3%至8%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、 二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;第三溶劑,其不同於第一溶劑及第二溶劑且包含約0.01%至2.5%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;黏度調節劑,其包含約1.25%至2.5%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;約0.01%至2.5%之複數個實質上光學透明且化學惰性的粒子,其尺寸範圍為約10微米至約50微米;及其餘部分包含第三溶劑,諸如水。 A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a first solvent comprising about 15% to 30% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol And cyclohexanol and a mixture thereof; the second solvent, which is different from the first solvent and comprises from about 3% to 8% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, Diethylene glycol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a third solvent different from the first solvent and the second solvent and A solvent comprising from about 0.01% to 2.5% of a group selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, n-octanol, Ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; viscosity modifiers comprising from about 1.25% to 2.5% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or a methylcellulose resin, or a mixture thereof; from about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles having a size ranging from about 10 microns to about 50 microns; and the remainder comprising a third solvent, such as water.

二極體墨水實施例26:Diode Ink Example 26:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;第一溶劑,其包含約40%至60%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;第二溶劑,其不同於第一溶劑且包含約40%至60%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其混合物;及 黏度調節劑,其包含約0.10%至1.25%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物。 A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a first solvent comprising about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol And cyclohexanol and a mixture thereof; the second solvent, which is different from the first solvent and comprises about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol Alcohol, propylene glycol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; A viscosity modifier comprising from about 0.10% to about 1.25% methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof.

二極體墨水實施例27:Diode Ink Example 27:

包含以下之組成物:複數個二極體100-100L,其直徑(寬度及/或長度)為約10微米至50微米且高度為5微米至25微米;第一溶劑,其包含約40%至60%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇、環己醇及其混合物;第二溶劑,其不同於第一溶劑且包含約40%至60%之選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠醇、環己醇及其混合物;黏度調節劑,其包含約0.10%至1.25%之甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂,或其混合物;及 約0.01%至2.5%之複數個實質上光學透明且化學惰性的粒子,其尺寸範圍為約10微米至50微米。 A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; a first solvent comprising about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrogen a sterol, a cyclohexanol, and a mixture thereof; a second solvent different from the first solvent and comprising about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, and diethyl ether a diol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising from about 0.10% to about 1.25% methoxy groups a propylmethylcellulose resin or a hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof; From about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles having a size ranging from about 10 microns to 50 microns.

參考二極體墨水實施例12-27,在一例示性具體實例中,作為第一溶劑之另一醇,即正丙醇(「NPA」)(及/或正辛醇(例如1-辛醇(或各種二級或三級辛醇異構體中之任一者)、1-甲氧基-2-丙醇、松香醇、二乙二醇、二丙二醇、 四氫糠醇或環己醇)替換實質上全部或大部分IPA。在二極體100-100L一般或大部分沉澱於容器底部的情況下,移出IPA,添加NPA,在室溫下攪拌或混合IPA、NPA及二極體100-100L之混合物,繼而再次使二極體100-100L沉澱至容器底部,且移出一部分IPA與NPA之混合物,且再添加NPA(約120ml至140ml)。一般重複此添加NPA及移出IPA與NPA之混合物的製程兩次,產生主要含NPA、二極體100-100L、痕量或少量IPA以及可能一般亦以痕量或少量殘留之晶圓黏著劑及晶圓黏著劑溶劑170的混合物。在一例示性具體實例中,殘留之IPA之殘留或痕量少於約1%,且更一般為約0.4%。亦在一例示性具體實例中,例示性二極體墨水中可能存在之NPA之最終百分比為約0.5%至50%,或更尤其為約1.0%至10%,或更尤其為約3%至7%,或在其他具體實例中,更尤其為約15%至40%,或更尤其為約17.5%至22.5%,或更尤其為約25%至約35%,視欲使用之印刷類型而定。當連同NPA一起或替代NPA使用松香醇及/或二乙二醇時,松香醇之典型濃度為約0.5%至2.0%,且二乙二醇之典型濃度為約15%至25%。亦可以約25微米或25微米以下過濾IPA、NPA、再濕潤劑、去離子水(及用於形成例示性二極體墨水之其他化合物及混合物),以移除比二極體100-100L大或與二極體100-100L處於相同尺寸等級之粒子污染物。 Referring to the two-electrode inks Examples 12-27, in an exemplary embodiment, another alcohol as the first solvent, n-propanol ("NPA") (and/or n-octanol (eg 1-octanol) (or any of the various secondary or tertiary octanol isomers), 1-methoxy-2-propanol, rosinol, diethylene glycol, dipropylene glycol, Tetrahydrofurfuryl alcohol or cyclohexanol) replaces substantially all or most of the IPA. In the case where the diode 100-100L is generally or mostly precipitated at the bottom of the container, the IPA is removed, NPA is added, and a mixture of IPA, NPA and a 100-100 L of the diode is stirred or mixed at room temperature, and then the dipole is again made. The body 100-100L was precipitated to the bottom of the vessel, and a portion of the mixture of IPA and NPA was removed and NPA (about 120 ml to 140 ml) was added. The process of adding NPA and removing the mixture of IPA and NPA is generally repeated twice to produce a wafer adhesive mainly containing NPA, a diode 100-100L, a trace amount or a small amount of IPA, and possibly a trace amount or a small amount of residual A mixture of wafer adhesive solvent 170. In an exemplary embodiment, the residual or trace amount of residual IPA is less than about 1%, and more typically about 0.4%. Also in an exemplary embodiment, the final percentage of NPA that may be present in an exemplary diode ink is from about 0.5% to 50%, or more specifically from about 1.0% to 10%, or more specifically from about 3% to 7%, or in other specific examples, more particularly from about 15% to 40%, or more specifically from about 17.5% to 22.5%, or more specifically from about 25% to about 35%, depending on the type of printing desired set. When rosinol and/or diethylene glycol are used in conjunction with or in place of NPA, typical concentrations of rosin alcohol are from about 0.5% to 2.0%, and typical concentrations of diethylene glycol are from about 15% to 25%. It is also possible to filter IPA, NPA, rewetting agent, deionized water (and other compounds and mixtures used to form the exemplary diode ink) to about 25 microns or less to remove the larger than the diode 100-100L. Or particle contaminants of the same size class as the diode 100-100L.

接著將實質上NPA或另一第一溶劑與二極體100-100L之混合物添加至黏度調節劑中且與其一起混合或短暫攪 拌,該黏度調節劑例如甲氧基丙基甲基纖維素樹脂、羥丙基甲基纖維素樹脂或其他纖維素或甲基纖維素樹脂。在一例示性具體實例中,使用E-3及E-10甲基纖維素樹脂(可自The Dow Chemical公司(www.dow.com)及Hercules Chemical Company公司(www.herchem.com)獲得),以使得在例示性二極體墨水中之最終百分比為約0.10%至5.0%,或更尤其為約0.2%至1.25%,或更尤其為約0.3%至0.7%,或更尤其為約0.4%至0.6%,或更尤其為約1.25%至2.5%,或更尤其為1.5%至2.0%,或更尤其小於或等於2.0%。在一例示性具體實例中,使用約3.0%之E-10調配物且用去離子且過濾之水稀釋以達成於完成組成物中之最終百分比。可等效地使用其他黏度調節劑,包括上文所論述之黏度調節劑及下文參考介電墨水所論述之黏度調節劑。黏度調節劑為二極體100-100L提供充足黏度以使其尤其在冷藏下實質上分散且維持懸浮而不自液體或膠體懸浮液中沉澱出來。 Next, a mixture of substantially NPA or another first solvent and a diode 100-100L is added to and mixed with the viscosity modifier, such as methoxypropyl methylcellulose resin, Hydroxypropyl methylcellulose resin or other cellulose or methyl cellulose resin. In an illustrative embodiment, E-3 and E-10 methylcellulose resins (available from The Dow Chemical Company ( www.dow.com ) and Hercules Chemical Company ( www.herchem.com )), So that the final percentage in the exemplary diode ink is from about 0.10% to 5.0%, or more specifically from about 0.2% to 1.25%, or more specifically from about 0.3% to 0.7%, or more specifically about 0.4%. To 0.6%, or more particularly from about 1.25% to 2.5%, or more especially from 1.5% to 2.0%, or more especially less than or equal to 2.0%. In an exemplary embodiment, about 3.0% of the E-10 formulation is used and diluted with deionized and filtered water to achieve a final percentage of the finished composition. Other viscosity modifiers can be used equivalently, including the viscosity modifiers discussed above and the viscosity modifiers discussed below with reference to the dielectric inks. The viscosity modifier provides sufficient viscosity for the diode 100-100L to substantially disperse and maintain suspension, especially under refrigeration, without precipitating from the liquid or colloidal suspension.

如上所述,接著可添加第二溶劑(或對於實施例3及4,添加第一溶劑),其一般為非極性樹脂溶劑,諸如一或多種二元酯。在一例示性具體實例中,使用兩種二元酯之混合物以達到約0.0%至約10%,或更尤其約0.5%至約6.0%,或更尤其約1.0%至約5.0%,或更尤其約2.0%至約4.0%,或更尤其約2.5%至約3.5%之最終百分比,諸如戊二酸二甲酯或諸如約三分之二(2/3)戊二酸二甲酯與約三分之一(1/3)丁二酸二甲酯之混合物,最終百分比為約3.73%,例如分別 使用DBE-5或DBE-9(可自Invista USA,Wilmington,Delaware,USA獲得),其亦具有痕量或少量雜質,諸如約0.2%之己二酸二甲酯及0.04%水。可能需要或必要時,亦添加第三溶劑(諸如去離子水)以調節相對百分比且降低黏度。除二元酯之外,可等效使用之其他第二溶劑亦包括例如(但不限於)水;醇,諸如甲醇、乙醇、正丙醇(包括1-丙醇、2-丙醇(異丙醇)、1-甲氧基-2-丙醇)、異丁醇、丁醇(包括1-丁醇、2-丁醇)、戊醇(包括1-戊醇、2-戊醇、3-戊醇)、正辛醇(包括1-辛醇、2-辛醇、3-辛醇)、四氫糠醇、環己醇;醚,諸如甲基乙基醚、乙醚、乙基丙基醚及聚醚;酯,諸如乙酸乙酯、己二酸二甲酯、丙二醇單甲醚乙酸酯(及如上所述之戊二酸二甲酯及丁二酸二甲酯);二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、四氫呋喃(THF)、二甲基甲醯胺(DMF)、N-甲基甲醯胺(NMF)、二甲亞碸(DMSO);及其混合物。在一例示性具體實例中,第一溶劑之量與第二溶劑之量的莫耳比處於至少約2:1之範圍內,且更尤其處於至少約5:1範圍內,且更尤其處於至少約12:1或12:1以上之範圍內;在其他情況下,兩種溶劑之功能可組合於單一試劑中,在一例示性具體實例中,使用一種極性或非極性溶劑。亦除上文所論述之二元酯之外,例如(但不限於)例示性溶解劑、濕潤劑或溶劑化劑亦如下文所提及包括丙二醇單甲醚乙酸酯(C6H12O3)(由Eastman以名稱「PM乙 酸酯(PM Acetate)」出售),其與1-丙醇(或異丙醇)以約1:8莫耳比(或22:78重量比)使用以形成懸浮介質;以及多種二元酯,及其混合物,諸如丁二酸二甲酯、己二酸二甲酯及戊二酸二甲酯(其不同混合物可自Invista以產品名稱DBE、DBE-2、DBE-3、DBE-4、DBE-5、DBE-6、DBE-9及DBE-IB獲得)。在一例示性具體實例中,使用DBE-9。溶劑之莫耳比將基於所選溶劑而變化,其中1:8及1:12為典型比率。 As noted above, a second solvent can then be added (or for Examples 3 and 4, a first solvent added), which is typically a non-polar resin solvent, such as one or more dibasic esters. In an exemplary embodiment, a mixture of two dibasic esters is used to achieve from about 0.0% to about 10%, or more specifically from about 0.5% to about 6.0%, or more specifically from about 1.0% to about 5.0%, or more. Especially a final percentage of from about 2.0% to about 4.0%, or more especially from about 2.5% to about 3.5%, such as dimethyl glutarate or such as about two-thirds (2/3) dimethyl glutarate and about a third (1/3) mixture of dimethyl succinate with a final percentage of about 3.73%, such as DBE-5 or DBE-9 (available from Invista USA, Wilmington, Delaware, USA), respectively. There are also traces or minor amounts of impurities such as about 0.2% dimethyl adipate and 0.04% water. A third solvent, such as deionized water, may also be added as needed or necessary to adjust the relative percentage and reduce the viscosity. In addition to the dibasic ester, other second solvents which may be used equivalently include, but are not limited to, water; alcohols such as methanol, ethanol, n-propanol (including 1-propanol, 2-propanol (isopropyl) Alcohol), 1-methoxy-2-propanol), isobutanol, butanol (including 1-butanol, 2-butanol), pentanol (including 1-pentanol, 2-pentanol, 3- Pentanol), n-octanol (including 1-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol, cyclohexanol; ethers such as methyl ethyl ether, diethyl ether, ethyl propyl ether and Polyether; esters such as ethyl acetate, dimethyl adipate, propylene glycol monomethyl ether acetate (and dimethyl glutarate and dimethyl succinate as described above); glycols such as B Glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ether, glycol ether acetate; carbonate, such as propyl carbonate; glycerin, such as glycerin; acetonitrile, tetrahydrofuran (THF) , dimethylformamide (DMF), N-methylformamide (NMF), dimethyl hydrazine (DMSO); and mixtures thereof. In an exemplary embodiment, the molar ratio of the amount of the first solvent to the amount of the second solvent is in the range of at least about 2:1, and more particularly in the range of at least about 5:1, and more particularly at least In the range of about 12:1 or more than 12:1; in other cases, the function of the two solvents can be combined in a single reagent, and in one exemplary embodiment, a polar or non-polar solvent is used. Also in addition to the dibasic esters discussed above, such as, but not limited to, exemplary solubilizing, wetting or solvating agents also include propylene glycol monomethyl ether acetate (C 6 H 12 O) as mentioned below. 3 ) (sold by Eastman under the name "PM Acetate"), which is used with 1-propanol (or isopropanol) at a molar ratio of about 1:8 (or 22:78) Forming a suspension medium; and a plurality of dibasic esters, and mixtures thereof, such as dimethyl succinate, dimethyl adipate and dimethyl glutarate (different mixtures thereof available from Invista under the product names DBE, DBE-2 , DBE-3, DBE-4, DBE-5, DBE-6, DBE-9, and DBE-IB are obtained). In an illustrative embodiment, DBE-9 is used. The molar ratio of solvent will vary based on the solvent chosen, with 1:8 and 1:12 being typical ratios.

參考二極體墨水實施例17-20、22、25及27,包括一或多種機械穩定劑或間隔劑,諸如化學惰性粒子及/或光學透明的粒子,諸如通常包含例如(但不限於)矽酸鹽或硼矽酸鹽玻璃之玻璃珠粒。在各個例示性具體實例中,使用約0.01重量%至2.5重量%,或更尤其約0.05重量%至1.0重量%,或更尤其約0.1重量%至0.3重量%之玻璃球,其平均尺寸或尺寸範圍為約10微米至30微米,或更尤其為約12微米至28微米,或更尤其為約15微米至25微米。此等粒子在印刷製程期間提供機械穩定性及/或間隔,諸如在將印刷薄板饋送至印刷機中時充當薄板間隔物,因為二極體100-100L最初僅經由由乾燥或固化之二極體墨水形成之比較薄之膜固持於適當位置上(如圖89及90中所說明)。一般而言,惰性粒子之濃度足夠低以使得每單位面積(裝置面積,在沉積之後)惰性粒子之數目小於每單位面積二極體100-100L之密度。惰性粒子提供機械穩定性及間隔,趨於防止二極體100-100L在沉積導電層(310)及/或介電層 (315)時將印刷薄板送至印刷機中時印刷薄板彼此滑過時移位且丟失,類似於滾珠軸承提供穩定性。在沉積導電層(310)及/或介電層(315)之後,二極體100-100L被有效地固持或鎖定於適當位置上,移位之可能性顯著降低。惰性粒子亦被固持或鎖定於適當位置上,但在完成之裝置300、700、720、730、740、750、760、770中不發揮其他功能且實際上具電學及化學惰性。在圖94中之橫截面中說明複數個惰性粒子292,且儘管未在其他圖中單獨說明,但可包括於任何其他所說明之裝置中。 Reference Diode Inks Examples 17-20, 22, 25, and 27 include one or more mechanical stabilizers or spacers, such as chemically inert particles and/or optically clear particles, such as typically comprising, but not limited to, germanium. Glass beads of acid or borosilicate glass. In various exemplary embodiments, from about 0.01% to 2.5% by weight, or especially from about 0.05% to 1.0% by weight, or especially from about 0.1% to 0.3% by weight, of the glass spheres, average size or size, are used. The range is from about 10 microns to 30 microns, or more specifically from about 12 microns to 28 microns, or more specifically from about 15 microns to 25 microns. These particles provide mechanical stability and/or spacing during the printing process, such as acting as a thin plate spacer when feeding the printed sheet into the printing press, since the diode 100-100L initially passes only through the dried or cured diode The relatively thin film formed by the ink is held in place (as illustrated in Figures 89 and 90). In general, the concentration of inert particles is sufficiently low that the number of inert particles per unit area (device area, after deposition) is less than the density of 100-100 L per unit area of the diode. Inert particles provide mechanical stability and spacing, tending to prevent diodes 100-100L from depositing conductive layers (310) and/or dielectric layers At (315), when the printed sheets are fed into the printing press, the printed sheets are displaced and lost as they slide over each other, similar to ball bearings providing stability. After deposition of the conductive layer (310) and/or the dielectric layer (315), the diodes 100-100L are effectively held or locked in place, and the likelihood of displacement is significantly reduced. The inert particles are also held or locked in place, but do not perform other functions in the completed device 300, 700, 720, 730, 740, 750, 760, 770 and are actually electrically and chemically inert. A plurality of inert particles 292 are illustrated in cross-section in Figure 94 and, although not separately illustrated in other figures, may be included in any other illustrated device.

說明二極體墨水實施例20-27以提供有效用於製造各種裝置300、700、720、730、740、750、760、770具體實例之二極體墨水組成物之其他且更特定的實施例。具有纖維素或甲基纖維素樹脂(諸如羥丙基甲基纖維素樹脂)之二極體墨水實施例20及其他實施例亦可包括未各別提及之其他溶劑,例如(但不限於)水或1-甲氧基-2-丙醇。 Diode Ink Embodiments 20-27 are illustrated to provide other and more specific embodiments of diode ink compositions that are effective for fabricating various embodiments 300, 700, 720, 730, 740, 750, 760, 770 embodiments. . Diode inks having cellulosic or methylcellulose resins (such as hydroxypropyl methylcellulose resins) Example 20 and other embodiments may also include other solvents not specifically mentioned, such as, but not limited to, water Or 1-methoxy-2-propanol.

雖然一般按上文所述之次序混合各種二極體墨水,但亦應注意可按其他次序將各種第一溶劑、黏度調節劑、第二溶劑及第三溶劑(諸如水)添加或混合在一起,任何及所有次序均處於本發明範疇內。舉例而言,可首先添加去離子水(作為第三溶劑),繼而添加1-丙醇及DBE-9,繼而添加黏度調節劑,接著可能需要時繼而再添加水以調節例如相對百分比及黏度。 Although various diode inks are generally mixed in the order described above, it should also be noted that various first solvents, viscosity modifiers, second solvents, and third solvents (such as water) may be added or mixed together in other orders. Any and all orders are within the scope of the invention. For example, deionized water (as a third solvent) may be added first, followed by the addition of 1-propanol and DBE-9, followed by the addition of a viscosity modifier, and then water may then be added to adjust, for example, the relative percentage and viscosity.

接著在室溫下於空氣氛圍中,諸如藉由使用葉輪混合器以比較低之速度(以避免將空氣併入混合物中)混合或 攪拌實質上第一溶劑(諸如NPA)、二極體100-100L、黏度調節劑、第二溶劑及第三溶劑(若存在)(諸如水)之混合物約25分鐘至30分鐘。在一例示性具體實例中,二極體墨水之所得體積通常大致為約二分之一公升至一公升(每晶圓)含有900萬至1000萬個二極體100-100L,且可視需要向上或向下調節二極體100-100L之濃度,諸如視下文所述之所選印刷LED或光電器件所需之濃度而定,其例示性黏度範圍為上文對於不同類型之印刷及不同類型之二極體100-100L所述。第一溶劑(諸如NPA)亦趨於充當防腐劑且抑制細菌及真菌生長以用於儲存所得二極體墨水。在欲使用其他第一溶劑時,亦可添加各別防腐劑、抑制劑或殺真菌劑。對於一例示性具體實例,可使用用於印刷之其他界面活性劑或消泡劑作為可選方案,但並非為適當起作用及例示性印刷所需。 Then at room temperature in an air atmosphere, such as by using an impeller mixer at a relatively low speed (to avoid incorporation of air into the mixture) or A mixture of substantially a first solvent (such as NPA), a diode 100-100L, a viscosity modifier, a second solvent, and a third solvent (if present) (such as water) is stirred for about 25 minutes to 30 minutes. In an exemplary embodiment, the resulting volume of the diode ink is typically from about one-half liter to one liter (per wafer) containing from 9 million to 10 million diodes 100-100L, and may be upwards as needed. Or downwardly adjusting the concentration of the diode 100-100L, such as depending on the desired density of the selected printed LED or optoelectronic device described below, with exemplary viscosity ranges above for different types of printing and different types. Diode 100-100L as described. The first solvent, such as NPA, also tends to act as a preservative and inhibit bacterial and fungal growth for storage of the resulting diode ink. When other first solvents are to be used, individual preservatives, inhibitors or fungicides may also be added. For illustrative specific embodiments, other surfactants or defoamers for printing may be used as an alternative, but not required for proper functioning and exemplary printing.

可根據裝置需要調節二極體100-100L之濃度。舉例而言,對於照明應用,較低表面亮度燈每平方公分可使用約25個二極體100-100L,使用二極體100-100L之濃度為每毫升(cm3)約12,500個二極體之二極體墨水。對於另一例示性具體實例,一個晶圓150可含有約720萬個二極體100-100L以得到約570ml之二極體墨水。每毫升二極體墨水在印刷時可用於覆蓋約500平方公分,570ml二極體墨水覆蓋約28.8平方公尺。亦舉例而言,對於每平方公分使用約100個二極體100-100L之極高表面亮度燈,其需要每毫升(cm3)約50,000個二極體100-100L之濃度。 The concentration of the diode 100-100L can be adjusted according to the needs of the device. For example, for lighting applications, a lower surface brightness lamp can use about 25 diodes per square centimeter 100-100L, and a diode 100-100L concentration is about 12,500 diodes per milliliter (cm 3 ). Diode ink. For another illustrative embodiment, a wafer 150 can contain about 7.2 million diodes 100-100L to yield about 570 ml of diode ink. Each milliliter of the diode ink can be used to cover about 500 square centimeters when printed, and 570 ml of diode ink covers about 28.8 square meters. Also for example, for a very high surface brightness lamp of about 100 diodes 100-100 L per square centimeter, it requires a concentration of about 50,000 diodes per 100 milliliters (cm 3 ) of 100-100 L.

圖75為說明製造二極體墨水之例示性方法具體實例的流程圖且提供適用概述。該方法開始(起始步驟200),自晶圓150、150A釋放二極體100-100L(步驟205)。如上文所論述,此步驟涉及用晶圓黏結黏著劑使晶圓之第一面(二極體側)黏著至晶圓固持器,使用雷射剝離、研磨及/或拋光及/或蝕刻晶圓之第二面(背面)以暴露單體化渠溝且視需要或視規定移除任何其他基板或GaN,且溶解晶圓黏結黏著劑以釋放二極體100-100L至溶劑(諸如IPA)或另一溶劑(諸如NPA)或本文所述之任何其他溶劑中。當使用IPA時,該方法包括視情況選用之步驟210,將二極體100-100L轉移至(第一)溶劑(諸如NPA)中。該方法接著將於第一溶劑中之二極體100-100L添加至黏度調節劑(諸如甲基纖維素)中(步驟215)且添加一或多種第二溶劑,諸如一或兩種二元酯,諸如戊二酸二甲酯及/或丁二酸二甲酯(步驟220)。可使用第三溶劑(諸如去離子水)調節任何重量百分比(步驟225)。在步驟230中,該方法接著在室溫下(約25℃)於空氣氛圍中混合複數個二極體100-100L、第一溶劑、黏度調節劑、第二溶劑(及複數個化學及電學惰性粒子,諸如玻璃珠粒)及任何其他去離子水約25至30分鐘,所得黏度為約1,000cps至約25,000cps。接著該方法可結束,返回步驟235。亦應注意,如上文所述,步驟215、220及225可按其他次序進行,且需要時可重複,且亦可使用視情況選用之其他混合步驟。 Figure 75 is a flow diagram illustrating an exemplary embodiment of an exemplary method of making a diode ink and provides a suitable overview. The method begins (initial step 200) by releasing diodes 100-100L from wafers 150, 150A (step 205). As discussed above, this step involves bonding the first side (the diode side) of the wafer to the wafer holder with a wafer bonding adhesive, using a laser stripping, grinding and/or polishing and/or etching wafer. a second side (back side) to expose the singulated trench and remove any other substrate or GaN as needed or as specified, and dissolve the wafer bonding adhesive to release the diode 100-100L to a solvent (such as IPA) or Another solvent, such as NPA, or any other solvent described herein. When IPA is used, the method includes the step 210 selected as appropriate to transfer the diode 100-100L to a (first) solvent such as NPA. The method then adds the diode 100-100L in the first solvent to a viscosity modifier such as methylcellulose (step 215) and adds one or more second solvents, such as one or two dibasic esters. For example, dimethyl glutarate and/or dimethyl succinate (step 220). Any weight percentage can be adjusted using a third solvent, such as deionized water (step 225). In step 230, the method then mixes a plurality of diodes 100-100 L, a first solvent, a viscosity modifier, a second solvent (and a plurality of chemical and electrical inertities) in an air atmosphere at room temperature (about 25 ° C). The particles, such as glass beads, and any other deionized water for about 25 to 30 minutes have a viscosity of from about 1,000 cps to about 25,000 cps. The method can then end and return to step 235. It should also be noted that steps 215, 220, and 225 may be performed in other orders as described above, and may be repeated as needed, and other mixing steps may be used as appropriate.

圖76為例示性裝置300具體實例之透視圖。圖77為 說明例示性裝置具體實例之第一導電層之例示性電極結構的平面圖(或俯視圖)。圖78為例示性裝置300具體實例之第一橫截面圖(穿過圖76之30-30'平面)。圖79為例示性裝置300具體實例之第二橫截面圖(穿過圖76之31-31'平面)。圖80為例示性第二裝置700具體實例之透視圖。圖81為例示性第二裝置700具體實例之第一橫截面圖(穿過圖80之88-88'平面)。圖82為例示性第二裝置700具體實例之第二橫截面圖(穿過圖80之87-87'平面)。圖83為耦接至第一導體310A之例示性二極體100J、100K、100D及100E之第二橫截面圖。圖87為自兩側發光之例示性第三裝置300C具體實例之橫截面圖。圖88為自兩側發光之例示性第四裝置300D具體實例之橫截面圖。圖89為例示性第一裝置具體實例之更詳細部分橫截面圖。圖90為例示性第二裝置具體實例之更詳細部分橫截面圖。圖91為例示性第五裝置720具體實例之透視圖。圖92為例示性第五裝置720具體實例之橫截面圖(穿過圖91之57-57'平面)。圖93為例示性第六裝置730具體實例之透視圖。圖94為例示性第六裝置730具體實例之橫截面圖(穿過圖93之58-58'平面)。圖95為例示性第七裝置740具體實例之透視圖。圖96為例示性第七裝置740具體實例之橫截面圖(穿過圖95之59-59'平面)。圖97為例示性第八裝置750具體實例之透視圖。圖98為例示性第八裝置750具體實例之橫截面圖(穿過圖97之61-61'平面)。圖99為說明例示性裝置具體實例之第一導電層之例示性第二電極結構的平面圖(或 俯視圖)。圖101為通常用於圖100中所說明之系統800、810具體實例的例示性第九及第十裝置760、770具體實例之平面圖(或俯視圖)。圖102為例示性第九裝置760具體實例之橫截面圖(穿過圖101之63-63'平面)。圖103為例示性第十裝置770具體實例之橫截面圖(穿過圖101之63-63'平面)。圖109為發光之通電例示性裝置300A具體實例之照片。 Figure 76 is a perspective view of an exemplary embodiment of an exemplary device 300. Figure 77 shows A plan view (or top view) of an exemplary electrode structure of a first conductive layer of an exemplary device embodiment is illustrated. 78 is a first cross-sectional view of an exemplary embodiment of an exemplary device 300 (through the 30-30' plane of FIG. 76). 79 is a second cross-sectional view of the illustrative device 300 embodiment (through the 31-31' plane of FIG. 76). FIG. 80 is a perspective view of an exemplary second device 700 embodiment. 81 is a first cross-sectional view of an exemplary second device 700 embodiment (through the 88-88' plane of FIG. 80). 82 is a second cross-sectional view of the exemplary second device 700 embodiment (through the 87-87' plane of FIG. 80). 83 is a second cross-sectional view of exemplary diodes 100J, 100K, 100D, and 100E coupled to first conductor 310A. Figure 87 is a cross-sectional view of an exemplary third device 300C illumination from both sides. Figure 88 is a cross-sectional view of an exemplary fourth device 300D embodiment illuminated from both sides. Figure 89 is a more detailed partial cross-sectional view of an exemplary first device embodiment. Figure 90 is a more detailed partial cross-sectional view of an exemplary second device embodiment. 91 is a perspective view of an exemplary fifth device 720 embodiment. Figure 92 is a cross-sectional view of an exemplary fifth device 720 embodiment (through the 57-57' plane of Figure 91). Figure 93 is a perspective view of an exemplary sixth device 730 embodiment. Figure 94 is a cross-sectional view of an exemplary sixth device 730 embodiment (through the 58-58' plane of Figure 93). Figure 95 is a perspective view of an exemplary seventh device 740 embodiment. Figure 96 is a cross-sectional view of an exemplary seventh device 740 embodiment (through the 59-59' plane of Figure 95). 97 is a perspective view of an exemplary eighth device 750 embodiment. Figure 98 is a cross-sectional view of an exemplary eighth device 750 embodiment (through the 61-61' plane of Figure 97). Figure 99 is a plan view showing an exemplary second electrode structure of a first conductive layer of an exemplary device embodiment (or Top view). 101 is a plan view (or top view) of an exemplary ninth and tenth device 760, 770 embodiment of the system 800, 810 embodiments typically illustrated in FIG. Figure 102 is a cross-sectional view of an exemplary ninth device 760 embodiment (through the 63-63' plane of Figure 101). Figure 103 is a cross-sectional view of an exemplary tenth device 770 embodiment (through the 63-63' plane of Figure 101). Figure 109 is a photograph of a specific example of an energized power-expressing exemplary device 300A.

參考圖76-79,在裝置300中,於基底305上第一面上沉積一或多個第一導體310,繼而沉積複數個二極體100-100K(使第二端子127耦接至導體310)、介電層315、第二導體320(一般為耦接至第一端子之透明導體),視情況繼而沉積穩定化層335、發光(或發射)層325及保護層或塗層330。在此裝置300具體實例中,若使用光學不透明之基底305及第一導體310,則光主要穿過裝置300之頂部第一面發射或吸收,且若使用光學透射性基底305及第一導體310,則光自裝置300之兩側發射或吸收或發射或吸收至裝置300之兩側(尤其若用AC電壓通電以使具有第一或第二定向之二極體100-100K通電)。 Referring to FIGS. 76-79, in apparatus 300, one or more first conductors 310 are deposited on a first side of substrate 305, followed by deposition of a plurality of diodes 100-100K (coupled second terminal 127 to conductor 310). The dielectric layer 315, the second conductor 320 (generally a transparent conductor coupled to the first terminal), and optionally a stabilizing layer 335, a light emitting (or emitting) layer 325, and a protective layer or coating 330 are deposited. In the embodiment of device 300, if optically opaque substrate 305 and first conductor 310 are used, light is primarily emitted or absorbed through the top first side of device 300, and if optically transmissive substrate 305 and first conductor 310 are used, Light is then emitted or absorbed or absorbed from both sides of the device 300 to either side of the device 300 (especially if energized with an AC voltage to energize the diodes 100-100K having the first or second orientation).

參考圖80-83,在裝置700中,於具光學透射性且因此在本文中稱作基底305A之基底305之第一面上沉積複數個二極體100L,繼而沉積一或多個第一導體310(使導體310耦接至第二端子127)、介電層315、第二導體320(耦接至第一端子)(其可能或可能不具光學透射性),且視情況繼而沉積穩定化層335及保護層或塗層330。在基底305之第 一面上進行任何沉積步驟之前或之後,視情況存在之發光(或發射)層325可連同任何其他保護層或塗層330一起塗覆至基底305之第二面。在此裝置700具體實例中,若使用一或多個光學不透明之第二導體320,則光主要在第二面上穿過裝置700之基底305A發射或吸收,且若使用一或多個光學透射性第二導體320,則光在裝置700之兩側上發射或吸收。 Referring to Figures 80-83, in device 700, a plurality of diodes 100L are deposited on a first side of substrate 305 having optical transparency and thus referred to herein as substrate 305A, followed by deposition of one or more first conductors. 310 (couples the conductor 310 to the second terminal 127), the dielectric layer 315, the second conductor 320 (coupled to the first terminal) (which may or may not be optically transmissive), and optionally deposits a stabilizing layer 335 and a protective layer or coating 330. At the base 305 The illuminating (or emitting) layer 325, as appropriate, may be applied to the second side of the substrate 305 along with any other protective layer or coating 330 before or after any deposition step on one side. In this embodiment of device 700, if one or more optically opaque second conductors 320 are used, light is primarily emitted or absorbed through substrate 305A of device 700 on the second side, and if one or more optical transmissions are used The second conductor 320 then emits or absorbs light on either side of the device 700.

各種裝置300、700、720、730、740、750、760、770具體實例可印刷為基於LED之照明之可撓性薄板或其他照明器具,例如,其可經捲曲、摺疊、扭曲、盤旋、修平、纏結、皺折及以其他方式成型為任何種類之各種形式及設計中之任一者,包括例如(但不限於)建築形狀、其他藝術或想像設計之摺疊及皺折折紙手工形狀、愛迪生(Edison)燈泡形狀、螢光燈泡形狀、枝形吊燈形狀,其中一種該皺折及摺疊之愛迪生燈泡形狀在圖100中說明為系統800、810。各種裝置300、700具體實例亦可以各種方式組合(諸如背對背)以使光自所得器件之兩側發射或吸收。舉例而言(但不加以限制),兩個裝置300可在各別基板305之第二面上背對背組合以形成裝置300C具體實例,或裝置300可印刷於基板305之兩側上以形成裝置300D具體實例,裝置300C具體實例與裝置300D具體實例分別在圖87及88中以橫截面說明。亦舉例而言(但不加以限制),未作單獨說明,兩個裝置700亦可背對背組合於非基板305(第一面)上,亦自所得器件之兩側發光。 Specific examples of various devices 300, 700, 720, 730, 740, 750, 760, 770 can be printed as flexible sheets or other lighting fixtures based on LED illumination, for example, which can be crimped, folded, twisted, hovered, flattened , entangled, creased, and otherwise shaped into any of a variety of forms and designs, including, for example, but not limited to, architectural shapes, other art or imaginative designs of folded and creased origami hand shapes, Edison (Edison) bulb shape, fluorescent bulb shape, chandelier shape, one of the wrinkled and folded Edison bulb shapes is illustrated in FIG. 100 as systems 800, 810. The various embodiments 300, 700 embodiments can also be combined in various ways (such as back-to-back) to cause light to be emitted or absorbed from both sides of the resulting device. By way of example and not limitation, two devices 300 can be combined back-to-back on a second side of respective substrate 305 to form a device 300C embodiment, or device 300 can be printed on both sides of substrate 305 to form device 300D For a specific example, a specific example of the device 300C and a specific example of the device 300D are illustrated in cross section in FIGS. 87 and 88, respectively. Also by way of example and not limitation, the two devices 700 may be combined back-to-back on the non-substrate 305 (first side) and also from both sides of the resulting device.

參考圖91-92,在裝置720中,在基底305上第一面上沉積一或多層第一導體310,繼而沉積碳接點322A以耦接至導體310,繼而沉積複數個二極體100-100K(使第二端子127耦接至導體310)、介電層315、亦沉積一或多層第二導體320(一般為耦接至第一端子之透明導體),繼而沉積碳接點322B以耦接至導體320,視情況繼而沉積穩定化層335、發光(或發射)層325及保護層或塗層330。在此裝置300具體實例中,光主要穿過裝置720之頂部第一面發射或吸收,且若使用光學透射性基底305及第一導體310,則光自裝置720之兩側發射或吸收或發射或吸收至裝置720之兩側(尤其若用AC電壓通電)。 Referring to Figures 91-92, in device 720, one or more layers of first conductor 310 are deposited on a first side of substrate 305, followed by deposition of carbon contacts 322A to couple to conductor 310, followed by deposition of a plurality of diodes 100- 100K (couples the second terminal 127 to the conductor 310), the dielectric layer 315, and one or more layers of the second conductor 320 (generally a transparent conductor coupled to the first terminal), and then deposits the carbon junction 322B to couple Connected to conductor 320, a stabilizing layer 335, a light emitting (or emitting) layer 325, and a protective layer or coating 330 are optionally deposited. In this embodiment of device 300, light is primarily emitted or absorbed through the top first side of device 720, and if optically transmissive substrate 305 and first conductor 310 are used, light is emitted or absorbed or emitted from both sides of device 720. Or absorbed to both sides of the device 720 (especially if energized with an AC voltage).

參考圖93-94,在裝置730中,在光學透射性基底305A上第一面上沉積一或多層實質上光學透射性第一導體310,繼而沉積碳接點322A以耦接至導體310,繼而沉積複數個二極體100-100K(使第二端子127耦接至導體310)連同複數個惰性粒子292、介電層315、亦沉積一或多層第二導體320(亦一般為耦接至第一端子之透明導體),繼而沉積碳接點322B以耦接至導體320,視情況繼而沉積穩定化層335、第一發光(或發射)層325及保護層或塗層330,繼而在基底305A之第二面上沉積第二發光(或發射)層325及保護層或塗層330。在此裝置730具體實例中,光穿過裝置730之頂部第一面及底部第二面兩者發射或吸收。另外,使用第二發光(或發射)層325亦可使穿過第二面發射之光的波長移位(除使穿過第一面所發射之光之光譜移位的 第一發光(或發射)層325之外)。 Referring to Figures 93-94, in device 730, one or more layers of substantially optically transmissive first conductor 310 are deposited on a first side of optically transmissive substrate 305A, followed by deposition of carbon contacts 322A to couple to conductor 310, and then Depositing a plurality of diodes 100-100K (couples the second terminal 127 to the conductor 310) together with a plurality of inert particles 292, a dielectric layer 315, and one or more layers of a second conductor 320 (also generally coupled to the first a terminal transparent conductor), followed by deposition of carbon contacts 322B to couple to conductor 320, optionally depositing a stabilizing layer 335, a first luminescent (or emitting) layer 325, and a protective layer or coating 330, followed by substrate 305A A second luminescent (or emitting) layer 325 and a protective layer or coating 330 are deposited on the second side. In this embodiment of device 730, light is transmitted or absorbed through both the top first side and the bottom second side of device 730. Additionally, the use of the second illuminating (or emitting) layer 325 can also shift the wavelength of light emitted through the second side (except for shifting the spectrum of light emitted through the first side) The first luminescent (or emitting) layer 325 is external).

參考圖95-96,在裝置740中,於具光學透射性且亦在本文中稱作基底305A之基底305之第一面上沉積複數個二極體100L,繼而沉積一或多層第一導體310(使導體310耦接至第二端子127),繼而沉積碳接點322A以耦接至導體310,沉積介電層315,亦沉積一或多層第二導體320(耦接至第一端子),繼而沉積碳接點322B以耦接至導體320,且視情況繼而沉積穩定化層335及保護層或塗層330。在基底305之第一面上進行任何沉積步驟之前或之後,視情況存在之發光(或發射)層325可連同任何其他保護層或塗層330一起塗覆至基底305之第二面。在此裝置740具體實例中,光主要在第二面上穿過裝置740之基底305A發射或吸收(亦經第一發光(或發射)層325發生任何波長移位),且若使用一或多個光學透射性第二導體320,則光在裝置740之兩側上發射或吸收。 Referring to Figures 95-96, in device 740, a plurality of diodes 100L are deposited on a first side of substrate 305 that is optically transmissive and also referred to herein as substrate 305A, followed by deposition of one or more layers of first conductor 310. (conducting the conductor 310 to the second terminal 127), then depositing the carbon contact 322A to be coupled to the conductor 310, depositing the dielectric layer 315, and depositing one or more layers of the second conductor 320 (coupled to the first terminal), Carbon junction 322B is then deposited to couple to conductor 320 and, optionally, a stabilizing layer 335 and a protective layer or coating 330 are deposited. The luminescent (or emissive) layer 325, as appropriate, may be applied to the second side of the substrate 305 along with any other protective layer or coating 330 before or after any deposition step on the first side of the substrate 305. In this embodiment of device 740, light is primarily emitted or absorbed through substrate 305A of device 740 on the second side (and any wavelength shift occurs via first illumination (or emission) layer 325), and if one or more are used The optically transmissive second conductor 320 emits or absorbs light on both sides of the device 740.

參考圖97-98,在裝置750中,於具光學透射性且亦在本文中稱作基底305A之基底305之第一面上沉積複數個二極體100L,繼而沉積一或多層第一導體310(使導體310耦接至第二端子127),繼而沉積碳接點322A以耦接至導體310,沉積介電層315,亦沉積一或多層實質上光學透射性第二導體320(耦接至第一端子),繼而沉積碳接點322B以耦接至導體320,且視情況繼而沉積穩定化層335、視情況存在之第一發光(或發射)層325及保護層或塗層330。在基底305之第一面上進行任何沉積步驟之前或之後,視情 況存在之第二發光(或發射)層325可連同任何其他保護層或塗層330一起塗覆至基底305A之第二面。在此裝置750具體實例中,光穿過裝置750之頂部第一面及底部第二面兩者發射或吸收,亦經第一及第二發光(或發射)層325發生任何波長移位。 Referring to FIGS. 97-98, in device 750, a plurality of diodes 100L are deposited on a first side of substrate 305 that is optically transmissive and also referred to herein as substrate 305A, followed by deposition of one or more layers of first conductor 310. (coupling conductor 310 to second terminal 127), then depositing carbon junction 322A to couple to conductor 310, depositing dielectric layer 315, and depositing one or more layers of substantially optically transmissive second conductor 320 (coupled to The first terminal), in turn, deposits carbon junction 322B to couple to conductor 320, and optionally deposits a stabilizing layer 335, optionally a first luminescent (or emitting) layer 325, and a protective layer or coating 330. Before or after any deposition step on the first side of the substrate 305, as appropriate The second luminescent (or emitting) layer 325 can be applied to the second side of the substrate 305A along with any other protective layer or coating 330. In this embodiment of device 750, light is transmitted or absorbed through both the top first side and the bottom second side of device 750, and any wavelength shift occurs through first and second light emitting (or emitting) layers 325.

下文將參考圖100-103更詳細描述裝置760及770,且其與其他所說明之裝置的不同之處在於使用亦通常沉積為一或多層之第三導體312。另外,亦說明裝置770使用下文更詳細論述之障壁層318。 Devices 760 and 770 are described in more detail below with respect to Figures 100-103 and differ from other illustrated devices in that a third conductor 312, also typically deposited as one or more layers, is used. Additionally, device 770 is also illustrated as using barrier layer 318 discussed in greater detail below.

如上所述,裝置300、700、720、730、740、750、760、770藉由以下步驟形成:在基底305上(即對於裝置300、720、730、750而言)沉積(例如印刷)複數層,在基底305上沉積一或多個第一導體310,呈導體310層狀物或複數個導體310形式,繼而在二極體100-100L處於液體或膠體懸浮液中時沉積二極體100-100L(達約18微米至20微米或20微米以上之濕膜厚度)(亦即二極體墨水),且蒸發或以其他方式分散懸浮液之液體/膠體部分,而對於裝置700,740,750而言,在光學透射性基底305A之第一面上在二極體100-100L處於液體或膠體懸浮液中時沉積二極體100-100L(達約18微米至20微米或20微米以上之濕膜厚度)(亦即二極體墨水)且蒸發或以其他方式分散懸浮液之液體/膠體部分,繼而沉積一或多個第一導體310。 As described above, the apparatus 300, 700, 720, 730, 740, 750, 760, 770 is formed by depositing (eg, printing) a plurality of on the substrate 305 (ie, for the devices 300, 720, 730, 750). a layer, one or more first conductors 310 deposited on the substrate 305, in the form of a conductor 310 layer or a plurality of conductors 310, which in turn deposits the diode 100 when the diode 100-100L is in a liquid or colloidal suspension -100L (a wet film thickness of about 18 microns to 20 microns or more) (i.e., a diode ink), and evaporating or otherwise dispersing the liquid/colloidal portion of the suspension, while for devices 700, 740, In 750, a diode 100-100L is deposited on the first side of the optically transmissive substrate 305A when the diode 100-100L is in a liquid or colloidal suspension (up to about 18 microns to 20 microns or more). Wet film thickness) (i.e., diode ink) and evaporates or otherwise disperses the liquid/colloid portion of the suspension, which in turn deposits one or more first conductors 310.

隨著二極體100-100L液體或膠體懸浮液乾燥或固化,二極體墨水之組分(尤其如上所述之黏度調節劑或黏著黏 度調節劑)圍繞二極體100-100L形成比較薄之膜、塗層、網格或網孔,其有助於將二極體100-100L固持於基底305或第一導體310上的適當位置上,其在圖89及90中說明為膜295,厚度通常大致為約50nm至約300nm(當完全固化或乾燥時),視所使用之黏度調節劑的濃度而定,諸如對於較低黏度調節劑濃度而言,厚度為約50至100nm,而對於較高黏度調節劑濃度而言,厚度為約200至300nm。所沉積之膜295可連續地圍繞二極體100-100L,如圖89中所說明,或可為間斷的,留有間隙且僅部分圍繞二極體100-100L,如圖90中所說明。雖然端子125、127通常塗佈有二極體墨水膜295,但端子125、127一般存在足夠之表面粗糙度以使膜295不干擾與第一及第二導體310、320形成電連接。膜295通常包含固化或乾燥形式之黏度調節劑,且可能亦包含少量或痕量之各種溶劑,諸如第一或第二溶劑,如下文參考固化或乾燥之二極體墨水具體實例所提及。亦如下文所更詳細論述,黏度調節劑亦可用於形成下文參考圖103所論述之障壁層318。 As the diode 100-100L liquid or colloidal suspension dries or solidifies, the components of the diode ink (especially the viscosity modifier or adhesive as described above) a degree adjusting agent) forms a relatively thin film, coating, mesh or mesh around the diode 100-100L, which helps hold the diode 100-100L in place on the substrate 305 or the first conductor 310 Above, which is illustrated in Figures 89 and 90 as film 295, typically has a thickness of from about 50 nm to about 300 nm (when fully cured or dried), depending on the concentration of viscosity modifier used, such as for lower viscosity adjustments. The thickness is about 50 to 100 nm for the concentration of the agent, and about 200 to 300 nm for the higher viscosity modifier concentration. The deposited film 295 can continuously surround the diode 100-100L, as illustrated in FIG. 89, or can be intermittent, leaving a gap and only partially surrounding the diode 100-100L, as illustrated in FIG. Although the terminals 125, 127 are typically coated with a diode ink film 295, the terminals 125, 127 generally have sufficient surface roughness such that the film 295 does not interfere with electrical connection with the first and second conductors 310, 320. Film 295 typically comprises a viscosity modifier in a cured or dried form, and may also contain minor or trace amounts of various solvents, such as a first or second solvent, as mentioned below with reference to a specific example of a cured or dried diode ink. As also discussed in more detail below, the viscosity modifier can also be used to form the barrier layer 318 discussed below with reference to FIG.

對於裝置300,二極體100-100K物理且電耦接至一或多個第一導體310A,且對於裝置700,二極體100K物理耦接至基底305,隨後耦接至一或多個第一導體310,且在裝置300、700具體實例中,由於二極體100-100L在以任何定向懸浮於液體或膠體中時沉積,所以二極體100-100L可呈第一定向(第一端子125呈向上方向)、呈第二定向(第一端子125呈向下方向)或可能呈第三定向(第一端子125 橫向)。另外,由於二極體100-100L在懸浮於液體或膠體中時沉積,所以二極體100-100L在裝置300、700內一般相當不規則地間隔。另外,如上所述,在例示性具體實例中,二極體墨水可包括複數個化學惰性之通常具光學透射性的粒子,諸如玻璃珠粒,其尺寸範圍為約10微米至30微米,或更尤其為約12微米至28微米,或更尤其為約15微米至25微米。 For device 300, diodes 100-100K are physically and electrically coupled to one or more first conductors 310A, and for device 700, diode 100K is physically coupled to substrate 305 and subsequently coupled to one or more a conductor 310, and in the embodiment of the apparatus 300, 700, since the diode 100-100L is deposited while suspended in a liquid or colloid in any orientation, the diode 100-100L can assume a first orientation (first The terminal 125 is in an upward direction, in a second orientation (the first terminal 125 is in a downward direction) or may be in a third orientation (a first terminal 125) Horizontal). Additionally, since the diodes 100-100L are deposited while suspended in a liquid or gel, the diodes 100-100L are generally fairly irregularly spaced within the devices 300, 700. Additionally, as noted above, in an illustrative embodiment, the diode ink can include a plurality of chemically inert, generally optically transmissive particles, such as glass beads, ranging in size from about 10 microns to 30 microns, or more It is especially from about 12 microns to 28 microns, or more particularly from about 15 microns to 25 microns.

在第一向上定向或方向下,如圖83中所說明,第一端子125(二極體100-100J之形成凸塊或突出結構之金屬層120B或二極體100K之金屬層122)向上定向,且二極體100-100K經由第二端子127(其可為二極體100K之金屬層120B或如對於二極體100J所說明之背面金屬層122),或經由如對於二極體100D所說明之中心導孔131(在無二極體100J之視情況存在之背面金屬層122下具體化),或經由周邊導孔134(未作單獨說明),或經由如對於二極體100E所說明之基板105耦接至一或多個第一導體310A。在第二向下定向或方向下,如圖78及79中所說明,第一端子125向下定向,且二極體100-100K經由或可經由第一端子125(例如二極體100-100J之形成凸塊或突出結構之金屬層120B或二極體100K之金屬層122)耦接至一或多個第一導體310A。 In the first upward orientation or direction, as illustrated in FIG. 83, the first terminal 125 (the metal layer 120B forming the bump or protruding structure of the diode 100-100J or the metal layer 122 of the diode 100K) is oriented upward And the diode 100-100K is via the second terminal 127 (which may be the metal layer 120B of the diode 100K or the back metal layer 122 as illustrated for the diode 100J) or via, for example, for the diode 100D The central guide hole 131 is illustrated (concrete under the back metal layer 122 in the absence of the diode 100J), or via the peripheral via 134 (not separately illustrated), or as illustrated by the diode 100E The substrate 105 is coupled to the one or more first conductors 310A. In a second downward orientation or direction, as illustrated in Figures 78 and 79, the first terminal 125 is oriented downward and the diode 100-100K is via or via the first terminal 125 (e.g., diode 100-100J) The metal layer 120B forming the bump or protruding structure or the metal layer 122 of the diode 100K is coupled to the one or more first conductors 310A.

對於二極體100L,二極體100L可以圖81及82中所說明之第一向上定向或方向定向,其中第一及第二端子125、127向上定向,且未單獨說明,二極體100L可以第二向下 定向或方向定向,其中第一及第二端子125、127向下定向。對於該向下定向,應注意,雖然第一端子125可與一或多個第一導體310電接觸,但第二端子127很可能處於介電層135內且將不與第二導體320接觸,使得二極體100L在具有第二定向時電隔離且無功能,此在許多具體實例中可能合乎需要。 For the diode 100L, the diode 100L can be oriented in a first upward orientation or direction as illustrated in FIGS. 81 and 82, wherein the first and second terminals 125, 127 are oriented upwardly and are not separately illustrated, and the diode 100L can Second downward Orientation or orientation, wherein the first and second terminals 125, 127 are oriented downward. For this downward orientation, it should be noted that although the first terminal 125 can be in electrical contact with the one or more first conductors 310, the second terminal 127 is likely to be within the dielectric layer 135 and will not be in contact with the second conductor 320, The diode 100L is electrically isolated and non-functional when having a second orientation, which may be desirable in many embodiments.

就二極體100-100L在懸浮於液體或膠體中時在其之間間距不確定下且以任何360度定向沉積而言,預先不能準確地以任何確定性知曉(例如最高品質製造之平均值之4σ-6σ無缺陷率範圍內)任何特定二極體100-100L將落在基板305A或一或多個第一導體310上之何處及呈何種定向。實際上,二極體100-100L彼此之間的間距及二極體100-100L之定向(第一向上或第二向下)存在統計分佈。可以很確定地說,在可能數百萬個沉積於基板305、305A薄板或一系列薄板上之二極體100-100L中,至少一個該種二極體100-100L將以第二定向豎立,因為其在分散及懸浮於液體或膠體中時沉積。 As far as the diode 100-100L is suspended in a liquid or colloid, the spacing between them is uncertain and deposited in any 360 degree orientation, it cannot be accurately known in advance with any certainty (for example, the average of the highest quality manufacturing) In the range of 4σ-6σ defect-free rate, where and how the orientation of any particular diode 100-100L will fall on substrate 305A or one or more first conductors 310. In fact, there is a statistical distribution of the spacing of the diodes 100-100L from each other and the orientation of the diodes 100-100L (first upward or second downward). It is quite certain that at least one of the diodes 100-100L, which may be deposited on the substrate 305, 305A or a series of thin plates, at least one of the diodes 100-100L will be erected in a second orientation, Because it deposits when dispersed and suspended in a liquid or colloid.

因此,二極體100-100L在裝置300、700、720、730、740、750、760、770中之分佈及定向可以統計學方式描述。舉例而言,雖然在沉積之前可能不能準確地知曉或不確定任何特定二極體100-100L將落於且適當固持於基板305A或一或多個第一導體310上之何處且呈何種定向,但平均一定數目之二極體100-100L將以每單位面積某一二極體100-100L濃度,例如(但不限於)每平方公分25個二極體 100-100L呈特定定向。 Thus, the distribution and orientation of the diodes 100-100L in the devices 300, 700, 720, 730, 740, 750, 760, 770 can be described statistically. For example, although it may not be possible to accurately know or determine where any particular diode 100-100L will fall and properly hold on substrate 305A or one or more first conductors 310 prior to deposition and what Orientation, but an average number of diodes 100-100L will be 100-100L per unit area of a diode, such as (but not limited to) 25 diodes per square centimeter 100-100L is in a specific orientation.

因此,二極體100-100L可被認為將或已以實際上隨機或偽隨機定向且以不規則間距沉積,且可以第一定向向上(第一端子125向上),該第一定向通常為二極體100-100J之正向偏壓電壓及二極體100K之反向偏壓之方向(視施加電壓之極性而定),或可以第二定向向下(第一端子125向下),該第二定向通常為二極體100-100J之反向偏壓電壓及二極體100K之正向偏壓之方向(亦視施加電壓之極性而定)。同樣對於二極體100L而言,其可以第一定向向上(第一及第二端子125、127向上),該第一定向通常為二極體100L之正向偏壓電壓之方向,或可以第二定向向下(第一及第二端子125、127向下),該第二定向通常為二極體100L之反向偏壓電壓之方向(亦視施加電壓之極性而定),儘管如上所述且如下文所更詳細描述,呈第二定向之二極體100L通常不完全電耦接且不發揮功能。二極體100-100L亦有可能以第三定向(二極體側面121向下而另一二極體側面121向上)橫向沉積或豎立。 Thus, the diodes 100-100L can be considered to have or have been deposited in a substantially random or pseudo-random orientation and at irregular intervals, and can be oriented first upward (first terminal 125 up), which is typically The direction of the forward bias voltage of the diode 100-100J and the reverse bias of the diode 100K (depending on the polarity of the applied voltage), or may be the second orientation downward (the first terminal 125 is downward) The second orientation is generally the reverse bias voltage of the diode 100-100J and the direction of the forward bias of the diode 100K (depending on the polarity of the applied voltage). Also for the diode 100L, it may be oriented first upward (the first and second terminals 125, 127 are upward), the first orientation being generally the direction of the forward bias voltage of the diode 100L, or The second orientation may be downward (the first and second terminals 125, 127 are downward), and the second orientation is generally the direction of the reverse bias voltage of the diode 100L (depending on the polarity of the applied voltage), although As described above and as described in more detail below, the diodes 100L in the second orientation are typically not fully electrically coupled and do not function. It is also possible for the diode 100-100L to be laterally deposited or erected in a third orientation (the diode side 121 is downward and the other diode side 121 is upward).

二極體墨水之流體動力學、黏度或流變學、網孔計數、網孔開口、網孔材料(網孔材料之表面能)、印刷速度、第一導體310之相間錯雜或梳狀結構之尖齒之定向(尖齒垂直於基底305通過印刷機移動之方向)、上面沉積有二極體100-100L之基底305或第一導體310之表面能、二極體100-100L之形狀及尺寸、所印刷或沉積之二極體100-100L密度、二極體側面121之形狀、尺寸及/或厚度,以及在二 極體墨水固化或乾燥之前二極體100-100L液體或膠體懸浮液之音波處理或其他機械振動似乎會影響一第一、第二或第三定向相較於另一第一、第二或第三定向之優勢。舉例而言,二極體側面121之高度(或垂直厚度,垂直係關於第一或第二定向)小於約10微米,且高度更尤其小於約8微米,以使得二極體100-100L具有比較薄之側面或側緣,顯著降低具有第三定向之二極體100-100L之百分比。 Fluid dynamics, viscosity or rheology of the diode ink, mesh count, mesh opening, mesh material (surface energy of the mesh material), printing speed, interphase mismatch or comb structure of the first conductor 310 Orientation of the tines (the teeth are perpendicular to the direction in which the substrate 305 is moved by the printer), the surface of the substrate 305 or the first conductor 310 on which the diode 100-100L is deposited, and the shape and size of the diode 100-100L. , the printed or deposited diode 100-100L density, the shape, size and/or thickness of the diode side 121, and Sonic processing or other mechanical vibration of a 100-100L liquid or colloidal suspension of a diode prior to curing or drying of the polar ink appears to affect a first, second or third orientation compared to another first, second or third The advantage of three orientations. For example, the height (or vertical thickness, perpendicular to the first or second orientation) of the diode side 121 is less than about 10 microns, and more particularly less than about 8 microns, such that the diodes 100-100L have a comparison. The thin side or side edges significantly reduce the percentage of diodes 100-100L having a third orientation.

同樣,流體動力學、較高黏度及較低篩孔計數以及上述其他因素對二極體100-100L之定向提供一定程度之控制,從而針對既定應用調諧或調節呈第一或第二定向之二極體100-100L之百分比。舉例而言,可調節上文列舉之因素以提高第一定向之出現率,使得多達80%至90%或90%以上之二極體100-100L呈第一定向。亦舉例而言,可調節上文所列舉之因素以平衡第一定向與第二定向之出現率,使得二極體100-100L之第一定向與第二定向大致或實質上平均分配,例如40%至60%之二極體100-100L呈第一定向且60%至40%之二極體100-100L呈第二定向。 Similarly, fluid dynamics, higher viscosity, and lower mesh counts, as well as other factors described above, provide some degree of control over the orientation of the diode 100-100L to tune or adjust for the first or second orientation for a given application. The percentage of polar bodies 100-100L. For example, the factors listed above can be adjusted to increase the incidence of the first orientation such that as much as 80% to 90% or more of the diodes 100-100L are in a first orientation. Also for example, the factors listed above may be adjusted to balance the occurrence of the first orientation and the second orientation such that the first orientation and the second orientation of the diodes 100-100L are substantially or substantially evenly distributed, For example, 40% to 60% of the diodes 100-100L are in a first orientation and 60% to 40% of the diodes 100-100L are in a second orientation.

應注意,即使顯著較高百分比之耦接至第一導體310A或基底305之二極體100-100L呈第一向上定向或方向,但在統計學上仍很有可能至少一或多個二極體100-100L將具有第二向下定向或方向,且在統計學上,二極體100-100L亦將展現不規則間距,其中一些二極體100-100J間距相對較近,而至少一些二極體100-100J間距遠得多。 It should be noted that even though a significantly higher percentage of the diodes 100-100L coupled to the first conductor 310A or the substrate 305 are in a first upward orientation or orientation, it is still statistically still possible to have at least one or more poles. The body 100-100L will have a second downward orientation or orientation, and statistically, the diode 100-100L will also exhibit an irregular spacing, with some of the diodes 100-100J being relatively close together, and at least some two The polar body 100-100J is much farther apart.

換言之,視施加電壓之極性而定,雖然顯著較高百分 比之二極體100-100L會或將會以第一正向偏壓定向或方向耦接,但在統計學上,至少一或多個二極體100-100L將具有第二反向偏壓定向或方向。若發光或光吸收區域140不同定向,則熟習此項技術者應瞭解亦視施加電壓之極性而定,第一定向應為反向偏壓定向,且第二定向應為正向偏壓定向。 In other words, depending on the polarity of the applied voltage, although significantly higher 100-100L will or will be coupled in a first forward bias direction or direction, but statistically, at least one or more diodes 100-100L will have a second reverse bias Orientation or direction. If the illuminating or light absorbing regions 140 are oriented differently, those skilled in the art will appreciate that depending on the polarity of the applied voltage, the first orientation should be reverse biased and the second orientation should be forward biased. .

舉例而言,不同於使用抓放機定位電組件(諸如二極體)以在所選容許度內表面黏著至電路板上之預定位置且呈預定定向的傳統電子學製造,在任何既定情況下,二極體100-100L在裝置300、700中不存在該等預定或確定之位置(在x-y平面中)及定向(z軸)(亦即,至少一個二極體100-100L於裝置300、700中將呈第二定向)。 For example, unlike conventional electronic electronics that use a pick and place machine to position an electrical component, such as a diode, to adhere to a predetermined location on the board within a selected tolerance and in a predetermined orientation, in any given situation. The diodes 100-100L do not have such predetermined or determined positions (in the xy plane) and orientations (z-axis) in the devices 300, 700 (ie, at least one diode 100-100L is in the device 300, Will be in the second orientation in 700).

此顯著不同於現有裝置結構,在現有裝置結構中,所有該等二極體(諸如LED)相對於電壓軌道具有單一定向,即所有二極體之相應陽極耦接至較高電壓且其陰極耦接至較低電壓。由於統計定向,視具有第一或第二定向之二極體100-100L之百分比而定且視各種二極體特徵(諸如對反向偏壓之容許度)而定,可使用AC或DC電壓或電流使二極體100-100L通電而不另外轉換電壓或電流。 This is significantly different from existing device structures in which all of the diodes (such as LEDs) have a single orientation with respect to the voltage track, ie the respective anodes of all the diodes are coupled to a higher voltage and their cathodes are coupled. Connect to a lower voltage. Due to the statistical orientation, depending on the percentage of the first or second oriented diode 100-100L and depending on various diode characteristics (such as tolerance to reverse bias), AC or DC voltage can be used. Or current causes the diode 100-100L to be energized without additionally converting voltage or current.

參考圖77及99,可使用複數個第一導體310,形成至少兩個各別電極結構,其說明為第一(第一)導體電極或接點310A以及第二(第一)導體電極或接點310B之相間錯雜或梳狀電極結構。如圖77中所說明,導體310A與310B具有相同寬度,且在圖76及78中,其說明為具有不同寬 度,其中所有該等變化皆處於本發明範疇內。對於例示性裝置300具體實例,二極體墨水或懸浮液(具有二極體100-100K)沉積於導體310A上。第二透明導體320(具光學透射性,如下文所論述)隨後沉積(於介電層上,如下文所論述)以與導體310B形成單獨電接觸,如圖78中所說明。儘管未作單獨說明,但作為可選方案,例示性裝置700具體實例亦可具有此等310A、310B電連接:在二極體墨水或懸浮液(具有二極體100L)沉積於基底305A上之後,可沉積一或多個導體310A及310B(呈相間錯雜或梳狀結構),繼而在導體310A上沉積介電層315。無需具光學透射性之第二導體320隨後沉積(於介電層315上,如下文所論述),且亦可具有相間錯雜或梳狀結構,以與導體310B形成單獨電接觸,如圖78中對於裝置300所說明。如圖80-82對於裝置700所說明,為說明另一結構替代方案,第二端子127耦接至一或多個第一導體310且第一端子125耦接至一或多個第二導體320。圖81及91-98亦說明另一適用於裝置300、700、720、730、740、750、760、770具體實例中之任一者的結構可選方案,其中碳電極322A及322B分別耦接至第一導體310與第二導體320且延伸至保護塗層330以外,以為裝置300、700提供電連接或耦接。 Referring to Figures 77 and 99, a plurality of first conductors 310 can be used to form at least two respective electrode structures, which are illustrated as first (first) conductor electrodes or contacts 310A and second (first) conductor electrodes or The phase-to-phase miscellaneous or comb electrode structure of point 310B. As illustrated in Figure 77, conductors 310A and 310B have the same width, and in Figures 76 and 78, are illustrated as having different widths. Degrees, all of which are within the scope of the invention. For the exemplary device 300 embodiment, a diode ink or suspension (having a diode 100-100K) is deposited on conductor 310A. A second transparent conductor 320 (having optical transmission, as discussed below) is then deposited (on the dielectric layer, as discussed below) to form a separate electrical contact with conductor 310B, as illustrated in FIG. Although not separately illustrated, as an alternative, the exemplary device 700 embodiment may have such 310A, 310B electrical connections: after the diode ink or suspension (having the diode 100L) is deposited on the substrate 305A One or more conductors 310A and 310B (in the form of interphase mismatch or comb structures) may be deposited, followed by deposition of a dielectric layer 315 on conductor 310A. The second conductor 320, which does not require optical transmission, is subsequently deposited (on the dielectric layer 315, as discussed below) and may also have interphase mismatch or comb structures to form separate electrical contacts with the conductor 310B, as in FIG. As explained for device 300. As illustrated in FIG. 80-82 for device 700, to illustrate another structural alternative, second terminal 127 is coupled to one or more first conductors 310 and first terminal 125 is coupled to one or more second conductors 320. . Figures 81 and 91-98 also illustrate another structural alternative suitable for use in any of the embodiments 300, 700, 720, 730, 740, 750, 760, 770, wherein the carbon electrodes 322A and 322B are coupled, respectively. To the first conductor 310 and the second conductor 320 and extending beyond the protective coating 330 to provide electrical connection or coupling for the devices 300, 700.

應注意,當第一導體310具有圖77中所說明之相間錯雜或梳狀結構時,可使用第一導體310B使第二導體320通電。第一導體之相間錯雜或梳狀結構提供電流平衡,以使得通過第一導體310A、二極體100-100L、第二導體320及 第一導體310B之每個電流路徑實質上處於預定範圍內。此用以使電流須穿過第二透明導體之距離減至最小,從而降低電阻及熱生成,且一般同時且在預定電流位準範圍內向所有或大部分二極體100-100L提供電流。 It should be noted that when the first conductor 310 has the phase-to-phase miscellaneous or comb-like structure illustrated in FIG. 77, the second conductor 320 can be energized using the first conductor 310B. The interphase mismatch or comb structure of the first conductor provides current balance such that the first conductor 310A, the diode 100-100L, the second conductor 320, and Each current path of the first conductor 310B is substantially within a predetermined range. This is used to minimize the distance that current must pass through the second transparent conductor, thereby reducing resistance and heat generation, and generally providing current to all or most of the diodes 100-100L simultaneously and within a predetermined current level.

另外,第一導體310之多個相間錯雜或梳狀結構亦可串聯耦接,諸如以產生具有所需多個二極體100-100J正向電壓之總器件電壓,諸如(但不限於)高達典型家用電壓。舉例而言,如圖99中所說明,對於第一區域711(其中二極體100-100L並聯耦接),導體310B可耦接至第二區域712(其二極體100-100L亦並聯耦接)之導體310A或與第二區域712之導體310A沉積成整體層,且對於第二區域712(其中二極體100-100L並聯耦接),導體310B可耦接至第三區域713(其二極體100-100L亦並聯耦接)之導體310A或與第三區域713之導體310A沉積成整體層,諸如此類,以使第一、第二及第三區域(711、712、713)串聯耦接,其中每一該種區域所具有之二極體100-100L並聯耦接。此串聯連接亦可用於圖100-103中所說明之系統800、810及裝置760、770具體實例。 In addition, a plurality of interphase miscellaneous or comb structures of the first conductor 310 may also be coupled in series, such as to generate a total device voltage having a desired forward voltage of a plurality of diodes 100-100J, such as, but not limited to, up to Typical household voltage. For example, as illustrated in FIG. 99, for the first region 711 (where the diodes 100-100L are coupled in parallel), the conductor 310B can be coupled to the second region 712 (the diodes 100-100L are also coupled in parallel). The conductor 310A or the conductor 310A of the second region 712 is deposited as an integral layer, and for the second region 712 (where the diodes 100-100L are coupled in parallel), the conductor 310B can be coupled to the third region 713 (which The conductor 310A of the diode 100-100L is also coupled in parallel or deposited integrally with the conductor 310A of the third region 713, and the like, such that the first, second and third regions (711, 712, 713) are coupled in series. The diodes 100-100L of each of the regions are coupled in parallel. This series connection can also be used with the specific examples of systems 800, 810 and devices 760, 770 illustrated in Figures 100-103.

亦如圖99中所說明,可藉由對耦接至所有各別尖齒(310A、310B)之匯流排714施加電壓位準來使任何相間錯雜或梳狀電極結構通電。匯流排714通常經訂定尺寸以具有比較低之薄層電阻或阻抗。 As also illustrated in FIG. 99, any phase miscellaneous or comb electrode structure can be energized by applying a voltage level to bus bar 714 coupled to all of the respective tines (310A, 310B). Bus bar 714 is typically sized to have a relatively low sheet resistance or impedance.

對於相對較小區域或對於其他應用(諸如繪圖術(graphical art)),不需要該等電流平衡及阻抗匹配(薄層電 阻匹配)結構,且可使用較簡單之第一及第二導體310、320結構,諸如圖91-98、102、103中所說明之層狀結構。舉例而言,當第一導體與第二導體310、320之薄層電阻佔第一及第二導體310、320連同二極體100-100L之總電阻之比例比較或相對小時,可使用該等層狀結構。亦如圖102及103中所說明,亦可使用第三導電層312,諸如以沿比較長之裝置300、700、720、730、740、750、760、770條狀物提供並聯匯流排連接。 For relatively small areas or for other applications (such as graphic art), such current balancing and impedance matching are not required (thin layer The structure is matched, and the simpler first and second conductors 310, 320 structures, such as the layered structures illustrated in Figures 91-98, 102, 103, can be used. For example, when the ratio of the sheet resistance of the first conductor and the second conductor 310, 320 to the total resistance of the first and second conductors 310, 320 together with the diodes 100-100L is relatively small or relatively small, such use may be used. Layered structure. As also illustrated in Figures 102 and 103, a third conductive layer 312 can also be used, such as to provide parallel busbar connections along relatively long devices 300, 700, 720, 730, 740, 750, 760, 770 strips.

接著將一或多個介電層315以留下暴露之第一端子125(呈第一定向時)或二極體100-100K之第二面(背面)(或二極體100L之GaN異質結構)(呈第二定向時)或兩者的方式,以足以在一或多個第一導體310(耦接至二極體100-100L)與沉積於一或多個介電層315上且與第一端子125或二極體100-100K之第二面(背面)(視定向而定)形成相應物理及電接觸的一或多個第二導體320之間提供電絕緣的量沉積於二極體100-100L上。對於裝置300,可接著沉積視情況存在之發光(或發射)層325,繼而沉積視情況存在之穩定化層335及/或任何透鏡化、分散或密封層330。舉例而言,該視情況存在之發光(或發射)層325可包含斯托克斯移位磷光體(stokes shifting phosphor)層以產生發射所需色彩或其他所選波長範圍或光譜之燈或其他裝置。此等各個層、導體及其他所沉積之化合物在下文中更詳細論述。對於裝置700,透鏡化、分散或密封層330一般在第一面上沉積於一或多個第二導體320上,且視情況 存在之發光(或發射)層325接著可在第二面上沉積於基板305上,繼而沉積視情況存在之穩定化層335及/或任何透鏡化、分散或密封層330。視第一及第二導體310、320之位置而定,可在沉積相應第一及第二導體之後或在任何透鏡化、分散或密封層330沉積之後塗覆碳電極322A、322B。此等各個層、導體及其他所沉積之化合物在下文中更詳細論述。 Next, one or more dielectric layers 315 are left to leave the exposed first terminal 125 (in the first orientation) or the second side (back) of the diode 100-100K (or the GaN heterostructure of the diode 100L) Structure (in the second orientation) or both to be sufficient for one or more first conductors 310 (coupled to the diodes 100-100L) and deposited on the one or more dielectric layers 315 The amount of electrical insulation provided between the first terminal 125 or the second side (back side) of the diode 100-100K (depending on the orientation) to form a corresponding physical and electrical contact between the one or more second conductors 320 is deposited on the second Polar body 100-100L. For device 300, a luminescent (or emitting) layer 325, optionally present, may be deposited, followed by deposition of stabilizing layer 335 and/or any lensing, dispersing or sealing layer 330 as appropriate. For example, the optionally present illuminating (or emitting) layer 325 can include a stokes shifting phosphor layer to produce a lamp or other that emits a desired color or other selected wavelength range or spectrum. Device. These various layers, conductors, and other deposited compounds are discussed in more detail below. For device 700, lensing, dispersing or sealing layer 330 is typically deposited on one or more second conductors 320 on a first side, and as appropriate The illuminating (or emitting) layer 325 present may then be deposited on the substrate 305 on the second side, followed by deposition of the stabilizing layer 335 and/or any lensing, dispersing or sealing layer 330 as appropriate. Depending on the location of the first and second conductors 310, 320, the carbon electrodes 322A, 322B may be applied after deposition of the respective first and second conductors or after deposition of any lensing, dispersing or sealing layer 330. These various layers, conductors, and other deposited compounds are discussed in more detail below.

基底305可由任何適合材料形成或包含任何適合材料,諸如(但不限於)塑膠、紙、紙板或塗料紙或紙板。基底305可包含任何可撓性材料,其具有可經受預期使用條件之強度。在一例示性具體實例中,基底305、305A包含實質上光學透射性聚酯或塑膠薄板,諸如經處理以達成印刷可接受性且可自Denver,Colorado,USA之MacDermid公司之MacDermid Autotype公司購得之CT-5或CT-75或7密耳聚酯(Mylar)薄板,或例如Coveme酸處理之Mylar。在另一例示性具體實例中,基底305包含例如聚醯亞胺膜,諸如可自Wilmington Delaware,USA之DuPont公司購得之Kapton。亦在一例示性具體實例中,基底305包含介電常數能夠或適用於針對所選擇之激發電壓提供足夠電絕緣的材料。基底305可包含例如以下任一或多者:紙、塗料紙、塑膠塗佈紙、纖維紙、紙板、廣告紙、廣告板、書、雜誌、報紙、木板、膠合板及其他呈任何所選形式之基於紙或木材之產品;呈任何所選形式之塑膠或聚合物材料(薄板、膜、板等);呈任何所選形式之天然及合成橡膠材料及產 品;呈任何所選形式之天然及合成織物,包括聚合不織布(梳織、熔噴及紡結不織布);擠出聚烯烴膜,包括LDPE膜;呈任何所選形式之玻璃、陶瓷及其他源自矽或二氧化矽之材料及產品;混凝土(固化)、石料及其他建築材料及產品;或當前現有或將來產生之任何其他產品。在第一例示性具體實例中,可選擇如下基底305、305A,其提供一定程度之電絕緣(亦即,具有足以使沉積或塗覆於基底305之第一面(前面)上之一或多個第一導體310電絕緣(彼此電絕緣或與其他裝置或系統組件電絕緣)的介電常數或絕緣特性)。舉例而言,雖然玻璃薄板或矽晶圓為比較昂貴之選擇,但其亦可用作基底305。然而,在其他例示性具體實例中,使用塑膠薄板或塗有塑膠之紙產品來形成基底305,諸如上述聚酯或可自Sappi有限公司獲得之專利紙料及100lb.覆蓋紙料,或自其他紙製造商(諸如Mitsubishi Paper Mills、Mead)獲得之類似塗料紙,及其他紙產品。在另一例示性具體實例中,使用亦可自Sappi有限公司獲得之具有複數個凹槽之軋花塑膠薄板或塗有塑膠之紙產品,其中該等凹槽用於形成導體310。在其他例示性具體實例中,可使用任何類型之基底305,包括(不限於)具有其他密封或囊封層(諸如塑膠、漆及乙烯樹脂)沉積至基底305之一或多個表面的基底。基底305、305A亦可包含上述任何材料之層壓物或其他黏結物。 Substrate 305 can be formed from any suitable material or include any suitable material such as, but not limited to, plastic, paper, cardboard, or coated paper or paperboard. Substrate 305 can comprise any flexible material that has strength that can withstand the intended conditions of use. In an exemplary embodiment, the substrate 305, 305A comprises a substantially optically transmissive polyester or plastic sheet, such as MacDermid Autotype, which is processed to achieve print acceptability and is available from MacDermid Corporation of Denver, Colorado, USA. A CT-5 or CT-75 or 7 mil polyester (Mylar) sheet, or Mylar such as Coveme acid treated. In another exemplary embodiment, substrate 305 comprises, for example, a polyimide film such as Kapton available from DuPont, Inc. of Wilmington Delaware, USA. Also in an exemplary embodiment, substrate 305 includes a material that can or is adapted to provide sufficient electrical insulation for the selected excitation voltage. Substrate 305 can comprise, for example, any one or more of the following: paper, coated paper, plastic coated paper, fiber paper, cardboard, advertising paper, advertising board, book, magazine, newspaper, wood board, plywood, and the like in any selected form. Paper or wood based products; plastic or polymeric materials (sheets, films, sheets, etc.) in any selected form; natural and synthetic rubber materials and in any chosen form Natural and synthetic fabrics in any chosen form, including polymeric nonwovens (woven, meltblown and spunbonded); extruded polyolefin films, including LDPE films; glass, ceramics and other sources in any chosen form Materials and products of bismuth or cerium oxide; concrete (curing), stone and other building materials and products; or any other products currently in existence or in the future. In a first exemplary embodiment, a substrate 305, 305A can be selected that provides a degree of electrical insulation (i.e., has one or more of sufficient deposition or coating on the first side (front) of the substrate 305 The first conductors 310 are electrically insulated (dielectric constant or insulating properties that are electrically insulated from each other or electrically isolated from other devices or system components). For example, although glass sheets or tantalum wafers are a relatively expensive option, they can also be used as substrate 305. However, in other exemplary embodiments, a plastic sheet or a plastic coated paper product is used to form the substrate 305, such as the polyester described above or a patented paper stock available from Sappi Co., Ltd. and 100 lb. of cover stock, or from other papers. Similar coated papers obtained by manufacturers (such as Mitsubishi Paper Mills, Mead), and other paper products. In another exemplary embodiment, a embossed plastic sheet or a plastic coated paper product having a plurality of grooves, also available from Sappi Co., Ltd., is used, wherein the grooves are used to form the conductor 310. In other exemplary embodiments, any type of substrate 305 can be used including, without limitation, a substrate having other sealing or encapsulating layers (such as plastic, lacquer, and vinyl) deposited onto one or more surfaces of substrate 305. Substrate 305, 305A may also comprise a laminate or other adhesive of any of the above materials.

在一例示性具體實例中,展佈於基板305、305A上之二極體100-100L之比較小之尺寸提供比較快速之熱耗散而 無需散熱片,且使廣泛材料適用作基底305、305A,包括驟燃溫度相對較低之材料。此等溫度可包括例如(但不限於)50℃或50℃以上,或75℃或75℃以上,或100℃,或125℃或150℃,或200℃,或300℃,且可使用例如(但不限於)ISO 871:2006標準量測。裝置300、700之操作溫度亦一般相對較低,例如,其平均操作溫度低於約150℃,或低於約125℃,或低於約100℃或低於約75℃,或低於約50℃。該平均操作溫度一般應在例如(但不加以限制)裝置300、700已開啟且升溫,諸如提供其最大光輸出至少約10分鐘之後測定,且可使用市售之紅外溫度計在典型環境條件(諸如約20℃至30℃之環境溫度)下,在裝置300、700之最外層表面量測操作溫度增量(且計算算術平均值)。 In an exemplary embodiment, the relatively small size of the diodes 100-100L spread over the substrates 305, 305A provides relatively rapid heat dissipation. A heat sink is not required, and a wide variety of materials are suitable for use as the substrate 305, 305A, including materials having a relatively low quenching temperature. Such temperatures may include, for example, but are not limited to, 50 ° C or 50 ° C or higher, or 75 ° C or 75 ° C or higher, or 100 ° C, or 125 ° C or 150 ° C, or 200 ° C, or 300 ° C, and may be used, for example ( But not limited to) ISO 871:2006 standard measurement. The operating temperatures of the devices 300, 700 are also generally relatively low, for example, having an average operating temperature of less than about 150 ° C, or less than about 125 ° C, or less than about 100 ° C or less than about 75 ° C, or less than about 50. °C. The average operating temperature should generally be determined, for example, but not limited to, that the device 300, 700 has been turned on and warmed up, such as providing its maximum light output for at least about 10 minutes, and commercially available infrared thermometers can be used under typical environmental conditions (such as The operating temperature increment (and the arithmetic mean) is measured at the outermost surface of the apparatus 300, 700 at an ambient temperature of about 20 ° C to 30 ° C.

如各個圖中所說明之例示性基底305、305A具有總體而言實質上平坦之形態因數,諸如包含例如(但不限於)可饋送穿過印刷機之由所選材料(例如紙或塑膠)形成之薄板,且其可在第一表面(或側面)上具有包括表面粗糙度、凹穴、通道或凹槽之型態或具有在預定容許度內實質上平滑之第一表面(而不包括凹穴、通道或凹槽)之型態。熟習此項技術者應瞭解,諸多其他形狀及表面型態可用,其視作等效且處於本發明範疇內。 The exemplary substrates 305, 305A as illustrated in the various figures have a form factor that is generally substantially flat, such as comprising, for example, but not limited to, a selected material (eg, paper or plastic) that can be fed through the printer. a sheet, and which may have a shape including a surface roughness, a pocket, a channel or a groove on the first surface (or side) or a first surface that is substantially smooth within a predetermined tolerance (excluding the concave The type of hole, channel or groove. Those skilled in the art will appreciate that a variety of other shapes and surface types are available which are considered equivalent and within the scope of the present invention.

對於裝置300、720、730具體實例,接著諸如經由印刷製程將一或多個第一導體310塗覆或沉積(於基底305之第一面或表面上),或塗覆於裝置700、740、750具體實例之二極體100L上達一定厚度,視導電墨水或聚合物之類 型而定,諸如達約0.1至15微米(例如對於典型銀墨水或奈米粒子銀墨水而言,約10微米至12微米濕膜厚度,乾燥或固化膜厚度為約0.2微米或0.3微米至1.0微米)。在其他例示性具體實例中,視所塗覆之厚度而定,第一導體310亦可經砂磨以使表面平滑且亦可經壓延以壓縮導電粒子(諸如銀)。在製造例示性裝置300、700、720、730、740、750、760、770之例示性方法中,諸如經由印刷或其他沉積製程將導電墨水、聚合物或其他導電液體或膠體(諸如銀(Ag)墨水或聚合物、奈米粒子或奈米纖維銀墨水組成物、碳奈米管墨水或聚合物,或銀/碳混合物,諸如分散於銀墨水中之非晶形奈米碳(其粒徑為約75nm至100nm))沉積於基底305上或沉積於二極體100L上,隨後可使其固化或部分固化(諸如經由紫外線(uv)固化製程),形成一或多個第一導體310。在另一例示性具體實例中,可藉由濺鍍、旋轉澆鑄(或旋塗)、氣相沉積或電鍍導電化合物或元素(諸如金屬(例如鋁、銅、銀、金、鎳))形成一或多個第一導體310。亦可使用不同類型之導體及/或導電化合物或材料(例如墨水、聚合物、元素金屬等)之組合產生一或多個複合第一導體310。多層及/或多種類型之金屬或其他導電材料可組合形成一或多個第一導體310,諸如第一導體310包含例如(但不限於)鎳上之鍍金層。舉例而言,可使用氣相沉積之鋁或銀或混合之碳-銀墨水。在各個例示性具體實例中,沉積複數個第一導體310,且在其他具體實例中,第一導體310可沉積為單個導電薄板或以其他方式附接(例 如,耦接至基底305之鋁薄板)(未作單獨說明)。亦在各個具體實例中,可用於形成一或多個第一導體310之導電墨水或聚合物在沉積複數個二極體100-100K之前可能未固化或可能僅部分固化,接著在與複數個二極體100-100K接觸時完全固化,諸如以與複數個二極體100-100K形成歐姆接觸。在一例示性具體實例中,一或多個第一導體310在沉積複數個二極體100-100K之前完全固化,其中二極體墨水之其他化合物使一或多個第一導體310發生一定程度的溶解,其隨後在與複數個二極體100-100K接觸時再固化,且對於裝置700具體實例,一或多個第一導體310在沉積之後完全固化。亦對於裝置700具體實例,亦可使用導電粒子濃度較低之導電墨水以形成一或多個第一導體310,從而有助於第一端子125抗濕潤。視所選具體實例而定,亦可使用光學透射性導電材料來形成一或多個第一導體310。 For specific examples of devices 300, 720, 730, one or more first conductors 310 are then coated or deposited (on the first side or surface of substrate 305), such as via a printing process, or applied to devices 700, 740, The 750 embodiment of the diode 100L is of a certain thickness, depending on the type of conductive ink or polymer, such as up to about 0.1 to 15 microns (eg, for a typical silver ink or nanoparticle silver ink, about 10 microns to 12 The micron wet film thickness, dried or cured film thickness is about 0.2 microns or 0.3 microns to 1.0 microns). In other exemplary embodiments, depending on the thickness of the coating, the first conductor 310 may also be sanded to smooth the surface and may also be calendered to compress conductive particles such as silver. In an exemplary method of fabricating exemplary devices 300, 700, 720, 730, 740, 750, 760, 770, such as via a printing or other deposition process, conductive ink, polymer or other conductive liquid or colloid (such as silver (Ag) ) ink or polymer, nanoparticle or nanofiber silver ink composition, carbon nanotube ink or polymer, or silver/carbon mixture, such as amorphous nanocarbon dispersed in silver ink (its particle size is Approximately 75 nm to 100 nm)) is deposited on the substrate 305 or deposited on the diode 100L, which may then be cured or partially cured (such as via an ultraviolet ( UV ) curing process) to form one or more first conductors 310. In another illustrative embodiment, a conductive compound or element such as a metal (eg, aluminum, copper, silver, gold, nickel) may be formed by sputtering, spin casting (or spin coating), vapor deposition, or electroplating. Or a plurality of first conductors 310. One or more composite first conductors 310 can also be produced using a combination of different types of conductors and/or conductive compounds or materials (eg, inks, polymers, elemental metals, etc.). Multiple layers and/or multiple types of metals or other conductive materials may be combined to form one or more first conductors 310, such as first conductor 310 comprising, for example, but not limited to, a gold plated layer on nickel. For example, vapor deposited aluminum or silver or a mixed carbon-silver ink can be used. In various exemplary embodiments, a plurality of first conductors 310 are deposited, and in other embodiments, the first conductors 310 can be deposited as a single conductive sheet or otherwise attached (eg, an aluminum sheet coupled to the substrate 305) ) (not separately stated). Also in various embodiments, the conductive ink or polymer that can be used to form the one or more first conductors 310 may be uncured or may only partially cure before depositing a plurality of diodes 100-100K, followed by a plurality of The polar body 100-100K is fully cured upon contact, such as to form an ohmic contact with a plurality of diodes 100-100K. In an exemplary embodiment, one or more first conductors 310 are fully cured prior to depositing a plurality of diodes 100-100K, wherein other compounds of the diode ink cause one or more first conductors 310 to some extent The dissolution, which is then re-cured upon contact with a plurality of diodes 100-100K, and for the device 700 embodiment, the one or more first conductors 310 are fully cured after deposition. Also for the device 700 embodiment, a conductive ink having a lower concentration of conductive particles may be used to form the one or more first conductors 310, thereby contributing to the first terminal 125 being resistant to moisture. The optically transmissive conductive material may also be used to form the one or more first conductors 310, depending on the particular embodiment selected.

亦可使用其他導電墨水或材料形成一或多個第一導體310、第二導體320、第三導體(未作單獨說明)以及下文所論述之任何其他導體,諸如銅、錫、鋁、金、貴金屬、碳、碳黑、碳奈米管(「CNT」)、單壁或雙壁或多壁CNT、石墨薄膜、石墨薄膜薄片、奈米石墨薄膜薄片、奈米碳以及奈米碳與銀之組成物、具有優良或可接受之光學透射性之奈米粒子及奈米纖維銀組成物,或其他有機或無機導電聚合物、墨水、膠體或其他液體或半固體材料。在一例示性具體實例中,將碳黑(其粒徑為約100nm)添加至銀墨水中以使所得碳濃度處於約0.025%至0.5%範圍內,從而增 強二極體100-100L與第一導體310之間的歐姆接觸及黏著。另外,可等效地使用任何其他可印或可塗佈導電物質形成第一導體310、第二導體320及/或第三導體,且例示性導電化合物包括:(1)來自Conductive Compounds(Londonberry,NH,USA)之AG-500、AG-800及AG-510銀導電墨水,其亦可包括其他塗料UV-1006S紫外線可固化介電質(諸如第一介電層125之一部分);(2)來自DuPont之7102碳導體(若套印5000Ag)、7105碳導體、5000銀導體、7144碳導體(連同UV囊封劑)、7152碳導體(連同7165囊封劑)以及9145銀導體;(3)來自SunPoly公司之128A銀導電墨水、129A銀及碳導電墨水、140A導電墨水以及150A銀導電墨水;(4)來自Dow Corning公司之PI-2000系列高導電銀墨水;(5)來自Henkel/Emerson & Cumings之Electrodag 725A;(6)可自Boston,Massachusetts,USA之Cabot公司獲得之Monarch M120,其用作碳黑添加劑諸如以添加至銀墨水中從而形成碳與銀墨水之混合物;(7)Acheson 725A導電銀墨水(可自Henkel獲得)單獨或與其他銀奈米纖維組合;以及(8)可自Gyeonggi-do,Korea之Inktec.獲得之Inktek PA-010或PA-030奈米粒子或奈米纖維可網版印刷銀導電墨水。如下文所論述,亦可使用此等化合物形成其他導體(包括第二導體320)及任何其他導電跡線或連接件。另外,導電墨水及化合物可自多種其他來源獲得。 Other conductive inks or materials may also be used to form one or more of first conductor 310, second conductor 320, third conductor (not separately illustrated), and any other conductors discussed below, such as copper, tin, aluminum, gold, Precious metals, carbon, carbon black, carbon nanotubes ("CNT"), single or double or multi-walled CNTs, graphite films, graphite film sheets, nano-graphite film sheets, nano-carbon and nano-carbon and silver Composition, nanoparticle and nanofiber silver composition having excellent or acceptable optical transmission, or other organic or inorganic conductive polymer, ink, colloid or other liquid or semi-solid material. In an exemplary embodiment, carbon black (having a particle size of about 100 nm) is added to the silver ink such that the resulting carbon concentration is in the range of about 0.025% to 0.5%, thereby increasing Ohmic contact and adhesion between the strong diodes 100-100L and the first conductor 310. In addition, the first conductor 310, the second conductor 320, and/or the third conductor may be equivalently formed using any other printable or coatable conductive material, and exemplary conductive compounds include: (1) from Conductive Compounds (Londonberry, NH, USA, AG-500, AG-800 and AG-510 silver conductive inks, which may also include other coatings UV-1006S ultraviolet curable dielectric (such as a portion of the first dielectric layer 125); (2) 7102 carbon conductor from DuPont (if overprinted 5000Ag), 7105 carbon conductor, 5000 silver conductor, 7144 carbon conductor (along with UV encapsulant), 7152 carbon conductor (together with 7165 encapsulant) and 9145 silver conductor; (3) from SunPoly's 128A silver conductive ink, 129A silver and carbon conductive ink, 140A conductive ink and 150A silver conductive ink; (4) PI-2000 series high conductivity silver ink from Dow Corning; (5) from Henkel/Emerson & Cumings Electrodag 725A; (6) Monarch M120 available from Cabot Corporation of Boston, Massachusetts, USA, which is used as a carbon black additive such as to be added to silver ink to form a mixture of carbon and silver ink; (7) Acheson 725A conductive Silver ink (available from Henkel) alone or Other silver nanofiber composition;., And (8) available from Gyeonggi-do, Korea of Inktec Inktek PA-010 or PA-030 fibers may be nanoparticles or screen printing of a silver conductive ink is obtained. These compounds can also be used to form other conductors (including the second conductor 320) and any other conductive traces or connectors as discussed below. Additionally, conductive inks and compounds are available from a variety of other sources.

亦可使用具實質上光學透射性之導電聚合物形成一或 多個第一導體310以及第二導體320及/或第三導體。舉例而言,除下文所論述之其他任何透射性導體及其等效物之外,亦可使用聚乙烯-二氧噻吩,諸如可以商標名「Orgacon」自Ridgefield Park,New Jersey,USA之AGFA公司購得之聚乙烯-二氧噻吩。可等效使用之其他導電聚合物包括例如(不限於)聚苯胺及聚吡咯聚合物。在另一例示性具體實例中,使用已懸浮或分散於可聚合離子液體或其他流體中之碳奈米管形成具實質上光學透射性或透明之各種導體,諸如一或多個第二導體320。應注意,對於裝置300具體實例,一或多個第二導體320一般具實質上光學透射性以在裝置之第一面上提供較大光發射或吸收,且對於裝置700具體實例,除非在第一面上亦需要光輸出,否則一或多個第二導體320一般不明顯具有光學透射性以提供相對較低之電阻抗。在一些例示性裝置700具體實例中,一或多個第二導體320具高度不透明性及反射性以充當鏡面且提高自裝置700之第二面的光輸出。 A conductive polymer having substantially optical transparency can also be used to form one or A plurality of first conductors 310 and second conductors 320 and/or third conductors. For example, in addition to any other transmissive conductors discussed below and equivalents thereof, polyethylene-dioxythiophene may also be used, such as AGFA, Inc., under the trade designation "Orgacon" from Ridgefield Park, New Jersey, USA. Commercially available polyethylene-dioxythiophene. Other conductive polymers that can be used equivalently include, for example, without limitation, polyaniline and polypyrrole polymers. In another illustrative embodiment, various conductors, such as one or more second conductors 320, that are substantially optically transmissive or transparent, such as one or more second conductors 320, are formed using carbon nanotubes that have been suspended or dispersed in a polymerizable ionic liquid or other fluid. . It should be noted that for the device 300 embodiment, the one or more second conductors 320 are generally substantially optically transmissive to provide greater light emission or absorption on the first side of the device, and for the device 700 specific example, except at Light output is also required on one side, otherwise one or more of the second conductors 320 are generally not significantly optically transmissive to provide a relatively low electrical impedance. In some exemplary device 700 embodiments, the one or more second conductors 320 are highly opaque and reflective to act as a mirror and enhance light output from the second side of the device 700.

已用於形成一或多個第二導體320之光學透射性導電墨水包括可自Tempe,Arizona,USA之NthDegree Technologies Worldwide公司購得之透明導電墨水,且已描述於Mark D.Lowenthal等人於2011年2月28日申請且題為「Metallic Nanofiber Ink,Substantially Transparent Conductor,and Fabrication Method」之美國臨時專利申請案第61/447,160號中,該專利申請案之全部內容以引用方式併入本文中,具有如同在本文中闡述其全文一般之相同完 全效力。另一透明導體包括於諸如1-丁醇、環己醇、冰乙酸之溶劑(約1重量%)與聚乙烯吡咯啶酮(MW為約100萬)(約2重量%至4重量%,或更尤其約3重量%)之混合物中之銀奈米纖維(約3重量%至50重量%,或更尤其約4重量%至40重量%,或更尤其約5重量%至30重量%,或更尤其約6重量%至20重量%,或更尤其約5重量%至15重量%,或更尤其約7重量%至13重量%,或更尤其約9重量%至11重量%,或更尤其約10重量%)。另一導電墨水亦可包含與複數種其他溶劑(諸如與約50重量%至65重量%之丙二醇及約1重量%至10重量%之正丙醇或1-甲氧基-2-丙醇)混合之奈米粒子或奈米纖維銀墨水(諸如Inktek PA-010或PA-030奈米粒子或奈米纖維可網版印刷銀導電墨水)(約30重量%至50重量%)。另一導電墨水亦可包含與複數種如上所述之其他溶劑混合之奈米粒子或奈米纖維銀墨水(諸如Inktek PA-010或PA-030奈米粒子或奈米纖維可網版印刷銀導電墨水),銀濃度為約0.30重量%至3.0重量%。 Optically transmissive conductive inks that have been used to form one or more second conductors 320 include transparent conductive inks available from Nth Degree Technologies Worldwide, Inc. of Tempe, Arizona, USA, and have been described in Mark D. Lowenthal et al. U.S. Provisional Patent Application Serial No. 61/447, the entire disclosure of which is incorporated herein in Have the same completeness as the full text in this article Full effect. Another transparent conductor is included in a solvent such as 1-butanol, cyclohexanol, glacial acetic acid (about 1% by weight) and polyvinylpyrrolidone (MW is about 1,000,000) (about 2% to 4% by weight, or More particularly, about 3% by weight of the silver nanofibers in the mixture (about 3% to 50% by weight, or more especially about 4% to 40% by weight, or more especially about 5% to 30% by weight, or More particularly from about 6% to 20% by weight, or especially especially from about 5% to 15% by weight, or especially especially from about 7% to 13% by weight, or especially especially from about 9% to 11% by weight, or more especially About 10% by weight). The other conductive ink may also comprise a plurality of other solvents (such as with from about 50% to about 65% by weight of propylene glycol and from about 1% to about 10% by weight of n-propanol or 1-methoxy-2-propanol) Mixed nanoparticle or nanofiber silver ink (such as Inktek PA-010 or PA-030 nanoparticle or nanofiber screenable silver conductive ink) (about 30% to 50% by weight). Another conductive ink may also comprise nanoparticle or nanofiber silver ink mixed with a plurality of other solvents as described above (such as Inktek PA-010 or PA-030 nanoparticle or nanofiber screenable silver conductive) Ink), the silver concentration is from about 0.30% to about 3.0% by weight.

有機半導體(另稱為π共軛聚合物、導電聚合物或合成金屬)因碳原子之間沿聚合物主鏈之π共軛而固有地具半導電性。其結構含有一維有機主鏈,由此在n-型或p+型摻雜之後能夠導電。經充分研究之有機導電聚合物之類別包括聚(乙炔)、聚(吡咯)、聚(噻吩)、聚苯胺、聚噻吩、聚(對苯硫醚)、聚(對伸苯基伸乙烯基)(PPV)及PPV衍生物、聚(3-烷基噻吩)、聚吲哚、聚芘、聚咔唑、聚甘菊藍、聚氮 呯、聚(茀)及聚萘。其他實例包括聚苯胺、聚苯胺衍生物、聚噻吩、聚噻吩衍生物、聚吡咯、聚吡咯衍生物、聚苯并噻吩、聚苯并噻吩衍生物、聚對伸苯基、聚對伸苯基衍生物、聚乙炔、聚乙炔衍生物、聚二乙炔、聚二乙炔衍生物、聚對伸苯基伸乙烯基、聚對伸苯基伸乙烯基衍生物、聚萘、及聚萘衍生物、聚異苯并噻吩(PITN)、伸雜芳基可為例如噻吩、呋喃或吡咯之聚伸雜芳基伸乙烯基(ParV)、聚苯硫(PPS)、聚迫位萘(PPN)、聚酞菁(PPhc)等,及其衍生物、其共聚物及其混合物。如本文所用之術語衍生物意謂該聚合物由經側鏈或基團取代之單體形成。 Organic semiconductors (also known as π-conjugated polymers, conductive polymers or synthetic metals) are inherently semiconducting due to the π conjugate of carbon atoms along the polymer backbone. Its structure contains a one-dimensional organic backbone, thereby enabling conduction after n-type or p+-type doping. Well-studied classes of organic conductive polymers include poly(acetylene), poly(pyrrole), poly(thiophene), polyaniline, polythiophene, poly(p-phenylene sulfide), poly(p-phenylenevinyl) PPV) and PPV derivatives, poly(3-alkylthiophene), polyfluorene, polyfluorene, polycarbazole, poly camomile blue, polynitrogen 呯, poly (茀) and polynaphthalene. Other examples include polyaniline, polyaniline derivatives, polythiophenes, polythiophene derivatives, polypyrroles, polypyrrole derivatives, polybenzothiophenes, polybenzothiophene derivatives, polyparaphenylene, polyparaphenylene Derivatives, polyacetylene, polyacetylene derivatives, polydiacetylene, polydiacetylene derivatives, polyparaphenylene vinyl, polyparaphenylene vinyl derivatives, polynaphthalene, and polynaphthalene derivatives, polyiso The benzothiophene (PITN) and heteroaryl group may be, for example, a poly(arylene)vinyl group (ParV), a polyphenylene sulfide (PPS), a polyperylene naphthalene (PPN), or a polyphthalocyanine (thiophene, furan or pyrrole). PPhc) and the like, and derivatives thereof, copolymers thereof and mixtures thereof. The term derivative as used herein means that the polymer is formed from a monomer substituted with a side chain or group.

使導電聚合物聚合之方法不受特定限制,且適用方法包括例如(但不限於)uv或其他電磁聚合、熱聚合、電解氧化聚合、化學氧化聚合及催化聚合。由聚合方法獲得之聚合物常呈中性且不具導電性直至經摻雜為止。因此,對聚合物進行p型摻雜或n型摻雜以使其轉化為導電聚合物。半導體聚合物可經化學摻雜或電化學摻雜。用於摻雜之物質不受特定限制;一般使用能夠接受電子對之物質,諸如路易斯酸(Lewis acid)。實例包括鹽酸、硫酸、有機磺酸衍生物(諸如對磺酸、聚苯乙烯磺酸、烷基苯磺酸、樟腦磺酸、烷基磺酸、磺柳酸等)、氯化鐵、氯化銅及硫酸鐵。 The method of polymerizing the conductive polymer is not particularly limited, and suitable methods include, for example, but not limited to, uv or other electromagnetic polymerization, thermal polymerization, electrolytic oxidation polymerization, chemical oxidation polymerization, and catalytic polymerization. The polymer obtained by the polymerization process is often neutral and non-conductive until it is doped. Thus, the polymer is p-doped or n-doped to convert it into a conductive polymer. The semiconducting polymer can be chemically doped or electrochemically doped. The substance used for doping is not particularly limited; a substance capable of accepting an electron pair such as Lewis acid is generally used. Examples include hydrochloric acid, sulfuric acid, organic sulfonic acid derivatives (such as p-sulfonic acid, polystyrenesulfonic acid, alkylbenzenesulfonic acid, camphorsulfonic acid, alkylsulfonic acid, sulfinic acid, etc.), ferric chloride, chlorination Copper and iron sulfate.

應注意,對於「顛倒」之裝置300構造,選擇具光學透射性之基底305及一或多個第一導體310以使光穿過基底305之第二面進入及/或離開。另外,當第二導體320亦 透明時,光可自裝置300之兩側或在裝置300之兩側上發射或吸收。 It should be noted that for the "reversed" device 300 configuration, the optically transmissive substrate 305 and the one or more first conductors 310 are selected to allow light to enter and/or exit through the second side of the substrate 305. In addition, when the second conductor 320 is also When transparent, light can be emitted or absorbed from either side of device 300 or on both sides of device 300.

一或多個第一導體310可具有各種紋理,諸如具有比較平滑之表面,或相反具有粗糙或有尖端之表面,或具有工程改造之微軋花結構(例如可自Sappi有限公司獲得)以潛在地改良其他層(諸如介電層315)之黏著及/或有助於後續與二極體100-100L形成歐姆接觸。亦可在沉積二極體100-100L之前對一或多個第一導體310進行電暈處理,該電暈處理趨於移除可能已形成之任何氧化物且亦有助於後續與複數個二極體100-100L形成歐姆接觸。熟習電子或印刷技術者應想到可形成一或多個第一導體310之方式的諸多變化,其中所有該等變化視作等效且處於本發明範疇內。舉例而言(但不加以限制),亦可經由濺鍍或氣相沉積來沉積一或多個第一導體310。另外,對於其他各個具體實例,可諸如經由塗佈、印刷、濺鍍或氣相沉積以單個或連續層形式沉積一或多個第一導體310。 The one or more first conductors 310 can have various textures, such as having a relatively smooth surface, or otherwise having a rough or pointed surface, or an engineered micro-embossed structure (eg, available from Sappi Co., Ltd.) to potentially The adhesion of other layers, such as dielectric layer 315, is improved and/or facilitates subsequent ohmic contact with diodes 100-100L. One or more first conductors 310 may also be corona treated prior to depositing the diode 100-100L, which tends to remove any oxide that may have formed and also facilitates subsequent and plural two The polar bodies 100-100L form an ohmic contact. Many variations of the manner in which one or more first conductors 310 can be formed are contemplated by those skilled in the art of electronics or printing, all of which are considered equivalent and within the scope of the present invention. By way of example, but not limitation, one or more first conductors 310 can also be deposited via sputtering or vapor deposition. Additionally, for various other specific examples, one or more first conductors 310 can be deposited in a single or continuous layer, such as via coating, printing, sputtering, or vapor deposition.

因此,如本文所用之「沉積」包括此項技術中已知之衝擊式或非衝擊式之任何及所有印刷、塗佈、輥軋、噴霧、層鋪、濺鍍、電鍍、旋轉澆鑄(或旋塗)、氣相沉積、層合、貼附及/或其他沉積製程。「印刷」包括此項技術中已知之衝擊式或非衝擊式之任何及所有印刷、塗佈、輥軋、噴霧、層鋪、旋塗、層合及/或貼附製程,且尤其包括例如(但不限於)網版印刷、噴墨印刷、電光印刷、電墨印刷、光阻及其他抗蝕劑印刷、熱感印刷、雷射噴印、磁性印刷、移 印、快乾印刷、混合平版微影、凹板印刷(Gravure)及其他凹紋印刷。所有該等製程在本文中視作沉積製程且可供使用。例示性沉積或印刷製程不需要顯著生產控制或限制。不需要特定溫度或壓力。可能使用某種清潔室或經過濾空氣,但其程度可能與已知印刷或其他沉積製程之標準一致。然而,對於一致性而言,諸如為使形成各個具體實例之各個依次沉積之層正確對準(對齊),可能需要相對恆溫(可能有例外,如下文論述)及濕度。另外,所用之各種化合物可含於各種聚合物、黏合劑或其他分散劑中,其可經熱固化或乾燥,在環境條件下空氣乾燥,或IR或uv固化。 Thus, "depositing" as used herein includes any and all printing, coating, rolling, spraying, laminating, sputtering, electroplating, spin casting (or spin coating) of impact or non-impact type known in the art. ), vapor deposition, lamination, attachment, and/or other deposition processes. "Printing" includes any and all of the printing, coating, rolling, spraying, laminating, spin coating, laminating and/or attaching processes known in the art as impact or non-impact, and includes, for example, But not limited to) screen printing, inkjet printing, electro-optical printing, electro-ink printing, photoresist and other resist printing, thermal printing, laser printing, magnetic printing, moving Printing, fast drying printing, mixed lithography, Gravure and other intaglio printing. All such processes are considered herein as deposition processes and are available for use. An exemplary deposition or printing process does not require significant production control or limitations. No specific temperature or pressure is required. It is possible to use some kind of clean room or filtered air, but the extent may be consistent with the standards of known printing or other deposition processes. However, for consistency, such as to properly align (align) the layers that are sequentially deposited in each of the specific examples, relatively constant temperatures (with possible exceptions, as discussed below) and humidity may be required. In addition, the various compounds used may be included in various polymers, binders or other dispersing agents which may be thermally cured or dried, air dried under ambient conditions, or IR or uv cured.

亦應注意,一般對於諸如經由印刷或其他沉積對本文中之各種化合物進行任何塗覆,亦可諸如經由使用抗蝕劑塗層或藉由以其他方式改良該表面之「可濕性」,例如藉由改良表面(諸如基底305之表面、各個第一或第二導體(分別為310、320)之表面及/或二極體100-100L之表面)的例如親水性、疏水性或電學(正電荷或負電荷)特徵來控制表面特性或表面能。連同所沉積之化合物、懸浮液、聚合物或墨水之特徵(諸如表面張力),可使所沉積之化合物黏著至所需或所選位置,且有效避開其他區域。 It should also be noted that generally any coating of various compounds herein, such as via printing or other deposition, may be used, such as by using a resist coating or by otherwise modifying the "wetability" of the surface, for example By modifying the surface (such as the surface of the substrate 305, the surface of each of the first or second conductors (310, 320, respectively) and/or the surface of the diode 100-100L), for example, hydrophilic, hydrophobic or electrical (positive) Charge or negative charge) features to control surface properties or surface energy. Together with the characteristics of the deposited compound, suspension, polymer or ink, such as surface tension, the deposited compound can be adhered to the desired or selected location and effectively avoiding other areas.

舉例而言(但不加以限制),使用任何蒸發性或揮發性有機或無機化合物(諸如水、醇、醚等)使複數個二極體100-100L懸浮於液體、半液體或膠體載劑中,亦可包括黏著劑組分(諸如樹脂)及/或界面活性劑或其他助流劑。在 一例示性具體實例中,舉例而言(但不加以限制)複數個二極體100-100L如上文在實施例中所述而懸浮。亦可使用界面活性劑或助流劑,諸如辛醇、甲醇、異丙醇或去離子水,且亦可使用黏合劑,諸如含有實質上或比較小之鎳珠粒(例如1微米)之各向異性導電黏合劑(其例如在壓縮及固化之後提供導電性且可用以改良或增強歐姆接觸之形成),或任何其他可uv、熱或空氣固化之黏合劑或聚合物,包括下文更詳細論述者(且其亦可與介電化合物、透鏡等一起使用)。 By way of example, but not limitation, any plurality of diodes 100-100L are suspended in a liquid, semi-liquid or colloidal carrier using any evaporative or volatile organic or inorganic compound (such as water, alcohol, ether, etc.). Adhesive components (such as resins) and/or surfactants or other glidants may also be included. in In an exemplary embodiment, by way of example, but not limitation, a plurality of diodes 100-100L are suspended as described above in the Examples. Surfactants or glidants may also be used, such as octanol, methanol, isopropanol or deionized water, and binders may also be used, such as each containing substantially or relatively small nickel beads (eg, 1 micron). Anisotropic conductive adhesive (which provides conductivity, for example, after compression and curing, and which can be used to modify or enhance the formation of ohmic contacts), or any other uv, heat or air-curable adhesive or polymer, including discussed in more detail below. (and it can also be used with dielectric compounds, lenses, etc.).

另外,各個二極體100-100L可組態為例如具有各種色彩(諸如紅色、綠色、藍色、黃色、琥珀色等)中之任一者之發光二極體。具有不同色彩之發光二極體100-100L接著可混合於例示性二極體墨水中,以便在裝置300、300A中通電時,產生所選色溫。 In addition, each of the diodes 100-100L may be configured as, for example, a light emitting diode having any of various colors such as red, green, blue, yellow, amber, and the like. Light-emitting diodes 100-100L having different colors can then be mixed into the exemplary diode ink to produce a selected color temperature when energized in devices 300, 300A.

乾燥或固化之二極體墨水實施例1:Dry or cured diode ink Example 1:

包含以下之組成物:複數個二極體100-100L;及固化或聚合之樹脂或聚合物。 A composition comprising: a plurality of diodes 100-100 L; and a cured or polymerized resin or polymer.

乾燥或固化之二極體墨水實施例2:Dry or cured diode ink Example 2:

包含以下之組成物:複數個二極體100-100L;及固化或聚合之樹脂或聚合物,其形成至少部分圍繞各二極體且厚度為約10nm至300nm之膜。 A composition comprising: a plurality of diodes 100-100 L; and a cured or polymerized resin or polymer forming a film at least partially surrounding each of the diodes and having a thickness of between about 10 nm and 300 nm.

乾燥或固化之二極體墨水實施例3:Dry or cured diode ink Example 3:

包含以下之組成物:複數個二極體100-100L;及至少痕量之固化或聚合之樹脂或聚合物。 A composition comprising: a plurality of diodes 100-100 L; and at least a trace amount of a cured or polymerized resin or polymer.

乾燥或固化之二極體墨水實施例4:Dry or cured diode ink Example 4:

包含以下之組成物:複數個二極體100-100L;固化或聚合之樹脂或聚合物;及至少痕量之溶劑。 A composition comprising: a plurality of diodes 100-100 L; a cured or polymerized resin or polymer; and at least traces of solvent.

乾燥或固化之二極體墨水實施例5:Dry or cured diode ink Example 5:

包含以下之組成物:複數個二極體100-100L;至少痕量之固化或聚合之樹脂或聚合物;及至少痕量之溶劑。 A composition comprising: a plurality of diodes 100-100 L; at least traces of a cured or polymerized resin or polymer; and at least traces of solvent.

乾燥或固化之二極體墨水實施例6:Dry or cured diode ink Example 6:

包含以下之組成物:複數個二極體100-100L;固化或聚合之樹脂或聚合物;至少痕量之溶劑;及至少痕量之界面活性劑。 A composition comprising: a plurality of diodes 100-100 L; a cured or polymerized resin or polymer; at least traces of solvent; and at least trace amounts of surfactant.

乾燥或固化之二極體墨水實施例7:Dry or cured diode ink Example 7:

包含以下之組成物:複數個二極體100-100L;至少痕量之固化或聚合之樹脂或聚合物;至少痕量之溶劑;及 至少痕量之界面活性劑。 The composition comprising: a plurality of diodes 100-100L; at least traces of a cured or polymerized resin or polymer; at least traces of solvent; At least trace amounts of surfactant.

接著諸如藉由使用280目塗有聚酯或PTFE之網進行印刷使二極體墨水(懸浮之二極體100-100L及視情況存在之惰性粒子)沉積於裝置700具體實例之基底305A上或沉積於裝置300具體實例之一或多個第一導體310上,且諸如經由例如加熱、uv固化或任何乾燥製程使揮發性或蒸發性組分消散以留下二極體100-100L實質上或至少部分接觸且黏著至基底305A或一或多個第一導體310。在一例示性具體實例中,在約110℃下使沉積之二極體墨水固化通常5分鐘或不到5分鐘。如乾燥或固化之二極體墨水實施例1及2中殘留之乾燥或固化之二極體墨水一般包含複數個二極體100-100L及固化或聚合之樹脂或聚合物(至少以痕量存在)(其如上所述可一般將二極體100-100L固定或固持於適當位置上),且如先前所論述形成膜295。雖然揮發性或蒸發性組分(諸如第一及/或第二溶劑及/或界面活性劑)實質上消散,但可殘留痕量或更多量,如乾燥或固化之二極體墨水實施例3-6中所說明。如本文所用之「痕量」之成分應理解為相較於初始沉積於第一導體310及/或基底305、305A上時二極體墨水中最初存在之成分之量大於零但小於或等於5%之量。 The diode ink (suspended diode 100-100L and optionally inert particles) is then deposited on substrate 305A of a device 700 embodiment, such as by printing with a 280 mesh web of polyester or PTFE. Deposited on one or more of the first conductors 310 of the device 300 embodiment, and such that the volatile or evaporative components are dissipated, such as via heating, uv curing, or any drying process to leave the diode 100-100L substantially or At least partially contacting and adhering to the substrate 305A or the one or more first conductors 310. In an exemplary embodiment, the deposited diode ink is cured at about 110 ° C for typically 5 minutes or less. Dry or cured diode inks such as dried or cured diodes in Examples 1 and 2 typically comprise a plurality of diodes 100-100 L and cured or polymerized resins or polymers (at least in trace amounts) ) (which may generally hold or hold the diode 100-100L in place as described above) and form the film 295 as previously discussed. Although the volatile or evaporative components (such as the first and/or second solvent and/or surfactant) are substantially dissipated, trace amounts or more may be left, such as dried or cured diode ink embodiments. As explained in 3-6. As used herein, "trace" component is understood to mean that the amount of the initially present component of the diode ink is greater than zero but less than or equal to 5 compared to the initial deposition on first conductor 310 and/or substrate 305, 305A. The amount of %.

完成之裝置(300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770)中所得二極體100-100L密度或濃度(例如每平方公分二極體100-100L之數目)將視二極體墨水中二極體100-100L之濃 度而定。當二極體100-100L之尺寸處於20微米至30微米之範圍內時,可使用極高密度但仍僅覆蓋較小百分比之表面積(一優勢在於允許較大程度的熱耗散而不另外需要散熱片)。舉例而言,當使用尺寸處於20微米至30微米範圍內之二極體100-100L時,一平方吋中10,000個二極體僅覆蓋約1%之表面積。亦舉例而言,在一例示性具體實例中,對於在裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770中使用,多種二極體密度可用且處於本發明範疇內,包括(不限於):每平方公分2至10,000個二極體100-100L;或更尤其,每平方公分5至10,000個二極體100-100L;或更尤其,每平方公分5至1,000個二極體100-100L;或更尤其,每平方公分5至100個二極體100-100L;或更尤其,每平方公分5至50個二極體100-100L;或更尤其,每平方公分5至25個二極體100-100L;或更尤其,每平方公分10至8,000個二極體100-100L;或更尤其,每平方公分15至5,000個二極體100-100L;或更尤其,每平方公分20至1,000個二極體100-100L;或更尤其,每平方公分25至100個二極體100-100L;或更尤其,每平方公分25至50個二極體100-100L。 The density or concentration of the resulting diode 100-100L in the completed device (300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770) (eg per square centimeter of dipole The number of bodies 100-100L) will be the thickness of the diode 100-100L in the diode ink Depending on the degree. When the dimensions of the diode 100-100L are in the range of 20 microns to 30 microns, very high density can be used but still only cover a small percentage of surface area (one advantage is that a greater degree of heat dissipation is allowed without additional need heat sink). For example, when using a diode 100-100L having a size in the range of 20 microns to 30 microns, 10,000 diodes in a square inch cover only about 1% of the surface area. Also for example, in an exemplary embodiment, for use in devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, a plurality of diodes Density is available and within the scope of the invention, including (without limitation): from 2 to 10,000 diodes per square centimeter, 100-100 L; or more particularly from 5 to 10,000 diodes per square centimeter, 100-100 L; or more particularly 5 to 1,000 diodes per square centimeter, 100-100 L; or more specifically, 5 to 100 diodes per square centimeter, 100-100 L; or more specifically, 5 to 50 diodes per square centimeter, 100-100 L Or, more particularly, 5 to 25 diodes per square centimeter, 100-100 L; or more specifically, 10 to 8,000 diodes per square centimeter, 100-100 L; or more specifically, 15 to 5,000 dipoles per square centimeter 100-100L; or more particularly, 20 to 1,000 diodes per square centimeter, 100-100L; or more specifically, 25 to 100 diodes per square centimeter, 100-100L; or more specifically, 25 to 2 centimeters per square centimeter 50 diodes 100-100L.

亦可使用其他步驟或若干步驟製程將二極體100-100L沉積於一或多個第一導體310上。亦舉例而言(但不加以限制),可首先沉積黏合劑,諸如甲氧基化二醇醚丙烯酸酯單體(其亦可包括水溶性光引發劑,諸如TPO((2,4,6-三甲 基苯甲醯基)二苯基氧化膦(triphosphene oxide)),或各向異性導電黏合劑,繼而如上文所論述沉積已懸浮於液體或膠體中之二極體100-100L。 The diodes 100-100L may also be deposited on the one or more first conductors 310 using other steps or a number of steps. Also by way of example, but not limitation, a binder may be deposited first, such as a methoxylated glycol ether acrylate monomer (which may also include a water soluble photoinitiator such as TPO ((2, 4, 6-) Three Terphenylene sulfonate, or an anisotropic conductive binder, followed by deposition of a diode 100-100L that has been suspended in a liquid or colloid as discussed above.

在一例示性具體實例中,對於裝置300、720、730、760具體實例,二極體100-100K之懸浮介質亦可包含溶解溶劑或其他反應劑,諸如一或多種二元酯,其最初溶解或再濕潤一或多個第一導體310中之一些第一導體310。當沉積複數個二極體100-100K之懸浮液且一或多個第一導體310之表面接著變得部分溶解或未固化時,複數個二極體100-100K可略微或部分包埋於一或多個第一導體310內,亦有助於形成歐姆接觸,且使複數個二極體100-100K與一或多個第一導體310之間形成黏著黏結或黏著耦接。由於溶解劑或反應劑諸如經由蒸發而消散,所以一或多個第一導體310在實質接觸複數個二極體100-100K時再硬化(或再固化)。除上文所論述之二元酯之外,例示性溶解劑、濕潤劑或溶劑化劑例如(但不限於)亦如上所述包括丙二醇單甲醚乙酸酯(C6H12O3)(由Eastman以名稱「PM乙酸酯」出售),其與1-丙醇(或異丙醇)以約1:8莫耳比(或22:78重量比)用於形成懸浮介質;以及多種二元酯,及其混合物,諸如丁二酸二甲酯、己二酸二甲酯及戊二酸二甲酯(其不同混合物可自Invista以產品名稱DBE、DBE-2、DBE-3、DBE-4、DBE-5、DBE-6、DBE-9及DBE-IB獲得)。在一例示性具體實例中,使用DBE-9。溶劑之莫耳比將基於所選溶劑而變化,其中1:8及1:12為典型比率。亦可使用各種 化合物或其他試劑來控制此反應:例如,1-丙醇與水之組合或混合物可明顯抑制一或多個第一導體310經BE-9溶解或再濕潤直至在固化製程中相對較遲在二極體墨水之各種化合物已蒸發或以其他方式消散且二極體墨水之厚度小於二極體100-100K之高度為止,因此第一導體310之任何溶解之材料(諸如銀墨水樹脂及銀墨水粒子)不沉積於二極體100-100K之上表面上(該等二極體100-100K接著能夠與第二導體320形成電接觸)。 In an exemplary embodiment, for a specific example of apparatus 300, 720, 730, 760, the suspension medium of the diode 100-100K may also contain a dissolving solvent or other reactant, such as one or more dibasic esters, which are initially dissolved. Or re-wetting some of the first conductors 310 of the one or more first conductors 310. When depositing a plurality of diode 100-100K suspensions and the surface of one or more first conductors 310 subsequently becomes partially dissolved or uncured, the plurality of diodes 100-100K may be slightly or partially embedded in one The plurality of first conductors 310 also contribute to the formation of an ohmic contact and form an adhesive bond or adhesive coupling between the plurality of diodes 100-100K and the one or more first conductors 310. Since the solvating agent or reactant dissipates, such as via evaporation, the one or more first conductors 310 are hardened (or resolidified) upon substantial contact with the plurality of diodes 100-100K. In addition to the dibasic esters discussed above, exemplary solubilizing, wetting or solvating agents such as, but not limited to, also include propylene glycol monomethyl ether acetate (C 6 H 12 O 3 ) as described above ( It is sold by Eastman under the name "PM acetate"), which is used in a suspension medium with 1-propanol (or isopropanol) at a molar ratio of about 1:8 (or 22:78); Monoesters, and mixtures thereof, such as dimethyl succinate, dimethyl adipate and dimethyl glutarate (different mixtures available from Invista under the product names DBE, DBE-2, DBE-3, DBE- 4. DBE-5, DBE-6, DBE-9 and DBE-IB are obtained). In an illustrative embodiment, DBE-9 is used. The molar ratio of solvent will vary based on the solvent chosen, with 1:8 and 1:12 being typical ratios. Various compounds or other agents may also be used to control the reaction: for example, a combination or mixture of 1-propanol and water may significantly inhibit dissolution or rewetting of one or more first conductors 310 via BE-9 until relatively in the curing process. At a later time, the various compounds of the diode ink have evaporated or otherwise dissipated and the thickness of the diode ink is less than the height of the diode 100-100K, so any dissolved material of the first conductor 310 (such as silver ink resin) And silver ink particles) are not deposited on the upper surface of the diode 100-100K (the diodes 100-100K can then make electrical contact with the second conductor 320).

介電墨水實施例1:Dielectric ink embodiment 1:

包含以下之組成物:介電樹脂,其包含約0.5%至約30%甲基纖維素樹脂;第一溶劑,其包含醇;及界面活性劑。 A composition comprising: a dielectric resin comprising from about 0.5% to about 30% methylcellulose resin; a first solvent comprising an alcohol; and a surfactant.

介電墨水實施例2:Dielectric ink example 2:

包含以下之組成物:介電樹脂,其包含約4%至約6%甲基纖維素樹脂;第一溶劑,其包含約0.5%至約1.5%辛醇;第二溶劑,其包含約3%至約5% IPA;及界面活性劑。 A composition comprising: a dielectric resin comprising from about 4% to about 6% methylcellulose resin; a first solvent comprising from about 0.5% to about 1.5% octanol; and a second solvent comprising about 3% Up to about 5% IPA; and surfactant.

介電墨水實施例3:Dielectric ink embodiment 3:

包含以下之組成物:約10%至約30%之介電樹脂;第一溶劑,其包含二醇醚乙酸酯;第二溶劑,其包含二醇醚;及 第三溶劑。 The composition comprising: from about 10% to about 30% of a dielectric resin; a first solvent comprising a glycol ether acetate; and a second solvent comprising a glycol ether; The third solvent.

介電墨水實施例4:Dielectric ink example 4:

包含以下之組成物:約10%至約30%之介電樹脂;第一溶劑,其包含約35%至50%乙二醇單丁醚乙酸酯;第二溶劑,其包含約20%至35%二丙二醇單甲醚;及第三溶劑,其包含約0.01%至0.5%甲苯。 The composition comprising: from about 10% to about 30% of a dielectric resin; a first solvent comprising from about 35% to 50% ethylene glycol monobutyl ether acetate; and a second solvent comprising about 20% to 35% dipropylene glycol monomethyl ether; and a third solvent comprising from about 0.01% to 0.5% toluene.

介電墨水實施例5:Dielectric ink example 5:

包含以下之組成物:約15%至約20%之介電樹脂;第一溶劑,其包含約35%至50%乙二醇單丁醚乙酸酯;第二溶劑,其包含約20%至35%二丙二醇單甲醚;及第三溶劑,其包含約0.01%至0.5%甲苯。 The composition comprising: from about 15% to about 20% of a dielectric resin; a first solvent comprising from about 35% to 50% ethylene glycol monobutyl ether acetate; and a second solvent comprising about 20% to 35% dipropylene glycol monomethyl ether; and a third solvent comprising from about 0.01% to 0.5% toluene.

介電墨水實施例6:Dielectric ink embodiment 6:

包含以下之組成物:約10%至約30%之介電樹脂;第一溶劑,其包含約50%至85%二丙二醇單甲醚;及第二溶劑,其包含約0.01%至0.5%甲苯。 The composition comprising: from about 10% to about 30% of a dielectric resin; a first solvent comprising from about 50% to 85% dipropylene glycol monomethyl ether; and a second solvent comprising from about 0.01% to 0.5% toluene .

介電墨水實施例7:Dielectric ink example 7:

包含以下之組成物:約15%至約20%之介電樹脂;第一溶劑,其包含約50%至90%乙二醇單丁醚乙酸酯;及第二溶劑,其包含約0.01%至0.5%甲苯。 The composition comprising: from about 15% to about 20% of a dielectric resin; a first solvent comprising from about 50% to 90% ethylene glycol monobutyl ether acetate; and a second solvent comprising about 0.01% To 0.5% toluene.

介電墨水實施例8:Dielectric ink example 8:

包含以下之組成物:約15%至約20%之介電樹脂;第一溶劑,其包含約50%至85%二丙二醇單甲醚;及其餘部分,其包含第二溶劑,該第二溶劑包含約0.01%至8.0%丙二醇或去離子水。 The composition comprising: from about 15% to about 20% of a dielectric resin; a first solvent comprising from about 50% to 85% dipropylene glycol monomethyl ether; and the balance comprising a second solvent, the second solvent It comprises from about 0.01% to 8.0% propylene glycol or deionized water.

接著在沉積第二導體320之前,諸如經由印刷或塗佈製程將絕緣材料(稱為介電墨水,諸如描述為介電墨水實施例1-8之介電墨水)沉積於二極體100-100L上或二極體100-100L之周邊或側向部分上以形成絕緣或介電層315。介電層315之濕膜厚度大致為約30微米至40微米且乾燥或固化膜厚度大致為約5微米至7微米。絕緣或介電層315可包含懸浮於如上下文所論述之各種任何介質中之任何絕緣或介電化合物。在一例示性具體實例中,絕緣或介電層315包含甲基纖維素樹脂,其量處於約0.5%至15%範圍內,或更尤其處於約1.0%至約8.0%範圍內,或更尤其處於約3.0%至約6.0%範圍內,或更尤其處於約4.5%至約5.5%範圍內,諸如可自Dow Chemical獲得之E-3「甲基纖維素(methocel)」;以及界面活性劑,其量處於約0.1%至1.5%範圍內,或更尤其處於約0.2%至約1.0%範圍內,或更尤其處於約0.4%至約0.6%範圍內,諸如來自BYK Chemie GmbH之0.5% BYK 381;懸浮於以下溶劑中:第一溶劑,其量處於約0.01%至0.5%範圍內,或更尤其處於約0.05%至約0.25%範圍內,或更尤其處於約0.08%至約0.12%範圍內, 諸如約0.1%辛醇;及第二溶劑,其量處於約0.0%至8%範圍內,或更尤其處於約1.0%至約7.0%範圍內,或更尤其處於約2.0%至約6.0%範圍內,或更尤其處於約3.0%至約5.0%範圍內,諸如約4% IPA,其餘部分為第三溶劑,諸如去離子水。用E-3調配物沉積4至5個塗層,以形成總厚度大致為6微米至10微米之絕緣或介電層315,其中各塗層在約110℃下固化約5分鐘。在其他例示性具體實例中,介電層315可經IR(紅外光)固化、uv固化或兩者。在其他例示性具體實例中,不同介電調配物可塗覆成不同層以形成絕緣或介電層315;舉例而言(但不加以限制),塗覆由可自Dusseldorf,Germany之Henkel公司獲得之基於溶劑之透明介電質形成之第一層,諸如Henkel BIK-20181-40A、Henkel BIK-20181-40B及/或Henkel BIK-20181-24B,繼而塗覆上文所述之基於水之E-3調配物,形成介電層315。在其他例示性具體實例中,其他介電化合物可自Henkel購得且可等效地使用,諸如於介電墨水實施例8中。介電層315可為透明的,但亦可包括例如(而不限於)比較低濃度之光漫射、散射或反射性粒子以及導熱粒子(諸如氧化鋁)。在各個例示性具體實例中,介電墨水亦將使二極體100-100L之上表面抗濕潤,使二極體100-100K之至少一些第一端子125或第二面(背面)(視定向而定)暴露以後續接觸第二導體320。 An insulating material (referred to as a dielectric ink, such as a dielectric ink described as dielectric ink Examples 1-8) is deposited on the diode 100-100L, such as via a printing or coating process, prior to deposition of the second conductor 320. An upper or lateral portion of the upper or diode 100-100L is formed to form an insulating or dielectric layer 315. The dielectric layer 315 has a wet film thickness of from about 30 microns to about 40 microns and a dried or cured film thickness of from about 5 microns to about 7 microns. The insulating or dielectric layer 315 can comprise any insulating or dielectric compound suspended in any of a variety of media as discussed above and below. In an exemplary embodiment, the insulating or dielectric layer 315 comprises a methylcellulose resin in an amount ranging from about 0.5% to 15%, or more particularly from about 1.0% to about 8.0%, or more particularly In the range of from about 3.0% to about 6.0%, or more particularly from about 4.5% to about 5.5%, such as E-3 "methocel" available from Dow Chemical; and a surfactant, The amount is in the range of about 0.1% to 1.5%, or more particularly in the range of about 0.2% to about 1.0%, or more particularly in the range of about 0.4% to about 0.6%, such as 0.5% BYK 381 from BYK Chemie GmbH. Suspending in the following solvent: the first solvent, in an amount ranging from about 0.01% to 0.5%, or more particularly from about 0.05% to about 0.25%, or more particularly from about 0.08% to about 0.12% , such as about 0.1% octanol; and a second solvent in an amount ranging from about 0.0% to 8%, or more particularly from about 1.0% to about 7.0%, or more particularly from about 2.0% to about 6.0% Within the range, or more particularly in the range of from about 3.0% to about 5.0%, such as about 4% IPA, the remainder is a third solvent, such as deionized water. Four to five coatings were deposited with the E-3 formulation to form an insulating or dielectric layer 315 having a total thickness of approximately 6 microns to 10 microns, with each coating cured at about 110 ° C for about 5 minutes. In other exemplary embodiments, dielectric layer 315 may be IR (infrared) cured, uv cured, or both. In other exemplary embodiments, different dielectric formulations may be applied in different layers to form an insulating or dielectric layer 315; for example, without limitation, coating is available from Henkel Corporation of Dusseldorf, Germany. The first layer of solvent-based transparent dielectric formation, such as Henkel BIK-20181-40A, Henkel BIK-20181-40B, and/or Henkel BIK-20181-24B, followed by the water-based E described above The -3 formulation forms a dielectric layer 315. In other exemplary embodiments, other dielectric compounds are commercially available from Henkel and can be used equivalently, such as in dielectric ink example 8. Dielectric layer 315 can be transparent, but can also include, for example, without limitation, relatively low concentrations of light diffusing, scattering, or reflective particles, as well as thermally conductive particles such as alumina. In various exemplary embodiments, the dielectric ink will also wet the upper surface of the diode 100-100L, causing at least some of the first terminal 125 or the second side (back) of the diode 100-100K (viewing orientation) The exposure is followed by subsequent contact with the second conductor 320.

在例示性介電墨水中可使用一或多種例示性溶劑,例如(但不限於):水;醇,諸如甲醇、乙醇、正丙醇(包括 1-丙醇、2-丙醇(異丙醇)、1-甲氧基-2-丙醇)、異丁醇、正丁醇(包括1-丁醇、2-丁醇)、正戊醇(包括1-戊醇、2-戊醇、3-戊醇)、正辛醇(包括1-辛醇、2-辛醇、3-辛醇);醚,諸如甲基乙基醚、乙醚、乙基丙基醚及聚醚;酯,諸如乙酸乙酯、己二酸二甲酯、丙二醇單甲醚乙酸酯、戊二酸二甲酯、丁二酸二甲酯、乙酸甘油酯、二元酯(例如Invista DBE-9);酯,諸如乙酸乙酯;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸酯、PM乙酸酯(丙二醇單甲醚乙酸酯)、二丙二醇單甲醚、乙二醇單丁醚乙酸酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、四氫呋喃(THF)、二甲基甲醯胺(DMF)、N-甲基甲醯胺(NMF)、二甲亞碸(DMSO);及其混合物。除水溶性樹脂之外,亦可使用其他基於溶劑之樹脂。可使用一或多種增稠劑,例如黏土,諸如鋰膨潤石黏土、膨潤土黏土、有機改質黏土;醣及多醣,諸如瓜爾膠、三仙膠;纖維素及改質纖維素,諸如羥甲基纖維素、甲基纖維素、乙基纖維素、丙基甲基纖維素、甲氧基纖維素、甲氧基甲基纖維素、甲氧基丙基甲基纖維素、羥丙基甲基纖維素、羧甲基纖維素、羥乙基纖維素、乙基羥乙基纖維素、纖維素醚、纖維素乙醚、聚葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酯聚合物及共聚物、聚乙烯吡咯啶酮、聚乙二醇、聚乙酸乙烯酯(PVA)、聚乙烯醇、聚丙烯酸、聚氧化乙烯、聚乙烯醇縮丁醛(PVB);二乙二醇、丙二醇、2-乙基

Figure TWI615994BD00002
唑啉、煙霧狀二氧化矽(諸如矽石粉)、二氧化矽粉; 以及改質尿素,諸如BYK® 420(可自BYK Chemie獲得)。可使用其他黏度調節劑,以及添加粒子以控制黏度,如Lewis等人之專利申請公開案第US 2003/0091647號中所述。亦可使用例如助流劑或界面活性劑,諸如辛醇及埃默拉爾德高效能材料公司(Emerald Performance Materials)之Foamblast 339。在其他例示性具體實例中,一或多種絕緣體135可為聚合物,諸如在去離子水中包含通常12%以下之PVA或PVB。 One or more exemplary solvents may be used in the exemplary dielectric inks such as, but not limited to, water; alcohols such as methanol, ethanol, n-propanol (including 1-propanol, 2-propanol (isopropanol) ), 1-methoxy-2-propanol), isobutanol, n-butanol (including 1-butanol, 2-butanol), n-pentanol (including 1-pentanol, 2-pentanol, 3 -pentanol), n-octanol (including 1-octanol, 2-octanol, 3-octanol); ethers such as methyl ethyl ether, diethyl ether, ethyl propyl ether and polyether; esters such as acetic acid Ethyl ester, dimethyl adipate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, glycerol acetate, dibasic esters (eg Invista DBE-9); esters, such as Ethyl acetate; glycols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ethers, glycol ether acetate, PM acetate (propylene glycol monomethyl ether acetate) , dipropylene glycol monomethyl ether, ethylene glycol monobutyl ether acetate; carbonate, such as propyl carbonate; glycerin, such as glycerin; acetonitrile, tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), dimethyl hydrazine (DMSO); Compound. Other solvent-based resins may be used in addition to the water-soluble resin. One or more thickeners may be used, such as clay, such as lithium bentonite clay, bentonite clay, organically modified clay; sugars and polysaccharides such as guar gum, santillac gum; cellulose and modified cellulose, such as hydroxymethyl Cellulose, methylcellulose, ethylcellulose, propylmethylcellulose, methoxycellulose, methoxymethylcellulose, methoxypropylmethylcellulose, hydroxypropylmethyl Cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, cellulose ether, cellulose ether, polyglucamine; polymer, such as acrylate and (meth) acrylate polymerization And copolymers, polyvinylpyrrolidone, polyethylene glycol, polyvinyl acetate (PVA), polyvinyl alcohol, polyacrylic acid, polyethylene oxide, polyvinyl butyral (PVB); diethylene glycol, Propylene glycol, 2-ethyl
Figure TWI615994BD00002
Oxazoline, aerosolized cerium oxide (such as vermiculite powder), cerium oxide powder; and modified urea, such as BYK® 420 (available from BYK Chemie). Other viscosity modifiers can be used, as well as the addition of particles to control the viscosity, as described in US Patent Application Publication No. US 2003/0091647, the disclosure of which is incorporated herein. It is also possible to use, for example, a flow aid or a surfactant such as octanol and Foamblast 339 from Emerald Performance Materials. In other exemplary embodiments, the one or more insulators 135 can be a polymer, such as containing typically less than 12% PVA or PVB in deionized water.

在沉積絕緣或介電層315之後,沉積一或多個第二導體320(例如經由印刷導電墨水、聚合物或其他導體,諸如金屬),其可為上文所論述之任何類型之導體、導電墨水或聚合物,或可為光學透射性(或透明)導體,以與二極體100-100L之暴露或非絕緣部分(一般為二極體100-100L之第一端子125,呈第一定向)形成歐姆接觸。一或多個光學透射性第二導體320之濕膜厚度大致為約6微米至18微米且乾燥或固化之膜厚度大致為約0.1微米至0.4微米,且光學不透明之一或多個第二導體320(諸如Acheson 725A導電銀)之濕膜厚度一般大致為約14微米至18微米且乾燥或固化之膜厚度大致為約5微米至8微米。舉例而言,光學透射性第二導體可沉積為單個連續層(形成單個電極),諸如用於照明或光電應用。對於上述顛倒構造,且對於裝置700具體實例,第二導體320無需具光學透射性(儘管其可具光學透射性)以允許光自裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、 760、770之頂面及底面進入或離開。光學透射性第二導體320可包含如下任何化合物,該化合物:(1)具有足夠導電性以使裝置300通電或自其第一或上端部分接收能量(且可能必要或需要時,一般具有足夠低之電阻或阻抗以降低或最小化功率損耗及熱生成);且(2)對於所選波長之電磁輻射(諸如可見光譜之部分)具有至少預定或所選之透明度或透射度。形成光學透射性或非透射性第二導體320之材料的選擇可視裝置300、700之所選應用且視視情況存在之一或多個第三導體之利用而不同。諸如藉由使用如印刷或塗佈技術中已知或即將知曉之印刷或塗佈製程將一或多個第二導體320沉積於二極體100-100L之暴露及/或非絕緣部分上,及/或亦沉積於任何絕緣或介電層315上,其中可能必要或需要時,提供適當控制以達成任何所選之對準或對齊。 After depositing the insulating or dielectric layer 315, one or more second conductors 320 are deposited (eg, via printed conductive ink, polymer or other conductor, such as a metal), which may be any type of conductor discussed above, conductive Ink or polymer, or may be an optically transmissive (or transparent) conductor, with the exposed or non-insulated portion of the diode 100-100L (generally the first terminal 125 of the diode 100-100L, the first set To form an ohmic contact. The one or more optically transmissive second conductors 320 have a wet film thickness of from about 6 microns to about 18 microns and a dried or cured film thickness of from about 0.1 microns to about 0.4 microns, and one or more optically opaque second conductors 320 (such as Acheson 725A conductive silver) typically has a wet film thickness of from about 14 microns to about 18 microns and a dried or cured film thickness of from about 5 microns to about 8 microns. For example, the optically transmissive second conductor can be deposited as a single continuous layer (forming a single electrode), such as for illumination or optoelectronic applications. For the reverse configuration described above, and for the device 700 embodiment, the second conductor 320 need not be optically transmissive (although it may be optically transmissive) to allow light from the device 300, 300A, 300B, 300C, 300D, 700, 700A, 700B , 720, 730, 740, 750, The top and bottom surfaces of 760, 770 enter or leave. The optically transmissive second conductor 320 can comprise any compound that: (1) has sufficient electrical conductivity to energize the device 300 or receive energy from its first or upper end portion (and may or may not be necessary, generally low enough) The resistance or impedance to reduce or minimize power loss and heat generation; and (2) at least a predetermined or selected transparency or transmittance for electromagnetic radiation of a selected wavelength, such as a portion of the visible spectrum. The choice of material forming the optically transmissive or non-transmissive second conductor 320 may vary depending on the selected application of the device 300, 700 and the use of one or more third conductors as the case may be. Depositing one or more second conductors 320 on the exposed and/or non-insulated portions of the diodes 100-100L, such as by using a printing or coating process known or to be known in the art of printing or coating, and It is also deposited on any insulating or dielectric layer 315 where appropriate control may be provided to achieve any selected alignment or alignment, as necessary or desired.

舉例而言,用於形成一或多個第二導體320之例示性透明導電墨水可包含約0.4%至3.0%銀奈米纖維(或3.0%以上,在其他具體實例中)、約2%至4%聚乙烯吡咯啶酮(MW為100萬)、0.5%至2%冰乙酸,其餘部分為1-丁醇及/或環己醇。 For example, an exemplary transparent conductive ink used to form one or more second conductors 320 can comprise from about 0.4% to 3.0% silver nanofibers (or 3.0% or more, in other embodiments), about 2% to 4% polyvinylpyrrolidone (MW is 1 million), 0.5% to 2% glacial acetic acid, and the remainder is 1-butanol and/or cyclohexanol.

在一例示性具體實例中,除上文所述之導體之外,可使用碳奈米管(CNT)、奈米粒子或奈米纖維銀、聚乙烯-二氧噻吩(例如AGFA Orgacon)、聚-3,4-伸乙二氧基噻吩與聚苯乙烯磺酸之組合(以Baytron P出售且可自Leverkusen,Germany之Bayer AG獲得)、聚苯胺或聚吡咯 聚合物、氧化銦錫(ITO)及/或氧化銻錫(ATO)(其中ITO或ATO通常以粒子形式懸浮於先前所論述之各種黏合劑、聚合物或載劑中之任一者中)來形成光學透射性第二導體320。在一例示性具體實例中,碳奈米管懸浮於含界面活性劑之揮發性液體中,諸如可自Norman,Oklahoma,USA之SouthWest NanoTechnologies公司獲得之碳奈米管組成物。另外,阻抗或電阻相對較低之一或多個第三導體(未作單獨說明)併入或可併入相應透射性第二導體320中。舉例而言,為形成一或多個第三導體,可使用印刷於透射性第二導體320之相應部分或層上之導電墨水或聚合物(例如銀墨水、CNT或聚乙烯-二氧噻吩聚合物)形成一或多個精細導線,或可使用印刷於較大顯示器中之較大整體透明第二導體320上之導電墨水或聚合物形成一或多個精細導線(例如具有網格或梯形圖案)。 In an exemplary embodiment, in addition to the conductors described above, carbon nanotubes (CNT), nanoparticle or nanofiber silver, polyethylene-dioxythiophene (eg, AGFA Orgacon), poly a combination of -3,4-extended ethylenedioxythiophene with polystyrenesulfonic acid (available from Baytron P and available from Bayer AG of Leverkusen, Germany), polyaniline or polypyrrole Polymer, indium tin oxide (ITO) and/or antimony tin oxide (ATO) (wherein ITO or ATO is typically suspended in the form of particles in any of the various binders, polymers or carriers previously discussed) An optically transmissive second conductor 320 is formed. In an exemplary embodiment, the carbon nanotubes are suspended in a volatile liquid containing a surfactant such as a carbon nanotube composition available from South West NanoTechnologies, Inc. of Norman, Oklahoma, USA. Additionally, one or more third conductors (not separately illustrated) having relatively low impedance or resistance are incorporated or may be incorporated into the respective transmissive second conductor 320. For example, to form one or more third conductors, a conductive ink or polymer printed on a corresponding portion or layer of the second conductive conductor 320 (eg, silver ink, CNT, or polyethylene-dioxythiophene polymerization) can be used. Forming one or more fine wires, or forming one or more fine wires (eg, having a grid or trapezoidal pattern) using conductive ink or polymer printed on a larger, unitary transparent second conductor 320 in a larger display ).

可等效地用於形成實質上光學透射性第二導體320之其他化合物包括如上所述之氧化銦錫(ITO),及此項技術中當前已知或可能即將知曉之其他透射性導體,包括一或多種上文所論述之導電聚合物,諸如可以商標名「Orgacon」得到之聚乙烯-二氧噻吩,及各種基於碳及/或碳奈米管之透明導體。代表性透射性導電材料可例如得自DuPont,諸如7162及7164 ATO半透明導體。透射性第二導體320亦可與各種黏合劑、聚合物或載劑組合,包括先前所論述之黏合劑、聚合物或載劑,諸如在各種條件下可固化(諸如暴露於紫外線輻射可固化(uv可固化))之黏合劑。 Other compounds that are equivalently used to form the substantially optically transmissive second conductor 320 include indium tin oxide (ITO) as described above, and other transmissive conductors currently known or likely to be known in the art, including One or more of the conductive polymers discussed above, such as polyethylene-dioxythiophene available under the trade name "Orgacon", and various transparent conductors based on carbon and/or carbon nanotubes. Representative transmissive conductive materials can be obtained, for example, from DuPont, such as 7162 and 7164 ATO translucent conductors. The transmissive second conductor 320 can also be combined with various binders, polymers or carriers, including the previously discussed binders, polymers or carriers, such as being curable under various conditions (such as exposure to ultraviolet radiation curable ( Uv can be cured)) adhesive.

可能必要或需要時,視情況存在之穩定化層335可沉積於第二導體320上,且用於保護第二導體320以防止發光(或發射)層325或任何插入保形塗層使第二導體320之導電性降級。可使用由下文(參考保護塗層330)論述之任何墨水、化合物或塗料形成之一或多個比較薄之塗層,諸如Nazdar 9727透明基質或DuPont 5018或紅外光可固化樹脂,諸如於環己醇中之約7%聚乙烯醇縮丁醛。另外,穩定化層335中亦可視情況包括熱耗散及/或光散射粒子。例示性穩定化層呈乾燥或固化形式時通常為約10微米至40微米。 Stabilization layer 335, as may be necessary or desired, may be deposited on second conductor 320 and used to protect second conductor 320 from illuminating (or emitting) layer 325 or any intervening conformal coating to enable second The conductivity of the conductor 320 is degraded. One or more relatively thin coatings, such as Nazdar 9727 transparent substrate or DuPont 5018 or infrared light curable resin, such as About 7% of polyvinyl butyral in the alcohol. In addition, heat dissipation and/or light scattering particles may also be included in the stabilization layer 335 as appropriate. Exemplary stabilization layers are typically from about 10 microns to 40 microns in dry or cured form.

作為可選方案,可使用碳電極322(說明為322A及322B)在密封或保護層330外部與一或多個第一導體310及一或多個第二導體320形成接觸,如對於各個例示性具體實例所說明,且有助於保護一或多個第一導體310及一或多個第二導體320免遭腐蝕及磨損。在一例示性具體實例中,使用碳墨水,諸如Acheson 440A,其濕膜厚度大致為約18微米至20微米且乾燥或固化之膜厚度大致為約7微米至10微米。 Alternatively, carbon electrodes 322 (described as 322A and 322B) may be used to form contact with one or more first conductors 310 and one or more second conductors 320 outside of sealing or protective layer 330, as for each exemplary The specific examples illustrate and help protect one or more first conductors 310 and one or more second conductors 320 from corrosion and wear. In an exemplary embodiment, a carbon ink, such as Acheson 440A, is used having a wet film thickness of from about 18 microns to 20 microns and a dried or cured film thickness of from about 7 microns to about 10 microns.

亦作為圖102及103中所說明之可選方案,可使用視情況存在之第三導電層312,且可包含本文對於一或多個第一導體310及/或一或多個第二導體320所述之任何導電材料。 Also as an alternative illustrated in FIGS. 102 and 103, a third conductive layer 312, as appropriate, may be used and may include one or more first conductors 310 and/or one or more second conductors 320 herein. Any of the electrically conductive materials described.

一或多個發光(或發射)層325(例如包含一或多個磷光體層或塗層)可沉積於穩定化層335上(或當不使用穩 定化層335時,沉積於第二導體320上),或直接沉積於裝置700具體實例之基底305A之第二面上。亦可使用多個發光(或發射)層325,如所說明,諸如裝置300、300A、300C、300D、700、700A、720、730、740、750、760、770之各側上一個發光(或發射)層325。在一例示性具體實例(諸如LED具體實例)中,例如(但不加以限制),可諸如經由上文所論述之印刷或塗佈製程將一或多個發射層325沉積於裝置300具體實例之穩定化層335之整個表面上(或當不使用穩定化層335時,沉積於第二導體320上),或直接沉積於裝置700具體實例之基底305A之第二面上,或兩者。一或多個發射層325可由任何能夠或適於回應於自二極體100-100L所發射之光(或其他電磁輻射)發射可見光譜中之光或使發射光之頻率(或任何所選頻率之其他電磁輻射)移位(例如斯托克斯移位)的物質或化合物形成。舉例而言,基於黃色磷光體之發射層325可與發射藍光之二極體100-100L一起使用以產生實質上白光。該等發光化合物包括各種磷光體,其可以各種形式中之任一者且與各種摻雜劑中之任一者一起提供。形成一或多個發射層325之發光化合物或粒子可以具有各種黏合劑之聚合物形式使用或懸浮,且亦可單獨與各種黏合劑(諸如可自DuPont或Conductive Compounds獲得之磷光體黏合劑)組合,有助於印刷或其他沉積製程,且使磷光體黏著至下伏層及後續上覆層。亦可以uv可固化或熱可固化形式提供一或多個發射層325。 One or more luminescent (or emitting) layers 325 (eg, comprising one or more phosphor layers or coatings) may be deposited on the stabilizing layer 335 (or deposited on the second conductor 320 when the stabilizing layer 335 is not used) ), or deposited directly on the second side of substrate 305A of the device 700 embodiment. Multiple illuminating (or emitting) layers 325 can also be used, as illustrated, such as on one side of each of devices 300, 300A, 300C, 300D, 700, 700A, 720, 730, 740, 750, 760, 770 (or Launch) layer 325. In an exemplary embodiment, such as a specific embodiment of an LED, such as, but not limited to, one or more emissive layers 325 may be deposited on a device 300 embodiment, such as via a printing or coating process as discussed above. The entire surface of the stabilizing layer 335 (or deposited on the second conductor 320 when the stabilizing layer 335 is not used), or deposited directly on the second side of the substrate 305A of the device 700 embodiment, or both. The one or more emissive layers 325 can be any light that can or is adapted to emit light in the visible spectrum (or any selected frequency in response to light emitted from the dipoles 100-100L (or other electromagnetic radiation). The other electromagnetic radiation is displaced by a substance or compound that is displaced (eg, Stokes shift). For example, a yellow phosphor-based emissive layer 325 can be used with the blue-emitting diode 100-100L to produce substantially white light. The luminescent compounds include various phosphors that can be provided in any of a variety of forms and with any of a variety of dopants. The luminescent compound or particle forming the one or more emissive layers 325 can be used or suspended in the form of a polymer of various binders, and can also be combined with various binders such as phosphor binders available from DuPont or Conductive Compounds. It facilitates printing or other deposition processes and adheres the phosphor to the underlying layer and subsequent overlying layers. One or more emissive layers 325 may also be provided in a uv curable or thermally curable form.

多種等效之發光或其他光發射性化合物可用且處於本發明範疇內,包括(不限於):(1)G1758、G2060、G2262、G3161、EG2762、EG 3261、EG3560、EG3759、Y3957、EY4156、EY4254、EY4453、EY4651、EY4750、O5446、O5544、O5742、O6040、R630、R650、R6733、R660、R670、NYAG-1、NYAG-4、NYAG-2、NYAG-5、NYAG-3、NYAG-6、TAG-1、TAG-2、SY450-A、SY450-B、SY460-A、SY460-B、OG450-75、OG450-27、OG460-75、OG460-27、RG450-75、RG450-65、RG450-55、RG450-50、RG450-45、RG450-40、RG450-35、RG450-30、RG450-27、RG460-75、RG460-65、RG460-55、RG460-50、RG460-45、RG460-40、RG460-35、RG460-30及RG460-27,可自Fremont,California,USA之Intematix獲得;(2)13C1380、13D1380、14C1220及GG-84,可自Towanda,Pennsylvania,USA之Global Tungsten & Powders公司獲得;(3)FL63/S-D1、HPL63/F-F1、HL63/S-D1、QMK58/F-U1、QUMK58/F-D1、KEMK63/F-P1、CPK63/N-U1、ZMK58/N-D1及UKL63/F-U1,可自Herts,England之Phosphor Technology有限公司獲得;(4)BYW01A/PTCW01AN、BYW01B/PTCW01BN、BUVOR02、BUVG01、BUVR02、BUVY02、BUVG02、BUVR03/PTCR03及BUVY03,可自Lithia Springs,Georgia,USA之Phosphor Tech公司獲得;以及(5)Hawaii655、Maui535、Bermuda465及Bahama560,可自Princeton,New Jersey,USA之Lightscape Materials公司獲得。另外,視所選具體實例而 定,在任何該種發光(或發射)層325內可包括著色劑、染料及/或摻雜劑。在一例示性具體實例中,使用釔鋁石榴石(「YAG」)磷光體,其可自Phosphor Technology有限公司及Global Tungsten & Powders公司獲得,諸如含40% YAG之uv可固化樹脂(其濕膜及乾燥/固化膜厚度為約40至100微米),或含70% YAG之紅外光可固化樹脂-溶劑系統(諸如約5%聚乙烯醇縮丁醛於約95%環己醇中)(其濕膜厚度為約15微米至17微米且乾燥/固化膜厚度為約13微米至15微米)。另外,用於形成發射層325之磷光體或其他化合物可包括在特定光譜(諸如綠色或藍色)內發射之摻雜劑。在彼等狀況下,發射層可經印刷以界定任何既定或所選色彩(諸如RGB或CMYK)之像素以提供彩色顯示。熟習此項技術者應瞭解任何裝置300具體實例亦可包含該一或多個發射層325耦接至或沉積於穩定化層335或第二導體320上。 A wide variety of equivalent luminescent or other light emissive compounds are available and within the scope of the invention, including (without limitation): (1) G1758, G2060, G2262, G3161, EG2762, EG 3261, EG3560, EG3759, Y3957, EY4156, EY4254 , EY4453, EY4651, EY4750, O5446, O5544, O5742, O6040, R630, R650, R6733, R660, R670, NYAG-1, NYAG-4, NYAG-2, NYAG-5, NYAG-3, NYAG-6, TAG -1, TAG-2, SY450-A, SY450-B, SY460-A, SY460-B, OG450-75, OG450-27, OG460-75, OG460-27, RG450-75, RG450-65, RG450-55 , RG450-50, RG450-45, RG450-40, RG450-35, RG450-30, RG450-27, RG460-75, RG460-65, RG460-55, RG460-50, RG460-45, RG460-40, RG460 -35, RG460-30 and RG460-27, available from Intematix, Fremont, California, USA; (2) 13C1380, 13D1380, 14C1220, and GG-84, available from Global Tungsten & Powders, Inc. of Towanda, Pennsylvania, USA; (3) FL63/S-D1, HPL63/F-F1, HL63/S-D1, QMK58/F-U1, QUMK58/F-D1, KEMK63/F-P1, CPK63/N-U1, ZMK58/N-D1 And UKL63/F-U1, available from Phosphor Technology Ltd. of Herts, England; (4) BYW01A/PTCW01AN, BYW01B/PTCW01BN, BUVOR02, BUVG01, BUVR02, BUVY02, BUVG02, BUVR03/PTCR03 and BUVY03, available from Phosphor Tech of Lithia Springs, Georgia, USA; and (5) Hawaii655, Maui535, Bermuda465 and Bahama560, Available from Lightscape Materials, Inc. of Princeton, New Jersey, USA. Additionally, colorants, dyes, and/or dopants may be included in any such luminescent (or emitting) layer 325, depending on the particular embodiment selected. In an illustrative embodiment, a yttrium aluminum garnet ("YAG") phosphor is available from Phosphor Technology Co., Ltd. and Global Tungsten & Powders, such as a 40% YAG uv curable resin (the wet film thereof) And a dried/cured film thickness of about 40 to 100 microns), or an infrared light curable resin-solvent system containing 70% YAG (such as about 5% polyvinyl butyral in about 95% cyclohexanol) (which The wet film thickness is from about 15 microns to 17 microns and the dried/cured film thickness is from about 13 microns to 15 microns). Additionally, the phosphor or other compound used to form the emissive layer 325 can include a dopant that emits within a particular spectrum, such as green or blue. Under these conditions, the emissive layer can be printed to define pixels of any given or selected color (such as RGB or CMYK) to provide a color display. Those skilled in the art will appreciate that any device 300 embodiment may also include the one or more emissive layers 325 coupled to or deposited on the stabilizing layer 335 or the second conductor 320.

視用於形成一或多個第二導體320之溶劑而定,可使用視情況存在之一或多個障壁層318,如圖103中所說明,諸如以防止一或多個第二導體320之化合物穿透介電層315至一或多個第一導體310。在一例示性具體實例中,使用黏度調節劑,諸如E-10黏度調節劑或上文所論述之任何其他黏度調節劑,使其沉積以形成約100nm至200nm之固化或乾燥膜或薄膜厚度。亦可使用任何用於形成保護或密封塗層330或穩定化層335之材料來形成一或多個障壁層318。 Depending on the solvent used to form the one or more second conductors 320, one or more barrier layers 318 may be used as appropriate, as illustrated in FIG. 103, such as to prevent one or more second conductors 320. The compound penetrates the dielectric layer 315 to the one or more first conductors 310. In an exemplary embodiment, a viscosity modifier, such as an E-10 viscosity modifier or any other viscosity modifier discussed above, is deposited to form a cured or dried film or film thickness of from about 100 nm to 200 nm. One or more barrier layers 318 may also be formed using any of the materials used to form the protective or sealing coating 330 or stabilizing layer 335.

裝置300亦可包括視情況存在之保護或密封塗層330(其亦可與視情況存在之穩定化層335組合),其亦可包括任何類型之透鏡化或光漫射或分散結構或濾光片,諸如實質上透明之塑膠或其他聚合物以提供保護而免受各種因素(諸如天氣、空氣傳播之腐蝕性物質等)影響,或該種密封及/或保護功能可由發射層325所用之聚合物(樹脂或其他黏合劑)提供。為便於說明,圖76、78-82、87、88、91-98、102及103使用虛線說明該種形成保護或密封塗層330之聚合物(樹脂或其他黏合劑)以指示實質透明度。在一例示性具體實例中,使用基於胺基甲酸酯之材料(諸如可以NAZDAR 9727(www.nazdar.com)獲得之專用樹脂或可自Dusseldorf,Germany之Henkel公司獲得之uv可固化丙烯酸胺基甲酸酯PF 455 BC)沉積保護或密封塗層330作為一或多個保形塗層,達約10微米至40微米之厚度。在另一例示性具體實例中,藉由層合裝置300達成保護或密封塗層330。未作單獨說明但如相關美國專利申請案(美國專利申請案第12/560,334號、美國專利申請案第12/560,340號、美國專利申請案第12/560,355號、美國專利申請案第12/560,364號及美國專利申請案第12/560,371號,以全文引用之方式併入本文中,具有如同在本文中闡述其全文一般之相同完全效力)中所論述,複數個透鏡(懸浮於聚合物(樹脂或其他黏合劑)中)亦可直接沉積於一或多個發射層325及其他特徵上,形成各種發光裝置300具體實例中之任一者。 Device 300 may also include a protective or sealing coating 330 (which may also be combined with stabilizing layer 335 as appropriate), as appropriate, which may also include any type of lensing or light diffusing or dispersing structure or filtering A sheet, such as a substantially transparent plastic or other polymer to provide protection from various factors (such as weather, airborne corrosive materials, etc.), or such a sealing and/or protective function may be used by the emissive layer 325 for polymerization. (resin or other binder) is provided. For ease of illustration, Figures 76, 78-82, 87, 88, 91-98, 102, and 103 illustrate the polymer (resin or other adhesive) that forms the protective or sealing coating 330 using dashed lines to indicate substantial transparency. In an exemplary embodiment, a urethane-based material such as a specialty resin available from NAZDAR 9727 (www.nazdar.com) or a uv curable acrylate amine available from Henkel Corporation of Dusseldorf, Germany is used. The formate PF 455 BC) deposit protects or seals the coating 330 as one or more conformal coatings to a thickness of from about 10 microns to about 40 microns. In another exemplary embodiment, the protective coating 330 is achieved by the lamination device 300. Not separately described, but as described in the related U.S. Patent Application Serial No. 12/560,334, U.S. Patent Application Serial No. 12/560,340, U.S. Patent Application Serial No. 12/560,355, U.S. Patent Application Serial No. 12/560,364 And U.S. Patent Application Serial No. 12/560,371, the disclosure of which is hereby incorporated by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure Or other adhesives) may also be deposited directly onto one or more of the emissive layers 325 and other features to form any of the various embodiments of the various illumination devices 300.

熟習此項技術者應瞭解在所主張之本發明範疇內可使用任何數目之第一導體310、絕緣體315、第二導體320等。另外,除所說明之定向之外,任何裝置300之複數個第一導體310、一或多個絕緣體(或介電層)315及複數個第二導體320(以及任何併入之相應及視情況存在之一或多個第三導體)可能存在多種定向及組態,諸如實質上平行定向。舉例而言,複數個第一導體310可皆實質上彼此平行,且複數個第二導體320亦可皆實質上彼此平行。隨後,複數個第一導體310與複數個第二導體320可彼此垂直(界定列及行),因此其重疊區域可用於界定像元(「像素」)且可各別且獨立地定址。當複數個第一導體310及複數個第二導體320中之任一者或兩者可建構成具有預定寬度之間隔開且實質上平行之線(兩者皆界定列或兩者皆界定行)時,其亦可由列及/或行定址,例如(但不限於)對各列接連地進行順序定址)。另外,複數個第一導體310及複數個第二導體320中之任一者或兩者可建構成如上所述之層狀物或薄板。 Those skilled in the art will appreciate that any number of first conductors 310, insulators 315, second conductors 320, etc., can be utilized within the scope of the claimed invention. Additionally, a plurality of first conductors 310, one or more insulators (or dielectric layers) 315, and a plurality of second conductors 320 of any device 300, in addition to the orientation illustrated (and any incorporation and corresponding conditions, as appropriate) There may be multiple orientations and configurations, such as substantially parallel orientation, in the presence of one or more third conductors. For example, the plurality of first conductors 310 can be substantially parallel to each other, and the plurality of second conductors 320 can also be substantially parallel to each other. Subsequently, the plurality of first conductors 310 and the plurality of second conductors 320 can be perpendicular to each other (delimiting columns and rows) such that their overlapping regions can be used to define pixels ("pixels") and can be individually and independently addressed. Either or both of the plurality of first conductors 310 and the plurality of second conductors 320 may be constructed to have spaced and substantially parallel lines between predetermined widths (both defining columns or both defining rows) It may also be addressed by columns and/or rows, such as, but not limited to, sequential addressing of the columns in succession. Additionally, either or both of the plurality of first conductors 310 and the plurality of second conductors 320 may be constructed as a layer or sheet as described above.

如可自本發明所顯而易見,視複合材料(諸如基底305)之選擇而定,例示性裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770可經設計並製造成具有高度可撓性及可變形性,可能甚至可摺疊、可拉伸且可能可穿著,而非硬質的。舉例而言(但不加以限制),例示性裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770可包 含可撓性、可摺疊及可穿著之衣服或可撓性燈或壁紙燈。例示性裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770因具有該可撓性而可經輥軋(諸如海報),或如紙張一樣摺疊且在再打開時發揮完全功能。亦舉例而言,例示性裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770因具有該可撓性而可具有多種形狀及尺寸,且可經組態以用於多種任何風格及其他美學目標。該例示性裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770亦比先前技術器件具有顯著更大之彈性,易破碎性及脆性比(例如)典型之大螢幕電視小得多。 As can be apparent from the present disclosure, exemplary devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, depending on the choice of composite material, such as substrate 305, The 770 can be designed and manufactured to be highly flexible and deformable, and may even be foldable, stretchable, and possibly wearable, rather than rigid. By way of example, and not limitation, exemplary devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 may be included Includes flexible, foldable and wearable clothing or flexible or wallpaper lights. The exemplary devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 may be rolled (such as a poster) or have a paper like this with this flexibility. Fold and fully functional when reopened. Also for example, the exemplary devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 can have a variety of shapes and sizes due to the flexibility, and Can be configured for any of a variety of styles and other aesthetic goals. The exemplary devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 also have significantly greater flexibility, fragility and brittleness ratios than prior art devices ( For example, a typical large screen TV is much smaller.

如上所示,複數個二極體100-100L可經組態(經由材料選擇及相應摻雜)為例如(但不限於)光電(PV)二極體或LED。圖84為第一例示性系統350具體實例之方塊圖,其中複數個二極體100-100L建構成任何類型或色彩之LED。系統350包含發光裝置300A、300C、300D、300C、300D、700A(及二極體為LED之任何裝置720、730、740、750、760、770)、可耦接至電源340(諸如AC線或DC電池組)之介面電路355及視情況存在之控制器345(具有控制邏輯電路360及視情況存在之記憶體365)。(裝置300A在其他方面一般與裝置300相同,但具有複數個建構成LED之二極體100-100L,且對於裝置300C、300D具體實例,具有雙側,且同樣,裝置700A在其他方面一般與裝置700 相同,但具有複數個建構成LED之二極體100-100L。)當諸如經由施加相應電壓(例如,自電源340)使一或多個第一導體310及一或多個第二導體320(或第三導體312)通電時,能量將供應至複數個LED(二極體100-100L)中之一或多者,完全越過裝置300A、300C、300D、300C、300D、700A、720、730、740、750、760、770(當導體及絕緣體各自建構成單個層時),或於通電之第一導體310與第二導體320之相應相交處(重疊區),該等相交處視其定向及組態界定例如像素、薄板或列/行。因此,藉由選擇性地使第一導體310及第二導體320通電,裝置300A(及/或系統350)提供像素可定址性動態顯示器或照明器件或標牌等。舉例而言,複數個第一導體310可包含相應複數列,且複數個透射性第二導體320包含相應複數行,其中各像素由相應列與相應行之相交或重疊所界定。當複數個第一導體310及複數個第二導體320中之任一者或兩者可建構為如圖76-82、87、88、91-98、102、103中所說明時,亦例如,使導體310、320通電將為實質上所有(或大部分)複數個LED(二極體100-100L)提供電力,諸如以使照明器件或靜態顯示器(諸如標牌)發光。該像素計數可能相當高,遠高於典型高清晰度水準。 As indicated above, the plurality of diodes 100-100L can be configured (via material selection and corresponding doping) to be, for example, but not limited to, a photovoltaic (PV) diode or LED. Figure 84 is a block diagram of a first exemplary embodiment 350 in which a plurality of diodes 100-100L are constructed to form LEDs of any type or color. System 350 includes illumination devices 300A, 300C, 300D, 300C, 300D, 700A (and any device 720, 730, 740, 750, 760, 770 whose LEDs are LEDs), can be coupled to a power source 340 (such as an AC line or The interface circuit 355 of the DC battery pack and the controller 345 (which has the control logic circuit 360 and the memory 365 as the case exists) as the case may be. (Device 300A is generally identical to device 300 in other respects, but has a plurality of diodes 100-100L that are constructed to form LEDs, and for the specific examples of devices 300C, 300D, have two sides, and again, device 700A is otherwise Device 700 The same, but with a plurality of diodes 100-100L built into the LED. When one or more first conductors 310 and one or more second conductors 320 (or third conductors 312) are energized, such as by applying a respective voltage (eg, from power source 340), energy is supplied to the plurality of LEDs ( One or more of the diodes 100-100L) completely pass over the devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770 (when the conductor and the insulator are each formed into a single layer) And at a corresponding intersection (overlap region) of the first conductor 310 and the second conductor 320 that are energized, the intersections defining, for example, pixels, sheets or columns/rows depending on their orientation and configuration. Thus, by selectively energizing the first conductor 310 and the second conductor 320, the device 300A (and/or system 350) provides a pixel addressable dynamic display or illumination device or signage or the like. For example, the plurality of first conductors 310 can comprise respective complex columns, and the plurality of transmissive second conductors 320 can comprise respective complex rows, wherein each pixel is defined by the intersection or overlap of the respective columns with respective rows. When either or both of the plurality of first conductors 310 and the plurality of second conductors 320 can be constructed as illustrated in Figures 76-82, 87, 88, 91-98, 102, 103, for example, Powering the conductors 310, 320 will provide power to substantially all (or most) of the plurality of LEDs (diodes 100-100L), such as to illuminate a lighting device or static display, such as a signage. This pixel count can be quite high, well above typical high definition levels.

繼續參考圖84,裝置300A、300C、300D、300C、300D、700A、720、730、740、750、760、770經由介面電路355耦接至電源340,且亦視情況耦接至控制器345,該電源340可為DC電源(諸如電池組或光電電池)或AC電源(諸如 家用或建築電力)。介面電路355可以多種方式具體化,諸如全波整流器或半波整流器、阻抗匹配電路、減少DC漣波之電容器、耦接至AC線之開關電源等,且可包括例如(但不限於)多種控制二極體100-100L之通電的組件(未作單獨說明)。當控制器345經建構諸如用於可定址發光顯示系統350具體實例及/或動態發光顯示系統350具體實例時,控制器345可如電子技術中已知或即將知曉用於控制二極體100-100L之通電(經由各種複數個第一導體310及複數個透射性第二導體320),且通常包含控制邏輯電路360(其可為組合邏輯電路、有限狀態機、處理器等)及記憶體365。亦可使用其他輸入/輸出(I/O)電路。當未建構控制器345,諸如用於各種照明系統350具體實例(其通常不可定址及/或為非動態發光顯示系統350具體實例)時,系統350通常耦接至電開關或電子開關(未作單獨說明),該電開關或電子開關可包含任何適合類型之開關佈置,諸如用於照明系統開啟、關閉及/或減光。下文在論述圖100-103、85及86之後更詳細論述控制邏輯電路360、記憶體365。 Continuing to refer to FIG. 84, the devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770 are coupled to the power source 340 via the interface circuit 355, and are also coupled to the controller 345 as appropriate. The power source 340 can be a DC power source (such as a battery pack or a photovoltaic cell) or an AC power source (such as Household or building electricity). The interface circuit 355 can be embodied in a variety of ways, such as a full wave rectifier or a half wave rectifier, an impedance matching circuit, a capacitor that reduces DC chopping, a switching power supply coupled to an AC line, and the like, and can include, for example, but not limited to, various controls Diode 100-100L energized components (not separately stated). When the controller 345 is constructed, such as for a specific example of the addressable illuminating display system 350 and/or the dynamic illuminating display system 350, the controller 345 can be known or soon to be known in electronic technology for controlling the diode 100- 100L energization (via various plurality of first conductors 310 and a plurality of transmissive second conductors 320), and typically includes control logic circuitry 360 (which may be a combinational logic circuit, finite state machine, processor, etc.) and memory 365 . Other input/output (I/O) circuits can also be used. When controller 345 is not constructed, such as for various illumination system 350 embodiments (which are typically not addressable and/or are non-dynamic illumination display system 350 specific examples), system 350 is typically coupled to an electrical switch or an electronic switch (not made) As stated separately, the electrical switch or electronic switch can comprise any suitable type of switch arrangement, such as for lighting system to turn on, off, and/or dim. Control logic circuit 360, memory 365 is discussed in more detail below after discussing Figures 100-103, 85, and 86.

介面電路355可如此項技術中已知或可能即將知曉來建構,且可包括阻抗匹配能力、電壓整流電路、使低電壓處理器與例如較高電壓控制匯流排成介面之電壓轉換、回應於自控制邏輯電路360之傳信開啟或關閉各種線或連接器之各種開關機構(例如電晶體)及/或物理耦接機構。另外,介面電路355亦可經調適例如以諸如經由硬連線或RF傳信以自系統350外部接收及/或傳輸信號,例如以接收即 時資訊來控制動態顯示器,或亦例如以控制光輸出之亮度(減光)。介面電路355A亦可為獨立器件(例如模組)且可由例如與經組態以搭扣連接至、旋擰至、鎖接至或以其他方式耦接至介面電路355A之裝置760、770再使用,因此介面電路355A可隨時間推移由多個替換裝置760、770重複使用。 The interface circuit 355 can be constructed as known in the art or may be known to be known, and can include impedance matching capability, voltage rectification circuitry, voltage conversion to interface the low voltage processor to, for example, a higher voltage control bus, in response to The signaling of control logic 360 turns on or off various switching mechanisms (e.g., transistors) and/or physical coupling mechanisms of various lines or connectors. In addition, the interface circuit 355 can also be adapted to receive and/or transmit signals from outside the system 350, such as via hardwired or RF signaling, for example, to receive Time information to control the dynamic display, or for example to control the brightness of the light output (dimmer). The interface circuit 355A can also be a stand-alone device (eg, a module) and can be reused, for example, by means 760, 770 that are configured to be snap-connected, screwed, latched, or otherwise coupled to the interface circuit 355A. Thus, the interface circuit 355A can be reused by the plurality of replacement devices 760, 770 over time.

舉例而言,如圖100中所說明,例示性系統具體實例800、810包含裝置760(若使用二極體100-100K建構)或裝置770(若使用二極體100L建構)(其中複數個二極體100-100L為發光二極體),及介面電路355以配合燈泡之各種標準淺圓螺紋插座(Edison socket)中之任一者。繼續舉例而言(但不加以限制),介面電路355可訂定尺寸且成型以符合一或多個標準化螺旋組態,諸如E12、E14、E26及/或E27螺旋座標準,諸如中型螺旋座(E26)或燭台形螺旋座(candelabra screw base)(E12),及/或由例如美國國家標準協會(American National Standards Institute,「ANSI」)及/或照明工程學會(Illuminating Engineering Society)所發佈之其他各種標準。在其他例示性具體實例中,介面電路355可訂定尺寸且成型以符合例如(但不限於)標準螢光燈泡插座或雙插塞插座,諸如GU-10插座。該種例示性系統具體實例亦可等效地視作另一類型之裝置,當具有適於插入例如(但不限於)淺圓螺紋插座或螢光插座中之形態因數時尤其如此。 For example, as illustrated in FIG. 100, exemplary system specific examples 800, 810 include device 760 (if diode 100-100K is used) or device 770 (if diode 100L is used) (in which a plurality of two) The polar body 100-100L is a light emitting diode), and the interface circuit 355 is adapted to match any of the various standard Edison sockets of the light bulb. Continuing by way of example, and not limitation, interface circuit 355 can be sized and shaped to conform to one or more standardized helical configurations, such as E12, E14, E26, and/or E27 spiral mount standards, such as a medium-sized screw seat ( E26) or candelabra screw base (E12), and/or other publications issued by, for example, the American National Standards Institute ("ANSI") and/or the Illuminating Engineering Society Various standards. In other exemplary embodiments, the interface circuit 355 can be sized and shaped to conform to, for example, but not limited to, a standard fluorescent light bulb socket or a dual plug socket, such as a GU-10 socket. Such exemplary system embodiments may also be equivalently considered as another type of device, particularly when having a form factor suitable for insertion into, for example, but not limited to, a shallow circular socket or a fluorescent socket.

舉例而言,基於LED之「燈泡」可形成為具有類似於 傳統白熾電燈泡之設計,具有螺旋型連接件作為介面電路355之一部分,諸如ES、E27、SES或E14,其可經調適以與任何電源插座類型連接,例如(但不限於)L1、PL-2插腳、PL-4插腳、G9鹵素膠囊燈(halogen capsule)、G4鹵素膠囊燈、GU10、GU5.3、卡口、小卡口或此項技術中已知之任何其他連接件。 For example, an LED-based "bulb" can be formed to have a similar A conventional incandescent light bulb design having a helical connector as part of the interface circuit 355, such as ES, E27, SES or E14, which can be adapted to interface with any power outlet type, such as (but not limited to) L1, PL-2 Pins, PL-4 pins, G9 halogen capsules, G4 halogen capsule lamps, GU10, GU5.3, bayonet, small bayonet or any other connector known in the art.

裝置300A、300C、300D、700及第一系統350可用於形成多種照明器件或其他照明產品,用於多種目的,用作燈泡及燈管、燈、照明器具、室內及室外照明、經組態以具有燈罩形態因數之燈、建築照明、工作或作業照明、裝飾或情調照明、頂部照明、安全照明、可減光照明、彩色照明、劇場及/或色彩可變照明、顯示照明及具有本文所提及之各種裝飾或想像形式中之任一者的照明。未作單獨說明,第一系統350一般亦包括處於系統350內之呈任何所需形狀或形式的各種機械結構以提供對裝置300A、300C、300D之足夠物理支撐。 The apparatus 300A, 300C, 300D, 700 and the first system 350 can be used to form a variety of lighting devices or other lighting products for a variety of purposes, as bulbs and lamps, lamps, lighting fixtures, indoor and outdoor lighting, configured to Lamps with lampshade form factor, architectural lighting, work or work lighting, decorative or mood lighting, overhead lighting, security lighting, dimmable lighting, color lighting, theater and/or color variable lighting, display lighting and with this article And illumination of any of a variety of decorative or imaginative forms. Without being separately illustrated, the first system 350 generally also includes various mechanical structures in any desired shape or form within the system 350 to provide sufficient physical support for the devices 300A, 300C, 300D.

參考圖100,例示性系統800包含裝置760及介面電路355A,且例示性系統810包含裝置770及介面電路355A。介面電路355A經組態以配合於標準愛迪生燈泡螺旋型插座中以耦接至標準AC電源(諸如AC總線)(未作單獨說明)。該介面電路355A通常包含整流電路以使AC電壓轉換為DC電壓,且亦可包括阻抗匹配電路及各種電容器及/或電阻器(且常包括使用電晶體建構之開關)以減少DC電壓之漣波,如LED照明及LED電力供應領域中已知。如圖102及 103中所說明,裝置760包含複數個二極體100-100K,而裝置770包含複數個二極體100L,裝置結構及材料之相應差異如上文所論述且如下文所更詳細論述。圖100亦用以說明例示性裝置(300、300A、300B、300C、300D、300C、300D、700、700A、700B、720、730、740、750、760、770)之極薄且可撓的形態因數,其已扭轉並摺疊成奇特之裝飾形式。 Referring to FIG. 100, exemplary system 800 includes device 760 and interface circuit 355A, and exemplary system 810 includes device 770 and interface circuit 355A. Interface circuit 355A is configured to fit into a standard Edison bulb spiral socket to couple to a standard AC power source (such as an AC bus) (not separately illustrated). The interface circuit 355A typically includes a rectifier circuit to convert the AC voltage to a DC voltage, and may also include an impedance matching circuit and various capacitors and/or resistors (and often including switches constructed using transistors) to reduce chopping of the DC voltage. Such as LED lighting and LED power supply are known in the field. Figure 102 and As illustrated in 103, device 760 includes a plurality of diodes 100-100K, and device 770 includes a plurality of diodes 100L. The corresponding differences in device structure and materials are discussed above and discussed in greater detail below. 100 is also used to illustrate the extremely thin and flexible form of the exemplary device (300, 300A, 300B, 300C, 300D, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770). Factor, which has been twisted and folded into a fancy decorative form.

圖101為說明裝置760、770之印刷佈局的平面圖。如所說明,裝置760、770印刷成具有極薄形態因數之平坦薄板,接著在區域716中進行刀模切割,形成比較窄之燈條717(串聯耦接,如上文所述)。電極(說明為碳電極322A、322B)提供於各末端處。接著捲曲裝置760、770且使燈條717之末端718聚集於一起且彼此重疊呈環形,通向電極322A及322B以經由介面電路355A向裝置760、770提供電力,且燈條717彼此間存在一定間隔,如圖100中所說明。 Figure 101 is a plan view illustrating the printed layout of devices 760, 770. As illustrated, the devices 760, 770 are printed as flat sheets having a very thin form factor, and then die cut in region 716 to form a relatively narrow strip 717 (series coupled, as described above). Electrodes (illustrated as carbon electrodes 322A, 322B) are provided at each end. The devices 760, 770 are then crimped and the ends 718 of the light strips 717 are brought together and overlap each other in a ring shape, leading to the electrodes 322A and 322B to provide power to the devices 760, 770 via the interface circuit 355A, and the light bars 717 are present with each other. The interval is as illustrated in FIG.

參考圖102,裝置760類似於其他所說明之裝置,其中再增加兩層,即一或多個第三導體312(其亦可使用本文所論述之任何透明或不透明導電墨水及化合物沉積為單層)及在一或多個第三導體312與一或多個第一導體310之間的另外介電層(說明為315A以使其區別於說明為315B之另一介電層)。使用一或多個第三導體312以沿燈條717之邊緣提供電力(例如電壓位準)且耦接至一或多個第二導體320(其可沉積為如上文所論述之透明導電材料層),且 提供降低裝置760之總阻抗、電流位準及功率消耗之方法,有效地充當沿各燈條717之長度的並聯匯流排。 Referring to Figure 102, device 760 is similar to other illustrated devices in which two additional layers, i.e., one or more third conductors 312 (which may also be deposited as a single layer using any of the transparent or opaque conductive inks and compounds discussed herein) And an additional dielectric layer (illustrated as 315A to distinguish it from another dielectric layer illustrated as 315B) between one or more third conductors 312 and one or more first conductors 310. One or more third conductors 312 are used to provide power (eg, voltage level) along the edge of the light strip 717 and to one or more second conductors 320 (which may be deposited as a layer of transparent conductive material as discussed above) ), and A method of reducing the total impedance, current level, and power consumption of device 760 is provided to effectively act as a parallel busbar along the length of each of the light bars 717.

參考圖103,裝置770亦類似於其他所說明之裝置,其中再增加三層:(1)一或多個第三導體312(其亦可使用本文論述之任何透明或不透明導電墨水及化合物沉積為單層);(2)在一或多個第三導體312與一或多個第二導體320之間的另外介電層(說明為315A以使其區別於說明為315B之另一介電層);及(3)如上所述沉積於介電層315B與一或多個第二導體320之間的一或多個障壁層318。使用一或多個第三導體312以沿燈條717之邊緣提供電力(例如電壓位準)且耦接至一或多個第一導體310,且亦提供降低裝置770之總阻抗、電流位準及功率消耗之方法,亦有效地充當沿各燈條717之長度的並聯匯流排。 Referring to Figure 103, device 770 is also similar to other illustrated devices in which three additional layers are added: (1) one or more third conductors 312 (which may also be deposited using any of the transparent or opaque conductive inks and compounds discussed herein) (2) another dielectric layer between one or more third conductors 312 and one or more second conductors 320 (illustrated as 315A to distinguish it from another dielectric layer designated 315B) And (3) one or more barrier layers 318 deposited between the dielectric layer 315B and the one or more second conductors 320 as described above. One or more third conductors 312 are used to provide power (eg, voltage level) along the edge of the light strip 717 and coupled to the one or more first conductors 310, and also provide a total impedance, current level of the reduction device 770. And the method of power consumption is also effective as a parallel busbar along the length of each of the light bars 717.

各種光輸出水準中之任一者可由裝置300A、300C、300D、300C、300D、700A、720、730、740、750、760、770提供,且一般將基於所用二極體100-100L之濃度、第一系統350中所用之裝置300A、300C、300D、300C、300D、700A、720、730、740、750、760、770之數目、所選或允許之功率消耗及施加電壓及/或電流位準而變化。在一例示性具體實例中,裝置300A、300C、300D、300C、300D、700A、720、730、740、750、760、770可提供例如(但不限於)約25流明至1300流明範圍內之光輸出,視功率消耗、二極體100-100L之濃度或密度、二極體100-100L之電流位準(亦即驅動二極體100-100L之難度)、總阻抗位準等 而定。 Any of a variety of light output levels may be provided by devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770, and will generally be based on the concentration of the diodes 100-100L used, Number of devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770 used in the first system 350, selected or allowed power consumption, and applied voltage and/or current levels And change. In an exemplary embodiment, devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770 can provide, for example, but not limited to, light in the range of about 25 lumens to 1300 lumens. Output, depending on power consumption, concentration or density of diode 100-100L, current level of diode 100-100L (that is, difficulty of driving diode 100-100L), total impedance level, etc. And set.

如上所示,複數個二極體100-100L亦可經組態(經由材料選擇及相應摻雜)為光電(PV)二極體。圖85為第二例示性系統375具體實例之方塊圖,其中二極體100-100L建構成光電(PV)二極體。系統375包含裝置300B、700B(其在其他方面一般與裝置300、700(或任何其他所說明之裝置)相同,但具有複數個建構成光電(PV)二極體之二極體100-100L),且包含能量儲存器件380(諸如電池組)或介面電路385中之任一者或兩者以將電力或能量傳遞至另一系統(未作單獨說明),例如機動器件或電力設施。(在不包含介面電路385之其他例示性具體實例中,可使用其他電路組態以直接向該能量使用裝置或系統抑或能量分配裝置或系統提供能量或電力。)在系統375內,裝置300B、700B之一或多個第一導體310(或電極322A)耦接形成第一端子(諸如負或正端子),且裝置300B、700B之一或多個第二導體320(或電極322B)耦接形成第二端子(諸如相應正或負端子),其接著可耦接以連接至能量儲存器件380或介面電路385中之任一者或兩者。當光(諸如日光)入射至裝置300B、700B上時,光可集中於一或多個光電(PV)二極體100-100L上,其隨後將入射光子轉換成電子電洞對,使得第一端子及第二端子上產生輸出電壓且輸出至能量儲存器件380或介面電路385中之任一者或兩者。 As indicated above, the plurality of diodes 100-100L can also be configured (via material selection and corresponding doping) to be photovoltaic (PV) diodes. 85 is a block diagram of a second exemplary embodiment 375 in which the diodes 100-100L are constructed to form a photovoltaic (PV) diode. System 375 includes devices 300B, 700B (which are otherwise otherwise identical to devices 300, 700 (or any other described device), but having a plurality of diodes 100-100L that form a photovoltaic (PV) diode) And including either or both of energy storage device 380 (such as a battery pack) or interface circuit 385 to transfer power or energy to another system (not separately illustrated), such as a powered device or electrical facility. (In other illustrative embodiments that do not include interface circuitry 385, other circuitry configurations can be used to provide energy or power directly to the energy usage device or system or energy distribution device or system.) Within system 375, device 300B, One or more first conductors 310 (or electrodes 322A) of 700B are coupled to form a first terminal (such as a negative or positive terminal), and one or more of the devices 300B, 700B are coupled to a second conductor 320 (or electrode 322B) A second terminal, such as a respective positive or negative terminal, is formed that can then be coupled to connect to either or both of energy storage device 380 or interface circuit 385. When light, such as daylight, is incident on the device 300B, 700B, the light can be concentrated on one or more photovoltaic (PV) diodes 100-100L, which then convert the incident photons into pairs of electron holes such that the first An output voltage is generated across the terminal and the second terminal and output to either or both of the energy storage device 380 or the interface circuit 385.

應注意,當第一導體310具有圖77中所說明之相間錯雜或梳狀結構時,可使用第一導體310B使第二導體320通 電,或同樣,可接收第一導體310A及310B上所產生之電壓。 It should be noted that when the first conductor 310 has the phase-to-phase miscellaneous or comb-like structure illustrated in FIG. 77, the first conductor 310B can be used to pass the second conductor 320. Electrically, or similarly, the voltages generated on the first conductors 310A and 310B can be received.

圖86為說明用於製造裝置300、300A、300B、300C、300D、700、700A、700B、720、730、740、750、760、770之例示性方法具體實例的流程圖,且提供適用概述。自起始步驟400開始,諸如藉由印刷導電墨水或聚合物或用一或多種金屬氣相沉積、濺鍍或塗佈基底(305),繼而固化或部分固化導電墨水或聚合物,或可能移除不必要位置上沉積之金屬(視具體實施而定)將一或多個第一導體(310)沉積於基底(305)上(步驟405)。接著亦通常經由印刷或塗佈將已通常懸浮於液體、膠體或其他化合物或混合物(亦可包括複數個惰性粒子292)中(例如懸浮於二極體墨水中)之複數個二極體100-100L沉積於一或多個第一導體上(步驟410),以在複數個二極體100-100L與一或多個第一導體之間形成歐姆接觸(其亦可涉及例如(但不限於)各種化學反應、壓縮及/或加熱)。對於裝置700具體實例,如上文所論述,步驟405與410按相反次序進行。 86 is a flow chart illustrating an exemplary method embodiment for fabricating devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, and provides a suitable overview. Beginning with an initial step 400, such as by printing a conductive ink or polymer or by vapor deposition, sputtering or coating a substrate (305) with one or more metals, followed by curing or partially curing the conductive ink or polymer, or possibly moving One or more first conductors (310) are deposited on the substrate (305) except for the metal deposited at unnecessary locations (depending on the implementation) (step 405). A plurality of diodes 100 that have typically been suspended in a liquid, colloid or other compound or mixture (which may also include a plurality of inert particles 292) (e.g., suspended in a diode ink) are also typically printed or coated. 100L is deposited on the one or more first conductors (step 410) to form an ohmic contact between the plurality of diodes 100-100L and the one or more first conductors (which may also involve, for example, but not limited to) Various chemical reactions, compression and/or heating). For the device 700 embodiment, as discussed above, steps 405 and 410 are performed in reverse order.

接著將介電或絕緣材料(諸如介電墨水)沉積於複數個二極體100-100L上或周圍,諸如圍繞二極體100-100L周邊(且固化或加熱)(步驟415),形成一或多個絕緣體或介電層315。對於裝置760具體實例,未作單獨說明,可沉積一或多個第三導體312及介電層315A(作為步驟405及415),接著繼而進行另一步驟405及步驟410。對於裝置770具體實例,亦可沉積障壁層318,其亦未作單獨說明。 其次,接著將一或多個第二導體320(其可能具或可能不具光學透射性)沉積於複數個二極體100-100L上且與複數個二極體100-100L形成接觸,諸如沉積於介電層315上且圍繞二極體100-100L之上表面且固化(或加熱)(步驟420),亦在一或多個第二導體(320)與複數個二極體100-100L之間形成歐姆接觸。在例示性具體實例中,諸如對於可定址顯示器,複數個(透射性)第二導體320經定向成實質上垂直於複數個第一導體310。對於裝置770具體實例,未作單獨說明,可沉積介電層315A(作為步驟415),繼而沉積一或多個第三導體312(作為步驟405)。 A dielectric or insulating material, such as a dielectric ink, is then deposited over or around the plurality of diodes 100-100L, such as around the perimeter of the diode 100-100L (and cured or heated) (step 415), forming an A plurality of insulators or dielectric layers 315. For a specific embodiment of device 760, one or more third conductors 312 and dielectric layer 315A may be deposited (as steps 405 and 415), followed by another step 405 and step 410, unless otherwise specified. For the particular embodiment of device 770, barrier layer 318 may also be deposited, which is also not separately illustrated. Next, one or more second conductors 320 (which may or may not be optically transmissive) are then deposited on the plurality of diodes 100-100L and in contact with the plurality of diodes 100-100L, such as deposited on The dielectric layer 315 and surrounding the upper surface of the diode 100-100L and cured (or heated) (step 420), also between the one or more second conductors (320) and the plurality of diodes 100-100L An ohmic contact is formed. In an illustrative embodiment, such as for an addressable display, a plurality (transmissive) second conductors 320 are oriented substantially perpendicular to the plurality of first conductors 310. For a specific embodiment of device 770, dielectric layer 315A (as step 415) may be deposited, followed by deposition of one or more third conductors 312 (as step 405), without being separately illustrated.

作為另一可選方案,在步驟420之前或期間,可進行測試,其中移除或停用無功能或另外有缺陷之二極體100-100L。舉例而言,對於PV二極體,可用雷射或其他光源掃描部分完成之裝置的表面(第一面)且當區域(或個別二極體100-100L)不提供預期之電響應時,可使用高強度雷射或其他移除技術將其移除。亦舉例而言,對於已通電之發光二極體,可用光感測器掃描表面(第一面),且當區域(或個別二極體100-100L)不提供預期之光輸出及/或汲取過量電流(亦即電流超過預定量)時,亦可使用高強度雷射或其他移除技術將其移除。視具體實施而定,諸如視如何移除無功能或有缺陷之二極體100-100L而定,該測試步驟實際上可在下文論述之步驟425、430或435之後進行。接著將穩定化層335沉積於一或多個第二導體320或如對於各個裝置所說明之其他層上(步驟425),繼而於穩 定化層上沉積發射層325(步驟430)。在裝置700具體實例中,如上所述,層325通常沉積於基底305A之第二面上。接著亦通常經由印刷將亦通常已懸浮於聚合物、黏合劑或其他化合物或混合物中以形成透鏡化或透鏡粒子墨水或懸浮液之複數個透鏡(未作單獨說明)置於或沉積於發射層上,或將包含懸浮於聚合物中之複數個透鏡的預成型透鏡面板附接至部分完成之裝置之第一面(諸如經由層合製程),繼而視情況沉積保護塗層(及/或所選色彩)(諸如經由印刷)(步驟355),且該方法可結束,返回步驟440。 As a further alternative, a test may be performed before or during step 420 in which the non-functional or otherwise defective diode 100-100L is removed or deactivated. For example, for a PV diode, the surface (first side) of the partially completed device can be scanned with a laser or other source and when the region (or individual diodes 100-100L) does not provide the expected electrical response, Remove it using high-intensity laser or other removal techniques. Also for example, for a powered LED, the surface (first side) can be scanned with a light sensor, and when the area (or individual diodes 100-100L) does not provide the desired light output and/or capture Excess current (ie, current exceeding a predetermined amount) can also be removed using high intensity laser or other removal techniques. Depending on the implementation, such as depending on how the non-functional or defective diode 100-100L is removed, the test step can actually be performed after steps 425, 430 or 435 discussed below. The stabilizing layer 335 is then deposited on one or more second conductors 320 or other layers as illustrated for the various devices (step 425), and then stabilized An emissive layer 325 is deposited on the patterned layer (step 430). In a particular embodiment of device 700, layer 325 is typically deposited on the second side of substrate 305A, as described above. A plurality of lenses (not separately illustrated) that are also typically suspended in a polymer, binder or other compound or mixture to form a lens or lens particle ink or suspension are typically placed or deposited on the emissive layer via printing. Attaching, or attaching a pre-formed lens panel comprising a plurality of lenses suspended in the polymer to a first side of the partially completed device (such as via a lamination process), and then depositing a protective coating (and/or Color is selected (such as via printing) (step 355), and the method can end, returning to step 440.

再參考圖84,控制邏輯電路360可為任何類型之控制器、處理器或控制邏輯電路,且可具體化為一或多個處理器以執行本文論述之功能性。由於本文使用術語處理器,所以處理器360可包括使用單個積體電路(「IC」),或可包括使用複數個積體電路或其他連接、排列或會集在一起之組件,諸如控制器、微處理器、數位信號處理器(「DSP」)、並行處理器、多核處理器、定製積體電路、特殊應用積體電路(「ASIC」)、現場可程式閘陣列(「FPGA」)、自適應計算IC、相關記憶體(諸如RAM、DRAM及ROM)以及其他IC及組件。因此,如本文所用之術語處理器應理解為等效地意謂且包括單個IC,或定製積體電路、ASIC、處理器、微處理器、控制器、FPGA、自適應計算IC或一些其他執行下文所論述之功能的積體電路群組之配置,及相關記憶體,諸如微處理器記憶體或其他RAM、DRAM、SDRAM、SRAM、MRAM、ROM、FLASH、EPROM或E2PROM。處 理器及其相關記憶體可經調適或組態(經由程式化、FPGA互連或硬連線)以執行本發明之方法,諸如對於動態顯示器具體實例進行選擇性像素定址,或諸如對於標牌具體實例進行列/行定址。舉例而言,方法可處理器及其相關記憶體(及/或記憶體365)及其他等效組件中程式化且儲存為一組程式指令或其他編碼(或等效組態或其他程式)用於後續在處理器可操作(亦即通電且起作用)時執行。等效地,當控制邏輯電路360可完全或部分建構成FPGA、定製積體電路及/或ASIC時,該等FPGA、定製積體電路或ASIC亦可經設計、組態及/或硬連線以執行本發明之方法。舉例而言,控制邏輯電路360可建構成處理器、控制器、微處理器、DSP及/或ASIC之配置,統稱為「控制器」或「處理器」,其分別經程式化、設計、調適或組態以連同記憶體365一起執行本發明之方法。 Referring again to FIG. 84, control logic circuit 360 can be any type of controller, processor, or control logic circuit, and can be embodied as one or more processors to perform the functionality discussed herein. As the term processor is used herein, processor 360 may include the use of a single integrated circuit ("IC"), or may include the use of a plurality of integrated circuits or other components that are connected, arranged, or gathered together, such as a controller, Microprocessor, digital signal processor ("DSP"), parallel processor, multi-core processor, custom integrated circuit, special application integrated circuit ("ASIC"), field programmable gate array ("FPGA"), Adaptive computing ICs, related memory (such as RAM, DRAM, and ROM) and other ICs and components. Accordingly, the term processor as used herein shall be understood to mean equivalently and include a single IC, or custom integrated circuit, ASIC, processor, microprocessor, controller, FPGA, adaptive computing IC, or some other The configuration of the integrated circuit group that performs the functions discussed below, and associated memory, such as microprocessor memory or other RAM, DRAM, SDRAM, SRAM, MRAM, ROM, FLASH, EPROM, or E 2 PROM. The processor and its associated memory can be adapted or configured (via stylized, FPGA interconnected or hardwired) to perform the methods of the present invention, such as selective pixel addressing for dynamic display embodiments, or such as for signage specific The instance performs column/row addressing. For example, the method may be programmed and stored as a set of program instructions or other code (or equivalent configuration or other program) in the processor and its associated memory (and/or memory 365) and other equivalent components. It is executed later when the processor is operational (ie, powered and active). Equivalently, when the control logic circuit 360 can be fully or partially constructed into an FPGA, a custom integrated circuit, and/or an ASIC, the FPGA, custom integrated circuit or ASIC can also be designed, configured, and/or hardened. Wired to perform the method of the present invention. For example, the control logic circuit 360 can be configured to form a processor, a controller, a microprocessor, a DSP, and/or an ASIC, collectively referred to as a "controller" or a "processor," which are respectively programmed, designed, and adapted. Or configured to perform the method of the present invention along with memory 365.

控制邏輯電路360及其相關記憶體可經組態(經由程式化、FPGA互連或硬連線)以控制向各種複數個第一導體310及複數個第二導體320(及視情況存在之一或多個第三導體312)通電(施加電壓),以相應控制正在顯示之資訊。舉例而言,靜態或時變顯示資訊可在控制邏輯電路360及其相關記憶體(及/或記憶體365)及其他等效組件中程式化並儲存、組態及/或硬連線為一組程式指令(或等效組態或其他程式)用於後續在控制邏輯電路360可操作時執行形式。 Control logic circuit 360 and its associated memory can be configured (via stylized, FPGA interconnect, or hardwired) to control a plurality of first conductors 310 and a plurality of second conductors 320 (and optionally one of The plurality of third conductors 312) are energized (applied voltage) to correspondingly control the information being displayed. For example, static or time-varying display information can be programmed and stored, configured, and/or hardwired into control logic circuit 360 and its associated memory (and/or memory 365) and other equivalent components. The set of program instructions (or equivalent configurations or other programs) is used to subsequently execute the form when control logic 360 is operational.

可包括資料儲存庫(或資料庫)之記憶體365可以多 種形式具體化,包括於當前已知或將來可得之任何電腦或其他機器可讀資料儲存媒體、記憶體器件或其他用於資訊儲存或通信之儲存或通信器件內,包括(但不限於)記憶體積體電路(「IC」)或積體電路之記憶體部分(諸如處理器內之常駐記憶體),其可為揮發性或非揮發性、可卸除式或不可卸除式記憶體,包括(不限於)RAM、FLASH、DRAM、SDRAM、SRAM、MRAM、FeRAM、ROM、EPROM或E2PROM,或任何其他記憶體器件形式,諸如磁性硬碟機、光碟機、磁碟或磁帶機、硬碟機、其他機器可讀儲存或記憶體媒體,諸如軟碟、CDROM、CD-RW、數位多功能光碟(DVD)或其他光記憶體,或已知或即將知曉之任何其他類型之記憶體、儲存媒體或資料儲存裝置或電路,視所選具體實例而定。另外,該種電腦可讀媒體包括任何通信媒體形式,其可使電腦可讀指令、資料結構、程式模組或其他資料具體化成資料信號或調變信號,諸如電磁或光學載波或其他傳送機構,包括任何資訊傳輸媒體,其可以有線或無線方式將資料或其他資訊編碼成信號,包括電磁、光學、聲學、RF或紅外信號等。記憶體365可經調適以儲存各種查找表、參數、係數、其他資訊及資料、(本發明軟體之)程式或指令,及其他類型之表格,諸如資料庫表。 The memory 365, which may include a data repository (or database), may be embodied in a variety of forms, including any computer or other machine readable storage medium, memory device or other information storage currently known or available in the future. Or a communication storage or communication device, including but not limited to a memory volume circuit ("IC") or a memory portion of an integrated circuit (such as resident memory in a processor), which may be volatile or non-volatile Volatile, removable or non-removable memory, including (not limited to) RAM, FLASH, DRAM, SDRAM, SRAM, MRAM, FeRAM, ROM, EPROM or E 2 PROM, or any other form of memory device, Such as magnetic hard drives, CD players, disk or tape drives, hard drives, other machine-readable storage or memory media such as floppy disks, CDROMs, CD-RWs, digital versatile discs (DVDs) or other optical memories Any other type of memory, storage medium or data storage device or circuit known or to be known, depending on the particular embodiment selected. Additionally, the computer readable medium includes any form of communication media that can embody computer readable instructions, data structures, program modules, or other data into a data signal or a modulated signal, such as an electromagnetic or optical carrier or other transport mechanism. Includes any information transmission media that can encode data or other information into signals, including electromagnetic, optical, acoustic, RF or infrared signals, either wired or wirelessly. Memory 365 can be adapted to store various lookup tables, parameters, coefficients, other information and materials, programs or instructions (of the software of the present invention), and other types of forms, such as database tables.

如上文所示,使用例如本發明之軟體及資料結構使處理器360程式化以執行本發明之方法。因此,本發明之系統及方法可具體化為提供上文所論述之該等程式化或其他指令(諸如具體化於電腦可讀媒體內之一組指令及/或元資 料)的軟體。另外,元資料亦可用於定義查找表或資料庫之各種資料結構。該軟體可呈例如(但不限於)原始碼或目標碼形式。原始碼進一步可編譯成某種形式之指令或目標碼(包括組合語言指令或組態資訊)。本發明之軟體、原始碼或元資料可具體化為任何類型之編碼,諸如C、C++、SystemC、LISA、XML、Java、Brew、SQL及其變化形式,或執行本文中所論述之功能性的任何其他類型之程式化語言,包括各種硬體定義或硬體模型化語言(例如Verilog、VHDL、RTL)及所得資料庫檔案(例如GDSII)。因此,如本文中所等效使用之「構造」、「程式構造」、「軟體構造」或「軟體」意謂且指具有任何語法或簽名之任何種類之任何程式化語言,其提供或可經解譯以提供所指定之相關功能性或方法(當具現化或載入處理器或電腦(包括例如處理器360)中且執行時)。 As indicated above, processor 360 is programmed to perform the method of the present invention using, for example, the software and data structures of the present invention. Accordingly, the systems and methods of the present invention may be embodied to provide such stylized or other instructions as discussed above (such as a set of instructions and/or elements embodied in a computer readable medium). Material). In addition, metadata can be used to define various data structures for lookup tables or databases. The software may be in the form of, for example, but not limited to, a source code or a target code. The source code can be further compiled into some form of instruction or object code (including combined language instructions or configuration information). The software, source code or metadata of the present invention may be embodied in any type of encoding, such as C, C++, SystemC, LISA, XML, Java, Brew, SQL, and variations thereof, or performing the functionality discussed herein. Any other type of stylized language, including various hardware-defined or hardware-modeled languages (such as Verilog, VHDL, RTL) and derived database files (such as GDSII). Therefore, "construction", "program construction", "software construction" or "software" as used in this context means and refers to any stylized language of any kind having any grammar or signature, which may or may be Interpret to provide the relevant functionality or method specified (when present or loaded into a processor or computer (including, for example, processor 360) and executed).

本發明之軟體、元資料或其他原始碼以及任何所得位元檔案(目標碼、資料庫或查找表)可於任何有形儲存媒體(諸如任何電腦或其他機器可讀資料儲存媒體)內具體化為電腦可讀指令、資料結構、程式模組或其他資料,諸如上文對於記憶體365所述者,例如如上所述之軟碟、CDROM、CD-RW、DVD、磁性硬碟機、光碟機或任何其他類型之資料儲存裝置或媒體。 The software, metadata or other source code of the present invention, as well as any resulting bit file (object code, database or lookup table), can be embodied in any tangible storage medium, such as any computer or other machine readable storage medium. Computer readable instructions, data structures, program modules or other materials, such as those described above for memory 365, such as a floppy disk, CDROM, CD-RW, DVD, magnetic hard drive, optical drive, or Any other type of data storage device or media.

除圖84中所說明之控制器345之外,熟習此項技術者應瞭解存在此項技術中已知之諸多等效組態、佈局、種類及類型之控制電路,其處於本發明範疇內。 In addition to the controller 345 illustrated in FIG. 84, those skilled in the art will appreciate that there are numerous equivalent configurations, arrangements, types, and types of control circuits known in the art that are within the scope of the present invention.

儘管已關於特定具體實例描述本發明,但此等具體實例僅具說明性而非限制本發明。在本文之描述中,提供許多特定細節,諸如電子組件、電子及結構連接、材料及結構變化形式之實例以充分瞭解本發明之具體實例。然而,熟習相關技術者應瞭解本發明之具體實例可在無一或多個特定細節下或以其他裝置、系統、總成、組件、材料、零件等實踐。在其他情況下,不特定展示或詳細描述熟知結構、材料或操作以避免使本發明之具體實例之態樣不明確。熟習此項技術者應進一步瞭解可使用其他或等效方法步驟,或可與其他步驟組合,或可按不同次序進行,其任何及所有者皆處於所主張之本發明範疇內。另外,各圖不按比例描繪且不應視作具限制性。 Although the present invention has been described in connection with specific embodiments, these specific examples are merely illustrative and not restrictive. In the description herein, numerous specific details are set forth, such as examples of electronic components, electronic and structural connections, materials, and structural variations, to fully understand the specific embodiments of the invention. However, those skilled in the art should understand that the specific embodiments of the invention may be practiced without one or more specific details or other devices, systems, assemblies, components, materials, parts, and the like. In other instances, well-known structures, materials, or operations are not specifically shown or described in detail to avoid obscuring aspects of the specific embodiments of the invention. Those skilled in the art will appreciate that other or equivalent method steps can be used, or can be combined with other steps, or can be performed in a different order, and any and all of them are within the scope of the claimed invention. In addition, the drawings are not to scale and should not be construed as limiting.

在本發明說明書中通篇對「一個具體實例」、「一具體實例」或一特定「具體實例」之提及意謂關於該具體實例所述之特定特徵、結構或特性包括於至少一個具體實例中而未必包括於所有具體實例中,且此外,未必指同一具體實例。此外,任何特定具體實例之特定特徵、結構或特性可與一或多個其他具體實例以任何適合方式組合且組合成任何適合組合,包括使用所選特徵而不相應使用其他特徵。另外,可作出多種修改以使特定應用、情況或材料適於本發明之基本範疇及精神。應瞭解,根據本文中之教示有可能對本文中所描述及說明之本發明具體實例作出其他變化及修改,且該等變化及修改將視作本發明精神及範疇的一部分。 References to "a specific example", "an embodiment", or a particular "specific" or "a" It is not necessarily included in all specific examples, and in addition, does not necessarily refer to the same specific example. In addition, the particular features, structures, or characteristics of any particular embodiment may be combined and combined in any suitable manner with any one or more other embodiments in any suitable combination, including the use of the selected features without the use of other features. In addition, many modifications may be made to adapt a particular application, situation or material to the basic scope and spirit of the invention. It is to be understood that various changes and modifications may be made to the embodiments of the invention described and illustrated herein.

亦應瞭解,圖中所描繪之一或多個元件亦可以較各別或完整之方式建構,或甚至在某些狀況下可移除或使其不可操作,根據特定應用可能適用。整體成形之組件組合亦在本發明範疇內,尤其對於個別組件分離或組合不清楚或難辨別之具體實例。另外,本文中使用術語「耦接」(包括其各種形式,諸如「可耦接」)意謂且包括任何直接或間接電、結構或磁耦接、連接或附接,或該直接或間接電、結構或磁耦接、連接或附接之適合性或能力,包括整體成形之組件及經或經由另一組件耦接之組件。 It should also be understood that one or more of the elements depicted in the figures may be constructed in a different or complete manner, or even in some cases may be removed or rendered inoperable, depending on the particular application. Integrally formed component combinations are also within the scope of the invention, particularly for specific examples in which individual components are separated or unclear or difficult to discern. Also, as used herein, the term "coupled" (including its various forms, such as "coupled") means and includes any direct or indirect electrical, structural or magnetic coupling, connection or attachment, or direct or indirect electrical. The suitability or ability of a structural or magnetic coupling, connection or attachment, including integrally formed components and components coupled via or via another component.

如本文中出於本發明之目的所用,術語「LED」及其複數形式應理解為包括任何電致發光二極體或能夠回應於電信號產生輻射之其他類型之基於載子注入或接合之系統,包括(但不限於)回應於電流或電壓發光之各種基於半導體或碳之結構、發光聚合物、有機LED等,該輻射包括可見光譜或其他光譜(諸如紫外光或紅外光)內、任何帶寬或任何色彩或色溫之輻射。亦如本文中出於本發明之目的所用,術語「光電二極體(或PV)」及其複數形式應理解為包括任何光電二極體或能夠回應於入射能量(諸如光或其他電磁波)產生電信號(諸如電壓)之其他類型之基於載子注入或接合之系統,包括(但不限於)回應於光產生提供電信號之各種基於半導體或碳之結構,該光包括可見光譜或其他光譜(諸如紫外光或紅外光)內,任何帶寬或光譜之光。 As used herein for the purposes of the present invention, the term "LED" and its plural forms are understood to include any electroluminescent diode or other type of carrier-injection or bonding system capable of generating radiation in response to an electrical signal. , including but not limited to, various semiconductor or carbon-based structures, luminescent polymers, organic LEDs, etc. that respond to current or voltage illuminance, including any visible or other spectrum (such as ultraviolet or infrared), any bandwidth Or any color or color temperature radiation. Also as used herein for the purposes of the present invention, the term "photodiode (or PV)" and its plural forms are understood to include any photodiode or capable of responding to incident energy (such as light or other electromagnetic waves). Other types of carrier-injection or bonding based systems of electrical signals, such as voltages, including, but not limited to, various semiconductor- or carbon-based structures that provide electrical signals in response to light generation, including visible or other spectra ( Light of any bandwidth or spectrum, such as ultraviolet or infrared light.

本文中所揭示之尺寸及值不應理解為嚴格限於所述之 精確數值。實際上,除非另作說明,否則每一該種尺寸意謂所述值及圍繞該值之功能等效範圍。舉例而言,揭示為「40mm」之尺寸意謂「約40mm」。 The dimensions and values disclosed herein are not to be construed as being strictly limited to the stated The exact value. In fact, unless otherwise stated, each such size means the stated value and the functional equivalents surrounding the value. For example, the size disclosed as "40mm" means "about 40mm".

【實施方式】中所引用之所有文獻在相關部分中以引用方式併入本文中;對任何文獻之引用不應視作承認其為關於本發明之先前技術。若本發明中之術語之任何意義或定義與以引用方式併八本文中之文獻中同一術語之任何意義或定義相矛盾,則應以本發明中賦予該術語之意義或定義為準。 All documents cited in the [Embodiment] are hereby incorporated by reference in their entireties in their entireties in the the the the the the the the To the extent that any meaning or definition of a term in the present invention is inconsistent with any meaning or definition of the same term in the literature, the meaning or definition of the term in the present invention shall prevail.

此外,除非另外特定說明,否則圖式/圖中之任何信號箭頭應視作僅具例示性,而不具限制性。步驟之組成部分的組合亦應視作處於本發明範疇內,尤其在不清楚或可預見能夠分離或組合的情況下。除非另外指示,否則如本文中且貫穿隨附之申請專利範圍所用之轉折術語「或」一般意謂「及/或」,具有連接及轉折兩種意義(而非限於「排他性或」之意義)。除非上下文另外明確規定,否則如本文描述中及貫穿隨附之申請專利範圍所用之「一」及「該」包括複數個參考物。除非上下文另外明確規定,否則亦如本文描述中及貫穿隨附之申請專利範圍所用之「於...中」之意義包括「於...中」及「於...上」。 In addition, any signal arrows in the drawings/drawings should be considered as illustrative only and not limiting, unless specifically stated otherwise. Combinations of the components of the steps are also considered to be within the scope of the invention, especially if it is unclear or foreseeable to be able to separate or combine. Unless otherwise indicated, the term "or" as used herein and throughout the scope of the appended claims generally means "and/or" and has the meaning of the connection and the transition (not limited to the meaning of "exclusive or"). . &quot;an&quot; and &quot;the&quot; as used in the <RTIgt; The meaning of "in" and "in" are used in the context of the application and the scope of the appended claims.

上文對所說明之本發明具體實例的描述(包括【發明內容】或【發明摘要】中所述者)不意欲為詳盡的或使本發明限於本文所揭示之精確形式。自上文,可觀察到,預期作出多種變化、修改及替換且可在不背離本發明新穎概 念之精神及範疇下達成。應瞭解,不應預期或不應推斷對於本文所說明之特定方法及裝置的限制。當然,所有該等修改意欲由隨附之申請專利範圍涵蓋而屬於申請專利範圍範疇內。 The above description of the specific examples of the invention, including the description of the invention, or the invention, is not intended to be exhaustive or to limit the invention. From the above, it can be observed that many variations, modifications and substitutions are contemplated and may be made without departing from the novel aspects of the invention. The spirit and scope of the mind is reached. It should be understood that the limitations of the particular methods and devices described herein are not to be construed as a limitation. Of course, all such modifications are intended to be covered by the scope of the patent application.

100‧‧‧第一二極體 100‧‧‧ first diode

100A‧‧‧第二二極體 100A‧‧‧Secondary

100B‧‧‧第三二極體 100B‧‧‧third diode

100C‧‧‧第四二極體 100C‧‧‧Fourth dipole

100D‧‧‧第五二極體 100D‧‧‧ fifth diode

100E‧‧‧第六二極體 100E‧‧‧ sixth diode

100F‧‧‧第七二極體 100F‧‧‧ seventh diode

100G‧‧‧第八二極體 100G‧‧‧ eighth diode

100H‧‧‧第九二極體 100H‧‧‧ ninth polar body

100K‧‧‧第十二極體 100K‧‧‧12th polar body

100L‧‧‧第十一二極體 100L‧‧‧Eleventh Diode

100I‧‧‧第十二二極體 100I‧‧‧12th Diode

100J‧‧‧第十三二極體 100J‧‧‧13th Diode

102A‧‧‧金屬層 102A‧‧‧metal layer

102B‧‧‧金屬層 102B‧‧‧metal layer

103‧‧‧反射層 103‧‧‧reflective layer

105‧‧‧基板 105‧‧‧Substrate

105A‧‧‧基板 105A‧‧‧Substrate

106‧‧‧藍寶石 106‧‧‧ Sapphire

107‧‧‧表面紋理 107‧‧‧Surface texture

108‧‧‧其他層 108‧‧‧Other layers

109‧‧‧反射器 109‧‧‧ reflector

110‧‧‧n+型GaN層 110‧‧‧n+ type GaN layer

111‧‧‧平滑表面 111‧‧‧Smooth surface

112‧‧‧外表面紋理 112‧‧‧Outer surface texture

113‧‧‧條紋 113‧‧‧ stripes

114‧‧‧頂點 114‧‧‧ vertex

115‧‧‧p+型GaN層 115‧‧‧p+ type GaN layer

116‧‧‧透鏡形狀 116‧‧‧ lens shape

117‧‧‧其他幾何形狀 117‧‧‧Other geometric shapes

118‧‧‧超環狀體、蜂巢或華夫餅乾形狀 118‧‧‧Super-ring, honeycomb or waffle shape

119‧‧‧金屬層 119‧‧‧metal layer

120‧‧‧金屬層 120‧‧‧metal layer

120A‧‧‧金屬層 120A‧‧‧metal layer

120B‧‧‧金屬層 120B‧‧‧ metal layer

121‧‧‧六角形側面 121‧‧‧ hexagonal side

122‧‧‧金屬層 122‧‧‧metal layer

124‧‧‧延長延伸件 124‧‧‧Extension extension

125‧‧‧第一端子 125‧‧‧First terminal

126‧‧‧金屬接點延伸件 126‧‧‧Metal contact extensions

127‧‧‧第二端子 127‧‧‧second terminal

128‧‧‧接點 128‧‧‧Contacts

129‧‧‧金屬層 129‧‧‧metal layer

130‧‧‧導孔 130‧‧‧Guide

131‧‧‧導孔結構 131‧‧‧Guide structure

132‧‧‧導孔結構 132‧‧‧Guide structure

133‧‧‧導孔結構 133‧‧‧Guide structure

134‧‧‧導孔結構 134‧‧‧Guide structure

135‧‧‧介電層 135‧‧‧ dielectric layer

135A‧‧‧鈍化層 135A‧‧‧passivation layer

136‧‧‧導孔結構 136‧‧‧Guide structure

140‧‧‧發光區域 140‧‧‧Lighting area

145‧‧‧緩衝層 145‧‧‧buffer layer

150‧‧‧晶圓 150‧‧‧ wafer

150A‧‧‧晶圓 150A‧‧‧ wafer

155‧‧‧渠溝 155‧‧‧Ditch

160‧‧‧固持裝置 160‧‧‧ holding device

162‧‧‧雷射束 162‧‧‧Ray beam

165‧‧‧黏著劑 165‧‧‧Adhesive

170‧‧‧晶圓黏著劑溶劑 170‧‧‧ Wafer Adhesive Solvent

175‧‧‧器皿 175‧‧‧ utensils

180‧‧‧背面 180‧‧‧Back

185‧‧‧量子井區 185‧‧ ‧ Quantum Well Area

186‧‧‧相對淺渠溝 186‧‧‧ relatively shallow trench

187‧‧‧GaN台面結構 187‧‧‧GaN mesa structure

187A‧‧‧GaN台面結構 187A‧‧‧GaN mesa structure

187B‧‧‧GaN台面結構 187B‧‧‧GaN mesa structure

187C‧‧‧GaN台面結構 187C‧‧‧GaN mesa structure

187D‧‧‧GaN台面結構 187D‧‧‧GaN mesa structure

187E‧‧‧GaN台面結構 187E‧‧‧GaN mesa structure

188‧‧‧渠溝 188‧‧‧Ditch

190‧‧‧二氧化矽層 190‧‧ 二 二 layer

191‧‧‧區域 191‧‧‧Area

192‧‧‧區域 192‧‧‧ area

193‧‧‧區域 193‧‧‧Area

195‧‧‧多晶GaN 195‧‧‧Polycrystalline GaN

200‧‧‧起始步驟 200‧‧‧Starting steps

205‧‧‧釋放二極體步驟 205‧‧‧ Release of the diode step

211‧‧‧中心導孔渠溝 211‧‧‧Center Guide Hole Ditch

215‧‧‧將於第一溶劑中之二極體添加至黏性劑中步驟 215‧‧‧Steps to add the diode in the first solvent to the binder

220‧‧‧添加一或多種第二溶劑步驟 220‧‧‧Add one or more second solvent steps

225‧‧‧使用添加之第三溶劑(例如去離子水)調節任何重量百分比步驟 225‧‧‧Adjust any weight percentage step with an added third solvent (eg deionized water)

230‧‧‧在室溫(25℃)下於空氣氛圍中混合複數個二極體、第一溶劑、黏性劑、第二溶劑及任何添加之第三溶劑25-30分鐘步驟 230‧‧‧ Mixing a plurality of diodes, a first solvent, an adhesive, a second solvent and any added third solvent in an air atmosphere at room temperature (25 ° C) for 25-30 minutes

235‧‧‧返回步驟 235‧‧‧Return steps

240‧‧‧起始步驟 240‧‧‧Starting steps

245‧‧‧於半導體晶圓上生長或沉積氧化物層步驟 245‧‧‧Steps of growing or depositing oxide layers on semiconductor wafers

250‧‧‧蝕刻氧化物層以形成網格或其他圖案步驟 250‧‧‧Steps to etch the oxide layer to form a grid or other pattern

255‧‧‧生長或沉積緩衝層及發光或光吸收區域步驟 255‧‧‧Steps for growing or depositing buffer layers and illuminating or light absorbing regions

260‧‧‧蝕刻及發光或光吸收區域以形成各二極體之台面結構步驟 260‧‧‧Steps for etching and illuminating or absorbing regions to form the mesa structure of each diode

265‧‧‧蝕刻晶圓以在各二極體之基板中形成導孔渠溝步驟 265‧‧‧Steps of etching the wafer to form vias in the substrate of each diode

270‧‧‧沉積一或多個金屬化層以形成各二極體之金屬接點及導孔步驟 270‧‧‧Steps of depositing one or more metallization layers to form metal contacts and vias for each diode

275‧‧‧在二極體之間蝕刻單體化渠溝步驟 275‧‧‧Steps of etching monolithic trenches between diodes

280‧‧‧生長或沉積鈍化層步驟 280‧‧‧Steps for growing or depositing a passivation layer

285‧‧‧於金屬接點上沉積或生長凸塊或突出金屬結構步驟 285‧‧‧Steps of depositing or growing bumps or protruding metal structures on metal joints

290‧‧‧返回步驟 290‧‧‧Return steps

292‧‧‧惰性粒子 292‧‧‧Inert particles

295‧‧‧膜 295‧‧‧ film

300‧‧‧裝置 300‧‧‧ device

300A‧‧‧裝置 300A‧‧‧ device

300B‧‧‧裝置 300B‧‧‧ device

300C‧‧‧裝置 300C‧‧‧ device

300D‧‧‧裝置 300D‧‧‧ device

305‧‧‧基板 305‧‧‧Substrate

305A‧‧‧基底 305A‧‧‧Base

310‧‧‧第一導體 310‧‧‧First conductor

310A‧‧‧導體 310A‧‧‧Conductor

310B‧‧‧導體 310B‧‧‧Conductor

312‧‧‧導體 312‧‧‧Conductor

315‧‧‧絕緣介電層 315‧‧‧Insulated dielectric layer

315A‧‧‧介電層 315A‧‧‧ dielectric layer

315B‧‧‧介電層 315B‧‧‧ dielectric layer

318‧‧‧障壁層 318‧‧ ‧ barrier layer

320‧‧‧導體 320‧‧‧Conductors

322A‧‧‧碳接點 322A‧‧‧carbon joints

322B‧‧‧碳接點 322B‧‧‧carbon joints

325‧‧‧發光(或發射)層 325‧‧‧Lighting (or emission) layer

330‧‧‧保護層 330‧‧‧Protective layer

335‧‧‧穩定化層 335‧‧‧Stabilization layer

340‧‧‧電源 340‧‧‧Power supply

345‧‧‧控制器 345‧‧‧ controller

350‧‧‧照明系統 350‧‧‧Lighting system

355‧‧‧介面電路 355‧‧‧Interface circuit

355A‧‧‧介面電路 355A‧‧‧Interface circuit

360‧‧‧控制邏輯電路 360‧‧‧Control logic

365‧‧‧記憶體 365‧‧‧ memory

375‧‧‧系統 375‧‧‧ system

380‧‧‧能量儲存器件 380‧‧‧ Energy storage device

385‧‧‧介面電路 385‧‧‧Interface circuit

400‧‧‧起始步驟 400‧‧‧Starting steps

405‧‧‧在基板上沉積一或多個第一導體步驟 405‧‧‧Steps of depositing one or more first conductors on the substrate

410‧‧‧在至少一個第一導體上沉積具有複數個二極體之二極體墨水步驟 410‧‧ A step of depositing a diode having a plurality of diodes on at least one of the first conductors

415‧‧‧使用介電墨水,在複數個二極體上及/或周圍沉積介電層步驟 415‧‧‧Steps of depositing dielectric layers on and/or around a plurality of diodes using dielectric ink

420‧‧‧沉積一或多個第二導體以接觸複數個二極體步驟 420‧‧‧Steps of depositing one or more second conductors to contact a plurality of diodes

425‧‧‧在一或多個第二導體上沉積穩定化層步驟 425‧‧‧Steps of depositing a stabilizing layer on one or more second conductors

427‧‧‧在穩定化層上第一面上沉積保護塗層步驟 427‧‧‧Steps of depositing a protective coating on the first side of the stabilizing layer

430‧‧‧在穩定化層上或在基板之第二面上沉積發射層步驟 430‧‧‧Steps of depositing an emissive layer on the stabilizing layer or on the second side of the substrate

435‧‧‧沉積透鏡化及/或保護塗層步驟 435‧‧‧Deposition of lensing and / or protective coating steps

440‧‧‧返回步驟 440‧‧‧Return steps

500‧‧‧起始步驟 500‧‧‧Starting steps

505‧‧‧於藍寶石或其他晶圓上生長或沉積GaN基板步驟 505‧‧‧Steps for growing or depositing GaN substrates on sapphire or other wafers

510‧‧‧生長或沉積發光或光吸收區域步驟 510‧‧‧Steps for growing or depositing luminescence or light absorption regions

515‧‧‧蝕刻發光或光吸收區域以形成各二極體之一或多個台面步驟 515‧‧‧Steps of etching the illuminating or light absorbing region to form one or more mesas of each diode

520‧‧‧蝕刻穿過GaN或其他基板以形成一或多個深導孔及單體化渠溝步驟 520‧‧‧Steps of etching through GaN or other substrates to form one or more deep vias and singulation trenches

525‧‧‧沉積晶種層 525‧‧‧Seed seed layer

530‧‧‧沉積金屬以形成深導孔步驟 530‧‧‧Steps for depositing metals to form deep holes

535‧‧‧沉積金屬接點步驟 535‧‧‧Deposition of metal joints

540‧‧‧沉積電流分佈金屬步驟 540‧‧‧Deposition current distribution metal steps

545‧‧‧生長或沉積鈍化層步驟 545‧‧‧Steps for growing or depositing a passivation layer

550‧‧‧在金屬接點上沉積凸塊或突出金屬結構步驟 550‧‧‧Steps for depositing bumps or protruding metal structures on metal contacts

555‧‧‧附接固持晶圓步驟 555‧‧‧ Attachment of holding wafer steps

560‧‧‧移除藍寶石或其他晶圓以單體化二極體步驟 560‧‧‧Removing sapphire or other wafers to singulate diodes

565‧‧‧在各二極體之第二面(背面)上沉積金屬接點步驟 565‧‧‧Steps for depositing metal contacts on the second side (back side) of each diode

570‧‧‧返回步驟 570‧‧‧Return steps

600‧‧‧起始步驟 600‧‧‧Starting steps

605‧‧‧於藍寶石或其他晶圓上生長或沉積GaN基板步驟 605‧‧‧Steps for growing or depositing GaN substrates on sapphire or other wafers

610‧‧‧生長或沉積發光或光吸收區域步驟 610‧‧‧Steps for growing or depositing luminescence or light absorption regions

615‧‧‧沉積金屬接點步驟 615‧‧‧Deposition of metal joints

620‧‧‧蝕刻發光或光吸收區域以形成各二極體之一或多個台面步驟 620‧‧‧Steps of etching the illuminating or light absorbing region to form one or more mesas

625‧‧‧沉積金屬接點步驟 625‧‧‧Deposition of metal joints

630‧‧‧蝕刻穿過GaN或其他基板以形成一或多個深導孔步驟 630‧‧‧Steps of etching through GaN or other substrates to form one or more deep vias

635‧‧‧沉積金屬以形成深導孔步驟 635‧‧‧Steps for depositing metals to form deep holes

640‧‧‧沉積或圖案化互連步驟 640‧‧‧Deposition or patterning interconnection steps

645‧‧‧蝕刻單體化渠溝步驟 645‧‧‧ Etching the singulation channel step

650‧‧‧生長或沉積鈍化層步驟 650‧‧‧Steps for growing or depositing passivation layers

655‧‧‧在金屬接點上沉積凸塊或突出金屬結構步驟 655‧‧‧Steps for depositing bumps or protruding metal structures on metal contacts

660‧‧‧附接固持晶圓步驟 660‧‧‧ Attaching a holding wafer step

665‧‧‧移除藍寶石或其他晶圓以單體化二極體步驟 665‧‧‧Removing sapphire or other wafers to singulate diodes

670‧‧‧在各二極體之第二面(背面)上沉積金屬接點步驟 670‧‧‧Steps for depositing metal contacts on the second side (back side) of each diode

675‧‧‧返回步驟 675‧‧‧Return steps

700‧‧‧裝置 700‧‧‧ device

700A‧‧‧裝置 700A‧‧‧ device

700B‧‧‧裝置 700B‧‧‧ device

711‧‧‧第一區域 711‧‧‧First area

712‧‧‧第二區域 712‧‧‧Second area

713‧‧‧第三區域 713‧‧‧ third area

714‧‧‧匯流排 714‧‧‧ busbar

716‧‧‧區域 716‧‧‧ area

717‧‧‧燈條 717‧‧‧Light strips

718‧‧‧燈條末端 718‧‧‧End of light bar

720‧‧‧裝置 720‧‧‧ device

730‧‧‧裝置 730‧‧‧ device

740‧‧‧裝置 740‧‧‧ device

750‧‧‧裝置 750‧‧‧ device

760‧‧‧裝置 760‧‧‧ device

770‧‧‧裝置 770‧‧‧ device

800‧‧‧系統 800‧‧‧ system

810‧‧‧系統 810‧‧‧ system

810‧‧‧系統 810‧‧‧ system

圖1為說明例示性第一二極體具體實例之透視圖。 1 is a perspective view illustrating an exemplary first diode embodiment.

圖2為說明例示性第一二極體具體實例之平面圖(或俯視圖)。 2 is a plan view (or top view) illustrating an exemplary first diode embodiment.

圖3為說明例示性第一二極體具體實例之橫截面圖。 3 is a cross-sectional view illustrating an exemplary first diode embodiment.

圖4為說明例示性第二二極體具體實例之透視圖。 4 is a perspective view illustrating an exemplary second diode embodiment.

圖5為說明例示性第二二極體具體實例之平面圖(或俯視圖)。 Figure 5 is a plan (or top view) illustrating an exemplary second diode embodiment.

圖6為說明例示性第三二極體具體實例之透視圖。 Figure 6 is a perspective view illustrating an exemplary third diode embodiment.

圖7為說明例示性第三二極體具體實例之平面圖(或俯視圖)。 7 is a plan view (or top view) illustrating an exemplary third diode embodiment.

圖8為說明例示性第四二極體具體實例之透視圖。 Figure 8 is a perspective view illustrating an exemplary fourth diode embodiment.

圖9為說明例示性第四二極體具體實例之平面圖(或俯視圖)。 9 is a plan view (or top view) illustrating an exemplary fourth diode embodiment.

圖10為說明例示性第二、第三及/或第四二極體具體實例之橫截面圖。 Figure 10 is a cross-sectional view illustrating an exemplary second, third, and/or fourth diode embodiment.

圖11為說明例示性第五及第六二極體具體實例之透視圖。 Figure 11 is a perspective view illustrating an exemplary fifth and sixth diode embodiment.

圖12為說明例示性第五及第六二極體具體實例之平面圖(或俯視圖)。 Figure 12 is a plan view (or top view) illustrating an exemplary fifth and sixth diode embodiment.

圖13為說明例示性第五二極體具體實例之橫截面圖。 Figure 13 is a cross-sectional view illustrating an exemplary fifth diode embodiment.

圖14為說明例示性第六二極體具體實例之橫截面圖。 Figure 14 is a cross-sectional view illustrating an exemplary sixth diode embodiment.

圖15為說明例示性第七二極體具體實例之透視圖。 Figure 15 is a perspective view illustrating an exemplary seventh diode embodiment.

圖16為說明例示性第七二極體具體實例之平面圖(或俯視圖)。 Figure 16 is a plan (or top view) illustrating an exemplary seventh diode embodiment.

圖17為說明例示性第七二極體具體實例之橫截面圖。 Figure 17 is a cross-sectional view illustrating an exemplary seventh diode embodiment.

圖18為說明例示性第八二極體具體實例之透視圖。 Figure 18 is a perspective view illustrating an exemplary eighth diode embodiment.

圖19為說明例示性第八二極體具體實例之平面圖(或俯視圖)。 19 is a plan view (or top view) illustrating an exemplary eighth diode embodiment.

圖20為說明例示性第八二極體具體實例之橫截面圖。 Figure 20 is a cross-sectional view illustrating an exemplary eighth diode embodiment.

圖21為說明例示性第十二極體具體實例之透視圖。 Figure 21 is a perspective view illustrating an exemplary twelfth polar body embodiment.

圖22為說明例示性第十二極體具體實例之橫截面圖。 Figure 22 is a cross-sectional view illustrating an exemplary twelfth polar body embodiment.

圖23為說明例示性第十一二極體具體實例之透視圖。 Figure 23 is a perspective view illustrating an exemplary eleventh dipole embodiment.

圖24為說明例示性第十一二極體具體實例之橫截面圖。 Figure 24 is a cross-sectional view illustrating an exemplary eleventh dipole embodiment.

圖25為說明一部分複合GaN異質結構及金屬層之橫截面圖,其說明複合GaN異質結構之外表面及/或內表面之視情況呈現之幾何形狀及紋理。 Figure 25 is a cross-sectional view showing a portion of a composite GaN heterostructure and metal layer illustrating the geometry and texture of the outer and/or inner surfaces of the composite GaN heterostructure.

圖26為具有氧化物層(諸如二氧化矽)之晶圓的橫截面圖。 Figure 26 is a cross-sectional view of a wafer having an oxide layer such as hafnium oxide.

圖27為具有蝕刻成網格圖案之氧化物層之晶圓的橫截面圖。 Figure 27 is a cross-sectional view of a wafer having an oxide layer etched into a grid pattern.

圖28為具有蝕刻成網格圖案之氧化物層之晶圓的平面圖(或俯視圖)。 28 is a plan view (or top view) of a wafer having an oxide layer etched into a grid pattern.

圖29為具有緩衝層(諸如氮化鋁或氮化矽)、呈網格圖案之二氧化矽層及氮化鎵(GaN)層之晶圓的橫截面圖。 29 is a cross-sectional view of a wafer having a buffer layer (such as aluminum nitride or tantalum nitride), a grid pattern of hafnium oxide layer, and a gallium nitride (GaN) layer.

圖30為具有緩衝層及複合GaN異質結構(n+型GaN層、量子井區及p+型GaN層)之基板的橫截面圖。 30 is a cross-sectional view of a substrate having a buffer layer and a composite GaN heterostructure (n+-type GaN layer, quantum well region, and p+-type GaN layer).

圖31為具有緩衝層及第一台面蝕刻之複合GaN異質結構之基板的橫截面圖。 31 is a cross-sectional view of a substrate having a buffer layer and a first mesa-etched composite GaN heterostructure.

圖32為具有緩衝層及第二台面蝕刻之複合GaN異質結構之基板的橫截面圖。 32 is a cross-sectional view of a substrate having a buffer layer and a second mesa-etched composite GaN heterostructure.

圖33為具有緩衝層、台面蝕刻之複合GaN異質結構以及用於導孔連接之經蝕刻基板之基板的橫截面圖。 Figure 33 is a cross-sectional view of a substrate having a buffer layer, mesa-etched composite GaN heterostructure, and an etched substrate for via connection.

圖34為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層以及形成導孔之金屬化層之基板的橫截面圖。 Figure 34 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer forming an ohmic contact with the p+ type GaN layer, and a metallization layer forming the via.

圖35為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成導孔之金屬化層以及側向蝕刻之渠溝之基板的橫截面圖。 35 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the p+ type GaN layer, a metallization layer that forms the via, and a laterally etched trench.

圖36為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成導孔之金屬化層、側向蝕刻之渠溝及鈍化層(諸如氮化矽)之基板的橫截面圖。 36 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a p+ type GaN layer, a metallization layer forming a via hole, a laterally etched trench, and a passivation layer (such as tantalum nitride) A cross-sectional view of the substrate.

圖37為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成導孔之金屬化層、側向蝕刻之渠溝、鈍化層及形成突出或凸塊結構之金屬化層之基板的橫截面圖。 37 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a p+ type GaN layer, a metallization layer forming a via hole, a laterally etching trench, a passivation layer, and forming a protrusion or a convex A cross-sectional view of a substrate of a metallization layer of a bulk structure.

圖38為具有複合GaN異質結構(n+型GaN層、量子井區及p+型GaN層)之基板的橫截面圖。 38 is a cross-sectional view of a substrate having a composite GaN heterostructure (n+-type GaN layer, quantum well region, and p+-type GaN layer).

圖39為具有第三台面蝕刻之複合GaN異質結構之基板的橫截面圖。 Figure 39 is a cross-sectional view of a substrate having a third mesa-etched composite GaN heterostructure.

圖40為具有台面蝕刻之複合GaN異質結構、用於導孔連接之經蝕刻基板及側向蝕刻之渠溝之基板的橫截面圖。 40 is a cross-sectional view of a substrate having a mesa-etched composite GaN heterostructure, an etched substrate for via connection, and a laterally etched trench.

圖41為具有台面蝕刻之複合GaN異質結構、與n+型GaN層形成歐姆接觸且形成貫穿導孔之金屬化層以及側向蝕刻之渠溝之基板的橫截面圖。 41 is a cross-sectional view of a substrate having a mesa-etched composite GaN heterostructure, an ohmic contact with an n+-type GaN layer, and a metallization layer through the via and a laterally etched trench.

圖42為具有台面蝕刻之複合GaN異質結構、與n+型GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p+型GaN層形成歐姆接觸之金屬化層以及側向蝕刻之渠溝之基板的橫截面圖。 42 is a composite GaN heterostructure having a mesa etching, an ohmic contact with an n+ type GaN layer, a metallization layer forming a through via, a metallization layer forming an ohmic contact with the p+ type GaN layer, and a trench for lateral etching. A cross-sectional view of the substrate.

圖43為具有台面蝕刻之複合GaN異質結構、與n+型GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p+型GaN層形成歐姆接觸之金屬化層、側向蝕刻之渠溝及鈍化層(諸如氮化矽)之基板的橫截面圖。 43 is a mesa-etched composite GaN heterostructure, a metallization layer forming an ohmic contact with an n+-type GaN layer, forming a through-via, a metallization layer forming an ohmic contact with the p+-type GaN layer, and a laterally-etched trench; A cross-sectional view of a substrate of a passivation layer such as tantalum nitride.

圖44為具有台面蝕刻之複合GaN異質結構、與n+型GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p+型GaN層形成歐姆接觸之金屬化層、側向蝕刻之渠溝、鈍化層(諸如氮化矽)及形成突出或凸塊結構之金屬化層之基板的橫截面圖。 44 is a mesa-etched composite GaN heterostructure, a metallization layer forming an ohmic contact with the n+-type GaN layer, forming a through-via, a metallization layer forming an ohmic contact with the p+-type GaN layer, and a laterally-etched trench, A cross-sectional view of a passivation layer, such as tantalum nitride, and a substrate forming a metallization layer of a protruding or bump structure.

圖45為具有緩衝層、複合GaN異質結構(n+型GaN層、量子井區及p+型GaN層)及與p+型GaN層形成歐姆 接觸之金屬化層之基板的橫截面圖。 45 is a buffer layer, a composite GaN heterostructure (n+ type GaN layer, a quantum well region, and a p+ type GaN layer) and an ohmic layer with a p+ type GaN layer. A cross-sectional view of a substrate contacting a metallization layer.

圖46為具有緩衝層、第四台面蝕刻之複合GaN異質結構及與p+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 Figure 46 is a cross-sectional view of a substrate having a buffer layer, a fourth mesa-etched composite GaN heterostructure, and a metallization layer that forms an ohmic contact with the p+ type GaN layer.

圖47為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層及與n+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 47 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the p+ type GaN layer, and a metallization layer that forms an ohmic contact with the n+ type GaN layer.

圖48為具有緩衝層、台面蝕刻之複合GaN異質結構、與n+型GaN層形成歐姆接觸之金屬化層及側向蝕刻之渠溝之基板的橫截面圖。 48 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the n+ type GaN layer, and a laterally etched trench.

圖49為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層及具有形成周圍貫穿導孔之金屬化層之側向蝕刻之渠溝之基板的橫截面圖。 49 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and a metallization having a surrounding through via hole. A cross-sectional view of the substrate of the laterally etched trench of the layer.

圖50為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層及具有形成周圍貫穿導孔之金屬化層之側向蝕刻之渠溝、鈍化層(諸如氮化矽)以及形成突出或凸塊結構之金屬化層之基板的橫截面圖。 50 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and a metallization having a surrounding through via hole. A cross-sectional view of a laterally etched trench of a layer, a passivation layer (such as tantalum nitride), and a substrate forming a metallization layer of a protruding or bump structure.

圖51為具有緩衝層、第五台面蝕刻之複合GaN異質結構以及與p+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 51 is a cross-sectional view of a substrate having a buffer layer, a fifth mesa-etched composite GaN heterostructure, and a metallization layer that forms an ohmic contact with the p+ type GaN layer.

圖52為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層以及用於中心導孔 連接之經蝕刻GaN異質結構之基板的橫截面圖。 52 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a p+ type GaN layer, and for a center via hole A cross-sectional view of a substrate joined to an etched GaN heterostructure.

圖53為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層及形成中心導孔且與n+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 53 is a cross section of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer forming an ohmic contact with the p+ type GaN layer, and a metallization layer forming a center via and forming an ohmic contact with the n+ type GaN layer. Figure.

圖54為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成中心導孔且與n+型GaN層形成歐姆接觸之金屬化層及第一鈍化層(諸如氮化矽)之基板的橫截面圖。 54 is a composite layer GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the n+ type GaN layer, and a first passivation layer A cross-sectional view of a substrate (such as tantalum nitride).

圖55為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成中心導孔且與n+型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸如氮化矽)及形成突出或凸塊結構之金屬化層之基板的橫截面圖。 55 is a metallization layer having a buffer layer, mesa-etched composite GaN heterostructure, ohmic contact with a p+ type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the n+ type GaN layer, and a first passivation layer A cross-sectional view of a substrate (such as tantalum nitride) and a metallization layer forming a protruding or bump structure.

圖56為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成中心導孔且與n+型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸如氮化矽)、形成突出或凸塊結構之金屬化層及側向(或周圍)蝕刻之渠溝之基板的橫截面圖。 56 is a composite layer GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the n+ type GaN layer, and a first passivation layer A cross-sectional view of a substrate (such as tantalum nitride), a metallization layer that forms a protruding or bump structure, and a lateral (or surrounding) etched trench.

圖57為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、形成中心導孔且與n+型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸如氮化矽)、形成突出或凸塊結構之金屬化層、側向(或周圍)蝕刻之渠溝及第二鈍化層(諸如氮化矽)之基板的橫 截面圖。 57 is a composite layer GaN heterostructure having a buffer layer, a mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the n+ type GaN layer, and a first passivation layer Cross-section of a substrate such as tantalum nitride, a metallization layer forming a protruding or bump structure, a lateral (or surrounding) etched trench, and a second passivation layer (such as tantalum nitride) Sectional view.

圖58為具有緩衝層、第六台面蝕刻之複合GaN異質結構以及與p+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 Figure 58 is a cross-sectional view of a substrate having a buffer layer, a sixth mesa-etched composite GaN heterostructure, and a metallization layer that forms an ohmic contact with the p+ type GaN layer.

圖59為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層及與n+型GaN層形成歐姆接觸之金屬化層之基板的橫截面圖。 59 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the p+ type GaN layer, and a metallization layer that forms an ohmic contact with the n+ type GaN layer.

圖60為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層及與p+型GaN層形成接觸之其他金屬化層之基板的橫截面圖。 60 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and the other in contact with the p+ type GaN layer. A cross-sectional view of a substrate of a metallization layer.

圖61為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層、與p+型GaN層形成接觸之其他金屬化層及形成突出或凸塊結構之金屬化層之基板的橫截面圖。 61 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and other contact with the p+ type GaN layer. A cross-sectional view of a metallization layer and a substrate forming a metallization layer of a protruding or bump structure.

圖62為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層、與p+型GaN層形成接觸之其他金屬化層、形成突出或凸塊結構之金屬化層及鈍化層(諸如氮化矽)之基板的橫截面圖。 62 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and other contact with the p+ type GaN layer. A cross-sectional view of a metallization layer, a metallization layer forming a protruding or bump structure, and a substrate of a passivation layer such as tantalum nitride.

圖63為具有緩衝層、台面蝕刻之複合GaN異質結構、與p+型GaN層形成歐姆接觸之金屬化層、與n+型GaN層形成歐姆接觸之金屬化層、與p+型GaN層形成接觸之其他 金屬化層、形成突出或凸塊結構之金屬化層、鈍化層(諸如氮化矽)及側向(或周圍)蝕刻之渠溝之基板的橫截面圖。 63 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the p+ type GaN layer, a metallization layer forming an ohmic contact with the n+ type GaN layer, and the other in contact with the p+ type GaN layer. A cross-sectional view of a metallization layer, a metallization layer forming a protruding or bump structure, a passivation layer (such as tantalum nitride), and a lateral (or surrounding) etched trench.

圖64為說明黏著至固持裝置之例示性二極體晶圓具體實例之橫截面圖。 Figure 64 is a cross-sectional view showing an exemplary embodiment of an exemplary diode wafer adhered to a holding device.

圖65為說明黏著至固持裝置之例示性二極體晶圓具體實例之橫截面圖。 Figure 65 is a cross-sectional view showing an exemplary embodiment of an exemplary diode wafer adhered to a holding device.

圖66為說明黏著至固持裝置之例示性第十二極體具體實例之橫截面圖。 Figure 66 is a cross-sectional view showing an exemplary twelfth polar body embodiment of the adhesion to the holding device.

圖67為說明在背面金屬化之前黏著至固持裝置之例示性第十二極體具體實例之橫截面圖。 Figure 67 is a cross-sectional view showing an exemplary twelfth polar body embodiment adhered to a holding device prior to back metallization.

圖68為說明黏著至固持裝置之例示性二極體具體實例之橫截面圖。 Figure 68 is a cross-sectional view showing an exemplary embodiment of an exemplary diode adhered to a holding device.

圖69為說明黏著至固持裝置之例示性第十一二極體具體實例之橫截面圖。 Figure 69 is a cross-sectional view showing an exemplary eleventh dipole embodiment of the adhesion to the holding device.

圖70為說明用於製造二極體之例示性第一方法具體實例之流程圖。 Figure 70 is a flow chart illustrating an exemplary first method embodiment for fabricating a diode.

圖71分成圖71A及圖71B,為說明用於製造二極體之例示性第二方法具體實例之流程圖。 Figure 71 is divided into Figures 71A and 71B for a flow chart illustrating an exemplary second method embodiment for fabricating a diode.

圖72分成圖72A及圖72B,為說明用於製造二極體之例示性第三方法具體實例之流程圖。 Figure 72, divided into Figures 72A and 72B, is a flow chart illustrating an exemplary third method embodiment for fabricating a diode.

圖73分成圖73A及圖73B,為說明用於製造二極體之例示性第四方法具體實例之流程圖。 Figure 73 is divided into Figures 73A and 73B for a flow chart illustrating an exemplary fourth method embodiment for fabricating a diode.

圖74為說明黏著至固持裝置且懸浮於含黏著劑溶劑之 器皿中之例示性經研磨及拋光二極體晶圓具體實例之橫截面圖。 Figure 74 is a view showing the adhesion to the holding device and suspended in the adhesive-containing solvent. A cross-sectional view of an exemplary polished and polished diode wafer embodiment in a vessel.

圖75為說明用於製造二極體懸浮液之例示性方法具體實例之流程圖。 Figure 75 is a flow chart illustrating an exemplary embodiment of an exemplary method for making a diode suspension.

圖76為例示性第一裝置具體實例之透視圖。 Figure 76 is a perspective view of an exemplary first device embodiment.

圖77為說明例示性裝置具體實例之第一導電層之例示性第一電極結構之平面圖(或俯視圖)。 Figure 77 is a plan (or top) view of an exemplary first electrode structure illustrating a first conductive layer of an exemplary device embodiment.

圖78為例示性第一裝置具體實例之第一橫截面圖。 Figure 78 is a first cross-sectional view of an exemplary first device embodiment.

圖79為例示性第一裝置具體實例之第二橫截面圖。 Figure 79 is a second cross-sectional view of an exemplary first device embodiment.

圖80為例示性第二裝置具體實例之透視圖。 Figure 80 is a perspective view of an exemplary second device embodiment.

圖81為例示性第二裝置具體實例之第一橫截面圖。 Figure 81 is a first cross-sectional view of an exemplary second device embodiment.

圖82為例示性第二裝置具體實例之第二橫截面圖。 Figure 82 is a second cross-sectional view of an exemplary second device embodiment.

圖83為耦接至第一導體之例示性二極體之第二橫截面圖。 Figure 83 is a second cross-sectional view of an exemplary diode coupled to a first conductor.

圖84為第一例示性系統具體實例之方塊圖。 Figure 84 is a block diagram of a first exemplary embodiment of the system.

圖85為第二例示性系統具體實例之方塊圖。 Figure 85 is a block diagram of a second exemplary embodiment of the system.

圖86為說明用於製造裝置之例示性方法具體實例之流程圖。 Figure 86 is a flow chart illustrating an exemplary embodiment of an exemplary method for fabricating a device.

圖87為自兩側發光之例示性第三裝置具體實例之橫截面圖。 Figure 87 is a cross-sectional view of an exemplary third device embodiment illuminated from both sides.

圖88為自兩側發光之例示性第四裝置具體實例之橫截面圖。 Figure 88 is a cross-sectional view of an exemplary fourth device embodiment illuminated from both sides.

圖89為例示性第一裝置具體實例之更詳細的部分橫截面圖。 Figure 89 is a more detailed partial cross-sectional view of an exemplary first device embodiment.

圖90為例示性第二裝置具體實例之更詳細的部分橫截面圖。 Figure 90 is a more detailed partial cross-sectional view of an exemplary second device embodiment.

圖91為例示性第五裝置具體實例之透視圖。 Figure 91 is a perspective view of an exemplary fifth device embodiment.

圖92為例示性第五裝置具體實例之橫截面圖。 Figure 92 is a cross-sectional view of an exemplary fifth device embodiment.

圖93為例示性第六裝置具體實例之透視圖。 Figure 93 is a perspective view of an exemplary sixth device embodiment.

圖94為例示性第六裝置具體實例之橫截面圖。 Figure 94 is a cross-sectional view of an exemplary sixth device embodiment.

圖95為例示性第七裝置具體實例之透視圖。 Figure 95 is a perspective view of an exemplary seventh device embodiment.

圖96為例示性第七裝置具體實例之橫截面圖。 Figure 96 is a cross-sectional view of an exemplary seventh device embodiment.

圖97為例示性第八裝置具體實例之透視圖。 Figure 97 is a perspective view of an exemplary eighth device embodiment.

圖98為例示性第八裝置具體實例之橫截面圖。 Figure 98 is a cross-sectional view of an exemplary eighth device embodiment.

圖99為說明例示性裝置具體實例之第一導電層之例示性第二電極結構之平面圖(或俯視圖)。 Figure 99 is a plan (or top) view of an exemplary second electrode structure illustrating a first conductive layer of an exemplary device embodiment.

圖100為第三及第四例示性系統具體實例之透視圖。 Figure 100 is a perspective view of a specific example of the third and fourth exemplary systems.

圖101為例示性第九及第十裝置具體實例之平面圖(或俯視圖)。 Figure 101 is a plan view (or top view) of an exemplary ninth and tenth device embodiment.

圖102為例示性第九裝置具體實例之橫截面圖。 Figure 102 is a cross-sectional view of an exemplary ninth device embodiment.

圖103為例示性第十裝置具體實例之橫截面圖。 Figure 103 is a cross-sectional view of an exemplary tenth device embodiment.

圖104為說明例示性發光或光吸收區域之例示性第一表面幾何形狀之透視圖。 Figure 104 is a perspective view illustrating an exemplary first surface geometry of an exemplary illuminating or light absorbing region.

圖105為說明例示性發光或光吸收區域之例示性第二表面幾何形狀之透視圖。 Figure 105 is a perspective view illustrating an exemplary second surface geometry of an exemplary illuminating or light absorbing region.

圖106為說明例示性發光或光吸收區域之例示性第三表面幾何形狀之透視圖。 Figure 106 is a perspective view illustrating an exemplary third surface geometry of an exemplary illuminating or light absorbing region.

圖107為說明例示性發光或光吸收區域之例示性第四 表面幾何形狀之透視圖。 Figure 107 is an illustrative fourth illustration of an exemplary illuminating or light absorbing region A perspective view of the surface geometry.

圖108為說明例示性發光或光吸收區域之例示性第五表面幾何形狀之透視圖。 Figure 108 is a perspective view illustrating an exemplary fifth surface geometry of an exemplary illuminating or light absorbing region.

圖109為發光之通電例示性裝置具體實例之照片。 Figure 109 is a photograph of a specific example of an energized exemplary device for illumination.

圖110為例示性第二二極體具體實例之掃描電子顯微照片。 Figure 110 is a scanning electron micrograph of an exemplary second diode embodiment.

圖111為複數個例示性第二二極體具體實例之掃描電子顯微照片。 Figure 111 is a scanning electron micrograph of a plurality of exemplary second diode embodiments.

100‧‧‧第一二極體 100‧‧‧ first diode

105‧‧‧基板 105‧‧‧Substrate

110‧‧‧n+型GaN層 110‧‧‧n+ type GaN layer

115‧‧‧p+型GaN層 115‧‧‧p+ type GaN layer

120A‧‧‧金屬層 120A‧‧‧metal layer

120B‧‧‧金屬層 120B‧‧‧ metal layer

121‧‧‧六角形側面 121‧‧‧ hexagonal side

130‧‧‧導孔130‧‧‧Guide

Claims (15)

一種二極體,其包含:發光或光吸收區域,其直徑為介於約20微米至30微米之間且高度為介於2.5微米至7微米之間,該發光或光吸收區域進一步在第一面上包含台面區域;一個第一端子,其在該第一面上中心耦接至該發光或光吸收區域之台面區域,該第一端子之高度為介於1微米至8微米之間;及複數個第二端子,其間隔開且在該第一面上周邊耦接至該發光或光吸收區域,該複數個第二端子中之各第二端子之高度為介於0.5微米至2微米之間。 A diode comprising: a luminescent or light absorbing region having a diameter between about 20 microns and 30 microns and a height between 2.5 microns and 7 microns, the illuminating or light absorbing region further at first The surface includes a mesa region; a first terminal centrally coupled to the mesa region of the light emitting or light absorbing region on the first surface, the first terminal having a height between 1 micrometer and 8 micrometers; a plurality of second terminals spaced apart and coupled to the light emitting or light absorbing region at a periphery of the first surface, wherein a height of each of the plurality of second terminals is between 0.5 micrometers and 2 micrometers between. 如申請專利範圍第1項之二極體,其中該台面區域之高度為0.5微米至2微米且直徑為介於6微米至22微米之間。 The dipole of claim 1 wherein the mesa region has a height of from 0.5 micrometers to 2 micrometers and a diameter of between 6 micrometers and 22 micrometers. 如申請專利範圍第1項之二極體,其中該台面區域進一步包含形成合金之金屬層,該形成合金之金屬層在該第一端子之前沉積且包含鎳或鎳及金,其高度為20至30埃且耦接至該第二端子。 The dipole of claim 1, wherein the mesa region further comprises a metal layer forming an alloy, the metal layer forming the alloy being deposited before the first terminal and comprising nickel or nickel and gold, the height being 20 to 30 angstroms and coupled to the second terminal. 如申請專利範圍第1項之二極體,其中該第一端子進一步包含高度為0.5微米至1.5微米且直徑為6微米至10微米之中心金屬層,該中心金屬層耦接至該發光或光吸收區域之該台面區域。 The diode of claim 1, wherein the first terminal further comprises a central metal layer having a height of 0.5 micrometers to 1.5 micrometers and a diameter of 6 micrometers to 10 micrometers, the central metal layer being coupled to the light or light The mesa area of the absorption zone. 如申請專利範圍第4項之二極體,其中該第一端子進一步包含高度為4微米至6微米且寬度為介於4微米至11 微米之間並與該發光或光吸收區域之該台面區域及該中心金屬層形成合金之模用金屬。 The dipole of claim 4, wherein the first terminal further comprises a height of 4 micrometers to 6 micrometers and a width of 4 micrometers to 11 A mold metal formed between the micrometers and the mesa region of the illuminating or light absorbing region and the central metal layer. 如申請專利範圍第1項之二極體,其中該複數個第二端子中之各第二端子包含導孔金屬,其寬度為介於2微米至4微米之間且長度為介於6微米至11微米之間。 The dipole of claim 1, wherein each of the plurality of second terminals comprises a via metal having a width between 2 microns and 4 microns and a length between 6 microns and Between 11 microns. 如申請專利範圍第1項之二極體,其中該二極體之側向尺寸為介於10微米至50微米之間且高度為介於5微米至25微米之間。 The dipole of claim 1 wherein the dipole has a lateral dimension between 10 microns and 50 microns and a height between 5 microns and 25 microns. 如申請專利範圍第1項之二極體,其中該二極體在側向上實質上為六角形,其相對面對面所量測之直徑為介於10微米至50微米之間,且高度為介於5微米至25微米之間。 The dipole of claim 1, wherein the diode is substantially hexagonal in the lateral direction, and the diameter measured between the opposing faces is between 10 micrometers and 50 micrometers, and the height is between Between 5 microns and 25 microns. 如申請專利範圍第1項之二極體,其中該二極體之該發光或光吸收區域實質上為六角形、正方形、三角形、矩形、葉形、星形或超環形。 The dipole of claim 1, wherein the illuminating or light absorbing region of the diode is substantially hexagonal, square, triangular, rectangular, lobed, star-shaped or super-annular. 如申請專利範圍第1項之二極體,其中該二極體之該發光或光吸收區域具有包含以下之表面紋理:複數個圓環,或複數個實質上曲邊梯形,或複數個平行條紋,或星形圖案。 The dipole of claim 1, wherein the illuminating or light absorbing region of the diode has a surface texture comprising: a plurality of rings, or a plurality of substantially curved trapezoids, or a plurality of parallel stripes , or star pattern. 如申請專利範圍第1項之二極體,其中該二極體在側向上實質上為六角形且其中該二極體之各側面之高度小於10微米。 The dipole of claim 1 wherein the dipole is substantially hexagonal in the lateral direction and wherein the height of each side of the dipole is less than 10 microns. 如申請專利範圍第1項之二極體,其中該第一端子之接點與該複數個第二端子之接點在高度上間隔1微米至7 微米。 The dipole of claim 1, wherein the junction of the first terminal and the plurality of second terminals are separated by a height of 1 micrometer to 7 Micron. 如申請專利範圍第12項之二極體,其中該二極體之各側面具有實質上S形彎曲且終止於彎曲點。 A dipole according to claim 12, wherein each side of the diode has a substantially S-shaped curvature and terminates at a bending point. 如申請專利範圍第1項之二極體,其中該二極體包含至少一種選自由以下組成之群的無機半導體:矽、砷化鎵(GaAs)、氮化鎵(GaN)、GaP、InAlGaP、AlInGaAs、InGaNAs及AlInGaSb。 The dipole of claim 1, wherein the dipole comprises at least one inorganic semiconductor selected from the group consisting of germanium, gallium arsenide (GaAs), gallium nitride (GaN), GaP, InAlGaP, AlInGaAs, InGaNAs, and AlInGaSb. 如申請專利範圍第1項之二極體,其中該二極體包含至少一種選自由以下組成之群的有機半導體:π共軛聚合物、聚(乙炔)、聚(吡咯)、聚(噻吩)、聚苯胺、聚噻吩、聚(對苯硫醚)、聚(對伸苯基伸乙烯基)(PPV)及PPV衍生物、聚(3-烷基噻吩)、聚吲哚、聚芘、聚咔唑、聚甘菊藍、聚氮呯、聚(茀)、聚萘、聚苯胺、聚苯胺衍生物、聚噻吩、聚噻吩衍生物、聚吡咯、聚吡咯衍生物、聚苯并噻吩、聚苯并噻吩衍生物、聚對伸苯基、聚對伸苯基衍生物、聚乙炔、聚乙炔衍生物、聚二乙炔、聚二乙炔衍生物、聚對伸苯基伸乙烯基、聚對伸苯基伸乙烯基衍生物、聚萘、聚萘衍生物、聚異苯并噻吩(polyisothianaphthene,PITN)、伸雜芳基為噻吩、呋喃或吡咯之聚伸雜芳基伸乙烯基(ParV)、聚苯硫(PPS)、聚迫位萘(polyperinaphthalene,PPN)、聚酞菁(PPhc),及其衍生物、其共聚物及其混合物。 A dipole according to claim 1, wherein the dipole comprises at least one organic semiconductor selected from the group consisting of π conjugated polymers, poly(acetylene), poly(pyrrole), poly(thiophene). , polyaniline, polythiophene, poly(p-phenylene sulfide), poly(p-phenylene vinylene) (PPV) and PPV derivatives, poly(3-alkylthiophene), polyfluorene, polyfluorene, polyfluorene Azole, polyglycyrrhizin, polyazabarium, poly(fluorene), polynaphthalene, polyaniline, polyaniline derivative, polythiophene, polythiophene derivative, polypyrrole, polypyrrole derivative, polybenzothiophene, polyphenylene And thiophene derivatives, poly-p-phenylene, poly-p-phenylene derivatives, polyacetylene, polyacetylene derivatives, polydiacetylene, polydiacetylene derivatives, poly-p-phenylene vinyl, poly-p-phenylene Vinyl derivatives, polynaphthalenes, polynaphthalene derivatives, polyisothianaphthene (PITN), heteroaryl groups of thiophene, furan or pyrrole, poly(arylene), vinyl (ParV), polyphenylene sulfide PPS), polyperinaphthalene (PPN), polyphthalocyanine (PPhc), and derivatives thereof, copolymers thereof, and mixtures thereof.
TW100131614A 2010-09-01 2011-09-01 Diode for a printable composition TWI615994B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US37922510P 2010-09-01 2010-09-01
US37928410P 2010-09-01 2010-09-01
US61/379,284 2010-09-01
US61/379,225 2010-09-01
US37982010P 2010-09-03 2010-09-03
US37983010P 2010-09-03 2010-09-03
US61/379,820 2010-09-03
US61/379,830 2010-09-03

Publications (2)

Publication Number Publication Date
TW201216506A TW201216506A (en) 2012-04-16
TWI615994B true TWI615994B (en) 2018-02-21

Family

ID=46552490

Family Applications (7)

Application Number Title Priority Date Filing Date
TW100131616A TWI555172B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of two-terminal integrated circuits and apparatus
TW100131619A TWI534211B (en) 2010-09-01 2011-09-01 Method of manufacturing a printable composition of a liquid or gel suspension of diodes
TW100131609A TWI513032B (en) 2010-09-01 2011-09-01 Method of manufacturing a light emitting, power generating or other electronic apparatus
TW100131615A TWI566369B (en) 2010-09-01 2011-09-01 Light emitting, power generating or other electronic apparatus
TW100131614A TWI615994B (en) 2010-09-01 2011-09-01 Diode for a printable composition
TW100131618A TWI550896B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of diodes
TW100131613A TWI566302B (en) 2010-09-01 2011-09-01 Diode for a printable composition

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW100131616A TWI555172B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of two-terminal integrated circuits and apparatus
TW100131619A TWI534211B (en) 2010-09-01 2011-09-01 Method of manufacturing a printable composition of a liquid or gel suspension of diodes
TW100131609A TWI513032B (en) 2010-09-01 2011-09-01 Method of manufacturing a light emitting, power generating or other electronic apparatus
TW100131615A TWI566369B (en) 2010-09-01 2011-09-01 Light emitting, power generating or other electronic apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100131618A TWI550896B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of diodes
TW100131613A TWI566302B (en) 2010-09-01 2011-09-01 Diode for a printable composition

Country Status (1)

Country Link
TW (7) TWI555172B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9572249B2 (en) * 2013-03-14 2017-02-14 Nthdegree Technologies Worldwide Inc. Printing complex electronic circuits
TWI535784B (en) 2014-08-26 2016-06-01 財團法人工業技術研究院 Shear thickening formulation and composite material employing the same
CN108305947B (en) * 2017-01-11 2021-10-22 华邦电子股份有限公司 Sensor, composite material and method for manufacturing the same
US10823691B2 (en) * 2017-01-11 2020-11-03 Winbond Electronics Corp. Sensor, composite material and method of manufacturing the same
TWI651349B (en) * 2017-01-11 2019-02-21 華邦電子股份有限公司 Sensor, composite material and method of manufacturing the same
US10269711B1 (en) * 2018-03-16 2019-04-23 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and method for manufacturing the same
CN113327914A (en) * 2021-05-27 2021-08-31 武汉新芯集成电路制造有限公司 Semiconductor device and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142753A (en) * 1993-11-19 1995-06-02 Sanyo Electric Co Ltd Heterojunction photovoltaic apparatus
JPH08116093A (en) * 1994-10-17 1996-05-07 Fujitsu Ltd Optical semiconductor device
US20030080341A1 (en) * 2001-01-24 2003-05-01 Kensho Sakano Light emitting diode, optical semiconductor element and epoxy resin composition suitable for optical semiconductor element and production methods therefor
US6896145B2 (en) * 2002-02-22 2005-05-24 Philip Morris Incorporated Dispensing rack with high definition liquid crystal display header
US20070035808A1 (en) * 2001-07-09 2007-02-15 E Ink Corporation Electro-optic display and materials for use therein
US7327078B2 (en) * 2004-03-30 2008-02-05 Lumination Llc LED illumination device with layered phosphor pattern
US7622367B1 (en) * 2004-06-04 2009-11-24 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046949A (en) * 1983-08-26 1985-03-14 Asahi Glass Co Ltd Paste for thick film
US20030222263A1 (en) * 2002-06-04 2003-12-04 Kopin Corporation High-efficiency light-emitting diodes
TWI234298B (en) * 2003-11-18 2005-06-11 Itswell Co Ltd Semiconductor light emitting diode and method for manufacturing the same
US7476557B2 (en) * 2004-03-29 2009-01-13 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US7629026B2 (en) * 2004-09-03 2009-12-08 Eastman Kodak Company Thermally controlled fluidic self-assembly
JP4992282B2 (en) * 2005-06-10 2012-08-08 ソニー株式会社 Light emitting diode, light emitting diode manufacturing method, light emitting diode backlight, light emitting diode illumination device, light emitting diode display, and electronic device
US20070289626A1 (en) * 2006-06-20 2007-12-20 Konarka Technologies, Inc. Photovoltaic cells
TW200818534A (en) * 2006-08-10 2008-04-16 Icemos Technology Corp Method of manufacturing a photodiode array with through-wafer vias
US20080237611A1 (en) * 2007-03-29 2008-10-02 Cok Ronald S Electroluminescent device having improved contrast

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142753A (en) * 1993-11-19 1995-06-02 Sanyo Electric Co Ltd Heterojunction photovoltaic apparatus
JPH08116093A (en) * 1994-10-17 1996-05-07 Fujitsu Ltd Optical semiconductor device
US20030080341A1 (en) * 2001-01-24 2003-05-01 Kensho Sakano Light emitting diode, optical semiconductor element and epoxy resin composition suitable for optical semiconductor element and production methods therefor
US20070035808A1 (en) * 2001-07-09 2007-02-15 E Ink Corporation Electro-optic display and materials for use therein
US6896145B2 (en) * 2002-02-22 2005-05-24 Philip Morris Incorporated Dispensing rack with high definition liquid crystal display header
US7327078B2 (en) * 2004-03-30 2008-02-05 Lumination Llc LED illumination device with layered phosphor pattern
US7622367B1 (en) * 2004-06-04 2009-11-24 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements

Also Published As

Publication number Publication date
TWI534211B (en) 2016-05-21
TWI513032B (en) 2015-12-11
TW201220471A (en) 2012-05-16
TWI555172B (en) 2016-10-21
TW201216370A (en) 2012-04-16
TWI566369B (en) 2017-01-11
TW201218416A (en) 2012-05-01
TW201304112A (en) 2013-01-16
TWI566302B (en) 2017-01-11
TW201226479A (en) 2012-07-01
TWI550896B (en) 2016-09-21
TW201216505A (en) 2012-04-16
TW201216506A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
US9410684B2 (en) Bidirectional lighting apparatus with light emitting diodes
US9362348B2 (en) Method of manufacturing a light emitting, power generating or other electronic apparatus
US9105812B2 (en) Diode for a printable composition
US9349928B2 (en) Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US8846457B2 (en) Printable composition of a liquid or gel suspension of diodes
US9534772B2 (en) Apparatus with light emitting diodes
TWI615994B (en) Diode for a printable composition
US10161615B2 (en) Apparatus with forward and reverse-biased light emitting diodes coupled in parallel
US9130124B2 (en) Diode for a printable composition
US9425357B2 (en) Diode for a printable composition
US9419179B2 (en) Diode for a printable composition
US9343593B2 (en) Printable composition of a liquid or gel suspension of diodes
KR102156532B1 (en) Light emitting, power generating or other electronic apparatus and method of manufacturing same
EP2618369A2 (en) Diodes, printable compositions of a liquid or gel suspension of diodes or other two-terminal integrated circuits, and methods of making same