TWI651349B - Sensor, composite material and method of manufacturing the same - Google Patents

Sensor, composite material and method of manufacturing the same Download PDF

Info

Publication number
TWI651349B
TWI651349B TW106137313A TW106137313A TWI651349B TW I651349 B TWI651349 B TW I651349B TW 106137313 A TW106137313 A TW 106137313A TW 106137313 A TW106137313 A TW 106137313A TW I651349 B TWI651349 B TW I651349B
Authority
TW
Taiwan
Prior art keywords
metal oxide
conductive polymer
electrode
composite material
oxide
Prior art date
Application number
TW106137313A
Other languages
Chinese (zh)
Other versions
TW201825605A (en
Inventor
蔡明志
何羽軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Publication of TW201825605A publication Critical patent/TW201825605A/en
Application granted granted Critical
Publication of TWI651349B publication Critical patent/TWI651349B/en

Links

Abstract

本發明提供一種感測器、複合材料及其製造方法。所述感測器包括第一電極、第二電極以及感測材料層。第一電所述第二電極彼此分離。感測材料層位於所述第一電極與所述第二電極之間且覆蓋所述第一電極與所述第二電極。所述感測材料層包括所述複合材料,其包括導電高分子與金屬氧化物。導電高分子具有親水端。金屬氧化物連接導電高分子的親水端。所述金屬氧化物包括金屬氧化物前驅物。The invention provides a sensor, a composite material and a method of manufacturing the same. The sensor includes a first electrode, a second electrode, and a layer of sensing material. The first electrode is separated from each other by the first electrode. A sensing material layer is between the first electrode and the second electrode and covers the first electrode and the second electrode. The layer of sensing material includes the composite material comprising a conductive polymer and a metal oxide. The conductive polymer has a hydrophilic end. The metal oxide is bonded to the hydrophilic end of the conductive polymer. The metal oxide includes a metal oxide precursor.

Description

感測器、複合材料及其製造方法Sensor, composite material and manufacturing method thereof

本發明是有關於一種感測器、複合材料及其製造方法。The present invention relates to a sensor, a composite material, and a method of fabricating the same.

近年來隨著工業發展,由於人們對於自身健康以及環境保護的重視逐年增加,因此相關感測技術(如氣體感測技術、紫外光感測技術、溫度感測技術、濕度感測技術等)便逐漸發展中。為了降低感測器的面積與提高感測靈敏度,現行的感測器經常採用指叉型電極,然而,以具有一百對指叉型電極的感測器為例,感測器的阻值仍然過高(約數百MΩ等級),進而導致感測器的感測靈敏度不佳。因此,如何有效降低感測器的阻值並提升感測器的靈敏度,實為目前研發人員亟待解決的議題之一。In recent years, with the development of industry, people's attention to their own health and environmental protection has increased year by year, so relevant sensing technologies (such as gas sensing technology, ultraviolet light sensing technology, temperature sensing technology, humidity sensing technology, etc.) will be Gradually developing. In order to reduce the area of the sensor and improve the sensing sensitivity, current sensors often use an interdigitated electrode. However, taking a sensor with one hundred pairs of interdigitated electrodes as an example, the resistance of the sensor is still Too high (about a few hundred MΩ level), which in turn leads to poor sensing sensitivity of the sensor. Therefore, how to effectively reduce the resistance of the sensor and improve the sensitivity of the sensor is one of the issues that the current research and development personnel urgently need to solve.

本發明提供一種適用於感測器的感測材料層的複合材料,其可有效地降低感測器的阻值並提升感測器的靈敏度。The present invention provides a composite material suitable for a sensing material layer of a sensor that effectively reduces the resistance of the sensor and increases the sensitivity of the sensor.

本發明提供一種感測器包括第一電極、第二電極以及感測材料層。第二電極與第一電極彼此分離。感測材料層位於第一電極與第二電極之間且覆蓋第一電極與第二電極。感測材料層包括導電高分子以及金屬氧化物。導電高分子具有親水端。金屬氧化物連接導電高分子的親水端。所述金屬氧化物包括金屬氧化物前驅物。The invention provides a sensor comprising a first electrode, a second electrode and a layer of sensing material. The second electrode and the first electrode are separated from each other. The sensing material layer is located between the first electrode and the second electrode and covers the first electrode and the second electrode. The sensing material layer includes a conductive polymer and a metal oxide. The conductive polymer has a hydrophilic end. The metal oxide is bonded to the hydrophilic end of the conductive polymer. The metal oxide includes a metal oxide precursor.

本發明提供一種適用於感測器的感測材料層的複合材料,其包括導電高分子以及金屬氧化物。導電高分子具有親水端且在溶劑中形成膠體顆粒。金屬氧化物連接導電高分子的親水端。The present invention provides a composite material suitable for a sensing material layer of a sensor, comprising a conductive polymer and a metal oxide. The conductive polymer has a hydrophilic end and forms colloidal particles in a solvent. The metal oxide is bonded to the hydrophilic end of the conductive polymer.

本發明提供一種複合材料的製造方法,其步驟如下。提供具有親水端的導電高分子。加入金屬氧化物,使得所述金屬氧化物連接所述導電高分子的所述親水端。所述金屬氧化物是由金屬氧化物前驅物經由脫水反應、聚合反應、縮合反應或其組合所得到。The present invention provides a method of producing a composite material, the steps of which are as follows. A conductive polymer having a hydrophilic end is provided. A metal oxide is added such that the metal oxide is bonded to the hydrophilic end of the conductive polymer. The metal oxide is obtained from a metal oxide precursor via a dehydration reaction, a polymerization reaction, a condensation reaction, or a combination thereof.

基於上述,本發明的複合材料包括導電高分子以及金屬氧化物,其中金屬氧化物與導電高分子的親水端連接。因此,本發明的複合材料除了具有良好的導電度,由於金屬氧化物遮蔽導電高分子的親水端,可使導電高分子的親水端不易與環境中的水氣和氧氣反應,進而避免導電高分子劣化以及塗佈不便的問題。此外,本發明的複合材料可應用在感測器的感測材料層中,其可有效地降低感測器的電阻值並提升感測器的靈敏度。Based on the above, the composite material of the present invention comprises a conductive polymer and a metal oxide, wherein the metal oxide is bonded to the hydrophilic end of the conductive polymer. Therefore, in addition to the good electrical conductivity of the composite material of the present invention, since the metal oxide shields the hydrophilic end of the conductive polymer, the hydrophilic end of the conductive polymer is less likely to react with moisture and oxygen in the environment, thereby avoiding the conductive polymer. Deterioration and problems of coating inconvenience. Furthermore, the composite of the present invention can be applied in the sensing material layer of the sensor, which can effectively reduce the resistance value of the sensor and increase the sensitivity of the sensor.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A是依照本發明一些實施例所繪示之一種複合材料的示意圖。圖1B是依照圖1A所繪示之複合材料的局部放大示意圖。1A is a schematic illustration of a composite material in accordance with some embodiments of the present invention. FIG. 1B is a partially enlarged schematic view of the composite material according to FIG. 1A.

請參照圖1A與圖1B,本發明的複合材料100包括導電高分子110以及金屬氧化物120。詳述如下:Referring to FIG. 1A and FIG. 1B, the composite material 100 of the present invention includes a conductive polymer 110 and a metal oxide 120. Details are as follows:

導電高分子110可以是一種具有正電和負電的高分子,換句話說,導電高分子110具有親水端和疏水端。在一些實施例中,導電高分子110的長碳鏈(其具有疏水性)上具有多個親水端112的官能基,例如羧基(carboxyl group)、羥基(hydroxyl group)、磺酸基(sulfonic acid group)、胺基(amino group)或其組合,但本發明不限於此。舉例來說,在一些實施例中,導電高分子110例如是由一種導電高分子所組成,其具有疏水性的長碳鏈上帶有多個親水端112,親水端112可與金屬氧化物120連接。在另一些實施例中,導電高分子110例如是由二種導電高分子所組成,其中長碳鏈是由在側鏈上具有多個親水端112的導電高分子組成,親水端112可與具有多個疏水端114的另一種導電高分子連接,也可與金屬氧化物120連接,但本發明不限於此。The conductive polymer 110 may be a polymer having positive and negative charges. In other words, the conductive polymer 110 has a hydrophilic end and a hydrophobic end. In some embodiments, the long carbon chain of the conductive polymer 110 (which has hydrophobicity) has a plurality of functional groups of the hydrophilic end 112, such as a carboxyl group, a hydroxyl group, or a sulfonic acid group. Group), an amino group or a combination thereof, but the invention is not limited thereto. For example, in some embodiments, the conductive polymer 110 is composed, for example, of a conductive polymer having a hydrophobic long carbon chain with a plurality of hydrophilic ends 112 and a hydrophilic end 112 with a metal oxide 120. connection. In other embodiments, the conductive polymer 110 is composed, for example, of two conductive polymers, wherein the long carbon chain is composed of a conductive polymer having a plurality of hydrophilic ends 112 on the side chain, and the hydrophilic end 112 can have The other conductive polymer of the plurality of hydrophobic ends 114 may be connected to the metal oxide 120, but the invention is not limited thereto.

具體來說,導電高分子110包括共軛高分子與酸性助溶劑。在一實施例中,所述共軛高分子為主要導電結構,其可例如是聚二氧乙基噻吩(poly(3,4-ethylenedioxythiophene);PEDOT)、聚苯硫醚(polyphenylene sulfide;PPS)、聚吡咯(polypyrrole;PPy)、聚噻吩(polythiophene;PT)、聚苯胺(polyaniline;PANI)或其組合。另外,所述酸性助溶劑可例如是聚苯乙烯磺酸(poly(styrensulfonate);PSS)、乙酸、丙酸、丁酸、苯甲酸或其組合。在一些實施例中,所述共軛高分子(例如PEDOT)不易溶於溶劑(例如水)中,但加入所述酸性助溶劑(例如PSS)之後,則可使得導電高分子110(例如PEDOT:PSS)以膠體顆粒(colloid)的形式分散於水溶液中。Specifically, the conductive polymer 110 includes a conjugated polymer and an acidic co-solvent. In one embodiment, the conjugated polymer is a main conductive structure, which may be, for example, poly(3,4-ethylenedioxythiophene; PEDOT), polyphenylene sulfide (PPS). , polypyrrole (PPy), polythiophene (PT), polyaniline (PANI) or a combination thereof. Additionally, the acidic cosolvent may be, for example, poly(styrensulfonate; PSS), acetic acid, propionic acid, butyric acid, benzoic acid, or a combination thereof. In some embodiments, the conjugated polymer (eg, PEDOT) is not readily soluble in a solvent (eg, water), but after the addition of the acidic co-solvent (eg, PSS), the conductive polymer 110 (eg, PEDOT: PSS) is dispersed in an aqueous solution in the form of a colloid.

在一些實施例中,導電高分子110分散在溶劑中會形成膠體顆粒。所述溶劑包括極性溶劑,其可例如是水、甲醇、乙醇、丙醇、異丙醇、丁醇、乙二醇、二甘醇、甘油、丙二醇、二丙二醇、三丙二醇或其組合。導電高分子110所形成的膠體顆粒的直徑例如是介於10奈米至500奈米之間。在一些實施例中,導電高分子110的重量平均分子量(weight-average molecular weight;Mw)例如是介於20000 克/莫耳(g/mol)至500000 g/mol之間。In some embodiments, the conductive polymer 110 is dispersed in a solvent to form colloidal particles. The solvent includes a polar solvent, which may be, for example, water, methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, diethylene glycol, glycerin, propylene glycol, dipropylene glycol, tripropylene glycol, or a combination thereof. The diameter of the colloidal particles formed by the conductive polymer 110 is, for example, between 10 nm and 500 nm. In some embodiments, the weight-average molecular weight (Mw) of the conductive polymer 110 is, for example, between 20,000 g/mole (g/mol) and 500,000 g/mol.

在一具體實施例中,導電高分子110例如是PEDOT:PSS。在此實施例中,PEDOT為主要導電結構。PSS為P型摻雜(p-type doping),其側鏈上的親水端112為帶負電的磺酸基(SO3 - )。PSS的帶負電的磺酸基使得PEDOT帶正電(S+ ),並與PEDOT上帶正電的硫(S+ )連接,也可與金屬氧化物120連接。在此實施例中,PEDOT:PSS的比例例如是介於1:1至1:10之間,但本發明不限於此。In a specific embodiment, the conductive polymer 110 is, for example, PEDOT:PSS. In this embodiment, PEDOT is the primary conductive structure. The PSS is p-type doping, and the hydrophilic end 112 on the side chain is a negatively charged sulfonic acid group (SO 3 - ). The negatively charged sulfonic acid group of PSS causes PEDOT to be positively charged (S + ) and is coupled to positively charged sulfur (S + ) on PEDOT or to metal oxide 120. In this embodiment, the ratio of PEDOT:PSS is, for example, between 1:1 and 1:10, but the invention is not limited thereto.

金屬氧化物120可以遮蔽導電高分子110的親水端112。在一些實施例中,金屬氧化物120接在導電高分子110的親水端112上,以遮蔽親水端112。在一些實施例中,金屬氧化物120的尺寸(直徑或是長度)比導電高分子110小。金屬氧化物120例如二氧化鈦(TiO2 )、二氧化錫(SnO2 )、氧化鋅(ZnO)、三氧化鎢(WO3 )、氧化鐵(Fe2 O3 )、五氧化二鈮(Nb2 O5 )、氧化銦錫(indium tin oxide;ITO)、三氧化二銦(In2 O3 )、鈦酸鍶(SrTiO3 )、一氧化鎳(NiO)、氧化釩(V2 O5 )、氧化鉬(MoO3 )、氧化鎂、氧化鋁或其組合。The metal oxide 120 can shield the hydrophilic end 112 of the conductive polymer 110. In some embodiments, metal oxide 120 is attached to hydrophilic end 112 of conductive polymer 110 to shield hydrophilic end 112. In some embodiments, the metal oxide 120 has a smaller size (diameter or length) than the conductive polymer 110. Metal oxide 120 such as titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), tungsten trioxide (WO 3 ), iron oxide (Fe 2 O 3 ), antimony pentoxide (Nb 2 O) 5 ), indium tin oxide (ITO), indium trioxide (In 2 O 3 ), barium titanate (SrTiO 3 ), nickel monoxide (NiO), vanadium oxide (V 2 O 5 ), oxidation Molybdenum (MoO 3 ), magnesium oxide, aluminum oxide or a combination thereof.

在一實施例中,金屬氧化物120是將金屬氧化物前驅物經由脫水反應、聚合反應、縮合反應或其組合所得到。在一實施例中,所述金屬氧化物前驅物可以是溶液形式,其包括至少一種金屬離子與配位體。具體來說,可將所述金屬離子(例如鈦)與所述配位體(例如異丙醇鹽)之金屬氧化物前驅物(例如異丙醇鈦)溶於含有助劑之溶劑(助劑例如酸、鹼、氧化劑或其組合,而溶劑例如水)中,以形成金屬氧化物前驅物溶液(例如異丙醇鈦溶液)。接著,進行加熱製程,以將金屬氧化物前驅物脫水、聚合為金屬氧化物(例如氧化鈦)。在一實施例中,以水為例,所述加熱製程的溫度為20°C至90°C;所述加熱製程的時間為0.5小時至96小時。但本發明不以此為限,在替代實施例中,加熱製程的參數(時間或溫度)取決於溶劑的種類。In one embodiment, the metal oxide 120 is obtained by dehydrating a metal oxide precursor, a polymerization reaction, a condensation reaction, or a combination thereof. In an embodiment, the metal oxide precursor may be in the form of a solution comprising at least one metal ion and a ligand. Specifically, the metal ion (for example, titanium) and the metal oxide precursor of the ligand (for example, isopropoxide) (for example, titanium isopropoxide) may be dissolved in a solvent containing an auxiliary agent (auxiliary agent). For example, an acid, a base, an oxidizing agent, or a combination thereof, and a solvent such as water) to form a metal oxide precursor solution (for example, a titanium isopropoxide solution). Next, a heating process is performed to dehydrate and polymerize the metal oxide precursor to a metal oxide (e.g., titanium oxide). In one embodiment, taking water as an example, the heating process has a temperature of 20 ° C to 90 ° C; and the heating process has a time of 0.5 hours to 96 hours. However, the invention is not limited thereto, and in an alternative embodiment, the parameters (time or temperature) of the heating process depend on the type of solvent.

在一實施例中,所述配位體包括雙牙配位體(bidentate ligands)或烷氧化物配位體(alkoxide ligands)。所述金屬離子選自於由Ba、Co、Cu、Fe、In、Ti、Sn、Sr、V、W、Zn、Mo、Nb、Ni、Mg、Al所組成的群組中的至少一種元素。所述雙牙配位體選自於由醋酸鹽(acetate)、乙醯丙酮酸鹽(acetylacetonate)、碳酸鹽(carbonate)、草酸鹽(oxalate)所組成的群組中的至少一種配位體,所述烷氧化配位體選自於由甲醇鹽(methoxide),乙醇鹽(ethoxide),丙醇鹽(propoxide),異丙醇鹽(isopropoxide),丁醇鹽(butoxide)所組成的群組中的至少一種配位體。In one embodiment, the ligand comprises bidentate ligands or alkoxide ligands. The metal ion is selected from at least one element selected from the group consisting of Ba, Co, Cu, Fe, In, Ti, Sn, Sr, V, W, Zn, Mo, Nb, Ni, Mg, and Al. The bidentate ligand is selected from at least one ligand selected from the group consisting of acetate, acetylacetonate, carbonate, and oxalate. The alkoxylated ligand is selected from the group consisting of methoxide, ethoxide, propoxide, isopropoxide, butoxide At least one of the ligands.

金屬氧化物120的形狀例如包括顆粒狀或纖維(fiber)狀。在一些實施例中,請參照圖1A,金屬氧化物120的形狀例如是顆粒狀。在金屬氧化物120為顆粒狀的實施例中,金屬氧化物120的直徑例如是介於1奈米至20奈米之間。在一些實施例中,導電高分子110形成的膠體顆粒的直徑與金屬氧化物120的直徑的比例例如是介於5:1至500:1之間。在另一些實施例中,導電高分子110形成的膠體顆粒的直徑與金屬氧化物120的直徑的比例例如是10:1。也就是說,導電高分子110形成的膠體顆粒的直徑大於金屬氧化物120的直徑。在一些實施例中,導電高分子110形成的膠體顆粒的直徑可大於金屬氧化物120的直徑的10倍以上,但本發明不限於此。在一具體實施例中,導電高分子110例如是PEDOT:PSS,其形成的膠體顆粒的直徑例如約33奈米,金屬氧化物120例如是氧化鈦、氧化鎢、氧化鉬或氧化釩,其直徑例如約3奈米。也就是說,在此實施例中,導電高分子110形成的膠體顆粒的直徑大於金屬氧化物120的直徑的10倍以上,但本發明不限於此。The shape of the metal oxide 120 includes, for example, a granular shape or a fiber shape. In some embodiments, referring to FIG. 1A, the shape of the metal oxide 120 is, for example, granular. In embodiments where the metal oxide 120 is particulate, the diameter of the metal oxide 120 is, for example, between 1 nm and 20 nm. In some embodiments, the ratio of the diameter of the colloidal particles formed by the electrically conductive polymer 110 to the diameter of the metal oxide 120 is, for example, between 5:1 and 500:1. In other embodiments, the ratio of the diameter of the colloidal particles formed by the electrically conductive polymer 110 to the diameter of the metal oxide 120 is, for example, 10:1. That is, the diameter of the colloidal particles formed by the conductive polymer 110 is larger than the diameter of the metal oxide 120. In some embodiments, the diameter of the colloidal particles formed by the conductive polymer 110 may be greater than 10 times the diameter of the metal oxide 120, but the invention is not limited thereto. In a specific embodiment, the conductive polymer 110 is, for example, PEDOT:PSS, which forms colloidal particles having a diameter of, for example, about 33 nm, and the metal oxide 120 is, for example, titanium oxide, tungsten oxide, molybdenum oxide or vanadium oxide, and the diameter thereof. For example, about 3 nm. That is, in this embodiment, the diameter of the colloidal particles formed by the conductive polymer 110 is more than 10 times the diameter of the metal oxide 120, but the invention is not limited thereto.

請參照圖1B,本發明的複合材料100中的金屬氧化物120連接導電高分子110的親水端112。也就是說,藉由連接金屬氧化物120,導電高分子110的親水端112可被遮蔽(block)。在一些實施例中,金屬氧化物120可遮蔽導電高分子110的所有親水端112而裸露疏水端。在另一些實施例中,金屬氧化物120可連接導電高分子110的部分親水端112,導電高分子110的另一部分親水端112裸露,但本發明不限於此。導電高分子110與金屬氧化物120的莫耳比例可根據需求(例如,金屬氧化物120與導電高分子110的親水端的連接程度)來調整。舉例來說,在一些實施例中,導電高分子110與金屬氧化物120兩者重量百分比的比例如是介於0.01:1至250:1之間。在一具體實施例中,導電高分子110例如是PEDOT:PSS,金屬氧化物120例如是氧化釩,在此實施例中,為了使導電高分子110的親水端皆與金屬氧化物120連接,在此條件下,導電高分子110與金屬氧化物120兩者重量百分比的比例如是0.01:1至250:1,但本發明不限於此。Referring to FIG. 1B, the metal oxide 120 in the composite material 100 of the present invention is connected to the hydrophilic end 112 of the conductive polymer 110. That is, by connecting the metal oxide 120, the hydrophilic end 112 of the conductive polymer 110 can be blocked. In some embodiments, the metal oxide 120 can mask all of the hydrophilic ends 112 of the conductive polymer 110 while exposing the hydrophobic ends. In other embodiments, the metal oxide 120 may be connected to a portion of the hydrophilic end 112 of the conductive polymer 110, and the other portion of the hydrophilic end 112 of the conductive polymer 110 may be exposed, but the invention is not limited thereto. The molar ratio of the conductive polymer 110 to the metal oxide 120 can be adjusted according to requirements (for example, the degree of connection of the metal oxide 120 to the hydrophilic end of the conductive polymer 110). For example, in some embodiments, the ratio by weight of both the conductive polymer 110 and the metal oxide 120 is, for example, between 0.01:1 and 250:1. In one embodiment, the conductive polymer 110 is, for example, PEDOT:PSS, and the metal oxide 120 is, for example, vanadium oxide. In this embodiment, in order to connect the hydrophilic ends of the conductive polymer 110 to the metal oxide 120, Under this condition, the ratio by weight of both the conductive polymer 110 and the metal oxide 120 is, for example, 0.011 to 250:1, but the invention is not limited thereto.

金屬氧化物120可以各種方式與導電高分子110的親水端112連接,以遮蔽導電高分子110的親水端112。在一些示範實施例中,金屬氧化物120例如是藉由氫鍵或化學鍵結(例如共價鍵)來連接導電高分子110的親水端112。在一具體實施例中,金屬氧化物120(例如,氧化釩上之[-V=O])與導電高分子110的親水端(例如,PSS上之[-SO3 - ])產生共價鍵(例如,[-V-O-SO2 - ]),使得導電高分子110的親水端112被遮蔽(block),而減少或無法與外界的水氣和氧氣反應。換言之,本實施例之金屬氧化物120可防止導電高分子110與外界的水氣和氧氣反應,進而避免導電高分子110劣化以及塗佈不便的問題。The metal oxide 120 may be connected to the hydrophilic end 112 of the conductive polymer 110 in various ways to shield the hydrophilic end 112 of the conductive polymer 110. In some exemplary embodiments, metal oxide 120 is bonded to hydrophilic end 112 of conductive polymer 110, for example, by hydrogen bonding or chemical bonding (eg, covalent bonding). In one embodiment, metal oxide 120 (eg, [-V=O] on vanadium oxide) and the hydrophilic end of conductive polymer 110 (eg, [-SO 3 - ] on PSS) form a covalent bond (For example, [-VO-SO 2 - ]), the hydrophilic end 112 of the conductive polymer 110 is blocked, and is reduced or unable to react with external moisture and oxygen. In other words, the metal oxide 120 of the present embodiment can prevent the conductive polymer 110 from reacting with the outside water and oxygen, thereby avoiding the problem of deterioration of the conductive polymer 110 and inconvenience in coating.

圖2A是依照本發明另一些實施例所繪示之一種複合材料的示意圖。圖2B是依照圖2A所繪示之複合材料的局部放大示意圖。2A is a schematic view of a composite material according to further embodiments of the present invention. 2B is a partial enlarged view of the composite material according to FIG. 2A.

請參照圖2A和圖2B,複合材料200包括導電高分子210以及金屬氧化物220,導電高分子210具有親水端212和疏水端214,金屬氧化物220連接導電高分子210的親水端212。在此實施例中,與上述實施例不同之處在於,金屬氧化物220的形狀為纖維狀。在一些實施例中,導電高分子210形成的膠體顆粒的直徑與金屬氧化物220的長度的比例例如是介於3:1至100:1之間。在一些示例實施例中,金屬氧化物220的長度例如是介於5奈米至500奈米之間。在一些實施例中,導電高分子210形成的膠體顆粒的直徑大於金屬氧化物220的長度。在一示範實施例中,導電高分子210形成的膠體顆粒的直徑可大於金屬氧化物220的長度的10倍以上,但本發明不限於此。在一具體實施例中,導電高分子210例如是PEDOT:PSS,其形成的膠體顆粒的直徑例如約33奈米,金屬氧化物220例如是氧化鈦、氧化鎢、氧化鉬或氧化釩,其長度例如約14奈米。也就是說,在此實施例中,導電高分子210形成的膠體顆粒的直徑例如是金屬氧化物220的長度的2.5倍以上,但本發明不限於此。2A and 2B, the composite material 200 includes a conductive polymer 210 having a hydrophilic end 212 and a hydrophobic end 214, and a metal oxide 220 connected to the hydrophilic end 212 of the conductive polymer 210. In this embodiment, the difference from the above embodiment is that the shape of the metal oxide 220 is fibrous. In some embodiments, the ratio of the diameter of the colloidal particles formed by the conductive polymer 210 to the length of the metal oxide 220 is, for example, between 3:1 and 100:1. In some example embodiments, the length of the metal oxide 220 is, for example, between 5 nm and 500 nm. In some embodiments, the conductive polymer 210 forms a colloidal particle having a diameter greater than the length of the metal oxide 220. In an exemplary embodiment, the colloidal particles formed by the conductive polymer 210 may have a diameter greater than 10 times the length of the metal oxide 220, but the invention is not limited thereto. In a specific embodiment, the conductive polymer 210 is, for example, PEDOT:PSS, which forms colloidal particles having a diameter of, for example, about 33 nm, and the metal oxide 220 is, for example, titanium oxide, tungsten oxide, molybdenum oxide or vanadium oxide, and the length thereof. For example, about 14 nm. That is, in this embodiment, the diameter of the colloidal particles formed by the conductive polymer 210 is, for example, 2.5 times or more the length of the metal oxide 220, but the present invention is not limited thereto.

值得一提的是,在本發明的複合材料中,導電高分子110、210在整體複合材料100、200中具有提供所需的導電度的功能。舉例來說,在一些實施例中,導電高分子110、210可提升整體複合材料100、200的導電度。在一具體實施例中,導電高分子110、210的片電阻值例如是介於200歐姆/□至3000歐姆/□之間,金屬氧化物120、220的片電阻值例如是介於200K歐姆/□至200M歐姆/□之間,整體複合材料100、200的片電阻值例如是介於30歐姆/□至600歐姆/□之間,但本發明不限於此。It is worth mentioning that in the composite material of the present invention, the conductive polymers 110, 210 have a function of providing a desired conductivity in the overall composite material 100, 200. For example, in some embodiments, the conductive polymers 110, 210 can increase the conductivity of the overall composite 100, 200. In one embodiment, the sheet resistance of the conductive polymer 110, 210 is, for example, between 200 ohm/□ and 3000 ohm/□, and the sheet resistance of the metal oxide 120, 220 is, for example, 200K ohm/ Between □ and 200 M ohm/□, the sheet resistance of the entire composite material 100, 200 is, for example, between 30 ohm/□ and 600 Ω/□, but the invention is not limited thereto.

另一方面,在本發明的複合材料100、200中,導電高分子110、210在整體複合材料100、200中具有維持或調整功函數的功能。舉例來說,在一些實施例中,導電高分子110、210可維持整體複合材料100、200的功函數。在一些實施例中,導電高分子110、210的功函數例如是介於4.8 eV至5.2 eV之間,金屬氧化物120、220的功函數例如是介於5.2 eV至5.7 eV之間,整體複合材料100、200的功函數例如會介於二者之間,例如是介於5.0 eV至5.6 eV之間,但本發明不限於此。換言之,金屬氧化物120、220也可以調整整體複合材料100、200的功函數,使其達到所期望的數值。On the other hand, in the composite materials 100, 200 of the present invention, the conductive polymers 110, 210 have a function of maintaining or adjusting a work function in the overall composite materials 100, 200. For example, in some embodiments, the conductive polymers 110, 210 can maintain the work function of the overall composite 100, 200. In some embodiments, the work function of the conductive polymers 110, 210 is, for example, between 4.8 eV and 5.2 eV, and the work function of the metal oxides 120, 220 is, for example, between 5.2 eV and 5.7 eV, and the overall composite The work function of the materials 100, 200, for example, may be somewhere in between, for example between 5.0 eV and 5.6 eV, although the invention is not limited thereto. In other words, the metal oxides 120, 220 can also adjust the work function of the overall composite 100, 200 to a desired value.

上述複合材料100、200的形成方法例如是將金屬氧化物或其前驅物與導電高分子以前述所揭露之比例,於溶劑中混合均勻,產生導電高分子-金屬氧化物複合材料。在一些實施例中,所述溶劑包括極性溶劑,其可例如是水、甲醇、乙醇、丙醇、異丙醇、丁醇、乙二醇、二甘醇、甘油、丙二醇、二丙二醇、三丙二醇或其組合。混合方式包括搖晃、攪拌,可更包括施加加溫或超音波等方式來協助混合。具體來說,將溶液狀的金屬氧化物與溶液狀的導電高分子混合均勻。在一實施例中,所述混合方式可包括利用渦旋攪拌機(vortex mixer)震盪混合、利用旋轉攪拌機(rotator mixer)旋轉混合、利用管輥混合機(tube roller mixer)滾軸混合、利用線性/軌道搖床(linear/orbital shaker)或是搖岩機(rock shaker)振盪混合、利用DC攪拌器(DC-Stirrer)攪拌混合,或是利用磁石攪拌混合。在一實施例中,混合時間至少1秒以上;混合溫度介於4°C至80°C之間。The method for forming the composite materials 100 and 200 is, for example, a metal oxide or a precursor thereof and a conductive polymer are uniformly mixed in a solvent in the above-described ratio to produce a conductive polymer-metal oxide composite material. In some embodiments, the solvent includes a polar solvent, which may be, for example, water, methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, diethylene glycol, glycerin, propylene glycol, dipropylene glycol, tripropylene glycol. Or a combination thereof. The mixing method includes shaking and stirring, and may further include applying warming or ultrasonic waves to assist mixing. Specifically, the solution-like metal oxide is uniformly mixed with the solution-like conductive polymer. In one embodiment, the mixing may include vortex mixing with a vortex mixer, rotary mixing with a rotator mixer, roller mixing with a tube roller mixer, and linearity/ The linear/orbital shaker or the rock shaker is oscillated and mixed, stirred by a DC stirrer (DC-Stirrer), or stirred by a magnet. In one embodiment, the mixing time is at least 1 second; the mixing temperature is between 4 ° C and 80 ° C.

此外,在本發明的複合材料中,由於金屬氧化物遮蔽導電高分子的親水端,可使導電高分子的親水端不易與環境中的水氣和氧氣反應,進而避免導電高分子劣化以及塗佈不便的問題。又,由於導電高分子的親水端被遮蔽,可使複合材料整體較原始導電高分子呈疏水性,進而提高本發明的複合材料與疏水性材料的附著性。再者,在本發明的複合材料中,導電高分子位於金屬氧化物之間。也就是說,金屬氧化物分散於導電高分子之間,而使金屬氧化物不易於聚集。因此,可避免因金屬氧化物聚集而導致的問題。詳細而言,由於金屬氧物化團聚的現象減少,可提升整體複合材料的成膜性質,故可減少表面粗糙度、降低表面孔隙(pinhole)等,進而在外加電場時可避免漏電或尖端放電等問題。Further, in the composite material of the present invention, since the metal oxide shields the hydrophilic end of the conductive polymer, the hydrophilic end of the conductive polymer is less likely to react with moisture and oxygen in the environment, thereby preventing deterioration of the conductive polymer and coating. Inconvenience. Moreover, since the hydrophilic end of the conductive polymer is shielded, the composite material as a whole is more hydrophobic than the original conductive polymer, thereby improving the adhesion of the composite material of the present invention to the hydrophobic material. Further, in the composite material of the present invention, the conductive polymer is located between the metal oxides. That is, the metal oxide is dispersed between the conductive polymers, so that the metal oxide is not easily aggregated. Therefore, problems due to aggregation of metal oxides can be avoided. In detail, since the phenomenon of metal oxide physicochemical agglomeration is reduced, the film forming property of the overall composite material can be improved, thereby reducing surface roughness, reducing surface pores, and the like, thereby avoiding leakage or tip discharge when an electric field is applied. problem.

基於上述,本發明的複合材料可供噴印(ink-jet)、氣霧噴射(aerosol-jet)等溼式製程之3D列印技術使用,並能以導電材料或感測材料之形式應用於塑膠基材,例如包括聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醯亞胺(PI)、聚氯乙烯(PVC)、聚丙烯(PP)、環烯烴聚合物(COP)或聚乙烯(PE)等基板。Based on the above, the composite material of the present invention can be used in a wet process 3D printing technique such as ink-jet or aerosol-jet, and can be applied in the form of a conductive material or a sensing material. Plastic substrates, including, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimine (PI), polyvinyl chloride (PVC), polypropylene (PP) A substrate such as a cycloolefin polymer (COP) or polyethylene (PE).

此外,本發明的複合材料亦可應用於有機光電半導體元件,例如有機太陽能電池、有機發光二極體等。舉例來說,本發明的複合材料可作為太陽能電池的電子或電洞緩衝層(buffer layer)。以下將詳述將本發明的複合材料應用於太陽能電池的實施例,但本發明的複合材料的應用並不限於此。Further, the composite material of the present invention can also be applied to an organic optoelectronic semiconductor device such as an organic solar cell, an organic light emitting diode or the like. For example, the composite of the present invention can be used as an electron or hole buffer layer for solar cells. The embodiment in which the composite material of the present invention is applied to a solar cell will be described in detail below, but the application of the composite material of the present invention is not limited thereto.

圖3是依照本發明一些實施例所繪示之一種複合材料用於太陽能電池的剖面示意圖。3 is a cross-sectional view of a composite material for use in a solar cell, in accordance with some embodiments of the present invention.

請參照圖3,太陽能電池300可依序包括基板310、第一導電層320、主動層330以及第二導電層340,其中第一導電層320更包括電極層322以及緩衝層324。詳細而言,基板310的第一表面310a為光302的入射面,第一導電層320(包括電極層322、緩衝層324)、主動層330以及第二導電層340則依序設置在與基板310的第一表面310a相對的第二表面310b上。Referring to FIG. 3 , the solar cell 300 may sequentially include a substrate 310 , a first conductive layer 320 , an active layer 330 , and a second conductive layer 340 . The first conductive layer 320 further includes an electrode layer 322 and a buffer layer 324 . In detail, the first surface 310a of the substrate 310 is an incident surface of the light 302, and the first conductive layer 320 (including the electrode layer 322 and the buffer layer 324), the active layer 330, and the second conductive layer 340 are sequentially disposed on the substrate. The first surface 310a of the 310 is opposite the second surface 310b.

在一些實施例中,基板310例如是透明基板。基板310的材料例如包括玻璃、透明樹脂或其他合適的材料。請繼續參照圖3,主動層330位於緩衝層324上。在一些實施例中,主動層330的材料例如包括聚噻吩(poly(3-hexylthiophene);P3HT)、([6,6]-phenyl-C61-butyric acid method ester;PCBM)等。第二導電層340位於主動層330上。在一些實施例中,第二導電層340的材料例如包括金屬。金屬例如是金、銀、銅、鋁、鈦等,但本發明不限於此。In some embodiments, substrate 310 is, for example, a transparent substrate. The material of the substrate 310 includes, for example, glass, a transparent resin, or other suitable materials. With continued reference to FIG. 3, the active layer 330 is located on the buffer layer 324. In some embodiments, the material of the active layer 330 includes, for example, poly(3-hexylthiophene; P3HT), ([6,6]-phenyl-C61-butyric acid method ester; PCBM), and the like. The second conductive layer 340 is located on the active layer 330. In some embodiments, the material of the second conductive layer 340 includes, for example, a metal. The metal is, for example, gold, silver, copper, aluminum, titanium, or the like, but the invention is not limited thereto.

第一導電層320位於基板310與主動層330之間。第一導電層320包括電極層322以及緩衝層324。也就是說,在此實施例中,電極層322位於基板310的第二表面310b上,緩衝層324位於電極層322與主動層330之間。電極層322的材料例如包括銦錫氧化物(indium tin oxide;ITO)、銦鋅氧化物(indium zinc oxide;IZO)等,但本發明不限於此。本實施例中的緩衝層324的材料可以採用本發明上述實施例中的複合材料100或200(請參照圖1A或圖2A)。緩衝層324的形成方法可以採用例如是藉由旋轉塗佈法。將本發明的複合材料應用於太陽能電池300的緩衝層324中,可提供良好的導電度與所需的功函數,適於傳遞電洞(或電子)。另一方面,由於複合材料中的金屬氧化物遮蔽導電高分子的親水端,可提升材料穩定性,利於塗佈,且可提升緩衝層324與疏水性材料的附著性。又,由於複合材料中的金屬氧化物分散於導電高分子之間,因此可避免因金屬氧化物聚集而導致的漏電或尖端放電等問題。The first conductive layer 320 is located between the substrate 310 and the active layer 330. The first conductive layer 320 includes an electrode layer 322 and a buffer layer 324. That is, in this embodiment, the electrode layer 322 is located on the second surface 310b of the substrate 310, and the buffer layer 324 is located between the electrode layer 322 and the active layer 330. The material of the electrode layer 322 includes, for example, indium tin oxide (ITO), indium zinc oxide (IZO), or the like, but the present invention is not limited thereto. The material of the buffer layer 324 in this embodiment may be the composite material 100 or 200 in the above embodiment of the present invention (please refer to FIG. 1A or FIG. 2A). The method of forming the buffer layer 324 may be, for example, by a spin coating method. Applying the composite of the present invention to the buffer layer 324 of the solar cell 300 provides good electrical conductivity and a desired work function suitable for transferring holes (or electrons). On the other hand, since the metal oxide in the composite material shields the hydrophilic end of the conductive polymer, the material stability can be improved, the coating can be facilitated, and the adhesion of the buffer layer 324 to the hydrophobic material can be improved. Further, since the metal oxide in the composite material is dispersed between the conductive polymers, problems such as electric leakage or tip discharge due to aggregation of the metal oxide can be avoided.

上述實施例是將本發明的複合材料應用於太陽能電池的導電高分子層,但本發明不限於此。本發明的複合材料亦可應用在感測器中。The above embodiment is a method in which the composite material of the present invention is applied to a conductive polymer layer of a solar cell, but the present invention is not limited thereto. The composite of the present invention can also be used in a sensor.

圖4是依照本發明一些實施例所繪示之一種複合材料用於感測器的剖面示意圖。4 is a cross-sectional view of a composite material for a sensor, in accordance with some embodiments of the present invention.

請參照圖4,本實施例之感測器400包括基板SUB、第一電極402、第二電極404以及感測材料層406。在一實施例中,基板SUB可以是矽基板、玻璃基板、絕緣層上有矽(SOI)基板、線路基板、前述之塑膠基材或其組合。Referring to FIG. 4 , the sensor 400 of the embodiment includes a substrate SUB, a first electrode 402 , a second electrode 404 , and a sensing material layer 406 . In one embodiment, the substrate SUB may be a germanium substrate, a glass substrate, a germanium-on-insulator (SOI) substrate, a wiring substrate, the aforementioned plastic substrate, or a combination thereof.

如圖4所示,第一電極402與第二電極404配置在基板SUB上。詳細地說,第一電極402與第二電極404彼此分離且不相互接觸。在本實施例中,第一電極402與第二電極404可配置為指叉型電極,但本發明不限制第一電極402與第二電極404的形狀,只要第一電極402與第二電極404可相距一預定距離、彼此分離且不相互接觸皆為本發明的範疇。在替代實施例中,第一電極402與第二電極404亦可例如是堆疊式電極。立體的堆疊式電極的設置可有效增加感測器的密度,並縮小整體元件體積。詳細地說,堆疊式電極可以是將多個電極層與多個介電層(未繪示)垂直且交替堆疊於基板SUB上。也就是說,至少一介電層配置於相鄰兩個電極層之間,以電性隔離相鄰兩個電極層。在一實施例中,上述電極層包括導體材料。導體材料可以是摻雜或未摻雜的多晶矽材料、金屬材料或其組合。上述介電層的材料可以是氧化矽、氮化矽或其組合。As shown in FIG. 4, the first electrode 402 and the second electrode 404 are disposed on the substrate SUB. In detail, the first electrode 402 and the second electrode 404 are separated from each other and are not in contact with each other. In the present embodiment, the first electrode 402 and the second electrode 404 may be configured as a finger-type electrode, but the present invention does not limit the shape of the first electrode 402 and the second electrode 404 as long as the first electrode 402 and the second electrode 404 It is within the scope of the invention to be separated by a predetermined distance, separated from each other and not in contact with each other. In an alternative embodiment, the first electrode 402 and the second electrode 404 may also be, for example, stacked electrodes. The arrangement of the three-dimensional stacked electrodes can effectively increase the density of the sensor and reduce the overall component volume. In detail, the stacked electrodes may be formed by vertically and alternately stacking a plurality of electrode layers with a plurality of dielectric layers (not shown) on the substrate SUB. That is, at least one dielectric layer is disposed between two adjacent electrode layers to electrically isolate adjacent two electrode layers. In an embodiment, the electrode layer comprises a conductor material. The conductor material can be a doped or undoped polysilicon material, a metal material, or a combination thereof. The material of the above dielectric layer may be tantalum oxide, tantalum nitride or a combination thereof.

在一實施例中,感測材料層406位於第一電極402與第二電極404之間的間隙中且延伸覆蓋第一電極402與第二電極404的頂面。雖然圖4中所繪示的感測材料層406並未完全覆蓋第一電極402與第二電極404的所有表面,但本發明不以此為限。在其他實施例中,感測材料層406亦可完全覆蓋第一電極402與第二電極404的所有表面(其包括頂面與側面)。值得注意的是,當待測物吸附或接觸感測材料層406的表面時,待測物可與感測材料層406進行反應,使得第一電極402與第二電極404之間的感測材料層406的電容值或電阻值等電特性改變。接著,使用者便可藉由已改變的電容值或電阻值等電特性來計算出待測物的種類或是參數變化量。In an embodiment, the sensing material layer 406 is located in a gap between the first electrode 402 and the second electrode 404 and extends to cover the top surfaces of the first electrode 402 and the second electrode 404. Although the sensing material layer 406 depicted in FIG. 4 does not completely cover all surfaces of the first electrode 402 and the second electrode 404, the invention is not limited thereto. In other embodiments, the sensing material layer 406 may also completely cover all surfaces of the first electrode 402 and the second electrode 404 (including the top surface and the side surface). It should be noted that when the object to be tested adsorbs or contacts the surface of the sensing material layer 406, the object to be tested may react with the sensing material layer 406 such that the sensing material between the first electrode 402 and the second electrode 404 The capacitance or resistance value of layer 406 changes. Then, the user can calculate the type of the object to be tested or the amount of parameter change by changing the capacitance value or the electrical resistance characteristic of the resistance value.

在一實施例中,感測材料層406可為氣體感測層、光感測層、濕度感測層、溫度感測層或其組合。換言之,本實施例之感測器400可用以感測氣體、光、濕度、溫度或其組合。In an embodiment, the sensing material layer 406 can be a gas sensing layer, a light sensing layer, a humidity sensing layer, a temperature sensing layer, or a combination thereof. In other words, the sensor 400 of the present embodiment can be used to sense gas, light, humidity, temperature, or a combination thereof.

在一實施例中,感測材料層406的形成方法可例如是非接觸式印刷法。在一實施例中,非接觸式印刷法包括噴墨印刷法或氣溶膠噴塗印刷法。以氣溶膠噴塗印刷法為例,其是使用氣溶噴嘴沉積頭(aerosol jet deposition head),以形成由外部的鞘流(outer sheath flow)和內部的充滿氣溶的載體流(inner aerosol-laden carrier flow)構成的環狀傳播噴嘴。在環狀氣溶噴射製程中,將具有感測材料的氣溶流(aerosol stream)集中且沉積在平面或非平面的基板SUB上。接著,經過熱處理或光化學處理,以形成感測材料層406。上述步驟可稱為無罩幕中尺度材料沉積(Maskless Mesoscale Material Deposition,M3D),也就是說,其可在不使用罩幕的情況下進行沉積,使得沉積後的材料層具有1微米至1000微米之間的線寬(linewidth)。In an embodiment, the method of forming the sensing material layer 406 can be, for example, a non-contact printing method. In an embodiment, the non-contact printing method includes an inkjet printing method or an aerosol spray printing method. An aerosol spray printing method is exemplified by using an aerosol jet deposition head to form an outer sheath flow and an inner gas-filled carrier flow (inner aerosol-laden). Carrier flow) A ring-shaped propagating nozzle. In an annular aerosol spray process, an aerosol stream having a sensing material is concentrated and deposited on a planar or non-planar substrate SUB. Next, heat treatment or photochemical treatment is performed to form the sensing material layer 406. The above steps may be referred to as Maskless Mesoscale Material Deposition (M3D), that is, it may be deposited without using a mask such that the deposited material layer has a size of 1 micrometer to 1000 micrometers. Linewidth between the lines.

在一實施例中,感測材料層406的材料為上述複合材料100、200。上述複合材料100、200的組成與形成步驟已於上述段落中詳細描述過,於此便不再贅述。In an embodiment, the material of the sensing material layer 406 is the composite material 100, 200 described above. The composition and formation steps of the above composite materials 100, 200 have been described in detail in the above paragraphs and will not be described again.

值得注意的是,在一實施例中,藉由上述複合材料100、200來當作感測材料層406,複合材料100、200中的導電高分子可降低感測材料層406的阻值,以增加感測器400的靈敏度。相較於習知的感測器(其僅以金屬氧化物當作感測材料層,且需在高溫(例如200°C至400°C)下才能進行感測),本實施例之感測器400可在室溫(例如0°C至50°C)下進行感測。因此,本實施例之感測器400可應用大部分的電子產品(例如手機)上,而不會有過熱的情況並同時大幅減少的耗電量(其來自高溫加熱)。It should be noted that, in an embodiment, by using the composite materials 100, 200 as the sensing material layer 406, the conductive polymer in the composite materials 100, 200 can reduce the resistance of the sensing material layer 406 to The sensitivity of the sensor 400 is increased. The sensing of the present embodiment is compared to a conventional sensor (which uses only metal oxide as the sensing material layer and needs to be sensed at a high temperature (for example, 200 ° C to 400 ° C)) The device 400 can perform sensing at room temperature (eg, 0 ° C to 50 ° C). Therefore, the sensor 400 of the present embodiment can be applied to most electronic products (such as mobile phones) without overheating and at the same time greatly reducing the power consumption (which comes from high temperature heating).

另一方面,在一實施例中,複合材料100、200中的金屬氧化物可遮蔽導電高分子的親水端,以防止導電高分子與外界的水氣和氧氣反應,進而避免導電高分子劣化以及塗佈不便的問題。如此一來,本實施例可延長具有導電高分子的感測材料層的使用壽命,並可藉由調整金屬氧化物的含量,以將感測材料層塗佈在任何材料的表面(亦即親水表面或疏水表面)上。藉此增加感測材料層的使用範圍。On the other hand, in an embodiment, the metal oxide in the composite material 100, 200 can shield the hydrophilic end of the conductive polymer to prevent the conductive polymer from reacting with the outside water and oxygen, thereby preventing the conductive polymer from deteriorating and The problem of inconvenience in coating. In this way, the embodiment can extend the service life of the sensing material layer having the conductive polymer, and can adjust the content of the metal oxide to coat the sensing material layer on the surface of any material (ie, hydrophilic). On the surface or on the hydrophobic surface). Thereby increasing the range of use of the sensing material layer.

以下,列舉本發明的實驗例以更具體對本發明進行說明。然而,在不脫離本發明的精神,可適當地對以下的實驗例中所示的材料、使用方法等進行變更。因此,本發明的範圍不應以以下所示的實驗例來限定解釋。Hereinafter, the present invention will be more specifically described by exemplifying the experimental examples of the present invention. However, the materials, the methods of use, and the like shown in the following experimental examples can be appropriately changed without departing from the spirit of the invention. Therefore, the scope of the present invention should not be construed as limited by the experimental examples shown below.

實驗例Experimental example 11

在實驗例1中,利用渦旋攪拌機,將PEDOT:PSS(其購買自賀利氏公司)與金屬氧化物混合均勻,以塗佈在指叉型電極上,其中混合後的所述PEDOT:PSS與所述金屬氧化物的重量百分比為1:1。所述金屬氧化物是將金屬氧化物之前驅物(例如是Molybdenyl acetylacetonate)配置成濃度為0.1-10wt%的醇類溶液(例如是異丙醇),並加熱40-80°C,且持續反應0.05-96小時而成。接著,進行烘乾,以於所述指叉型電極上形成感測材料層。所述烘乾時間10秒至1800秒,而烘乾溫度介於20°C至200°C之間。接著,量測實驗例1的感測材料層的電阻值,其結果如圖5所示。In Experimental Example 1, PEDOT:PSS (which was purchased from Heraeus) was uniformly mixed with a metal oxide by a vortex mixer to be coated on an interdigitated electrode, wherein the PEDOT:PSS after mixing The weight percentage with the metal oxide is 1:1. The metal oxide is a metal oxide precursor (for example, Molybdenyl acetylacetonate) configured to have an alcohol solution (for example, isopropanol) at a concentration of 0.1 to 10% by weight, and heated at 40 to 80 ° C, and the reaction is continued. Made from 0.05 to 96 hours. Next, drying is performed to form a layer of the sensing material on the interdigitated electrode. The drying time is from 10 seconds to 1800 seconds, and the drying temperature is between 20 ° C and 200 ° C. Next, the resistance value of the sensing material layer of Experimental Example 1 was measured, and the results are shown in FIG. 5.

實驗例Experimental example 22 , 33

在實驗例2、3中,以上述實驗例1的步驟於指叉型電極上分別形成感測材料層。與實驗例1不同之處在於:實驗例2的PEDOT:PSS與金屬氧化物的重量百分比為2.25:1。實驗例3的PEDOT:PSS與金屬氧化物的重量百分比為6:1。接著,分別量測實驗例2、3的感測材料層的電阻值,其結果如圖5所示。In Experimental Examples 2 and 3, a sensing material layer was formed on the interdigitated electrodes, respectively, in the procedure of the above Experimental Example 1. The difference from Experimental Example 1 is that the weight percentage of PEDOT:PSS to metal oxide of Experimental Example 2 was 2.25:1. The PEDOT:PSS and metal oxide weight percentage of Experimental Example 3 was 6:1. Next, the resistance values of the sensing material layers of Experimental Examples 2 and 3 were measured, and the results are shown in FIG. 5.

比較例Comparative example 11

在比較例1中,將1.0 wt%的PEDOT:PSS(其購買自賀利氏公司)塗佈在指叉型電極上。接著,進行烘乾,以於所述指叉型電極上形成感測材料層。所述烘乾時間10秒至1800秒,而烘乾溫度介於20°C至200°C之間。接著,量測比較例1的感測材料層的電阻值,其結果如圖5所示。In Comparative Example 1, 1.0 wt% of PEDOT:PSS (which was purchased from Heraeus) was coated on an interdigitated electrode. Next, drying is performed to form a layer of the sensing material on the interdigitated electrode. The drying time is from 10 seconds to 1800 seconds, and the drying temperature is between 20 ° C and 200 ° C. Next, the resistance value of the sensing material layer of Comparative Example 1 was measured, and the results are shown in FIG. 5.

比較例Comparative example 22

在比較例2中,將1.0 wt%的金屬氧化物溶液(其購買自Sigma-Aldrich公司)塗佈在指叉型電極上。接著,進行烘乾,以於所述指叉型電極上形成感測材料層。所述烘乾時間10秒至1800秒,而烘乾溫度介於20°C至200°C之間。接著,量測比較例2的感測材料層的電阻值,其結果如圖5所示。In Comparative Example 2, a 1.0 wt% metal oxide solution (purchased from Sigma-Aldrich Co.) was coated on the interdigitated electrode. Next, drying is performed to form a layer of the sensing material on the interdigitated electrode. The drying time is from 10 seconds to 1800 seconds, and the drying temperature is between 20 ° C and 200 ° C. Next, the resistance value of the sensing material layer of Comparative Example 2 was measured, and the results are shown in FIG. 5.

比較例3Comparative example 3

在比較例3中,將1 wt%的金屬氧化物溶液塗佈在指叉型電極上。所述金屬氧化物溶液是將金屬氧化物之前驅物(例如是Molybdenyl acetylacetonate)配置成濃度為0.1-10wt%的醇類溶液(例如是異丙醇),並加熱40-80°C,且持續反應0.05-96小時而成。接著,進行烘乾,以於所述指叉型電極上形成感測材料層。所述烘乾時間10秒至1800秒,而烘乾溫度介於20°C至200°C之間。接著,量測比較例3的感測材料層的電阻值,其結果如圖5所示。In Comparative Example 3, a 1 wt% metal oxide solution was coated on the interdigitated electrode. The metal oxide solution is a metal oxide precursor (for example, Molybdenyl acetylacetonate) configured to a concentration of 0.1-10% by weight of an alcohol solution (for example, isopropanol), and heated at 40-80 ° C, and continued The reaction is carried out for 0.05-96 hours. Next, drying is performed to form a layer of the sensing material on the interdigitated electrode. The drying time is from 10 seconds to 1800 seconds, and the drying temperature is between 20 ° C and 200 ° C. Next, the resistance value of the sensing material layer of Comparative Example 3 was measured, and the results are shown in FIG. 5.

如圖5所示,相較於比較例2、3,添加有導電高分子(PEDOT:PSS)的實驗例1-3的感測材料層具有較低的電阻值。另外,相較於比較例1之只有PEDOT:PSS的感測材料層,導電高分子(PEDOT:PSS)與金屬氧化物(氧化鉬)的組合具有加乘效果(synergism),以提供較低的電阻值。此外,在實驗例1-3中,隨著導電高分子(PEDOT:PSS)的含量增加,其感測材料層的導電度也隨之降低,進而提升感測器的靈敏度。As shown in FIG. 5, the sensing material layer of Experimental Example 1-3 to which the conductive polymer (PEDOT: PSS) was added had a lower resistance value than Comparative Examples 2 and 3. In addition, compared with the sensing material layer of PEDOT:PSS of Comparative Example 1, the combination of conductive polymer (PEDOT:PSS) and metal oxide (molybdenum oxide) has a synergy effect to provide a lower resistance. Further, in Experimental Example 1-3, as the content of the conductive polymer (PEDOT:PSS) was increased, the conductivity of the sensing material layer was also lowered, thereby increasing the sensitivity of the sensor.

圖6A至圖6D分別是比較例1與實驗例1-3的光學顯微鏡照片。6A to 6D are optical micrographs of Comparative Example 1 and Experimental Example 1-3, respectively.

如圖6A所示,在比較例1中,其僅以金屬氧化物當作感測材料層,因此,比較例1的感測材料層不易成型且容易龜裂。由圖6B至圖6D可知,隨著導電高分子(PEDOT:PSS)的含量增加,所形成的感測材料層越容易成型且不易龜裂。也就是說,在感測材料層中加入導電高分子,其不僅有助於降低感測材料層的電阻值,也可使感測材料層不易龜裂。As shown in FIG. 6A, in Comparative Example 1, only the metal oxide was used as the sensing material layer, and therefore, the sensing material layer of Comparative Example 1 was not easily molded and was easily cracked. 6B to 6D, as the content of the conductive polymer (PEDOT: PSS) increases, the formed sensing material layer is more easily molded and is less likely to be cracked. That is to say, the conductive polymer is added to the sensing material layer, which not only helps to lower the resistance value of the sensing material layer, but also makes the sensing material layer less susceptible to cracking.

綜上所述,本發明的複合材料包括導電高分子以及金屬氧化物,其中金屬氧化物與導電高分子的親水端連接。因此,本發明的複合材料除了具有良好的導電度以及功函數,由於金屬氧化物遮蔽導電高分子的親水端,可使導電高分子的親水端不易與環境中的水氣和氧氣反應,進而避免導電高分子劣化以及塗佈不便的問題。再者,由於導電高分子的親水端被遮蔽,可使複合材料整體較原始導電高分子呈疏水性,進而提高複合材料與疏水性材料的附著性。另外,本發明的複合材料中的導電高分子與金屬氧化物的組合具有加乘效果,其可應用在感測器的感測材料層中,以有效地降低感測器的電阻值並提升感測器的靈敏度。此外,在感測材料層中加入導電高分子,其不僅有助於降低感測材料層的電阻值,也可使感測材料層不易龜裂,進而提升感測器的可靠度。In summary, the composite material of the present invention comprises a conductive polymer and a metal oxide, wherein the metal oxide is connected to the hydrophilic end of the conductive polymer. Therefore, in addition to the good electrical conductivity and work function of the composite material of the present invention, since the metal oxide shields the hydrophilic end of the conductive polymer, the hydrophilic end of the conductive polymer is less likely to react with moisture and oxygen in the environment, thereby avoiding The problem of deterioration of the conductive polymer and inconvenience in coating. Furthermore, since the hydrophilic end of the conductive polymer is shielded, the composite material is more hydrophobic than the original conductive polymer, thereby improving the adhesion of the composite material to the hydrophobic material. In addition, the combination of the conductive polymer and the metal oxide in the composite material of the present invention has a multiplication effect, which can be applied to the sensing material layer of the sensor to effectively reduce the resistance value of the sensor and enhance the sense The sensitivity of the detector. In addition, the conductive polymer is added to the sensing material layer, which not only helps to reduce the resistance value of the sensing material layer, but also makes the sensing material layer not easy to crack, thereby improving the reliability of the sensor.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、200‧‧‧複合材料100, 200‧‧‧ composite materials

110、210‧‧‧導電高分子110, 210‧‧‧ Conductive polymer

112、212‧‧‧親水端112, 212‧‧ ‧ hydrophilic end

114、214‧‧‧疏水端114, 214‧‧‧ hydrophobic end

120、220‧‧‧金屬氧化物120, 220‧‧‧ metal oxides

300‧‧‧太陽能電池300‧‧‧ solar cells

302‧‧‧光302‧‧‧Light

310‧‧‧基板310‧‧‧Substrate

310a‧‧‧第一表面310a‧‧‧ first surface

310b‧‧‧第二表面310b‧‧‧ second surface

320‧‧‧第一導電層320‧‧‧First conductive layer

322‧‧‧電極層322‧‧‧electrode layer

324‧‧‧緩衝層324‧‧‧buffer layer

330‧‧‧主動層330‧‧‧Active layer

340‧‧‧第二導電層340‧‧‧Second conductive layer

400‧‧‧感測器400‧‧‧ sensor

402‧‧‧第一電極402‧‧‧First electrode

404‧‧‧第二電極404‧‧‧second electrode

406‧‧‧感測材料層406‧‧‧Sensor material layer

SUB‧‧‧基板SUB‧‧‧ substrate

圖1A是依照本發明一些實施例所繪示之一種複合材料的示意圖。 圖1B是依照圖1A所繪示之複合材料的局部放大示意圖。 圖2A是依照本發明另一些實施例所繪示之一種複合材料的示意圖。 圖2B是依照圖2A所繪示之複合材料的局部放大示意圖。 圖3是依照本發明一些實施例所繪示之一種複合材料用於太陽能電池的剖面示意圖。 圖4是依照本發明一些實施例所繪示之一種複合材料用於感測器的剖面示意圖。 圖5是實驗例1-3與比較例1-3的電阻值的長條圖。 圖6A至圖6D分別是比較例1與實驗例1-3的光學顯微鏡照片。1A is a schematic illustration of a composite material in accordance with some embodiments of the present invention. FIG. 1B is a partially enlarged schematic view of the composite material according to FIG. 1A. 2A is a schematic view of a composite material according to further embodiments of the present invention. 2B is a partial enlarged view of the composite material according to FIG. 2A. 3 is a cross-sectional view of a composite material for use in a solar cell, in accordance with some embodiments of the present invention. 4 is a cross-sectional view of a composite material for a sensor, in accordance with some embodiments of the present invention. Fig. 5 is a bar graph of the resistance values of Experimental Example 1-3 and Comparative Example 1-3. 6A to 6D are optical micrographs of Comparative Example 1 and Experimental Example 1-3, respectively.

Claims (12)

一種感測器,包括:第一電極;第二電極,其與所述第一電極彼此分離;以及感測材料層,位於所述第一電極與所述第二電極之間且覆蓋所述第一電極與所述第二電極,其中所述感測材料層包括:導電高分子,具有親水端;以及金屬氧化物,連接所述導電高分子的所述親水端,其中所述金屬氧化物是由金屬氧化物前驅物所製得,所述金屬氧化物前驅物包括至少一種金屬離子與配位體,所述配位體包括雙牙配位體或烷氧化物配位體。 A sensor comprising: a first electrode; a second electrode separated from the first electrode; and a sensing material layer between the first electrode and the second electrode and covering the first An electrode and the second electrode, wherein the sensing material layer comprises: a conductive polymer having a hydrophilic end; and a metal oxide connecting the hydrophilic end of the conductive polymer, wherein the metal oxide is Made from a metal oxide precursor comprising at least one metal ion and a ligand, the ligand comprising a bidentate ligand or an alkoxide ligand. 如申請專利範圍第1項所述的感測器,其中所述第一電極與所述第二電極配置為指叉型電極、堆疊式電極或其組合。 The sensor of claim 1, wherein the first electrode and the second electrode are configured as a finger-type electrode, a stacked electrode, or a combination thereof. 如申請專利範圍第1項所述的感測器,其中所述感測材料層以非接觸式印刷法所形成。 The sensor of claim 1, wherein the layer of sensing material is formed by a non-contact printing method. 如申請專利範圍第3項所述的感測器,其中所述非接觸式印刷法包括噴墨印刷法或氣溶膠噴塗印刷法。 The sensor of claim 3, wherein the non-contact printing method comprises an inkjet printing method or an aerosol spray printing method. 一種複合材料,包括:導電高分子,其具有親水端且在溶劑中形成膠體顆粒;以及金屬氧化物,連接所述導電高分子的所述親水端,其中所述金屬氧化物是由金屬氧化物前驅物所製得,所述金屬氧化物前驅物包括至少一種金屬離子與配位體,所述配位體包括雙牙配位體 或烷氧化物配位體。 A composite material comprising: a conductive polymer having a hydrophilic end and forming colloidal particles in a solvent; and a metal oxide connecting the hydrophilic end of the conductive polymer, wherein the metal oxide is composed of a metal oxide Prepared by a precursor, the metal oxide precursor comprising at least one metal ion and a ligand, the ligand comprising a bidentate ligand Or an alkoxide ligand. 如申請專利範圍第5項所述的複合材料,其中所述金屬離子選自於由Ba、Co、Cu、Fe、In、Ti、Sn、Sr、V、W、Zn、Mo、Nb、Ni、Mg、Al所組成的群組中的至少一種元素,所述雙牙配位體選自於由醋酸鹽、乙醯丙酮酸鹽、碳酸鹽、草酸鹽所組成的群組中的至少一種配位體,所述烷氧化物配位體選自於由甲醇鹽,乙醇鹽,丙醇鹽,異丙醇鹽,丁醇鹽所組成的群組中的至少一種配位體。 The composite material according to claim 5, wherein the metal ion is selected from the group consisting of Ba, Co, Cu, Fe, In, Ti, Sn, Sr, V, W, Zn, Mo, Nb, Ni, At least one element selected from the group consisting of Mg and Al, the bidentate ligand being selected from at least one of the group consisting of acetate, acetoacetate, carbonate, and oxalate a monomer, the alkoxide ligand being selected from the group consisting of at least one ligand consisting of a methoxide, an ethanolate, a propoxide, an isopropoxide, and a butoxide. 如申請專利範圍第5項所述的複合材料,其中所述導電高分子包括共軛高分子與酸性助溶劑,所述共軛高分子包括聚二氧乙基噻吩(PEDOT)、聚苯硫醚(PPS)、聚吡咯(PPy)、聚噻吩(PT)、聚苯胺(PANI)或其組合,所述酸性助溶劑包括聚苯乙烯磺酸(PSS)、乙酸、丙酸、丁酸、苯甲酸或其組合。 The composite material according to claim 5, wherein the conductive polymer comprises a conjugated polymer and an acidic cosolvent, and the conjugated polymer comprises polydioxyethylthiophene (PEDOT) and polyphenylene sulfide. (PPS), polypyrrole (PPy), polythiophene (PT), polyaniline (PANI) or a combination thereof, the acidic co-solvent comprises polystyrenesulfonic acid (PSS), acetic acid, propionic acid, butyric acid, benzoic acid Or a combination thereof. 如申請專利範圍第5項所述的複合材料,其中所述金屬氧化物包括二氧化鈦、二氧化錫、氧化鋅、三氧化鎢、氧化鐵、五氧化二鈮、氧化銦錫、三氧化二銦、鈦酸鍶、一氧化鎳、氧化釩、氧化鉬、氧化鎂、氧化鋁或其組合。 The composite material according to claim 5, wherein the metal oxide comprises titanium dioxide, tin dioxide, zinc oxide, tungsten trioxide, iron oxide, antimony pentoxide, indium tin oxide, indium trioxide, Barium titanate, nickel monoxide, vanadium oxide, molybdenum oxide, magnesium oxide, aluminum oxide or a combination thereof. 如申請專利範圍第5項所述的複合材料,其中所述導電高分子與所述金屬氧化物的重量百分比介於0.01:1至250:1之間。 The composite material according to claim 5, wherein the weight percentage of the conductive polymer to the metal oxide is between 0.01:1 and 250:1. 如申請專利範圍第5項所述的複合材料,其中所述溶劑包括極性溶劑,所述極性溶劑包括水、甲醇、乙醇、丙醇、異丙 醇、丁醇、乙二醇、二甘醇、甘油、丙二醇、二丙二醇、三丙二醇或其組合。 The composite material according to claim 5, wherein the solvent comprises a polar solvent, and the polar solvent comprises water, methanol, ethanol, propanol, and isopropyl. Alcohol, butanol, ethylene glycol, diethylene glycol, glycerin, propylene glycol, dipropylene glycol, tripropylene glycol or a combination thereof. 如申請專利範圍第5項所述的複合材料,其中所述金屬氧化物是藉由氫鍵或共價鍵來連接所述導電高分子的所述親水端。 The composite material according to claim 5, wherein the metal oxide is connected to the hydrophilic end of the conductive polymer by hydrogen bonding or a covalent bond. 一種複合材料的製造方法,包括:提供導電高分子,其具有親水端;以及加入金屬氧化物,使得所述金屬氧化物連接所述導電高分子的所述親水端,其中所述金屬氧化物是由金屬氧化物前驅物經由脫水反應、聚合反應、縮合反應或其組合所得到。A method of manufacturing a composite material comprising: providing a conductive polymer having a hydrophilic end; and adding a metal oxide such that the metal oxide is bonded to the hydrophilic end of the conductive polymer, wherein the metal oxide is It is obtained from a metal oxide precursor via a dehydration reaction, a polymerization reaction, a condensation reaction, or a combination thereof.
TW106137313A 2017-01-11 2017-10-30 Sensor, composite material and method of manufacturing the same TWI651349B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106100795 2017-01-11
??106100795 2017-01-11

Publications (2)

Publication Number Publication Date
TW201825605A TW201825605A (en) 2018-07-16
TWI651349B true TWI651349B (en) 2019-02-21

Family

ID=63639913

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137313A TWI651349B (en) 2017-01-11 2017-10-30 Sensor, composite material and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI651349B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807176B (en) * 2019-03-29 2023-07-01 日商住友化學股份有限公司 temperature sensor element
TWI819201B (en) * 2019-03-29 2023-10-21 日商住友化學股份有限公司 Temperature sensor element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706553B (en) * 2019-09-11 2020-10-01 友達光電股份有限公司 Light sensor and display apparatus
TWI751863B (en) * 2020-12-28 2022-01-01 新唐科技股份有限公司 Semiconductor structure
TWI787068B (en) * 2022-01-24 2022-12-11 新唐科技股份有限公司 Sensing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191040A (en) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd Organic light emitting device
TW201218416A (en) * 2010-09-01 2012-05-01 Nthdegree Tech Worldwide Inc Printable composition of a liquid or gel suspension of diodes
CN105977384A (en) * 2016-05-24 2016-09-28 吉林大学 Polymer solar cell capable of improving energy conversion efficiency based on plasma back-scattering effect and preparation method thereof
CN106531892A (en) * 2015-09-10 2017-03-22 天津职业技术师范大学 Organic-inorganic hybrid electroluminescent device and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191040A (en) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd Organic light emitting device
TW201218416A (en) * 2010-09-01 2012-05-01 Nthdegree Tech Worldwide Inc Printable composition of a liquid or gel suspension of diodes
CN106531892A (en) * 2015-09-10 2017-03-22 天津职业技术师范大学 Organic-inorganic hybrid electroluminescent device and preparation method thereof
CN105977384A (en) * 2016-05-24 2016-09-28 吉林大学 Polymer solar cell capable of improving energy conversion efficiency based on plasma back-scattering effect and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807176B (en) * 2019-03-29 2023-07-01 日商住友化學股份有限公司 temperature sensor element
TWI819201B (en) * 2019-03-29 2023-10-21 日商住友化學股份有限公司 Temperature sensor element
US11885694B2 (en) 2019-03-29 2024-01-30 Sumitomo Chemical Company, Limited Temperature sensor element

Also Published As

Publication number Publication date
TW201825605A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
TWI651349B (en) Sensor, composite material and method of manufacturing the same
EP1726051B1 (en) Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
Heo et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes
Li et al. Efficient inkjet printing of graphene
JP5216320B2 (en) Organic blends of polythiophene and polypyrrole polymers made with polymeric acid colloids for electronic applications
US20070181179A1 (en) Tandem photovoltaic cells
Altin et al. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO
JP2007531802A5 (en)
US20050222333A1 (en) Aqueous electrically doped conductive polymers and polymeric acid colloids
KR100972735B1 (en) Organic-Inorganic Hybrid Junction Device using Redox Reaction and Organic Photovoltaic Cell of using the same
Jon et al. Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes
CN108305947B (en) Sensor, composite material and method for manufacturing the same
Choi et al. Fabrication of transparent conductive tri-composite film for electrochromic application
US11327038B2 (en) Sensor, composite material and method of manufacturing the same
JP6849673B2 (en) Solid-state junction type photoelectric conversion element and its manufacturing method
WO2014185256A1 (en) Method for manufacturing conductive resin substrate
KR101458565B1 (en) Organic solar cell and the manufacturing method thereof
Kwon et al. Enhancement of conductivity and transparency for of poly (3, 4-ethylenedioxythiophene) films using photo-acid generator as dopant
KR20150030101A (en) Organic thin film solar cell and method for preparing the same
de Lima Citolino et al. Hybrid and pristine polyalkylthiophene Langmuir-Schaefer films: Relationships of electrical impedance spectroscopy measurements, barrier properties and polymer nanostructure
KR101572061B1 (en) Organic solar cells comprising buffer layer with dispersed au nano particles and method the same
KR101163940B1 (en) Method for forming conducting polymer electrode containing metal nano particle and the electrode material
KR101659119B1 (en) Active layer of solar cell and manufacturing method of the same
Abad et al. Transparent conductive polymers
CN105189817B (en) Manufacturing method, composite membrane, optoelectronic pole and the dye-sensitized solar cells of composite membrane