TWI615864B - Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure - Google Patents

Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure Download PDF

Info

Publication number
TWI615864B
TWI615864B TW105133693A TW105133693A TWI615864B TW I615864 B TWI615864 B TW I615864B TW 105133693 A TW105133693 A TW 105133693A TW 105133693 A TW105133693 A TW 105133693A TW I615864 B TWI615864 B TW I615864B
Authority
TW
Taiwan
Prior art keywords
layer
metal base
graphite
base layer
disposed
Prior art date
Application number
TW105133693A
Other languages
Chinese (zh)
Other versions
TW201816813A (en
Inventor
錢明谷
梁名琮
Original Assignee
鈺邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈺邦科技股份有限公司 filed Critical 鈺邦科技股份有限公司
Priority to TW105133693A priority Critical patent/TWI615864B/en
Application granted granted Critical
Publication of TWI615864B publication Critical patent/TWI615864B/en
Publication of TW201816813A publication Critical patent/TW201816813A/en

Links

Abstract

本發明公開一種具有奈米材料的導電箔及其製作方法,以及一種使用具有奈米材料的導電箔的捲繞型電容器封裝結構。具有奈米材料的導電箔包括一金屬基層結構以及一複合式奈米材料結構。複合式奈米材料結構設置在金屬基層結構上。複合式奈米材料結構由一石墨材料所製成,石墨材料的其中一部分轉化成一石墨烯層,石墨材料的其餘部分形成一設置在金屬基層結構與石墨烯層之間的石墨層,且複合式奈米材料結構由石墨層以及石墨烯層所構成。藉此,以降低導電箔的阻抗並提升使用具有奈米材料的導電箔的捲繞型電容器封裝結構的整體電氣性能。 The present invention discloses a conductive foil having a nano material and a method of fabricating the same, and a wound capacitor package structure using a conductive foil having a nano material. The conductive foil having a nano material includes a metal base structure and a composite nano material structure. The composite nano material structure is disposed on the metal base structure. The composite nano material structure is made of a graphite material, a part of the graphite material is converted into a graphene layer, and the rest of the graphite material forms a graphite layer disposed between the metal base layer structure and the graphene layer, and the composite layer The nano material structure is composed of a graphite layer and a graphene layer. Thereby, the impedance of the conductive foil is lowered and the overall electrical performance of the wound capacitor package structure using the conductive foil having a nano material is improved.

Description

具有奈米材料的導電箔及其製作方法,以及捲繞型電容器封 裝結構 Conductive foil with nano material and manufacturing method thereof, and wound capacitor seal Structure

本發明涉及一種導電箔及其製作方法,以及一種電容器封裝結構,特別是涉及一種具有奈米材料的導電箔及其製作方法,以及一種使用具有奈米材料的導電箔的捲繞型電容器封裝結構。 The present invention relates to a conductive foil and a method of fabricating the same, and a capacitor package structure, and more particularly to a conductive foil having a nano material and a method of fabricating the same, and a wound capacitor package structure using a conductive foil having a nano material .

電容器已廣泛被使用於消費性家電用品、電腦主機板、電源供應器、通訊產品以及汽車等的基本元件,其主要的作用包括濾波、旁路、整流、耦合、去耦、轉相等等,是電子產品中不可缺少的元件之一。電容器依照不同的材質以及用途,有不同的形態,包括有鋁質電解電容、鉭質電解電容、積層陶瓷電容、捲繞型或堆疊型固態電解電容器以及薄膜電容等等。現有技術中,捲繞型固態電解電容器包括有電容器元件、收容構件以及封口構件。電容器元件隔著絕緣件將一連接陽極端子的陽極箔與一連接陰極端子的陰極箔進行捲繞。收容構件具有開口部且可收容電容器元件。封口構件具有一可供陽極端子及陰極端子貫穿的貫穿孔以及一可密封收容構件的封口部。然而,為了降低陽極箔與陰極箔的阻抗並提升現有的捲繞型固態電解電容器的電氣性能,捲繞型固態電解電容器的陽極箔與陰極箔還具有改善空間。 Capacitors have been widely used in consumer appliances, computer motherboards, power supplies, communication products and automotive basic components, the main functions of which include filtering, bypassing, rectification, coupling, decoupling, phase inversion, etc. One of the indispensable components in electronic products. Capacitors are available in different materials depending on the material and application, including aluminum electrolytic capacitors, tantalum electrolytic capacitors, multilayer ceramic capacitors, wound or stacked solid electrolytic capacitors, and thin film capacitors. In the prior art, a wound type solid electrolytic capacitor includes a capacitor element, a housing member, and a sealing member. The capacitor element winds an anode foil connected to the anode terminal and a cathode foil connected to the cathode terminal via an insulating member. The housing member has an opening and can accommodate the capacitor element. The sealing member has a through hole through which the anode terminal and the cathode terminal are inserted, and a sealing portion that can seal the receiving member. However, in order to lower the impedance of the anode foil and the cathode foil and to improve the electrical properties of the existing wound solid electrolytic capacitor, the anode foil and the cathode foil of the wound solid electrolyte capacitor have room for improvement.

本發明所要解決的技術問題在於,針對現有技術的不足提供 一種具有奈米材料的導電箔及其製作方法,以及一種使用具有奈米材料的導電箔的捲繞型電容器封裝結構。 The technical problem to be solved by the present invention is to provide for the deficiencies of the prior art. A conductive foil having a nano material and a method of fabricating the same, and a wound capacitor package structure using a conductive foil having a nano material.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種具有奈米材料的導電箔,其包括:一金屬基層結構以及一複合式奈米材料結構。所述複合式奈米材料結構設置在所述金屬基層結構上。其中,所述複合式奈米材料結構由一石墨材料所製成,所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,且所述複合式奈米材料結構由所述石墨層以及所述石墨烯層所構成。 In order to solve the above technical problem, one of the technical solutions adopted by the present invention is to provide a conductive foil having a nano material, comprising: a metal base layer structure and a composite nano material structure. The composite nanomaterial structure is disposed on the metal base structure. Wherein the composite nanomaterial structure is made of a graphite material, a part of the graphite material is converted into a graphene layer, and the remaining portion of the graphite material is formed in the metal base layer structure and a graphite layer between the graphene layers, and the composite nanomaterial structure is composed of the graphite layer and the graphene layer.

為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種具有奈米材料的導電箔的製作方法,其包括下列步驟:首先,提供一金屬基層結構;接著,形成一石墨材料於所述金屬基層結構上;然後,形成一複合式奈米材料結構於所述金屬基層結構上。其中,所述複合式奈米材料結構由一石墨材料所製成,所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,且所述複合式奈米材料結構由所述石墨層以及所述石墨烯層所構成。 In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a method for fabricating a conductive foil having a nano material, comprising the steps of: first, providing a metal base layer structure; and then forming a graphite material. On the metal substrate structure; then, a composite nano material structure is formed on the metal substrate structure. Wherein the composite nanomaterial structure is made of a graphite material, a part of the graphite material is converted into a graphene layer, and the remaining portion of the graphite material is formed in the metal base layer structure and a graphite layer between the graphene layers, and the composite nanomaterial structure is composed of the graphite layer and the graphene layer.

為了解決上述的技術問題,本發明所採用的另外再一技術方案是,提供一種捲繞型電容器封裝結構,其包括:一捲繞型電容器、一封裝體以及至少兩個導電引腳。所述捲繞型電容器包括至少兩個導電箔以及兩個隔離紙。每一個所述導電箔包括一金屬基層結構以及一設置在所述金屬基層結構上的複合式奈米材料結構。兩個所述隔離紙的其中之一設置於至少兩個所述導電箔之間。所述封裝體包覆整個所述捲繞型電容器。至少兩個所述導電引腳分別電性連接於至少兩個導電箔,其中,每一個所述導電引腳具有一電性連接於相對應的所述導電箔且被所述封裝體所包覆 的內埋部以及一連接於所述內埋部且裸露在所述封裝體的外部的外露部。其中,所述複合式奈米材料結構由一石墨材料所製成,所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,且所述複合式奈米材料結構由所述石墨層以及所述石墨烯層所構成。 In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a wound capacitor package structure including: a wound capacitor, a package, and at least two conductive pins. The wound capacitor includes at least two conductive foils and two release papers. Each of the conductive foils includes a metal base layer structure and a composite nano material structure disposed on the metal base layer structure. One of the two of the release sheets is disposed between at least two of the conductive foils. The package covers the entire wound capacitor. The at least two conductive pins are respectively electrically connected to the at least two conductive foils, wherein each of the conductive pins has an electrical connection to the corresponding conductive foil and is covered by the package The embedded portion and an exposed portion that is connected to the embedded portion and exposed to the outside of the package. Wherein the composite nanomaterial structure is made of a graphite material, a part of the graphite material is converted into a graphene layer, and the remaining portion of the graphite material is formed in the metal base layer structure and a graphite layer between the graphene layers, and the composite nanomaterial structure is composed of the graphite layer and the graphene layer.

更進一步地,所述金屬基層結構包括一金屬基層以及一完全包覆所述金屬基層的氧化層,所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述氧化層上,且包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一正箔使用。 Further, the metal base layer structure includes a metal base layer and an oxide layer completely covering the metal base layer, and the graphite layer of the composite nano material structure is disposed in the oxidation of the metal base layer structure The conductive foil comprising the metal base layer structure and the composite nano material structure can be used as a positive foil of a wound capacitor.

更進一步地,所述金屬基層結構為一表面無氧化層的金屬基層,所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述金屬基層上,且包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一負箔使用。 Further, the metal base layer structure is a metal base layer having a surface without an oxide layer, and the graphite layer of the composite nano material structure is disposed on the metal base layer of the metal base layer structure, and includes The conductive foil of the metal base structure and the composite nano material structure can be used as a negative foil of a wound capacitor.

更進一步地,所述金屬基層結構包括一金屬基層、一完全包覆所述金屬基層的氧化層以及一設置在所述氧化層上的介金屬化合物層,所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述介金屬化合物層上,且包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一正箔使用。 Further, the metal base layer structure includes a metal base layer, an oxide layer completely covering the metal base layer, and a metal compound layer disposed on the oxide layer, and the composite nano material structure The graphite layer is disposed on the metal-organic compound layer of the metal-based layer structure, and the conductive foil including the metal-based layer structure and the composite nano-material structure can be used as a wound capacitor A positive foil is used.

更進一步地,所述金屬基層結構包括一表面無氧化層的金屬基層以及一設置在所述金屬基層結構上的介金屬化合物層,所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述介金屬化合物層上,且包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一負箔使用。 Further, the metal base layer structure includes a metal base layer having a surface oxide-free layer and a metal compound layer disposed on the metal base layer structure, and the graphite layer of the composite nano material structure is disposed at the The conductive metal foil having the metal base layer structure and the composite nano material structure can be used as a negative foil of a wound capacitor.

本發明的有益效果在於,本發明技術方案所提供的具有奈米材料的導電箔及其製作方法,以及捲繞型電容器封裝結構,其可通過“所述石墨材料的其中一部分轉化成一石墨烯層,且所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層”以及“所述石墨層以及所述石墨烯層構成一設置在所述金屬基層結構上的複合式奈米材料結構”的技術特徵,以降低所述導電箔的阻抗並提升所述捲繞型電容器封裝結構的整體電氣性能。 The beneficial effects of the present invention are the conductive foil with a nano material provided by the technical solution of the present invention and a manufacturing method thereof, and a wound capacitor package structure, which can be converted into a graphene layer by "a part of the graphite material And the remaining portion of the graphite material forms a graphite layer disposed between the metal base layer structure and the graphene layer" and "the graphite layer and the graphene layer constitute a metal base layer A technical feature of a structural composite nanomaterial structure" to reduce the impedance of the conductive foil and to enhance the overall electrical performance of the wound capacitor package structure.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅用於提供參考與說明,並非用來對本發明加以限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

Z‧‧‧捲繞型電容器封裝結構 Z‧‧‧Wind capacitor package structure

B‧‧‧封裝體 B‧‧‧Package

L‧‧‧導電引腳 L‧‧‧conductive pin

L1‧‧‧內埋部 L1‧‧‧ embedded department

L2‧‧‧外露部 L2‧‧‧Exposed Department

C‧‧‧捲繞型電容器 C‧‧‧Wind capacitor

F‧‧‧導電箔 F‧‧‧conductive foil

1‧‧‧金屬基層結構 1‧‧‧Metal base structure

10‧‧‧金屬基層 10‧‧‧ metal base

11‧‧‧氧化層 11‧‧‧Oxide layer

12‧‧‧介金屬化合物層 12‧‧‧Metal metal compound layer

2‧‧‧複合式奈米材料結構 2‧‧‧Composite nanomaterial structure

20‧‧‧石墨材料 20‧‧‧Graphite materials

21‧‧‧石墨烯層 21‧‧‧graphene layer

22‧‧‧石墨層 22‧‧‧ graphite layer

P‧‧‧隔離紙 P‧‧‧Isolation paper

圖1為本發明第一實施例至第四實施例的導電箔的製作方法的流程圖。 1 is a flow chart showing a method of fabricating a conductive foil according to first to fourth embodiments of the present invention.

圖2為本發明第一實施例的導電箔的製作方法的步驟S100(A)的示意圖。 2 is a schematic view showing a step S100 (A) of a method of manufacturing a conductive foil according to a first embodiment of the present invention.

圖3為本發明第一實施例的導電箔的製作方法的步驟S102的示意圖。 3 is a schematic view showing a step S102 of a method of manufacturing a conductive foil according to a first embodiment of the present invention.

圖4為本發明第一實施例的導電箔的示意圖。 Figure 4 is a schematic view of a conductive foil of a first embodiment of the present invention.

圖5為本發明第一實施例所公開的另一種導電箔的示意圖。 FIG. 5 is a schematic view of another conductive foil disclosed in the first embodiment of the present invention.

圖6為本發明第二實施例的導電箔的製作方法的步驟S100(B)的示意圖。 Fig. 6 is a schematic view showing a step S100 (B) of a method of manufacturing a conductive foil according to a second embodiment of the present invention.

圖7為本發明第二實施例的導電箔的製作方法的步驟S102的示意圖。 FIG. 7 is a schematic view showing a step S102 of a method of manufacturing a conductive foil according to a second embodiment of the present invention.

圖8為本發明第二實施例的導電箔的示意圖。 Figure 8 is a schematic view of a conductive foil in accordance with a second embodiment of the present invention.

圖9為本發明第二實施例所公開的另一種導電箔的示意圖。 FIG. 9 is a schematic view of another conductive foil disclosed in a second embodiment of the present invention.

圖10為本發明第三實施例的導電箔的製作方法的步驟S100(C)的示意圖。 Figure 10 is a schematic view showing a step S100 (C) of a method of manufacturing a conductive foil according to a third embodiment of the present invention.

圖11為本發明第三實施例的導電箔的製作方法的步驟S102的示意圖。 Figure 11 is a schematic view showing a step S102 of a method of fabricating a conductive foil according to a third embodiment of the present invention.

圖12為本發明第三實施例的導電箔的示意圖。 Figure 12 is a schematic view of a conductive foil according to a third embodiment of the present invention.

圖13為本發明第三實施例所公開的另一種導電箔的示意圖。 FIG. 13 is a schematic view of another conductive foil disclosed in a third embodiment of the present invention.

圖14為本發明第四實施例的導電箔的製作方法的步驟S100(D)的示意圖。 Figure 14 is a schematic view showing a step S100 (D) of a method of fabricating a conductive foil according to a fourth embodiment of the present invention.

圖15為本發明第四實施例的導電箔的製作方法的步驟S102的示意圖。 Figure 15 is a schematic view showing a step S102 of a method of fabricating a conductive foil according to a fourth embodiment of the present invention.

圖16為本發明第四實施例的導電箔的示意圖。 Figure 16 is a schematic view of a conductive foil in accordance with a fourth embodiment of the present invention.

圖17為本發明第四實施例所公開的另一種導電箔的示意圖。 Figure 17 is a schematic view of another conductive foil disclosed in a fourth embodiment of the present invention.

圖18為本發明第五實施例的捲繞型電容器封裝結構尚未包覆封裝體的立體示意圖。 Fig. 18 is a perspective view showing the packaged capacitor structure of the fifth embodiment of the present invention without covering the package.

圖19為本發明第五實施例的捲繞型電容器封裝結構的側視示意圖。 Figure 19 is a side elevational view showing a packaged capacitor package structure according to a fifth embodiment of the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“具有奈米材料的導電箔及其製作方法,以及捲繞型電容器封裝結構”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,予以聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。以下的實施方式所公開的每一段落的內容,請一併參閱圖1至圖19所示。 The following is a description of an embodiment of the present invention relating to "a conductive foil having a nano material and a method for fabricating the same, and a wound capacitor package structure" by a specific embodiment, which can be disclosed by those skilled in the art. The contents understand the advantages and effects of the present invention. The present invention may be carried out or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be construed in terms of actual dimensions. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the scope of the present invention. For the contents of each paragraph disclosed in the following embodiments, please refer to FIG. 1 to FIG. 19 together.

[第一實施例] [First Embodiment]

請參閱圖1至圖4所示,本發明第一實施例提供一種具有奈 米材料的導電箔F的製作方法,其包括下列步驟:首先,配合圖1以及圖2所示,提供一金屬基層結構1,金屬基層結構1包括一金屬基層10以及一完全包覆金屬基層1的氧化層11(步驟S100(A));接著,配合圖1以及圖3所示,形成一石墨材料20於金屬基層結構1上(步驟S102),舉例來說,石墨材料20可在真空且通入惰性氣體的條件下形成;然後,配合圖1、圖3以及圖4所示,石墨材料20的其中一部分(也就是石墨材料20的最外層區域)通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22(步驟S104),其中,石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2。 Referring to FIG. 1 to FIG. 4, a first embodiment of the present invention provides a The manufacturing method of the conductive foil F of the rice material comprises the following steps. First, as shown in FIG. 1 and FIG. 2, a metal base layer structure 1 is provided. The metal base layer structure 1 comprises a metal base layer 10 and a completely coated metal base layer 1 The oxide layer 11 (step S100 (A)); then, as shown in FIG. 1 and FIG. 3, a graphite material 20 is formed on the metal substrate structure 1 (step S102). For example, the graphite material 20 may be under vacuum and Formed under the condition of introducing an inert gas; then, as shown in FIG. 1, FIG. 3 and FIG. 4, a part of the graphite material 20 (that is, the outermost layer region of the graphite material 20) is passed through a redox method of introducing a reducing gas or Other methods are converted (or converted) into a graphene layer 21, and the remaining portion of the graphite material 20 forms a graphite layer 22 disposed between the metal substrate structure 1 and the graphene layer 21 (step S104), wherein the graphite layer 22 and the graphene layer 21 constitute a composite nanomaterial structure 2 disposed on the metal substrate structure 1.

藉此,配合圖1以及圖4所示,通過步驟S100(A)、步驟S102以及步驟S104的製作方法,本發明第一實施例可以提供一種具有奈米材料的導電箔F,其包括:一金屬基層結構1以及一複合式奈米材料結構2。另外,複合式奈米材料結構2由一石墨材料20所製成,石墨材料20的其中一部分通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22,並且複合式奈米材料結構2由石墨層22以及石墨烯層21所構成。 Therefore, with reference to FIG. 1 and FIG. 4, the first embodiment of the present invention can provide a conductive foil F having a nano material, which includes: a method by the steps S100 (A), step S102, and step S104. The metal base structure 1 and a composite nano material structure 2. In addition, the composite nano material structure 2 is made of a graphite material 20, and a part of the graphite material 20 is converted into (or converted into) a graphene layer 21 by a redox method or a method of introducing a reducing gas. The remaining portion of the graphite material 20 forms a graphite layer 22 disposed between the metal base layer structure 1 and the graphene layer 21, and the composite nanomaterial structure 2 is composed of the graphite layer 22 and the graphene layer 21.

更進一步來說,配合圖4以及圖18所示,金屬基層結構1包括一金屬基層10以及一完全包覆金屬基層1的氧化層11,複合式奈米材料結構2的石墨層22設置在金屬基層結構1的氧化層11上,並且包含有金屬基層結構1與複合式奈米材料結構2的導電箔F能做為一捲繞型電容器C的一正箔使用。 Furthermore, as shown in FIG. 4 and FIG. 18, the metal base structure 1 includes a metal base layer 10 and an oxide layer 11 completely covering the metal base layer 1, and the graphite layer 22 of the composite nano material structure 2 is disposed on the metal. The oxide layer 11 of the base structure 1 and the conductive foil F comprising the metal base structure 1 and the composite nano material structure 2 can be used as a positive foil of a wound capacitor C.

值得一提的是,如圖5所示,本發明第一實施例也可同時提供兩個複合式奈米材料結構2,並且兩個複合式奈米材料結構2 會分別設置在金屬基層結構1的兩相反表面上。 It is worth mentioning that, as shown in FIG. 5, the first embodiment of the present invention can also provide two composite nano material structures 2, and two composite nano material structures 2 They are respectively disposed on the opposite surfaces of the metal base structure 1.

值得注意的是,複合式奈米材料結構2所使用的奈米材料不受限制。因此,複合式奈米材料結構2可為奈米石墨烯或是奈米碳管。 It is worth noting that the nano material used in the composite nanomaterial structure 2 is not limited. Therefore, the composite nano material structure 2 can be a nanographene or a carbon nanotube.

[第二實施例] [Second embodiment]

請參閱圖1、以及圖6至圖8所示,本發明第二實施例提供一種具有奈米材料的導電箔F的製作方法,其包括下列步驟:首先,配合圖1以及圖6所示,提供一金屬基層結構1,金屬基層結構1為一表面無氧化層的金屬基層10(步驟S100(B));接著,配合圖1以及圖7所示,形成一石墨材料20於金屬基層結構1上(步驟S102),舉例來說,石墨材料20可在真空且通入惰性氣體的條件下形成;然後,配合圖1、圖7以及圖8所示,石墨材料20的其中一部分(也就是石墨材料20的最外層區域)通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22(步驟S104),其中,石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2。 Referring to FIG. 1 and FIG. 6 to FIG. 8 , a second embodiment of the present invention provides a method for fabricating a conductive foil F having a nano material, which includes the following steps: First, as shown in FIG. 1 and FIG. A metal base layer structure 1 is provided, and the metal base layer structure 1 is a metal base layer 10 having a surface without an oxide layer (step S100 (B)); then, as shown in FIG. 1 and FIG. 7, a graphite material 20 is formed on the metal base layer structure 1 Upper (step S102), for example, the graphite material 20 may be formed under vacuum and with an inert gas; then, in conjunction with FIGS. 1, 7, and 8, a portion of the graphite material 20 (ie, graphite) The outermost region of the material 20 is converted (or converted) into a graphene layer 21 by a redox method or other method of introducing a reducing gas, and the remaining portion of the graphite material 20 is formed in the metal base layer structure 1 and graphene. The graphite layer 22 between the layers 21 (step S104), wherein the graphite layer 22 and the graphene layer 21 constitute a composite nanomaterial structure 2 disposed on the metal substrate structure 1.

藉此,配合圖1以及圖8所示,通過步驟S100(B)、步驟S102以及步驟S104的製作方法,本發明第二實施例可以提供一種具有奈米材料的導電箔F,其包括:一金屬基層結構1以及一複合式奈米材料結構2。另外,複合式奈米材料結構2由一石墨材料20所製成,石墨材料20的其中一部分通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22,並且複合式奈米材料結構2由石墨層22以及石墨烯層21所構成。 Therefore, with reference to FIG. 1 and FIG. 8 , the second embodiment of the present invention can provide a conductive foil F having a nano material, which includes: a method by the steps S100 (B), S102, and S104. The metal base structure 1 and a composite nano material structure 2. In addition, the composite nano material structure 2 is made of a graphite material 20, and a part of the graphite material 20 is converted into (or converted into) a graphene layer 21 by a redox method or a method of introducing a reducing gas. The remaining portion of the graphite material 20 forms a graphite layer 22 disposed between the metal base layer structure 1 and the graphene layer 21, and the composite nanomaterial structure 2 is composed of the graphite layer 22 and the graphene layer 21.

更進一步來說,配合圖8以及圖18所示,金屬基層結構1為一表面無氧化層的金屬基層10,複合式奈米材料結構2的石墨層22設置在金屬基層結構1的金屬基層10上,並且包含有金屬基層結構1與複合式奈米材料結構2的導電箔F能做為一捲繞型電容器C的一負箔使用。 Furthermore, as shown in FIG. 8 and FIG. 18, the metal base layer structure 1 is a metal base layer 10 having a surface without an oxide layer, and the graphite layer 22 of the composite nano material structure 2 is disposed on the metal base layer 10 of the metal base layer structure 1. The conductive foil F comprising the metal base layer structure 1 and the composite nano material structure 2 can be used as a negative foil of a wound capacitor C.

值得一提的是,如圖9所示,本發明第二實施例也可同時提供兩個複合式奈米材料結構2,並且兩個複合式奈米材料結構2會分別設置在金屬基層結構1的兩相反表面上。 It is worth mentioning that, as shown in FIG. 9, the second embodiment of the present invention can also provide two composite nano material structures 2 at the same time, and two composite nano material structures 2 are respectively disposed in the metal base structure 1 On the opposite surface of the two.

[第三實施例] [Third embodiment]

請參閱圖1、以及圖10至圖12所示,本發明第三實施例提供一種具有奈米材料的導電箔F的製作方法,其包括下列步驟:首先,配合圖1以及圖10所示,提供一金屬基層結構1,金屬基層結構1包括一金屬基層10、一完全包覆金屬基層10的氧化層11以及一設置在氧化層11上的介金屬化合物層12(步驟S100(C));接著,配合圖1以及圖11所示,形成一石墨材料20於金屬基層結構1上(步驟S102),舉例來說,石墨材料20可在真空且通入惰性氣體的條件下形成;然後,配合圖1、圖11以及圖12所示,石墨材料20的其中一部分(也就是石墨材料20的最外層區域)通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22(步驟S104),其中,石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2。 Referring to FIG. 1 and FIG. 10 to FIG. 12, a third embodiment of the present invention provides a method for fabricating a conductive foil F having a nano material, which includes the following steps: First, as shown in FIG. 1 and FIG. Providing a metal base layer structure 1, the metal base layer structure 1 includes a metal base layer 10, an oxide layer 11 completely covering the metal base layer 10, and a metal compound layer 12 disposed on the oxide layer 11 (step S100 (C)); Next, as shown in FIG. 1 and FIG. 11, a graphite material 20 is formed on the metal substrate structure 1 (step S102). For example, the graphite material 20 can be formed under vacuum and an inert gas; 1, 11 and 12, a part of the graphite material 20 (that is, the outermost region of the graphite material 20) is converted (or converted) into a graphite by a redox method or other method of introducing a reducing gas. The olefin layer 21, the remaining portion of the graphite material 20 forms a graphite layer 22 disposed between the metal base layer structure 1 and the graphene layer 21 (step S104), wherein the graphite layer 22 and the graphene layer 21 constitute a metal base layer structure Composite nanomaterial structure 2 on 1.

藉此,通過步驟S100(C)、步驟S102以及步驟S104的製作方法,本發明第三實施例可以提供一種具有奈米材料的導電箔F,其包括:一金屬基層結構1以及一複合式奈米材料結構2。另外,複合式奈米材料結構2由一石墨材料20所製成,石墨材料20的其 中一部分通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22,並且複合式奈米材料結構2由石墨層22以及石墨烯層21所構成。 Thereby, the third embodiment of the present invention can provide a conductive foil F having a nano material, comprising: a metal base layer structure 1 and a composite type nai through the manufacturing method of step S100 (C), step S102, and step S104. Rice material structure 2. In addition, the composite nano material structure 2 is made of a graphite material 20, of which the graphite material 20 The middle portion is converted (or converted) into a graphene layer 21 by a redox method or other method of introducing a reducing gas, and the remaining portion of the graphite material 20 is formed between the metal base layer structure 1 and the graphene layer 21 The graphite layer 22 and the composite nanomaterial structure 2 are composed of a graphite layer 22 and a graphene layer 21.

更進一步來說,配合圖12以及圖18所示,金屬基層結構1包括一金屬基層10、一完全包覆金屬基層10的氧化層11以及一設置在氧化層11上的介金屬化合物層12,複合式奈米材料結構2的石墨層22設置在金屬基層結構1的介金屬化合物層12上,並且包含有金屬基層結構1與複合式奈米材料結構2的導電箔F能做為一捲繞型電容器C的一正箔使用。 Further, as shown in FIG. 12 and FIG. 18, the metal base layer structure 1 includes a metal base layer 10, an oxide layer 11 completely covering the metal base layer 10, and a metal compound layer 12 disposed on the oxide layer 11, The graphite layer 22 of the composite nano material structure 2 is disposed on the metal compound layer 12 of the metal base structure 1, and the conductive foil F including the metal base structure 1 and the composite nano material structure 2 can be wound A positive foil of type capacitor C is used.

值得一提的是,如圖13所示,本發明第三實施例的金屬基層結構1還可以提供另外一設置在氧化層11上的介金屬化合物層12。另外,本發明第三實施例也可同時提供兩個複合式奈米材料結構2,並且兩個複合式奈米材料結構2會分別設置在金屬基層結構1的兩相反表面上。 It is worth mentioning that, as shown in FIG. 13, the metal base layer structure 1 of the third embodiment of the present invention can also provide another metal compound layer 12 disposed on the oxide layer 11. In addition, the third embodiment of the present invention can also provide two composite nano material structures 2 at the same time, and two composite nano material structures 2 are respectively disposed on opposite surfaces of the metal base structure 1.

[第四實施例] [Fourth embodiment]

請參閱圖1、以及圖14至圖16所示,本發明第四實施例提供一種具有奈米材料的導電箔F的製作方法,其包括下列步驟:首先,配合圖1以及圖14所示,提供一金屬基層結構1,金屬基層結構1包括一表面無氧化層的金屬基層10以及一設置在金屬基層10上的介金屬化合物層12(步驟S100(D));接著,配合圖1以及圖15所示,形成一石墨材料20於金屬基層結構1上(步驟S102),舉例來說,石墨材料20可在真空且通入惰性氣體的條件下形成;然後,配合圖1、圖15以及圖16所示,石墨材料20的其中一部分(也就是石墨材料20的最外層區域)通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層 21之間的石墨層22(步驟S104),其中,石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2。 Referring to FIG. 1 and FIG. 14 to FIG. 16 , a fourth embodiment of the present invention provides a method for fabricating a conductive foil F having a nano material, which includes the following steps: First, as shown in FIG. 1 and FIG. A metal base layer structure 1 is provided. The metal base layer structure 1 includes a metal base layer 10 having a surface oxide-free layer and a metal compound layer 12 disposed on the metal base layer 10 (step S100 (D)); and then, with FIG. 1 and As shown in FIG. 15, a graphite material 20 is formed on the metal substrate structure 1 (step S102). For example, the graphite material 20 can be formed under vacuum and an inert gas; and then, FIG. 1, FIG. 15 and FIG. As shown in Fig. 16, a portion of the graphite material 20 (i.e., the outermost region of the graphite material 20) is converted (or converted) into a graphene layer 21 by a redox method or other method of introducing a reducing gas, and the graphite material 20 The remaining portion is formed in a metal substrate structure 1 and a graphene layer A graphite layer 22 between 21 (step S104), wherein the graphite layer 22 and the graphene layer 21 constitute a composite nanomaterial structure 2 disposed on the metal substrate structure 1.

藉此,配合圖1以及圖16所示,通過步驟S100(D)、步驟S102以及步驟S104的製作方法,本發明第四實施例可以提供一種具有奈米材料的導電箔F,其包括:一金屬基層結構1以及一複合式奈米材料結構2。另外,複合式奈米材料結構2由一石墨材料20所製成,石墨材料20的其中一部分通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22,並且複合式奈米材料結構2由石墨層22以及石墨烯層21所構成。 Therefore, with reference to FIG. 1 and FIG. 16 , the fourth embodiment of the present invention can provide a conductive foil F having a nano material, which includes: a method by the steps S100 (D), step S102, and step S104. The metal base structure 1 and a composite nano material structure 2. In addition, the composite nano material structure 2 is made of a graphite material 20, and a part of the graphite material 20 is converted into (or converted into) a graphene layer 21 by a redox method or a method of introducing a reducing gas. The remaining portion of the graphite material 20 forms a graphite layer 22 disposed between the metal base layer structure 1 and the graphene layer 21, and the composite nanomaterial structure 2 is composed of the graphite layer 22 and the graphene layer 21.

更進一步來說,配合圖16以及圖18所示,金屬基層結構1包括一表面無氧化層的金屬基層10以及一設置在金屬基層10上的介金屬化合物層12,複合式奈米材料結構2的石墨層22設置在金屬基層結構1的介金屬化合物層12上,並且包含有金屬基層結構1與複合式奈米材料結構2的導電箔F能做為一捲繞型電容器C的一負箔使用。 Furthermore, as shown in FIG. 16 and FIG. 18, the metal base structure 1 includes a metal base layer 10 having no surface oxide layer and a metal compound layer 12 disposed on the metal base layer 10, and the composite nano material structure 2 The graphite layer 22 is disposed on the intermetallic compound layer 12 of the metal base layer structure 1, and the conductive foil F including the metal base layer structure 1 and the composite nano material structure 2 can be used as a negative foil of a wound capacitor C use.

值得一提的是,如圖17所示,本發明第四實施例的金屬基層結構1還可以提供另外一設置在金屬基層10上的介金屬化合物層12。另外,本發明第四實施例也可同時提供兩個複合式奈米材料結構2,並且兩個複合式奈米材料結構2會分別設置在金屬基層結構1的兩相反表面上。 It is worth mentioning that, as shown in FIG. 17, the metal base layer structure 1 of the fourth embodiment of the present invention can also provide another metal compound layer 12 disposed on the metal base layer 10. In addition, the fourth embodiment of the present invention can also provide two composite nano material structures 2 at the same time, and two composite nano material structures 2 are respectively disposed on opposite surfaces of the metal base structure 1.

[第五實施例] [Fifth Embodiment]

請配合圖18以及圖19所示,本發明第四實施例提供一種捲繞型電容器封裝結構Z,其包括:一捲繞型電容器C、一封裝體B以及至少兩個導電引腳L,並且捲繞型電容器C包括至少兩個導電箔F以及兩個隔離紙P。 As shown in FIG. 18 and FIG. 19, a fourth embodiment of the present invention provides a wound capacitor package structure Z including: a wound capacitor C, a package B, and at least two conductive pins L, and The wound capacitor C includes at least two conductive foils F and two release papers P.

更進一步來說,配合圖4、圖5、圖8、圖9、圖12、圖13、圖16以及圖17之中的任一個實施例與圖18所示,每一個導電箔F包括一金屬基層結構1以及一設置在金屬基層結構1上的複合式奈米材料結構2,並且兩個隔離紙P的其中之一設置於至少兩個導電箔F之間。舉例來說,複合式奈米材料結構2由一石墨材料20所製成,石墨材料20的其中一部分(也就是石墨材料20的最外層區域)通過一種導入還原氣體的氧化還原法或者其它方法以轉化成(或轉變成)一石墨烯層21,石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22,並且複合式奈米材料結構2由石墨層22以及石墨烯層21所構成。 Furthermore, with reference to any of the embodiments of FIG. 4, FIG. 5, FIG. 8, FIG. 9, FIG. 12, FIG. 13, FIG. 16 and FIG. 17, and FIG. 18, each of the conductive foils F includes a metal. The base structure 1 and a composite nanomaterial structure 2 disposed on the metal substrate structure 1 and one of the two separators P is disposed between the at least two conductive foils F. For example, the composite nanomaterial structure 2 is made of a graphite material 20, and a part of the graphite material 20 (that is, the outermost region of the graphite material 20) is passed through a redox method of introducing a reducing gas or other methods. Converted into (or converted into) a graphene layer 21, the remainder of the graphite material 20 forms a graphite layer 22 disposed between the metal substrate structure 1 and the graphene layer 21, and the composite nanomaterial structure 2 is composed of a graphite layer 22 and a graphene layer 21 are formed.

再者,配合圖18以及圖19所示,封裝體B包覆整個捲繞型電容器C。另外,至少兩個導電引腳L分別電性連接於至少兩個導電箔F,並且每一個導電引腳L具有一電性連接於相對應的導電箔F且被封裝體B所包覆的內埋部L1以及一連接於內埋部L1且裸露在封裝體B的外部的外露部L2。 Further, as shown in FIGS. 18 and 19, the package B covers the entire wound capacitor C. In addition, at least two conductive pins L are electrically connected to the at least two conductive foils F, and each of the conductive pins L has an electrical connection to the corresponding conductive foil F and is covered by the package B. The buried portion L1 and an exposed portion L2 that is connected to the embedded portion L1 and exposed to the outside of the package B.

藉此,本發明第四實施例所公開使用具有奈米材料的導電箔F的捲繞型電容器封裝結構Z,其可通過“石墨材料20的其中一部分轉化成一石墨烯層21,且石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22”以及“石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2”的技術特徵,以降低導電箔F的阻抗並提升捲繞型電容器封裝結構Z的整體電氣性能,其中電氣性能包括:提升介電常數、提升導電性、提升熱穩定性、提升高分子含浸率、提升電容量(Capacitance,Cap)、降低等效串聯電阻(Equivalent Series Resistance,ESR)、降低損耗因子(Dissipation Factor,DF)以及降低漏電流(Leakage Current,LC)等等。 Accordingly, the fourth embodiment of the present invention discloses a wound capacitor package structure Z using a conductive foil F having a nano material, which can be converted into a graphene layer 21 by a part of the graphite material 20, and the graphite material 20 The remaining portion forms a graphite layer 22" disposed between the metal substrate structure 1 and the graphene layer 21" and "the graphite layer 22 and the graphene layer 21 constitute a composite nanomaterial structure 2 disposed on the metal substrate structure 1. Technical characteristics to reduce the impedance of the conductive foil F and improve the overall electrical performance of the wound capacitor package structure Z, wherein the electrical properties include: increasing the dielectric constant, improving the conductivity, improving the thermal stability, and increasing the polymer impregnation rate. Increase Capacitance (Cap), Reduce Equivalent Series Resistance (ESR), Reduce Dissipation Factor (DF), and Reduce Leakage Current (LC).

[實施例的有益效果] [Advantageous Effects of Embodiments]

本發明的有益效果在於,本發明技術方案所提供的具有奈米材料的導電箔F及其製作方法,以及捲繞型電容器封裝結構Z,其可通過“石墨材料20的其中一部分(也就是石墨材料20的最外層區域)轉化成(或轉變成)一石墨烯層21,且石墨材料20的其餘部分形成一設置在金屬基層結構1與石墨烯層21之間的石墨層22”以及“石墨層22以及石墨烯層21構成一設置在金屬基層結構1上的複合式奈米材料結構2”的技術特徵,以降低導電箔F的阻抗並提升捲繞型電容器封裝結構Z的整體電氣性能,其中電氣性能包括:提升介電常數、提升導電性、提升熱穩定性、提升高分子含浸率、提升電容量(Capacitance,Cap)、降低等效串聯電阻(Equivalent Series Resistance,ESR)、降低損耗因子(Dissipation Factor,DF)以及降低漏電流(Leakage Current,LC)等等。 The beneficial effects of the present invention are the conductive foil F having a nano material and the manufacturing method thereof, and the wound capacitor package structure Z, which can pass the "part of the graphite material 20 (that is, graphite). The outermost region of the material 20 is converted (or converted) into a graphene layer 21, and the remainder of the graphite material 20 forms a graphite layer 22" and "graphite" disposed between the metal substrate structure 1 and the graphene layer 21 The layer 22 and the graphene layer 21 constitute a technical feature of a composite nanomaterial structure 2" disposed on the metal substrate structure 1 to reduce the impedance of the conductive foil F and improve the overall electrical performance of the wound capacitor package structure Z, Among them, electrical properties include: increasing dielectric constant, improving conductivity, improving thermal stability, increasing polymer impregnation rate, increasing capacitance (Capacitance, Cap), reducing Equivalent Series Resistance (ESR), and reducing loss factor. (Dissipation Factor, DF) and Leakage Current (LC) and so on.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The above disclosure is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the present specification and the contents of the drawings are included in the application of the present invention. Within the scope of the patent.

指定代表圖為流程圖,故無符號簡單說明 The specified representative diagram is a flow chart, so no symbolic simple explanation

Claims (5)

一種具有奈米材料的導電箔,其包括:一金屬基層結構;以及一複合式奈米材料結構,所述複合式奈米材料結構設置在所述金屬基層結構上;其中,所述複合式奈米材料結構由一石墨材料所製成,所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,且所述複合式奈米材料結構由所述石墨層以及所述石墨烯層所構成;其中,所述金屬基層結構包括一表面無氧化層的金屬基層以及一設置在所述金屬基層結構上的介金屬化合物層,且所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述介金屬化合物層上。 A conductive foil having a nano material, comprising: a metal base layer structure; and a composite nano material structure, wherein the composite nano material structure is disposed on the metal base layer structure; wherein the composite type The rice material structure is made of a graphite material, a part of which is converted into a graphene layer, and the remaining portion of the graphite material forms a graphite disposed between the metal base layer structure and the graphene layer a layer, wherein the composite nanomaterial structure is composed of the graphite layer and the graphene layer; wherein the metal base layer structure comprises a metal base layer having a surface oxide-free layer and a metal base layer structure disposed thereon a mesometallic compound layer thereon, and the graphite layer of the composite nano material structure is disposed on the metal compound layer of the metal base layer structure. 如請求項1所述的具有奈米材料的導電箔,其中,包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一負箔使用。 The conductive foil having a nano material according to claim 1, wherein the conductive foil comprising the metal base layer structure and the composite nano material structure can be used as a negative foil of a wound capacitor. use. 一種具有奈米材料的導電箔的製作方法,其包括下列步驟:提供一金屬基層結構;形成一石墨材料於所述金屬基層結構上;以及所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,其中,所述石墨層以及所述石墨烯層構成一設置在所述金屬基層結構上的複合式奈米材料結構;其中,所述金屬基層結構包括一表面無氧化層的金屬基層以及一設置在所述金屬基層結構上的介金屬化合物層,且所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構 的所述介金屬化合物層上。 A method for fabricating a conductive foil having a nano material, comprising the steps of: providing a metal base layer structure; forming a graphite material on the metal base layer structure; and converting a portion of the graphite material into a graphene layer, The remaining portion of the graphite material forms a graphite layer disposed between the metal substrate structure and the graphene layer, wherein the graphite layer and the graphene layer form a structure disposed on the metal substrate structure a composite nanomaterial structure; wherein the metal base structure comprises a metal base layer having no surface oxide layer and a metal compound layer disposed on the metal base layer structure, and the composite nano material structure is a graphite layer disposed on the metal base layer structure On the intermetallic compound layer. 一種捲繞型電容器封裝結構,其包括:一捲繞型電容器,所述捲繞型電容器包括:至少兩個導電箔,每一個所述導電箔包括一金屬基層結構以及一設置在所述金屬基層結構上的複合式奈米材料結構;以及兩個隔離紙,兩個所述隔離紙的其中之一設置於至少兩個所述導電箔之間;一封裝體,所述封裝體包覆整個所述捲繞型電容器;以及至少兩個導電引腳,至少兩個所述導電引腳分別電性連接於至少兩個導電箔,其中,每一個所述導電引腳具有一電性連接於相對應的所述導電箔且被所述封裝體所包覆的內埋部以及一連接於所述內埋部且裸露在所述封裝體的外部的外露部;其中,所述複合式奈米材料結構由一石墨材料所製成,所述石墨材料的其中一部分轉化成一石墨烯層,所述石墨材料的其餘部分形成一設置在所述金屬基層結構與所述石墨烯層之間的石墨層,且所述複合式奈米材料結構由所述石墨層以及所述石墨烯層所構成;其中,所述金屬基層結構包括一表面無氧化層的金屬基層以及一設置在所述金屬基層結構上的介金屬化合物層,且所述複合式奈米材料結構的所述石墨層設置在所述金屬基層結構的所述介金屬化合物層上。 A wound capacitor package structure comprising: a wound capacitor comprising: at least two conductive foils, each of the conductive foils comprising a metal base layer structure and a metal base layer disposed thereon a composite composite nanomaterial structure; and two release papers, one of the two release papers being disposed between at least two of the conductive foils; and a package covering the entire package The winding type capacitor; and at least two conductive pins, at least two of the conductive pins are electrically connected to the at least two conductive foils respectively, wherein each of the conductive pins has an electrical connection corresponding to The conductive foil and the embedded portion covered by the package body and an exposed portion connected to the buried portion and exposed outside the package body; wherein the composite nano material structure Made of a graphite material, a part of the graphite material is converted into a graphene layer, and the remaining portion of the graphite material forms a stone disposed between the metal base layer structure and the graphene layer a layer, wherein the composite nanomaterial structure is composed of the graphite layer and the graphene layer; wherein the metal base layer structure comprises a metal base layer having a surface oxide-free layer and a metal base layer structure disposed thereon a mesometallic compound layer thereon, and the graphite layer of the composite nano material structure is disposed on the metal compound layer of the metal base layer structure. 如請求項4所述的捲繞型電容器封裝結構,其中,包含有所述金屬基層結構與所述複合式奈米材料結構的所述導電箔能做為一捲繞型電容器的一負箔使用。 The wound capacitor package structure according to claim 4, wherein the conductive foil including the metal base layer structure and the composite nano material structure can be used as a negative foil of a wound capacitor. .
TW105133693A 2016-10-19 2016-10-19 Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure TWI615864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133693A TWI615864B (en) 2016-10-19 2016-10-19 Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133693A TWI615864B (en) 2016-10-19 2016-10-19 Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure

Publications (2)

Publication Number Publication Date
TWI615864B true TWI615864B (en) 2018-02-21
TW201816813A TW201816813A (en) 2018-05-01

Family

ID=62014634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133693A TWI615864B (en) 2016-10-19 2016-10-19 Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure

Country Status (1)

Country Link
TW (1) TWI615864B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171502A1 (en) * 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171502A1 (en) * 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same

Also Published As

Publication number Publication date
TW201816813A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI626671B (en) Solid electrolytic capacitor package structure for increasing electrical performance, and capacitor unit thereof and method of manufacturing the same
EP3226270B1 (en) Solid electrolytic capacitor
JP2023053310A (en) Electrolytic capacitor, and method for manufacturing the same
TWI421888B (en) Stacked capacitor with many product pins
TWI395244B (en) Lamellar stacked solid electrolytic condenser
TW200937469A (en) Stacked solid electrolytic capacitor
TWI502611B (en) Solid electrolytic capacitor package structure for decreasing equivalent series resistance and method of manufacturing the same
TWI690960B (en) Capacitor, capacitor package structure and method of manufacturing the same
TWI615864B (en) Conductive foil having a nanomaterial and method of manufacturing the same, and wound capacitor package structure
TWI674599B (en) Stacked capacitor assembly structure
TW201616534A (en) Solid electrolytic capacitor with improved metallic anode and method for manufacturing the same
TWI635521B (en) Capacitor package structure and antioxidative composite electrode foil thereof
TW201517088A (en) Solid electrolytic capacitor package structure and method of manufacturing the same, and conductive unit
TWI702620B (en) Capacitor assembly package structure and method of manufactured the same
JPH06267802A (en) Low-impedance-type solid electrolytic capacitor
TWI626754B (en) Thin film capacitor for increasing dielectric constant and method of manufacturing the same
CN107967992A (en) Conductive foil with nano material and preparation method thereof, and capacitor packaging structure
TWI616914B (en) Stacked-type solid electrolytic capacitor package structure and method of manufacturing the same
TWI807317B (en) Capacitor assembly package structure, and capacitor element and method of manufacturing the same
TWI618103B (en) Solid electrolytic capacitor package structure using nanomaterials and capacitor unit thereof, and method of manufacturing a capacitor unit
JP2009135431A (en) Laminated solid electrolytic capacitor
CN110895995B (en) Capacitor, capacitor packaging structure and manufacturing method thereof
JP2007227716A (en) Laminated solid electrolytic capacitor and manufacturing method therefor
TWI624846B (en) Winding-type capacitor package structure having conductive foils of unequal widths and winding assembly thereof
TWI650784B (en) Winding-type capacitor package structure without negative conductive foil and winding assembly thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees