TWI614978B - Single-phase bridgeless isolated power factor adjustment circuit - Google Patents

Single-phase bridgeless isolated power factor adjustment circuit Download PDF

Info

Publication number
TWI614978B
TWI614978B TW105138255A TW105138255A TWI614978B TW I614978 B TWI614978 B TW I614978B TW 105138255 A TW105138255 A TW 105138255A TW 105138255 A TW105138255 A TW 105138255A TW I614978 B TWI614978 B TW I614978B
Authority
TW
Taiwan
Prior art keywords
coupled
switch
module
isolated
unit
Prior art date
Application number
TW105138255A
Other languages
Chinese (zh)
Other versions
TW201820758A (en
Inventor
吳祈陞
游國輝
江炫樟
戴滄禮
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW105138255A priority Critical patent/TWI614978B/en
Priority to JP2017194098A priority patent/JP6494718B2/en
Application granted granted Critical
Publication of TWI614978B publication Critical patent/TWI614978B/en
Publication of TW201820758A publication Critical patent/TW201820758A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

一種單相無橋隔離式功因調整電路,包含EMI濾波器模組、低頻切換二極體模組、二個開關及二個隔離式電壓轉換模組,EMI濾波器模組耦接於交流電源,低頻切換二極體模組耦接於EMI濾波器模組,二個開關耦接於低頻切換二極體模組,二個隔離式電壓轉換模組分別耦接於二個開關之其一者,其中,低頻切換二極體模組可為第一或第二導通狀態時,且對應於不同導通狀態,二個開關之其一者導通及第一隔離式電壓轉換模組織其一者開啟。藉由以上電路配置,本發明單相無橋隔離式功因調整電路可以達到不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。The utility model relates to a single-phase bridgeless isolated power factor adjusting circuit, which comprises an EMI filter module, a low frequency switching diode module, two switches and two isolated voltage conversion modules, and the EMI filter module is coupled to the AC power source. The low frequency switching diode module is coupled to the EMI filter module, the two switches are coupled to the low frequency switching diode module, and the two isolated voltage conversion modules are respectively coupled to one of the two switches. Wherein, the low frequency switching diode module can be in the first or second conducting state, and corresponding to different conducting states, one of the two switches is turned on and the first isolated voltage converting mode is turned on. With the above circuit configuration, the single-phase bridgeless isolation power factor adjustment circuit of the invention can achieve advantages such as difficulty in failure, simple circuit, cost saving, small size, and high conversion efficiency.

Description

單相無橋隔離式功因調整電路Single-phase bridgeless isolated power factor adjustment circuit

本發明係關於一種功因調整電路,特別關於一種單相隔離式功因調整電路。The present invention relates to a power factor adjusting circuit, and more particularly to a single phase isolated power factor adjusting circuit.

如圖1所示,習知單相高功因之切換式電源供應器1000具有兩級電路架構,前級為非隔離之PFC整流器(rectifier)1100,後級為隔離式之直流轉直流轉換器1200。圖2及圖3亦分別為習知之切換式電源供應器2000, 3000,圖2為 PFC 升壓式AC-DC整流器2100結合全橋式相移DC-DC轉換器2200,圖3為升壓式AC-DC整流器3100結合LLC 諧振式DC-DC轉換器3200,圖2及圖3之切換式電源供應器2000, 3000皆適用於交流電源S AC及負載Load。 As shown in FIG. 1, the conventional single-phase high-power switching power supply 1000 has a two-stage circuit architecture. The front stage is a non-isolated PFC rectifier 1100, and the latter stage is an isolated DC-to-DC converter. 1200. 2 and 3 are respectively a conventional switching power supply 2000, 3000, FIG. 2 is a PFC boost AC-DC rectifier 2100 combined with a full bridge phase shift DC-DC converter 2200, and FIG. 3 is a boost type. The AC-DC rectifier 3100 incorporates an LLC resonant DC-DC converter 3200. The switched power supplies 2000, 3000 of Figures 2 and 3 are suitable for AC power supply S AC and load load.

然而,習知的PFC電路具有以下缺點:(1) 若該切換式電源供應器具有橋式整流器,則導通損較高。(2) 在目前不具有橋式整流器的切換式電源供應器中,該些切換式電源供應器之電路架構均屬於無變壓器的電路架構。(3)升壓式PFC轉換器由於直流輸出側為大電容,因此交流電壓輸入瞬間對此直流電容充電,容易造成相當高之輸入電流,導致整流子故障或輸出二極體故障,亦容易被充電太高而造成主功率元件損毀。(4) 於該些切換式電源供應器的控制系統中,功率因數的控制在一次側,直流至直流轉換器的控制在二次側,因此必須藉由一、二次側分離的方式才能讓控制系統順利運作,使電路變得複雜。However, the conventional PFC circuit has the following disadvantages: (1) If the switching power supply has a bridge rectifier, the conduction loss is high. (2) In the switching power supply that does not currently have a bridge rectifier, the circuit architecture of the switching power supply is a transformerless circuit architecture. (3) The boost type PFC converter has a large capacitance on the DC output side, so the AC voltage input instantaneously charges the DC capacitor, which is likely to cause a relatively high input current, resulting in a commutator failure or an output diode failure, and is also easily The charging is too high and the main power component is damaged. (4) In the control system of the switching power supply, the power factor is controlled on the primary side, and the DC-to-DC converter is controlled on the secondary side, so the first and second sides must be separated. The control system operates smoothly and complicates the circuit.

因此,需要一種具有隔離之PFC電路架構,其可以解決上述習知PFC電路之缺點。Therefore, there is a need for an isolated PFC circuit architecture that addresses the shortcomings of the conventional PFC circuits described above.

為解決上述習知技術的問題,本發明之一目的在於提供單相無橋隔離式功因調整電路,其係具有低導通損、不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In order to solve the above problems of the prior art, an object of the present invention is to provide a single-phase bridgeless isolated power factor adjustment circuit, which has low conduction loss, is not easy to malfunction, has simple circuit, saves cost, has small volume, and has high conversion efficiency. advantage.

為達上述目的及其他目的,本發明係提供一種單相無橋隔離式功因調整電路,包含一EMI濾波器模組、一低頻切換二極體模組、一第一開關、一第二開關、一第一隔離式電壓轉換模組以及一第二隔離式電壓轉換模組。To achieve the above and other objects, the present invention provides a single-phase bridgeless isolated power factor adjustment circuit including an EMI filter module, a low frequency switching diode module, a first switch, and a second switch. a first isolated voltage conversion module and a second isolated voltage conversion module.

該EMI濾波器模組耦接於外部之一交流電源;該低頻切換二極體模組耦接於該EMI濾波器模組;該第一開關及該第二開關耦接於該低頻切換二極體模組;該第一隔離式電壓轉換模組耦接於該第一開關;以及該第二隔離式電壓轉換模組耦接於該第二開關。The EMI filter module is coupled to an external AC power supply; the low frequency switching diode module is coupled to the EMI filter module; the first switch and the second switch are coupled to the low frequency switching diode The first isolated voltage conversion module is coupled to the first switch; and the second isolated voltage conversion module is coupled to the second switch.

其中,當該低頻切換二極體模組為第一導通狀態時,該第一開關導通及該第一隔離式電壓轉換模組開啟,當該低頻切換二極體模組為第二導通狀態時,該第二開關導通及該第二隔離式電壓轉換模組開啟。When the low frequency switching diode module is in the first conducting state, the first switch is turned on and the first isolated voltage conversion module is turned on, when the low frequency switching diode module is in the second conducting state. The second switch is turned on and the second isolated voltage conversion module is turned on.

在上述單相無橋隔離式功因調整電路中,該低頻切換二極體模組包括一第一單流向二極體單元及一第二單流向二極體單元,當該第二單流向二極體單元導通且該第一單流向二極體單元關閉時,定義為第一導通狀態,當該第一單流向二極體單元導通且該第二單流向二極體單元關閉時,定義為第二導通狀態。In the single-phase bridgeless isolated power factor adjustment circuit, the low frequency switching diode module includes a first single-flow diode unit and a second single-flow diode unit, and the second single-flow diode unit When the polar body unit is turned on and the first single current is turned off to the diode unit, the first conductive state is defined. When the first single current is turned on to the diode unit and the second single current is turned off to the diode unit, it is defined as The second conduction state.

在上述單相無橋隔離式功因調整電路中,該第一單流向二極體單元及該第二單流向二極體單元係交替導通,使該低頻切換二極體模組切換於第一導通狀態及第二導通狀態。In the single-phase bridgeless isolation power factor adjustment circuit, the first single-flow diode unit and the second single-flow diode unit are alternately turned on, so that the low-frequency switching diode module is switched to the first The on state and the second on state.

在上述單相無橋隔離式功因調整電路中,該EMI濾波器模組包括一第一電感、一第二電感及一第一電容,該第一電感之一端耦接於該交流電源的一端;該第二電感之一端耦接於該交流電源的另一端;及該第一電容的兩端分別耦接於該第一電感的另一端及該第二電感的另一端。In the above-mentioned single-phase bridgeless power factor adjustment circuit, the EMI filter module includes a first inductor, a second inductor, and a first capacitor, and one end of the first inductor is coupled to one end of the AC power source. One end of the second inductor is coupled to the other end of the AC power source; and the two ends of the first capacitor are respectively coupled to the other end of the first inductor and the other end of the second inductor.

在上述單相無橋隔離式功因調整電路中,該低頻切換二極體模組包括一第一單流向二極體單元及一第二單流向二極體單元,該第一單流向二極體單元的負極端耦接於該第一電容的一端及該第一電感的另一端,該第二單流向二極體單元的負極端耦接於該第一電容的另一端及該第二電感的另一端。In the above single-phase bridgeless power factor adjusting circuit, the low frequency switching diode module includes a first single current diode unit and a second single current diode unit, the first single current diode The negative end of the body unit is coupled to one end of the first capacitor and the other end of the first inductor, and the second end of the second unit is coupled to the other end of the first capacitor and the second inductor The other end.

在上述單相無橋隔離式功因調整電路中,該第一單流向二極體單元的正極端及該第二單流向二極體單元的正極端耦接於一第一節點,該第一開關的一端及該第二開關的一端耦接於一第二節點,該第一節點耦接於該第二節點。In the above-mentioned single-phase bridgeless-type power factor adjustment circuit, the first single-flow diode unit and the second-side diode unit are coupled to a first node, the first node. One end of the switch and one end of the second switch are coupled to a second node, and the first node is coupled to the second node.

在上述單相無橋隔離式功因調整電路中,更包含一第一突波吸收模組及一第二突波吸收模組,該第一突波吸收模組耦接於該第一開關及該第一隔離式電壓轉換模組;及該第二突波吸收模組耦接於該第二開關及該第二隔離式電壓轉換模組。In the above-mentioned single-phase bridgeless power factor adjusting circuit, the first surge absorbing module and the second swell absorbing module are coupled to the first switch and The first isolated voltage conversion module; and the second surge absorption module are coupled to the second switch and the second isolated voltage conversion module.

在上述單相無橋隔離式功因調整電路中,更包含一第一控制模組及一第二控制模組,該第一控制模組耦接於該第一開關的閘極端,以控制該第一開關之啟閉;及該第二控制模組耦接於該第二開關的閘極端,以控制該第二開關之啟閉。The first phase control module includes a first control module and a second control module, and the first control module is coupled to the gate terminal of the first switch to control the Opening and closing of the first switch; and the second control module is coupled to the gate end of the second switch to control opening and closing of the second switch.

在上述單相無橋隔離式功因調整電路中,該第一控制模組包括一第一電壓控制單元、一第一零電流偵測單元及一第一比較單元,該第一控制模組耦接於該第一隔離式電壓轉換模組之輸出端以取得一第一輸出電壓回授訊號,該第一電壓控制單元調整該第一輸出電壓回授訊號以輸出一第一開關電流控制信號,該第一零電流偵測單元耦接於該第一隔離式電壓轉換模組以輸出一第一零電流偵測訊號,該第一比較單元比較該第一開關電流控制信號及該第一開關之一端的電壓,並根據比較結果及該第一零電流偵測訊號輸出一第一控制訊號,該第一控制訊號用於控制該第一開關之啟閉。The first control module includes a first voltage control unit, a first zero current detecting unit and a first comparing unit, and the first control module is coupled to the single-phase bridgeless power factor adjusting circuit. Connected to the output end of the first isolated voltage conversion module to obtain a first output voltage feedback signal, the first voltage control unit adjusts the first output voltage feedback signal to output a first switch current control signal, The first zero current detecting unit is coupled to the first isolated voltage converting module to output a first zero current detecting signal, and the first comparing unit compares the first switch current control signal with the first switch a voltage at one end, and outputting a first control signal according to the comparison result and the first zero current detection signal, wherein the first control signal is used to control the opening and closing of the first switch.

在上述單相無橋隔離式功因調整電路中,該第二控制模組包括一第二電壓控制單元、一第二零電流偵測單元及一第二比較單元,該第二控制模組耦接於該第二隔離式電壓轉換模組之輸出端以取得一第二輸出電壓回授訊號,該第二電壓控制單元調整該第二輸出電壓回授訊號以輸出一第二開關電流控制信號,該第二零電流偵測單元耦接於該第二隔離式電壓轉換模組以輸出一第二零電流偵測訊號,該第二比較單元比較該第二開關電流控制信號及該第二開關之一端的電壓,並根據比較結果及該第二零電流偵測訊號輸出一第二控制訊號,該第二控制訊號用於控制該第二開關之啟閉。The second control module includes a second voltage control unit, a second zero current detecting unit and a second comparing unit, and the second control module is coupled to the single-phase bridgeless power factor adjusting circuit. Connected to the output end of the second isolated voltage conversion module to obtain a second output voltage feedback signal, the second voltage control unit adjusts the second output voltage feedback signal to output a second switch current control signal, The second zero current detecting unit is coupled to the second isolated voltage converting module to output a second zero current detecting signal, and the second comparing unit compares the second switch current control signal and the second switch The voltage of one end, and outputting a second control signal according to the comparison result and the second zero current detection signal, the second control signal is used to control the opening and closing of the second switch.

綜上所述,藉由以上電路配置,本發明單相無橋隔離式功因調整電路可以達到不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In summary, with the above circuit configuration, the single-phase bridgeless isolated power factor adjustment circuit of the present invention can achieve advantages such as difficulty in failure, simple circuit, cost saving, small size, and high conversion efficiency.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後:In order to fully understand the objects, features and advantages of the present invention, the present invention will be described in detail by the following specific embodiments and the accompanying drawings.

請參照圖4及圖5A,圖4係本發明單相無橋隔離式功因調整電路之一實施例的示意圖,圖5A係本發明單相無橋隔離式功因調整電路之另一實施例的示意圖。如圖4及圖5A所示,該單相隔離式功因調整電路包含一EMI濾波器模組10、一低頻切換二極體模組20、一第一開關Q 1、一第二開關Q 2、一第一隔離式電壓轉換模組30及一第二隔離式電壓轉換模組40。 Please refer to FIG. 4 and FIG. 5A. FIG. 4 is a schematic diagram of an embodiment of a single-phase bridgeless isolated power factor adjusting circuit according to the present invention, and FIG. 5A is another embodiment of the single-phase bridgeless isolated power factor adjusting circuit of the present invention. Schematic diagram. As shown in FIG. 4 and FIG. 5A , the single-phase isolated power factor adjustment circuit includes an EMI filter module 10 , a low frequency switching diode module 20 , a first switch Q 1 , and a second switch Q 2 . A first isolated voltage conversion module 30 and a second isolated voltage conversion module 40.

該EMI濾波器模組10可包括一第一電感L S1、一第二電感L S2及一第一電容C S,該第一電感L S1之一端耦接於外部之交流電源V S的一端,該第二電感L S2之一端耦接於該交流電源V S的另一端,該第一電容C S的兩端分別耦接於該第一電感L S1的另一端及該第二電感L S2的另一端。 The EMI filter module 10 can include a first inductor L S1 , a second inductor L S2 , and a first capacitor C S . One end of the first inductor L S1 is coupled to one end of an external AC power source V S . One end of the second inductor L S2 is coupled to the other end of the AC power source V S , and the two ends of the first capacitor C S are respectively coupled to the other end of the first inductor L S1 and the second inductor L S2 another side.

該交流電源V S可為市電,且該EMI濾波器模組10可適應於多種不同電壓值(例如110V、220V等等)的交流電源V S,於圖5A中,該第一電感L S1耦接於該交流電源V S的正極端,該第二電感L S2耦接於該交流電源V S的負極端,但於其他可能的實施例中,該第一電感L S1可耦接於該交流電源V S的負極端,該第二電感L S2可耦接於該交流電源V S的正極端。 The AC power supply V S can be a commercial power supply, and the EMI filter module 10 can be adapted to an AC power supply V S of a plurality of different voltage values (for example, 110V, 220V, etc.). In FIG. 5A, the first inductance L S1 is coupled. connected to the positive terminal V S of the AC power supply, the second inductor L S2 is coupled to the negative terminal of the AC power source V S, but in other possible embodiments, the first inductor L S1 may be coupled to the AC the negative terminal of the power source V S, the second inductor L S2 may be coupled to the positive terminal of the AC power source V S.

該低頻切換二極體模組20可包括一第一單流向二極體單元21及一第二單流向二極體單元22,該第一單流向二極體單元21可僅具有一單流向二極體D 1,但亦可具有二或多個單流向二極體,並以串聯或並聯方式連接,該第二單流向二極體單元22可僅具有一單流向二極體D 2,但亦可具有二或多個單流向二極體,並以串聯或並聯方式連接。 The low frequency switching diode module 20 can include a first single-flow diode unit 21 and a second single-flow diode unit 22, and the first single-flow diode unit 21 can have only one single flow direction. The pole body D 1 , but may also have two or more single-flow diodes connected in series or in parallel, and the second single-flow diode unit 22 may have only a single-flow diode D 2 , but It is also possible to have two or more single-flow diodes and connect them in series or in parallel.

該第一單流向二極體單元21的負極端可耦接於該第一電容C S的一端及該第一電感L S1的另一端,該第二單流向二極體單元22的負極端可耦接於該第一電容C S的另一端及該第二電感L S2的另一端。 The negative end of the first single-channel diode unit 21 can be coupled to one end of the first capacitor C S and the other end of the first inductor L S1 , and the second single-flow to the negative end of the diode unit 22 can be The other end of the first capacitor C S and the other end of the second inductor L S2 are coupled.

該第一單流向二極體單元21的正極端及該第二單流向二極體單元22的正極端可耦接於一第一節點Node1,該第一開關Q 1的一端及該第二開關Q 2的一端可耦接於一第二節點Node2,該第一節點Node1可耦接於該第二節點Node2。 The first terminal of the first switch Q 1 and the second switch of the second switch unit 21 can be coupled to a first node Node1. Q 2 may be an end coupled to a second node Node2, the first node Node1 may be coupled to the second node Node2.

該第一隔離式電壓轉換模組30的輸入端耦接於該第一開關Q 1,該第二隔離式電壓轉換模組40的輸入端耦接於該第二開關Q 2,該第一隔離式電壓轉換模組30可為使用一隔離式線圈T r1的返馳式(flyback)轉換器,且於其二次側可具有二極體D o1及電容C o1,該電容C o1具有一電壓差V o1,該第二隔離式電壓轉換模組40亦可為使用一隔離式線圈T r2的返馳式(flyback)轉換器,且於其二次側可具有二極體D o2及電容C o2,該電容C o2具有一電壓差V o2An input end of the first isolated voltage conversion module 30 is coupled to the first switch Q 1 , and an input end of the second isolated voltage conversion module 40 is coupled to the second switch Q 2 , the first isolation voltage conversion module 30 may be isolated using a T r1 coil flyback (flyback) converter, and the secondary side thereof may have a diode and a capacitor C o1 D o1, which has a voltage capacitor C o1 difference V o1, the second isolated voltage converter module 40 may also be isolated using a coil flyback (flyback) converter T r2, and the secondary side thereof may have a diode and a capacitor C D o2 O2 , the capacitor C o2 has a voltage difference V o2 .

外部之一負載R可耦接於該第一隔離式電壓轉換模組30的輸出端及該第二隔離式電壓轉換模組40的輸出端,該負載R具有一電壓差V oAn external load R is coupled to the output of the first isolated voltage conversion module 30 and the output of the second isolated voltage conversion module 40. The load R has a voltage difference V o .

此外,本發明單相無橋隔離式功因調整電路可更包含一第一突波吸收模組50及一第二突波吸收模組60,該第一突波吸收模組50耦接於該第一開關Q 1及該第一隔離式電壓轉換模組30,以降低或吸收該第一開關Q 1的突波,該第二突波吸收模組60耦接於該第二開關Q 2及該第二隔離式電壓轉換模組40,以降低或吸收該第二開關Q 2的突波。 In addition, the single-phase bridgeless isolation power adjustment circuit of the present invention may further include a first surge absorbing module 50 and a second surge absorbing module 60. The first surge absorbing module 50 is coupled to the The first switch Q 1 and the first isolated voltage conversion module 30 are configured to reduce or absorb the glitch of the first switch Q 1 , and the second spur absorption module 60 is coupled to the second switch Q 2 and The second isolated voltage conversion module 40 is configured to reduce or absorb the glitch of the second switch Q 2 .

於圖5A中,該第一突波吸收模組50係以一個電容、一個電阻及一個反接的二極體所組成,但此僅為本發明之一實施例而已,並不以此為限。該第二突波吸收模組60亦以一個電容、一個電阻及一個反接的二極體所組成,但此亦僅為本發明之一實施例而已,並不以此為限。In FIG. 5A, the first surge absorbing module 50 is composed of a capacitor, a resistor and a reversed diode, but this is only an embodiment of the present invention, and is not limited thereto. . The second snubber absorbing module 60 is also composed of a capacitor, a resistor, and a reversed diode. However, this is only an embodiment of the present invention, and is not limited thereto.

再者,為降低功率元件電流降低導通損,同時免除二極體之回復電流損失,本發明單相無橋隔離式功因調整電路可操作於邊界導通模式(critical conduction mode)。Furthermore, in order to reduce the conduction loss of the power component current and to eliminate the recovery current loss of the diode, the single-phase bridgeless isolation power adjustment circuit of the present invention can operate in a critical conduction mode.

此外,本發明單相無橋隔離式功因調整電路可包含一第一控制模組70及一第二控制模組80,該第一控制模組70可耦接於該第一開關Q 1的閘極端,以控制該第一開關Q 1之啟閉,該第二控制模組80可耦接於該第二開關Q 2的閘極端,以控制該第二開關Q 2之啟閉。 Further, the present invention is a single-phase bridge isolated power factor adjusting circuit may include a first control module 70 and a second control module 80, the first control module 70 may be coupled to the first switch Q 1 ' gate terminal to control the opening and closing of the first switch Q 1, the second control module 80 may be coupled to the gate terminal of the second switch Q 2 to control the second switch Q 2 of the hoist.

如圖5B所示,該第一控制模組70包括一第一電壓控制單元71、一第一零電流偵測單元72及一第一比較單元73,該第一控制模組70耦接於該第一隔離式電壓轉換模組30之輸出端以取得一第一輸出電壓回授訊號,該第一電壓控制單元71調整該第一輸出電壓回授訊號以輸出一第一開關電流控制信號,該第一零電流偵測單元72耦接於該第一隔離式電壓轉換模組30以輸出一第一零電流偵測訊號,該第一比較單元73比較該第一開關電流控制信號及該第一開關Q 1之一端的電壓,並根據比較結果及該第一零電流偵測訊號輸出一第一控制訊號,該第一控制訊號用於控制該第一開關Q 1之啟閉。 As shown in FIG. 5B, the first control module 70 includes a first voltage control unit 71, a first zero current detecting unit 72, and a first comparing unit 73. The first control module 70 is coupled to the first control module 70. The output end of the first isolated voltage conversion module 30 is configured to obtain a first output voltage feedback signal, and the first voltage control unit 71 adjusts the first output voltage feedback signal to output a first switch current control signal. The first zero current detecting unit 72 is coupled to the first isolated voltage converting module 30 to output a first zero current detecting signal, and the first comparing unit 73 compares the first switch current control signal with the first one end of the switch Q 1 of voltage, and outputs a first control signal according to the comparison result and the first zero-current detection signal, the first control signal for controlling opening and closing of the first switch Q 1.

該第二控制模組80包括一第二電壓控制單元81、一第二零電流偵測單元82及一第二比較單元83,該第二控制模組80耦接於該第二隔離式電壓轉換模組40之輸出端以取得一第二輸出電壓回授訊號,該第二電壓控制單元81調整該第二輸出電壓回授訊號以輸出一第二開關電流控制信號,該第二零電流偵測單元82耦接於該第二隔離式電壓轉換模組40以輸出一第二零電流偵測訊號,該第二比較單元83比較該第二開關電流控制信號及該第二開關Q 2之一端的電壓,並根據比較結果及該第二零電流偵測訊號輸出一第二控制訊號,該第二控制訊號用於控制該第二開關Q 2之啟閉。 The second control module 80 includes a second voltage control unit 81, a second zero current detecting unit 82, and a second comparing unit 83. The second control module 80 is coupled to the second isolated voltage conversion. The output end of the module 40 is configured to obtain a second output voltage feedback signal, and the second voltage control unit 81 adjusts the second output voltage feedback signal to output a second switch current control signal, the second zero current detection The unit 82 is coupled to the second isolated voltage conversion module 40 to output a second zero current detection signal, and the second comparison unit 83 compares the second switch current control signal with one of the second switch Q 2 voltage, and outputting a second control signal according to the comparison result and the second zero-current detection signal, the second control signal for controlling the second switch Q 2 of the hoist.

由於該第二控制模組80中的各元件大致與該第一控制模組70中的各元件對應,所以該第二控制模組80中的各元件可參照圖5B後而得知,於此不再贅述。Since each component in the second control module 80 substantially corresponds to each component in the first control module 70, each component in the second control module 80 can be referred to FIG. 5B. No longer.

於上述之第一控制模組70或第二控制模組80中,輸出電壓回授信號V ofb藉由電壓控制器調整並乘上整流之交流電源電壓信號ABS(V s)後得到一開關電流之控制信號V con,該開關電流之控制信號V con與感測之開關電流V cs1比較後重置RS正反器使開關截止,二次側之二極體D o1開始將變壓器之儲能釋放給負載R,此時零電流偵測(zero current detection, ZCD)單元使用轉換器之輔助線圈V aux電壓與一比較器偵測二次側二極體電流I Do1下降至零的時間,並利用此ZCD信號設定RS正反器使開關導通,在正半周期間控制電路之工作波形如圖6所示。 In the first control module 70 or the second control module 80, the output voltage feedback signal Vofb is adjusted by the voltage controller and multiplied by the rectified AC power supply voltage signal ABS(V s ) to obtain a switching current. V con the control signal, controls the switching current of the sensing signal V con V cs1 of switch current comparator reset RS flip-flop after the switch is turned off, diode D o1 of the secondary side of the transformer begin to release stored energy For the load R, the zero current detection (ZCD) unit uses the auxiliary coil V aux voltage of the converter and a comparator to detect the time when the secondary side diode current I Do1 drops to zero, and utilizes The ZCD signal sets the RS flip-flop to turn the switch on. The operating waveform of the control circuit during the positive half cycle is shown in FIG. 6.

該交流電源V S所輸入之電壓的波形可分成正半周及負半周,正半周的工作模式如圖7A及圖7B所示,負半周的工作模式如圖7C及圖7D所示,其中,圖7A及圖7C為儲能模式,圖7B及圖7D為釋能模式。 The waveform of the voltage input by the AC power source V S can be divided into a positive half cycle and a negative half cycle, and the working mode of the positive half cycle is as shown in FIG. 7A and FIG. 7B , and the negative half cycle working mode is as shown in FIG. 7C and FIG. 7D . 7A and 7C are energy storage modes, and FIGS. 7B and 7D are energy release modes.

於圖7A中,該第一開關Q 1導通及該第一隔離式電壓轉換模組30開啟,該第二開關Q 2不導通及該第二隔離式電壓轉換模組40關閉,此時該單相無橋隔離式功因調整電路定義為第一導通狀態,電流依序流經該第一電感L S1、該第一隔離式電壓轉換模組30、該第一開關Q 1、該第二單流向二極體單元22及該第二電感L S2以形成一導通路徑。 In FIG. 7A, the first switch Q 1 turns on and the first isolated voltage converter module 30 is turned on, the second switch Q 2 and the second nonconductive isolated voltage converter module 40 is closed, at which point the single The phase-free bridge-free power factor adjustment circuit is defined as a first conduction state, and the current flows through the first inductor L S1 , the first isolated voltage conversion module 30 , the first switch Q 1 , and the second single The diode unit 22 and the second inductor L S2 are formed to form a conduction path.

於圖7B中,該第一開關Q 1及該第二開關Q 2皆不導通,此時,該第一電感L S1、該第一電容C S及該第二電感L S2形成一導通路徑,該第一隔離式電壓轉換模組30內部形成一導通路徑。 In FIG. 7B, the first switch Q 1 and the second switch Q 2 are not turned on. At this time, the first inductor L S1 , the first capacitor C S and the second inductor L S2 form a conduction path. A conductive path is formed inside the first isolated voltage conversion module 30.

於圖7C中,該第二開關Q 2導通及該第二隔離式電壓轉換模組40開啟,該第一開關Q 1不導通及該第一隔離式電壓轉換模組30關閉,此時該單相無橋隔離式功因調整電路定義為第二導通狀態,電流依序流經該第二電感L S2、該第二隔離式電壓轉換模組40、該第二開關Q 2、該第一單流向二極體單元21及該第一電感L S1以形成一導通路徑。 In FIG. 7C, the second switch Q 2 is turned on and the second isolated voltage conversion module 40 is turned on, the first switch Q 1 is not turned on, and the first isolated voltage conversion module 30 is turned off. The phase-free bridge-free power factor adjustment circuit is defined as a second conductive state, and the current flows through the second inductor L S2 , the second isolated voltage conversion module 40 , the second switch Q 2 , and the first single The diode unit 21 and the first inductor L S1 are formed to form a conduction path.

於圖7D中,該第一開關Q 1及該第二開關Q 2皆不導通,此時,該第二電感L S2、該第一電容C S及該第一電感L S1形成一導通路徑,該第二隔離式電壓轉換模組40內部形成一導通路徑。 In FIG. 7D, the first switch Q 1 and the second switch Q 2 are not turned on. At this time, the second inductor L S2 , the first capacitor C S and the first inductor L S1 form a conduction path. A conductive path is formed inside the second isolated voltage conversion module 40.

據此,於儲能模式中,本發明單相無橋隔離式功因調整電路可因應於該交流電源V S所輸入之電壓的波形為正半周或負半周而具有不同的工作方式,其中,該第一單流向二極體單元21及該第二單流向二極體單元22可交替導通,使該低頻切換二極體模組20切換於第一導通狀態及第二導通狀態,且該低頻切換二極體模組20較佳為以低頻方式切換於第一導通狀態及第二導通狀態。 According to the present invention, in the energy storage mode, the single-phase bridgeless isolated power factor adjusting circuit of the present invention can have different working modes according to the waveform of the voltage input by the alternating current power source V S being a positive half cycle or a negative half cycle. The first single-flow diode unit 21 and the second single-flow diode unit 22 are alternately turned on, and the low-frequency switching diode module 20 is switched between the first conductive state and the second conductive state, and the low frequency Preferably, the switching diode module 20 is switched to the first conducting state and the second conducting state in a low frequency manner.

此外,於釋能模式中,本發明單相無橋隔離式功因調整電路亦可因應於該交流電源V S所輸入之電壓的波形為正半周或負半周而具有不同的工作方式。 In addition, in the release mode, the single-phase bridgeless isolation power adjustment circuit of the present invention may have different working modes depending on whether the waveform of the voltage input by the AC power source V S is a positive half cycle or a negative half cycle.

再者,於圖7A中,該第一開關Q 1導通,該隔離式線圈T r1自感儲能,該第一開關之電流I Q1線性上升如圖7之T on期間所示,於圖7B中,該第一開關Q 1不導通(或稱為截止),隔離式線圈T r1之自感儲能將釋放給負載,二極體電流I Do1線性下降如圖7之T off期間所示藉由Ls 1-Cs-Ls 2形成之低通濾波器,可以使交流電源V S之輸入電流為低失真之正弦波,從而達到功因修正之目的。 Note that, in FIG. 7A, the first switch Q 1 turns on, the isolated T r1 inductance energy storage coil, the first switching current I Q1 of linear increase of FIG. 7 during T on shown in Fig. 7B illustrated by period, the first switch Q 1 is not turned on (or off), isolated T r1 of the coil inductance to release stored energy to the load, diode current decreases linearly T 7 I Do1 off of FIG. The low-pass filter formed by Ls 1 -Cs-Ls 2 can make the input current of the AC power supply V S a low-distortion sine wave, thereby achieving the purpose of power correction.

於本實施例中,由於負半周的工作原理與正半周的工作原理大致相同,所以負半周的工作波形可參照圖8後而得知,於此不再贅述。In this embodiment, since the working principle of the negative half cycle is substantially the same as the working principle of the positive half cycle, the working waveform of the negative half cycle can be known from FIG. 8 and will not be described again.

如圖9所示,以下,經由PSIM模擬電路來驗證本發明單相無橋隔離式功因調整電路,其中模擬之輸入電流為220V rms,模擬之輸出電壓為400V dc,模擬之額定負載為200W,模擬結果如圖10及圖11所示,圖10所示為在正半周時開關電流I Q1、二極體電流I Do1及零電流偵測信號ZCD波形,其顯示其確實可以達到零電流偵測動作使轉換器操作於邊界導通模式。圖11所示為模擬電路各部份之波形,其顯示正負半周確實二轉換器交互導通,輸入電壓及電流為同相,輸入電流為低失真,輸入功率因數接近一,輸出電壓亦能被調整在穩定之400V,這些均驗證所提無橋隔離式轉換器電路及其控制電路之有效性。 As shown in FIG. 9, below, the single-phase bridgeless isolated power factor adjustment circuit of the present invention is verified via a PSIM analog circuit, wherein the analog input current is 220V rms , the analog output voltage is 400V dc , and the simulated rated load is 200W. The simulation results are shown in Figure 10 and Figure 11. Figure 10 shows the switching current I Q1 , the diode current I Do1 and the zero current detection signal ZCD waveform during the positive half cycle, which shows that it can indeed achieve zero current detection. The action causes the converter to operate in the boundary conduction mode. Figure 11 shows the waveforms of the various parts of the analog circuit. It shows that the positive and negative half cycles do alternately conduct the two converters. The input voltage and current are in phase, the input current is low distortion, the input power factor is close to one, and the output voltage can be adjusted. A stable 400V, which verifies the effectiveness of the proposed bridgeless isolated converter circuit and its control circuit.

亦即,本發明單相無橋隔離式功因調整電路可以運用於切換式電源供應器、交流充電器等以提高其效率及降低電路體積及降低成本,亦可以當成高壓輸出之單級電源供應電路以降低成本及提升效率。That is, the single-phase bridgeless isolated power factor adjusting circuit of the present invention can be applied to a switching power supply, an AC charger, etc. to improve its efficiency, reduce circuit volume and reduce cost, and can also be used as a single-stage power supply for high-voltage output. Circuits to reduce costs and increase efficiency.

綜上所述,藉由以上電路配置,本發明單相無橋隔離式功因調整電路可以達到不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In summary, with the above circuit configuration, the single-phase bridgeless isolated power factor adjustment circuit of the present invention can achieve advantages such as difficulty in failure, simple circuit, cost saving, small size, and high conversion efficiency.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。The invention has been described above in terms of the preferred embodiments, and it should be understood by those skilled in the art that the present invention is not intended to limit the scope of the invention. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application.

10‧‧‧EMI濾波器模組10‧‧‧EMI filter module

20‧‧‧低頻切換二極體模組20‧‧‧Low frequency switching diode module

21‧‧‧第一單流向二極體單元21‧‧‧First single flow diode unit

22‧‧‧第二單流向二極體單元22‧‧‧Second single flow diode unit

30‧‧‧第一隔離式電壓轉換模組30‧‧‧The first isolated voltage conversion module

40‧‧‧第二隔離式電壓轉換模組40‧‧‧Second isolated voltage conversion module

50‧‧‧第一突波吸收模組50‧‧‧First surge absorber module

60‧‧‧第二突波吸收模組60‧‧‧second surge absorber module

70‧‧‧第一控制模組70‧‧‧First Control Module

71‧‧‧第一電壓控制單元71‧‧‧First voltage control unit

72‧‧‧第一零電流偵測單元72‧‧‧First zero current detection unit

73‧‧‧第一比較單元73‧‧‧ first comparison unit

80‧‧‧第二控制模組80‧‧‧Second control module

1000‧‧‧切換式電源供應器1000‧‧‧Switching power supply

1100‧‧‧PFC整流器1100‧‧‧PFC rectifier

1200‧‧‧直流轉直流轉換器1200‧‧‧DC to DC converter

2000‧‧‧切換式電源供應器2000‧‧‧Switching Power Supply

2100‧‧‧PFC 升壓式AC-DC整流器2100‧‧‧PFC boost AC-DC rectifier

2200‧‧‧全橋式相移DC-DC轉換器2200‧‧‧Full-bridge phase-shift DC-DC converter

3000‧‧‧切換式電源供應器3000‧‧‧Switching power supply

3100‧‧‧升壓式AC-DC整流器3100‧‧‧Boost AC-DC rectifier

3200‧‧‧LLC 諧振式DC-DC轉換器3200‧‧‧LLC Resonant DC-DC Converter

Co1‧‧‧電容C o1 ‧‧‧ capacitor

Co2‧‧‧電容C o2 ‧‧‧ capacitor

CS‧‧‧第一電容C S ‧‧‧first capacitor

D1‧‧‧單流向二極體D 1 ‧‧‧Single-flow diode

D2‧‧‧單流向二極體D 2 ‧‧‧Single-flow diode

Do1‧‧‧二極體D o1 ‧‧‧ diode

Do2‧‧‧二極體D o2 ‧‧‧ diode

IDo1‧‧‧二極體電流I Do1 ‧‧‧ diode current

LS1‧‧‧第一電感L S1 ‧‧‧first inductance

LS2‧‧‧第二電感L S2 ‧‧‧second inductance

Node1‧‧‧第一節點Node1‧‧‧ first node

Node2‧‧‧第二節點Node2‧‧‧second node

Q1‧‧‧第一開關Q 1 ‧‧‧First switch

Q2‧‧‧第二開關Q 2 ‧‧‧Second switch

Tr1‧‧‧隔離式線圈T r1 ‧‧‧Isolated coil

Tr2‧‧‧隔離式線圈T r2 ‧‧‧Isolated coil

Vaux‧‧‧輔助線圈V aux ‧‧‧auxiliary coil

Vcon‧‧‧控制信號V con ‧‧‧ control signal

Vcs1‧‧‧開關電流V cs1 ‧‧‧Switch current

Vo‧‧‧電壓差V o ‧‧‧voltage difference

Vo1‧‧‧電壓差V o1 ‧‧‧voltage difference

Vo2‧‧‧電壓差V o2 ‧‧‧voltage difference

Vofb‧‧‧輸出電壓回授信號V ofb ‧‧‧Output voltage feedback signal

[圖1]係習知切換式電源供應器之一實施例的電路圖。 [圖2]係習知切換式電源供應器之另一實施例的電路圖。 [圖3]係習知切換式電源供應器之再一實施例的電路圖。 [圖4]係本發明單相隔離式功因調整電路之一實施例的示意圖。 [圖5A]係本發明單相隔離式功因調整電路之另一實施例的示意圖。 [圖5B]係本發明單相隔離式功因調整電路之控制模組之一實施例的示意圖。 [圖6]係本發明單相無橋隔離式功因調整電路之一實施例的工作波形圖。 [圖7A]係本發明單相無橋隔離式功因調整電路在正半周期間為儲能模式的示意圖。 [圖7B]係本發明單相無橋隔離式功因調整電路在正半周期間為釋能模式的示意圖。 [圖7C]係本發明單相無橋隔離式功因調整電路在負半周期間為儲能模式的示意圖。 [圖7D]係本發明單相無橋隔離式功因調整電路在負半周期間為釋能模式的示意圖。 [圖8]係本發明單相隔離式功因調整電路之控制模組在正半周期間的工作波形。 [圖9]係本發明單相無橋隔離式功因調整電路之模擬圖。 [圖10A至圖10C]係圖9之模擬結果。 [圖11A至圖11D]係圖9之模擬結果。1 is a circuit diagram of an embodiment of a conventional switched power supply. FIG. 2 is a circuit diagram of another embodiment of a conventional switched power supply. FIG. 3 is a circuit diagram of still another embodiment of a conventional switched power supply. Fig. 4 is a schematic view showing an embodiment of the single-phase isolated power factor adjusting circuit of the present invention. Fig. 5A is a schematic view showing another embodiment of the single-phase isolated power factor adjusting circuit of the present invention. FIG. 5B is a schematic diagram of an embodiment of a control module of the single-phase isolated power factor adjustment circuit of the present invention. FIG. Fig. 6 is an operation waveform diagram of an embodiment of a single-phase bridgeless isolated power factor adjusting circuit of the present invention. 7A is a schematic diagram of the single-phase bridgeless isolated power factor adjustment circuit of the present invention in an energy storage mode during a positive half cycle. 7B is a schematic diagram of the single-phase bridgeless isolated power factor adjustment circuit of the present invention in an energy release mode during a positive half cycle. 7C is a schematic diagram of the single-phase bridgeless isolated power factor adjustment circuit of the present invention in an energy storage mode during a negative half cycle. 7D is a schematic diagram of the single-phase bridgeless isolated power factor adjustment circuit of the present invention in an energy release mode during a negative half cycle. 8 is a working waveform of a control module of the single-phase isolated power factor adjusting circuit of the present invention during a positive half cycle. [Fig. 9] is a simulation diagram of a single-phase bridgeless isolated power factor adjusting circuit of the present invention. 10A to 10C are simulation results of Fig. 9. [Fig. 11A to Fig. 11D] is a simulation result of Fig. 9.

10‧‧‧EMI濾波器模組 10‧‧‧EMI filter module

20‧‧‧低頻切換二極體模組 20‧‧‧Low frequency switching diode module

30‧‧‧第一隔離式電壓轉換模組 30‧‧‧The first isolated voltage conversion module

40‧‧‧第二隔離式電壓轉換模組 40‧‧‧Second isolated voltage conversion module

Q1‧‧‧第一開關 Q 1 ‧‧‧First switch

Q2‧‧‧第二開關 Q 2 ‧‧‧Second switch

R‧‧‧負載 R‧‧‧ load

VS‧‧‧交流電源 V S ‧‧‧AC power supply

Claims (9)

一種單相無橋隔離式功因調整電路,包含:一EMI濾波器模組,耦接於外部之一交流電源;一低頻切換二極體模組,耦接於該EMI濾波器模組;一第一開關,耦接於該低頻切換二極體模組;一第二開關,耦接於該低頻切換二極體模組;一第一隔離式電壓轉換模組,耦接於該第一開關;以及一第二隔離式電壓轉換模組,耦接於該第二開關,其中,當該低頻切換二極體模組為第一導通狀態時,該第一開關導通及該第一隔離式電壓轉換模組開啟,當該低頻切換二極體模組為第二導通狀態時,該第二開關導通及該第二隔離式電壓轉換模組開啟,該低頻切換二極體模組包括一第一單流向二極體單元及一第二單流向二極體單元,當該第二單流向二極體單元導通且該第一單流向二極體單元關閉時,定義為第一導通狀態,當該第一單流向二極體單元導通且該第二單流向二極體單元關閉時,定義為第二導通狀態。 A single-phase bridgeless isolated power factor adjustment circuit includes: an EMI filter module coupled to an external AC power source; and a low frequency switching diode module coupled to the EMI filter module; The first switch is coupled to the low frequency switching diode module; a second switch is coupled to the low frequency switching diode module; and a first isolated voltage conversion module coupled to the first switch And a second isolated voltage conversion module coupled to the second switch, wherein when the low frequency switching diode module is in a first conducting state, the first switch is turned on and the first isolated voltage is The conversion module is turned on. When the low frequency switching diode module is in the second conduction state, the second switch is turned on and the second isolated voltage conversion module is turned on, and the low frequency switching diode module includes a first a single-flow diode unit and a second single-flow diode unit are defined as a first conduction state when the second single-flow diode is turned on and the first single-flow diode is turned off. The first single flow is turned on to the diode unit and the second single flow direction When the electrode unit is closed, it is defined as a second conductive state. 如請求項1所述之單相無橋隔離式功因調整電路,其中,該第一單流向二極體單元及該第二單流向二極體單元係交替導通,使該低頻切換二極體模組切換於第一導通狀態及第二導通狀態。 The single-phase bridgeless isolated power factor adjustment circuit according to claim 1, wherein the first single-flow diode unit and the second single-flow diode unit are alternately turned on, so that the low-frequency switching diode The module is switched between the first conductive state and the second conductive state. 如請求項1所述之單相無橋隔離式功因調整電路,其中該EMI濾波器模組包括: 一第一電感,該第一電感之一端耦接於該交流電源的一端;一第二電感,該第二電感之一端耦接於該交流電源的另一端;及一第一電容,該第一電容的兩端分別耦接於該第一電感的另一端及該第二電感的另一端。 The single-phase bridgeless isolated power factor adjustment circuit of claim 1, wherein the EMI filter module comprises: a first inductor, one end of the first inductor is coupled to one end of the AC power source; a second inductor, one end of the second inductor is coupled to the other end of the AC power source; and a first capacitor, the first The two ends of the capacitor are respectively coupled to the other end of the first inductor and the other end of the second inductor. 如請求項3所述之單相無橋隔離式功因調整電路,其中該低頻切換二極體模組包括一第一單流向二極體單元及一第二單流向二極體單元,該第一單流向二極體單元的負極端耦接於該第一電容的一端及該第一電感的另一端,該第二單流向二極體單元的負極端耦接於該第一電容的另一端及該第二電感的另一端。 The single-phase bridgeless isolated power factor adjusting circuit of claim 3, wherein the low frequency switching diode module comprises a first single-flow diode unit and a second single-flow diode unit, the first a negative terminal of the single current diode is coupled to one end of the first capacitor and the other end of the first inductor, and the negative terminal of the second single-flow diode unit is coupled to the other end of the first capacitor And the other end of the second inductor. 如請求項4所述之單相無橋隔離式功因調整電路,其中該第一單流向二極體單元的正極端及該第二單流向二極體單元的正極端耦接於一第一節點,該第一開關的一端及該第二開關的一端耦接於一第二節點,該第一節點耦接於該第二節點。 The single-phase bridgeless isolated power factor adjustment circuit of claim 4, wherein the first single-flow diode unit and the second-side diode unit are coupled to the first terminal The node, the one end of the first switch and the one end of the second switch are coupled to a second node, and the first node is coupled to the second node. 如請求項1所述之單相無橋隔離式功因調整電路,更包含:一第一突波吸收模組,耦接於該第一開關及該第一隔離式電壓轉換模組;及一第二突波吸收模組,耦接於該第二開關及該第二隔離式電壓轉換模組。 The single-phase bridgeless isolated power factor adjustment circuit of claim 1, further comprising: a first surge absorbing module coupled to the first switch and the first isolated voltage conversion module; The second surge absorbing module is coupled to the second switch and the second isolated voltage conversion module. 如請求項1所述之單相無橋隔離式功因調整電路,更包含: 一第一控制模組,耦接於該第一開關的閘極端,以控制該第一開關之啟閉;及一第二控制模組,耦接於該第二開關的閘極端,以控制該第二開關之啟閉。 The single-phase bridgeless isolated power factor adjustment circuit as claimed in claim 1 further includes: a first control module coupled to the gate terminal of the first switch to control the opening and closing of the first switch; and a second control module coupled to the gate terminal of the second switch to control the The second switch is opened and closed. 如請求項7所述之單相無橋隔離式功因調整電路,其中,該第一控制模組包括一第一電壓控制單元、一第一零電流偵測單元及一第一比較單元,該第一控制模組耦接於該第一隔離式電壓轉換模組之輸出端以取得一第一輸出電壓回授訊號,該第一電壓控制單元調整該第一輸出電壓回授訊號以輸出一第一開關電流控制信號,該第一零電流偵測單元耦接於該第一隔離式電壓轉換模組以輸出一第一零電流偵測訊號,該第一比較單元比較該第一開關電流控制信號及該第一開關之一端的電壓,並根據比較結果及該第一零電流偵測訊號輸出一第一控制訊號,該第一控制訊號用於控制該第一開關之啟閉。 The single-phase bridgeless isolated power factor adjustment circuit of claim 7, wherein the first control module includes a first voltage control unit, a first zero current detecting unit, and a first comparing unit, The first control module is coupled to the output end of the first isolated voltage conversion module to obtain a first output voltage feedback signal, and the first voltage control unit adjusts the first output voltage feedback signal to output a first a first current detecting unit is coupled to the first isolated voltage converting module to output a first zero current detecting signal, and the first comparing unit compares the first switching current control signal And a voltage of one end of the first switch, and outputting a first control signal according to the comparison result and the first zero current detection signal, wherein the first control signal is used to control the opening and closing of the first switch. 如請求項8所述之單相無橋隔離式功因調整電路,其中,該第二控制模組包括一第二電壓控制單元、一第二零電流偵測單元及一第二比較單元,該第二控制模組耦接於該第二隔離式電壓轉換模組之輸出端以取得一第二輸出電壓回授訊號,該第二電壓控制單元調整該第二輸出電壓回授訊號以輸出一第二開關電流控制信號,該第二零電流偵測單元耦接於該第二隔離式電壓轉換模組以輸出一第二零電流偵測訊號,該第二比較單元比較該第二開關電流控制信號及該第二開關之一端的電壓,並根據比較結果及該第 二零電流偵測訊號輸出一第二控制訊號,該第二控制訊號用於控制該第二開關之啟閉。 The single-phase bridgeless isolated power factor adjustment circuit of claim 8, wherein the second control module includes a second voltage control unit, a second zero current detecting unit, and a second comparing unit, The second control module is coupled to the output end of the second isolated voltage conversion module to obtain a second output voltage feedback signal, and the second voltage control unit adjusts the second output voltage feedback signal to output a first a second switch current control signal coupled to the second isolated voltage conversion module to output a second zero current detection signal, the second comparison unit comparing the second switch current control signal And a voltage at one end of the second switch, and according to the comparison result and the first The first current detecting signal outputs a second control signal, and the second control signal is used to control the opening and closing of the second switch.
TW105138255A 2016-11-22 2016-11-22 Single-phase bridgeless isolated power factor adjustment circuit TWI614978B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105138255A TWI614978B (en) 2016-11-22 2016-11-22 Single-phase bridgeless isolated power factor adjustment circuit
JP2017194098A JP6494718B2 (en) 2016-11-22 2017-10-04 Single-phase bridgeless insulated power factor adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105138255A TWI614978B (en) 2016-11-22 2016-11-22 Single-phase bridgeless isolated power factor adjustment circuit

Publications (2)

Publication Number Publication Date
TWI614978B true TWI614978B (en) 2018-02-11
TW201820758A TW201820758A (en) 2018-06-01

Family

ID=62014566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138255A TWI614978B (en) 2016-11-22 2016-11-22 Single-phase bridgeless isolated power factor adjustment circuit

Country Status (2)

Country Link
JP (1) JP6494718B2 (en)
TW (1) TWI614978B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696336B (en) * 2019-04-12 2020-06-11 周重甫 Flyback power switch architecture without bridge rectifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200516835A (en) * 2003-09-11 2005-05-16 Boc Group Plc Power factor correction circuit
TWM445300U (en) * 2012-09-05 2013-01-11 Chicony Power Tech Co Ltd Bridgeless power factor corrector with single choke
US8374000B2 (en) * 2010-11-05 2013-02-12 National Cheng Kung University Interleaved flyback converter device with leakage energy recycling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049696B2 (en) * 1992-01-14 2000-06-05 デンセイ・ラムダ株式会社 Switching power supply
JP2003199347A (en) * 2001-12-25 2003-07-11 Tohoku Ricoh Co Ltd Dc power supply apparatus
JP2004072866A (en) * 2002-08-05 2004-03-04 Sanken Electric Co Ltd Power supply device
KR101388775B1 (en) * 2012-12-20 2014-04-23 삼성전기주식회사 Power supply device
JP2016059182A (en) * 2014-09-10 2016-04-21 シャープ株式会社 Switching power supply unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200516835A (en) * 2003-09-11 2005-05-16 Boc Group Plc Power factor correction circuit
US8374000B2 (en) * 2010-11-05 2013-02-12 National Cheng Kung University Interleaved flyback converter device with leakage energy recycling
TWM445300U (en) * 2012-09-05 2013-01-11 Chicony Power Tech Co Ltd Bridgeless power factor corrector with single choke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696336B (en) * 2019-04-12 2020-06-11 周重甫 Flyback power switch architecture without bridge rectifier

Also Published As

Publication number Publication date
TW201820758A (en) 2018-06-01
JP2018085915A (en) 2018-05-31
JP6494718B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US8531854B2 (en) Power factor correction converter and power factor correction conversion device
WO2019196782A1 (en) Switch power supply circuit used for three-phase input
CN108539984A (en) The PFWM control systems of switching power circuit
US11396241B2 (en) Power converter controlled capacitor circuits and methods
WO2014094289A1 (en) Single-pole switch power source
WO2020052617A1 (en) Bridgeless triple-rectifier boost power supply circuit
CN108183603B (en) A kind of single-stage is without bridge Sofe Switch resonance isolated form circuit of power factor correction
Sarowar et al. High efficiency single phase switched capacitor AC to DC step down converter
Choi et al. A novel bridgeless single-stage half-bridge AC/DC converter
CN104780692A (en) Single-stage non-bridge LED driving circuit integrated by double Boost and Flyback
Mok et al. A single-stage bridgeless power-factor-correction rectifier based on flyback topology
TWI614978B (en) Single-phase bridgeless isolated power factor adjustment circuit
Huang et al. Analysis and design of a single-stage buck-type AC-DC adaptor
Choi et al. Single-stage bridgeless three-level AC/DC converter with current doubler rectifier
US9997993B1 (en) Single-phase bridgeless insulated power factor adjustment circuit
Chang et al. Analysis and design of a novel interleaved single-stage LLC resonant AC-DC converter
TW201806297A (en) Power factor correction circuit and corrector thereof
TWI443949B (en) Single - Phase AC - DC Power Converter with Electrical Isolation
Santosh et al. Simulation Of High-Efficiency AC/DC Converter For Power Factor Correction
TW201534033A (en) High power factor and high step-down AC-DC converter
Prabha et al. A novel topology of forward-flyback PFC converter with constant on-time control
Shreelakshmi et al. Novel high gain topologies for ac-dc conversion with power factor correction and dc link capacitor reduction
Wang et al. Control Strategies of Active Power Decoupling Integrated Active Clamp Flyback Converter
Liu et al. The Design of Switching Mode Power Supply Charger Based on PFC
Tonolo et al. An Interleaved Current-Fed PFC Isolated Converter with Voltage Follower Characteristics