TWI610812B - Electronic component surface protection material and preparation method thereof - Google Patents

Electronic component surface protection material and preparation method thereof Download PDF

Info

Publication number
TWI610812B
TWI610812B TW104123503A TW104123503A TWI610812B TW I610812 B TWI610812 B TW I610812B TW 104123503 A TW104123503 A TW 104123503A TW 104123503 A TW104123503 A TW 104123503A TW I610812 B TWI610812 B TW I610812B
Authority
TW
Taiwan
Prior art keywords
surface protection
electronic component
protection material
glass
temperature
Prior art date
Application number
TW104123503A
Other languages
Chinese (zh)
Other versions
TW201704033A (en
Inventor
Chong-Qi Qiu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW104123503A priority Critical patent/TWI610812B/en
Priority to CN201510962099.8A priority patent/CN106373682A/en
Publication of TW201704033A publication Critical patent/TW201704033A/en
Application granted granted Critical
Publication of TWI610812B publication Critical patent/TWI610812B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本發明提供之電子元件表面保護材料及其製備方法,其係利用於玻璃粉材料中添加有機載體、添加劑以及陶瓷粉,並且利用調控陶瓷粉相對於整體重量的相對比例製備出具有表面粗糙特性、與膠體附著性佳、並且不易翹曲變形的電子元件表面保護材料,使該電子元件表面保護材料可以穩定地藉由膠體與電路板或電子裝置相黏合,並且於波峰焊接過程中不會發生掉料情形,藉此使電子元件達到防潮、抗酸鹼的功效,亦可同時節省近20%的用料成本,為電子保護元件產業提供更高層次的封裝技術以及更高的利潤。The electronic component surface protection material provided by the present invention and a preparation method thereof are prepared by adding an organic carrier, an additive, and a ceramic powder to a glass powder material, and controlling a relative proportion of the ceramic powder with respect to the overall weight to prepare a material having surface roughness characteristics, Electronic component surface protection material with good adhesion to colloids and not easily warped and deformed, so that the electronic component surface protection material can be stably adhered to the circuit board or electronic device through the gel, and will not fall off during wave soldering Material conditions, so that electronic components to achieve moisture resistance, acid and alkali resistance, can also save nearly 20% of the cost of materials at the same time, for the electronic protection component industry to provide a higher level of packaging technology and higher profits.

Description

電子元件表面保護材料及其製備方法Electronic component surface protection material and preparation method thereof

本發明係為一種電子元件表面保護材料及其製備方法,尤指一種應用於電路設備上之電子元件,並且具有與膠體良好結合特性,以及不因施與高溫加工而翹曲變形特性的電子元件表面保護材料及其製備方法。The invention relates to an electronic component surface protection material and a preparation method thereof, particularly an electronic component which is applied to electronic components on circuit equipment and has a good combination with colloids, and does not warp and deform due to application of high temperature processing. Surface protection material and preparation method thereof.

現有技術之電子元件係採用波峰焊接(Wave Soldering)方式焊接固定於電路板或電子裝置上,其具體做法可先在電子元件所欲設置的電路板或電子裝置的對應位置上點上紅膠,藉此將電子元件固定於電路板或電子裝置上,再將電路板或電子裝置、電子元件以及紅膠一起進行波峰焊接步驟,藉此將電子元件焊接固定於電路板或電子裝置上。The electronic components of the prior art are soldered and fixed on a circuit board or an electronic device by using a wave soldering method. The specific method may be to first place red glue on the corresponding position of the circuit board or the electronic device where the electronic component is to be set. In this way, the electronic component is fixed on the circuit board or the electronic device, and then the wave soldering step is performed on the circuit board or the electronic device, the electronic component and the red glue, so as to solder and fix the electronic component on the circuit board or the electronic device.

但由於現有技術之電子元件120產品諸如:熱敏電阻器基於防潮、抗酸鹼的需求,其產品表面塗覆有玻璃膏以形成一玻璃層90,如圖5所示,藉以達到防潮、抗酸鹼的功效,其中現有技術之玻璃膏組成如下:玻璃粉65-70wt%、溶劑20-35wt%、黏結劑1-5wt%以及添加劑0-5wt%。但由於玻璃層90具有表面光滑的特性,使得玻璃層90與紅膠100的結合效果不佳,造成波峰焊接過程中玻璃層90時常從電路板110上掉落,發生掉料的情形,導致客訴。此外,由於玻璃與陶瓷的材料受熱膨脹係數不同,當陶瓷體的厚度薄到一定程度後,瓷片會產生翹曲而影響電子元件後續的加工工作,因此,現有市售的玻璃膏均無法同時克服上述玻璃層與紅膠的結合以及陶瓷體因加熱而翹曲變形的問題。However, since the prior art electronic component 120 products such as: thermistors are based on the requirements of moisture resistance and resistance to acid and alkali, the surface of their products is coated with glass paste to form a glass layer 90, as shown in FIG. The effect of acid and alkali, the glass paste composition of the prior art is as follows: glass powder 65-70 wt%, solvent 20-35 wt%, adhesive 1-5 wt%, and additives 0-5 wt%. However, because the glass layer 90 has a smooth surface, the combination effect of the glass layer 90 and the red glue 100 is not good. As a result, the glass layer 90 is often dropped from the circuit board 110 during wave soldering, and the material is cut off, which leads to the customer. V. In addition, due to the different thermal expansion coefficients of glass and ceramic materials, when the thickness of the ceramic body is thin to a certain extent, the ceramic sheet will warp and affect the subsequent processing of electronic components. Therefore, the existing commercially available glass pastes cannot be simultaneously The problems of the combination of the glass layer and the red glue and the warping and deformation of the ceramic body due to heating are overcome.

有鑑於現有技術的缺點及問題,現階段需要一種能夠有效解決掉料問題的電子元件表面保護材料,使電子元件表面保護材料可以與紅膠的結合能力增加,並且該電子元件表面保護材料具有特定的膨脹係數,其不會因為高溫加工而翹曲變形,影響電子元件後續的加工,同時降低製造電子元件表面保護材料的成本,改善現有技術使用之一般玻璃膏的缺點。In view of the shortcomings and problems of the prior art, at the present stage, an electronic component surface protection material capable of effectively solving the problem of blanking is needed, so that the binding ability of the electronic component surface protection material and the red glue can be increased, and the electronic component surface protection material has specific The expansion coefficient will not be warped and deformed due to high temperature processing, which will affect the subsequent processing of electronic components, at the same time reduce the cost of manufacturing surface protection materials for electronic components, and improve the disadvantages of general glass pastes used in the prior art.

為達到上述之發明目的,本發明所採用之技術手段為提供一種電子元件表面保護材料,其係包括:一玻璃粉、一有機載體、一添加劑以及一陶瓷粉。In order to achieve the above-mentioned object of the present invention, the technical means adopted in the present invention is to provide a surface protection material for electronic components, which comprises: a glass powder, an organic carrier, an additive, and a ceramic powder.

本發明之優點在於利用將玻璃粉、有機載體、添加劑以及陶瓷粉相混合以形成一新的電子元件表面保護材料,其利用陶瓷粉的添加增加電子元件表面保護材料的表面粗糙度以及其與膠體的附著力,並且使該電子元件表面保護材料具有特定的材料膨脹係數,不易因為高溫加工而翹曲變形,適用於多種電子元件的表面保護。The advantage of the present invention is that a glass powder, an organic carrier, an additive, and a ceramic powder are mixed to form a new electronic component surface protection material. The addition of ceramic powder increases the surface roughness of the surface protection material of the electronic component and its colloid with the colloid. The adhesive force of the electronic component surface protection material has a specific material expansion coefficient, which is not easy to warp and deform due to high temperature processing, and is suitable for the surface protection of various electronic components.

較佳的是,其中該玻璃粉係選自下列所構成之群組:二氧化矽(SiO2 )、氧化鋅(ZnO)、三氧化二硼(B2 O3 )、三氧化二鉍(Bi2 O3 )、氧化鉛(PbO)、三氧化二鋁(Al2 O3 )以及其等之組合;該陶瓷粉係為三氧化二鋁(Al2 O3 )、二氧化矽(SiO2)、氧化鎂(MgO)、二氧化鈦(TiO2)、氧化鋅(ZnO)以及其等之組合;該有機載體包括一溶劑與一黏結劑,該溶劑係選自下列所構成之群組:松油醇(Terpineol)、二甘醇單丁基醚乙酸酯(Diethylene glycol monobutyl ether acetate)、二甘醇二丁醚(Diethylene glycol dibutyl ether)、酯醇(Texanol)以及其等之組合;該黏結劑係為纖維素樹脂(Cellulose resin)、乙基纖維素(Ethyl cellulose)、壓克力樹脂(Acrylic resin)、聚乙稀醇縮丁醛樹脂(Polyvinyl butyral resin)、酚醛樹脂(Phenolic resin)以及其等之組合;該添加劑係選自下列所構成之群組:分散劑(Dispersant agent)、流變劑(Thixotropic agent)、黏度調整劑(Viscosity adjuster)、消泡劑(Antifoaming agent)以及其等之組合。此技術手段惟利用一種或者多種玻璃粉、陶瓷粉、有機載體以及添加劑原料調配形成一電子元件表面保護材料,並且藉由該些原料的原始材料特性以及交互作用所產生的化學結構特性使得電子元件表面保護材料具有防潮、抗酸鹼的功效。Preferably, the glass powder is selected from the group consisting of silicon dioxide (SiO 2 ), zinc oxide (ZnO), boron trioxide (B 2 O 3 ), and bismuth trioxide (Bi 2 O 3 ), lead oxide (PbO), aluminum oxide (Al 2 O 3 ), and combinations thereof; the ceramic powder is aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO2), Magnesium oxide (MgO), titanium dioxide (TiO2), zinc oxide (ZnO), and combinations thereof; the organic vehicle includes a solvent and a binder, and the solvent is selected from the group consisting of terpineol ), Diethylene glycol monobutyl ether acetate, Diethylene glycol dibutyl ether, Texanol, and combinations thereof; the binder is fiber Cellulose resin, Ethyl cellulose, Acrylic resin, Polyvinyl butyral resin, Phenolic resin, and combinations thereof The additive is selected from Groups: Dispersant agent, Thixotropic agent, Viscosity adjuster, Antifoaming agent and combinations thereof. This technical means only uses one or more kinds of glass powder, ceramic powder, organic carrier and additive materials to form an electronic component surface protection material, and makes the electronic component by the original material characteristics of these materials and the chemical structure characteristics generated by the interaction. The surface protection material has the effect of preventing moisture and acid and alkali.

本發明另提供一種製備前述電子元件表面保護材料的方法,其係包括以下步驟: 在一第一溫度下將選自由含有二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合所構成之群組的玻璃材料加熱融化並混合後,再加以冷卻粉碎,進而提供一玻璃粉;以及 在一第二溫度下將該玻璃粉與有機載體、添加劑以及陶瓷粉相混合,以提供一玻璃膏,進而以該玻璃膏形成一電子元件表面保護材料;其中該第二溫度係低於第一溫度。The present invention further provides a method for preparing the aforementioned surface protection material for electronic components, which comprises the following steps: at a first temperature, a material selected from the group consisting of silicon dioxide, zinc oxide, boron trioxide, bismuth trioxide, and lead oxide is selected. The glass materials of the group consisting of aluminum oxide, aluminum oxide, and the like are heated and melted and mixed, and then cooled and crushed to provide a glass powder; and the glass powder and an organic carrier at a second temperature, The additives and the ceramic powder are mixed to provide a glass paste, and then the glass paste is used to form an electronic component surface protection material; wherein the second temperature is lower than the first temperature.

本發明之優點在於簡單利用於粉碎的玻璃材料(粉)中進一步添加有機載體、添加劑以及陶瓷粉以形成一玻璃膏,並且利用陶瓷粉的添加增加電子元件表面保護材料的表面粗糙度以及其與膠體的附著力,使電子元件表面保護材料具有特定的材料膨脹係數,不易因為高溫加工而翹曲變形,適用於多種電子元件的表面保護。The advantage of the present invention is that it is simply used in the crushed glass material (powder) to further add organic carriers, additives and ceramic powder to form a glass paste, and the addition of ceramic powder increases the surface roughness of the surface protection material of electronic components and its The adhesion of the colloid makes the surface protection material of the electronic component have a specific material expansion coefficient, and it is not easy to warp and deform due to high temperature processing. It is suitable for the surface protection of various electronic components.

較佳的是,其中該陶瓷粉的平均粒徑為0.5-20微米,而該第二溫度係為環境溫度-10℃至40℃。此技術手段惟利用控制陶瓷粉的平均粒徑以及玻璃粉與有機載體、添加劑以及陶瓷粉相混合時的溫度,以達到最佳的混合功效,並且使得混合後形成的電子元件表面保護材料確實具有防潮、抗酸鹼的功能。Preferably, the average particle diameter of the ceramic powder is 0.5-20 microns, and the second temperature is an ambient temperature of -10 ° C to 40 ° C. This technical means only uses the average particle size of the ceramic powder and the temperature when the glass powder is mixed with the organic carrier, additives and ceramic powder to achieve the best mixing effect, and the electronic component surface protection material formed after mixing does have Moisture-proof, anti-acid-base function.

本發明又提供一種製備前述電子元件表面保護材料的方法,其係包括以下步驟: 在一第一溫度下將選自由含有二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合所構成之群組的玻璃材料加熱融化並混合後,再加以冷卻粉碎,進而提供一玻璃粉,再於一第二溫度下將該玻璃粉與有機載體以及添加劑相混合,以提供一玻璃母膏; 在第二溫度下將該陶瓷粉與有機載體以及添加劑相混合,以提供一陶瓷子膏,其中該第二溫度低於第一溫度;以及 混合上述玻璃母膏與陶瓷子膏,在第二溫度下將該玻璃母膏與該陶瓷子膏依任意比例混合,使玻璃母膏與陶瓷子膏均勻混合進而形成一具有表面粗糙度以及特定膨脹係數的電子元件表面保護材料。The present invention also provides a method for preparing the surface protection material of the electronic component, which comprises the following steps: at a first temperature, a material selected from the group consisting of silicon dioxide, zinc oxide, boron trioxide, bismuth trioxide, and lead oxide is selected. The glass materials of the group consisting of aluminum oxide, aluminum oxide, and the like are heated and melted and mixed, and then cooled and crushed to provide a glass powder, and the glass powder and an organic carrier at a second temperature and The additives are mixed to provide a glass mother paste; the ceramic powder is mixed with the organic vehicle and the additives at a second temperature to provide a ceramic sub paste, wherein the second temperature is lower than the first temperature; and the glass is mixed A mother paste and a ceramic paste, at a second temperature, the glass mother paste and the ceramic paste are mixed at any ratio, so that the glass mother paste and the ceramic paste are uniformly mixed to form an electron with a surface roughness and a specific expansion coefficient Component surface protection material.

本發明之優點在於簡單利用分別調製一玻璃母膏以及一陶瓷子膏,再依任意比例將其相混合,藉此調配出多種具有特定粗糙度以及特定膨脹係數的電子元件表面保護材料,讓使用者可以簡單藉由調整玻璃母膏以及陶瓷子膏的相對混合比例,改變電子元件表面保護材料的表面粗糙度以及特定膨脹係數,簡單製做出多種不同材料特性的電子元件表面保護材料。The invention has the advantages of simply preparing a glass mother paste and a ceramic sub paste separately, and then mixing them according to any ratio, thereby formulating a variety of surface protection materials for electronic components with specific roughness and specific expansion coefficients for use. The user can simply adjust the relative mixing ratio of the glass mother paste and the ceramic sub paste to change the surface roughness and specific expansion coefficient of the surface protection material of the electronic component, and simply make a variety of electronic component surface protection materials with different material characteristics.

較佳的是,其中該陶瓷粉的平均粒徑為0.5-20微米,而該第二溫度係為環境溫度-10℃至40℃。此技術手段惟利用控制陶瓷粉的平均粒徑以及玻璃粉與有機載體、添加劑以及陶瓷粉相混合時的溫度,以達到最佳的混合功效,並且使得混合形成的電子元件表面保護材料確實具有防潮、抗酸鹼的功能。Preferably, the average particle diameter of the ceramic powder is 0.5-20 microns, and the second temperature is an ambient temperature of -10 ° C to 40 ° C. This technical method only uses the average particle size of the ceramic powder and the temperature when the glass powder is mixed with the organic carrier, additives and ceramic powder to achieve the best mixing effect, and makes the surface protection material of the electronic component formed by the mixing truly moisture-proof. Anti-acid-base function.

以下請配合圖式及本發明之較佳實施例,進一步闡述本發明為達成預定發明目的所採取的技術手段。In the following, please refer to the drawings and the preferred embodiments of the present invention to further explain the technical means adopted by the present invention to achieve the intended invention purpose.

本發明之電子元件表面保護材料10與電路板20、電子元件30以及紅膠40的相對組合關係如圖1所示,其中所述電子元件30設置於電路板20下方,於電路板20相對於電子元件30設置的一側面上塗覆有紅膠40,並藉由該紅膠40將電子元件表面保護材料10黏附固定於電路板20下方,再藉由波峰焊接方式將電子元件30焊接固定於電路板20下方,藉此使得焊接於電路板20下方的電子元件30具有防潮、抗酸鹼的功效。The relative combination of the electronic component surface protection material 10 of the present invention with the circuit board 20, the electronic component 30, and the red glue 40 is shown in FIG. 1, wherein the electronic component 30 is disposed below the circuit board 20, and the circuit board 20 is opposite to A red glue 40 is coated on one side of the electronic component 30, and the electronic component surface protection material 10 is fixed under the circuit board 20 by the red glue 40, and then the electronic component 30 is fixed to the circuit by wave soldering. Under the board 20, the electronic component 30 soldered under the circuit board 20 has the effects of preventing moisture and acid and alkali.

其中本發明之電子元件表面保護材料10其係包括:一玻璃粉、一有機載體、一添加劑以及一陶瓷粉,其中該玻璃粉係選自下列所構成之群組:二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合;該陶瓷粉係選自下列所構成之群組:三氧化二鋁、二氧化矽、氧化鎂、二氧化鈦、氧化鋅以及其等之組合,其平均粒徑為0.5-20微米;該有機載體包括一溶劑與一黏結劑,該溶劑係選自下列所構成之群組:松油醇、二甘醇單丁基醚乙酸酯、二甘醇二丁醚、酯醇以及其等之組合;該黏結劑係選自下列所構成之群組:纖維素樹脂、乙基纖維素、壓克力樹脂、聚乙稀醇縮丁醛樹脂、酚醛樹脂以及其等之組合;而該添加劑係選自下列所構成之群組:分散劑、流變劑、黏度調整劑、消泡劑以及其等之組合。The electronic component surface protection material 10 of the present invention comprises: a glass powder, an organic carrier, an additive, and a ceramic powder, wherein the glass powder is selected from the group consisting of silicon dioxide, zinc oxide, Boron trioxide, bismuth trioxide, lead oxide, aluminum oxide, and combinations thereof; the ceramic powder is selected from the group consisting of aluminum oxide, silicon dioxide, magnesium oxide, titanium dioxide, Zinc oxide and combinations thereof have an average particle diameter of 0.5-20 microns; the organic vehicle includes a solvent and a binder, and the solvent is selected from the group consisting of terpineol and diethylene glycol monobutylene Ether ether acetate, diethylene glycol dibutyl ether, ester alcohol and combinations thereof; the binder is selected from the group consisting of cellulose resin, ethyl cellulose, acrylic resin, polyethylene A dilute butyral resin, a phenol resin, and a combination thereof; and the additive is selected from the group consisting of a dispersant, a rheological agent, a viscosity modifier, a defoamer, and combinations thereof.

經添加有陶瓷粉的電子元件表面保護材料10如圖2所示,其中該電子元件表面保護材料10的表面因為陶瓷粉的添加而變得粗糙,因此使得電子元件表面保護材料10與紅膠40相互結合的能力增加,藉此有效克服現有技術之玻璃膏所形成之玻璃層因表面光滑所造成的掉料問題。The electronic component surface protection material 10 to which ceramic powder is added is shown in FIG. 2, wherein the surface of the electronic component surface protection material 10 becomes rough due to the addition of ceramic powder, so that the electronic component surface protection material 10 and the red glue 40 are made. The ability to combine with each other is increased, thereby effectively overcoming the problem of blanking caused by the smooth surface of the glass layer formed by the prior art glass paste.

其中所述玻璃粉、有機載體以及添加劑可預先混合形成一玻璃母膏,其中該玻璃粉的含量佔整體玻璃母膏之重量的70%,該有機載體分別包括一溶劑以及一黏結劑,該溶劑的含量佔整體玻璃母膏之重量的25%,該黏結劑的含量佔整體玻璃母膏之重量的4%,而該添加劑的含量佔整體玻璃母膏之重量的1%。而所述陶瓷粉、有機載體以及添加劑亦可預先混合形成一陶瓷子膏,其中該陶瓷粉的含量佔整體陶瓷子膏之重量的70%,該有機載體分別包括一溶劑以及一黏結劑,該溶劑的含量佔整體陶瓷子膏之重量的25%,該黏結劑的含量佔整體陶瓷子膏之重量的4%,而該添加劑的含量佔整體陶瓷子膏之重量的1%。接著該玻璃母膏與該陶瓷子膏再進一步依特定比例相混合以形成本發明之電子元件表面保護材料。以下分別就不同比例之玻璃母膏與陶瓷子膏相混合所形成的三種電子元件表面保護材料依實施例1至3逐一說明:The glass powder, the organic vehicle, and the additives can be mixed in advance to form a glass mother paste. The content of the glass powder accounts for 70% of the weight of the whole glass mother paste. The organic vehicle includes a solvent and a binder, respectively. The content of the additive accounts for 25% by weight of the whole glass mother paste, the content of the binder accounts for 4% by weight of the whole glass mother paste, and the content of the additive accounts for 1% by weight of the whole glass mother paste. The ceramic powder, the organic carrier, and the additives may be mixed in advance to form a ceramic sub-paste, wherein the content of the ceramic powder accounts for 70% of the weight of the entire ceramic sub-paste. The organic carrier includes a solvent and a binder, respectively. The content of the solvent accounts for 25% of the weight of the entire ceramic paste, the content of the binder accounts for 4% of the weight of the entire ceramic paste, and the content of the additive accounts for 1% of the weight of the entire ceramic paste. Then, the glass mother paste and the ceramic sub paste are further mixed in a specific ratio to form the electronic component surface protection material of the present invention. The three types of surface protection materials for electronic components formed by mixing glass mother paste and ceramic sub paste in different proportions are described below one by one according to Examples 1 to 3:

實施例1Example 1

將上述調配完成的玻璃母膏與陶瓷子膏依重量比13:1的比例相混合配製,使得混合完成的電子元件表面保護材料包含有佔整體電子元件表面保護材料重量之65wt%的玻璃粉、佔整體電子元件表面保護材料重量之5wt%的陶瓷粉、佔整體電子元件表面保護材料重量之25wt%的溶劑、佔整體電子元件表面保護材料重量之4wt%的黏結劑以及佔整體電子元件表面保護材料重量之1wt%的添加劑。其中該玻璃粉係由二氧化矽、氧化鋅以及三氧化二硼混合形成;該陶瓷粉係為三氧化二鋁;該有機載體包括一溶劑與一黏結劑,該溶劑係由松油醇、二甘醇單丁基醚乙酸酯以及二甘醇二丁醚混合形成;該黏結劑係為纖維素樹脂;而該添加劑係由分散劑、流變劑、黏度調整劑以及消泡劑混合形成。The prepared glass mother paste and the ceramic sub paste are mixed in a proportion of 13: 1 by weight, so that the mixed electronic component surface protection material contains 65% by weight of glass powder, Ceramic powder accounts for 5% by weight of the overall electronic component surface protection material, solvent accounts for 25% by weight of the overall electronic component surface protection material, 4% by weight of the binder for the overall electronic component surface protection material, and overall surface protection for the electronic component 1% by weight of the additive. The glass powder is formed by mixing silicon dioxide, zinc oxide, and boron trioxide; the ceramic powder is aluminum oxide; the organic carrier includes a solvent and a binder, and the solvent is composed of terpineol, two Glycol monobutyl ether acetate and diethylene glycol dibutyl ether are mixed together; the binder is a cellulose resin; and the additive is a mixture of a dispersant, a rheological agent, a viscosity adjusting agent, and an antifoaming agent.

實施例2Example 2

將上述調配完成的玻璃母膏與陶瓷子膏依重量比4:1的比例相混合配製,使得混合完成的電子元件表面保護材料包含有佔整體電子元件表面保護材料重量之56wt%的玻璃粉、佔整體電子元件表面保護材料重量之14wt%的陶瓷粉、佔整體電子元件表面保護材料重量之25wt%的溶劑、佔整體電子元件表面保護材料重量之4wt%的黏結劑以及佔整體電子元件表面保護材料重量之1wt%的添加劑。其中該玻璃粉係由二氧化矽、氧化鋅以及三氧化二硼混合形成;該陶瓷粉係為三氧化二鋁;該有機載體包括一溶劑與一黏結劑,該溶劑係由松油醇、二甘醇單丁基醚乙酸酯以及二甘醇二丁醚混合形成;該黏結劑係為纖維素樹脂;而該添加劑係由分散劑、流變劑、黏度調整劑以及消泡劑混合形成。The prepared glass mother paste and the ceramic paste are mixed in a weight ratio of 4: 1, so that the mixed electronic component surface protection material contains 56% by weight of glass powder, Ceramic powder accounts for 14% by weight of the overall electronic component surface protection material, solvent accounts for 25% by weight of the overall electronic component surface protection material, 4% by weight of the binder for the overall electronic component surface protection material, and overall electronic component surface protection 1% by weight of the additive. The glass powder is formed by mixing silicon dioxide, zinc oxide, and boron trioxide; the ceramic powder is aluminum oxide; the organic carrier includes a solvent and a binder, and the solvent is composed of terpineol, two Glycol monobutyl ether acetate and diethylene glycol dibutyl ether are mixed together; the binder is a cellulose resin; and the additive is a mixture of a dispersant, a rheological agent, a viscosity adjusting agent, and an antifoaming agent.

實施例3Example 3

將上述調配完成的玻璃母膏與陶瓷子膏依重量比4:3的比例相混合配製,使得混合完成的電子元件表面保護材料包含有佔整體電子元件表面保護材料重量之40wt%的玻璃粉、佔整體電子元件表面保護材料重量之30wt%的陶瓷粉、佔整體電子元件表面保護材料重量之25wt%的溶劑、佔整體電子元件表面保護材料重量之4wt%的黏結劑以及佔整體電子元件表面保護材料重量之1wt%的添加劑。其中該玻璃粉係由二氧化矽、氧化鋅以及三氧化二硼混合形成;該陶瓷粉係為三氧化二鋁;該有機載體包括一溶劑與一黏結劑,該溶劑係由松油醇、二甘醇單丁基醚乙酸酯以及二甘醇二丁醚混合形成;該黏結劑係為纖維素樹脂;而該添加劑係由分散劑、流變劑、黏度調整劑以及消泡劑混合形成。The prepared glass mother paste and the ceramic sub paste are mixed and mixed according to a weight ratio of 4: 3, so that the mixed electronic component surface protection material contains 40% by weight of glass powder, Ceramic powder accounts for 30% by weight of the overall electronic component surface protection material, 25% by weight of the solvent for the overall electronic component surface protection material, 4% by weight of the binder for the overall electronic component surface protection material, and overall electronic component surface protection 1% by weight of the additive. The glass powder is formed by mixing silicon dioxide, zinc oxide, and boron trioxide; the ceramic powder is aluminum oxide; the organic carrier includes a solvent and a binder, and the solvent is composed of terpineol, two Glycol monobutyl ether acetate and diethylene glycol dibutyl ether are mixed together; the binder is a cellulose resin; and the additive is a mixture of a dispersant, a rheological agent, a viscosity adjusting agent, and an antifoaming agent.

以上實施例1至3所配製而成的電子元件表面保護材料其中各組成成份的相對重量比例整理如表1所示:The relative weight ratio of each component of the electronic component surface protection material prepared in the above Examples 1 to 3 is shown in Table 1:

表1 實施例1至3之電子元件表面保護材料各組成成份的相對重量比例<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 項目 </td><td> 實施例1 </td><td> 實施例2 </td><td> 實施例3 </td></tr><tr><td> 玻璃母膏與陶瓷子膏混合重量比例 </td><td> 13:1 </td><td> 4:1 </td><td> 4:3 </td></tr><tr><td> 玻璃粉所佔整體重量比例 </td><td> 65% </td><td> 56% </td><td> 40% </td></tr><tr><td> 陶瓷粉所佔整體重量比例 </td><td> 5% </td><td> 14% </td><td> 30% </td></tr><tr><td> 有機載體內的溶劑所佔整體重量比例 </td><td> 25% </td><td> 25% </td><td> 25% </td></tr><tr><td> 有機載體內的黏結劑所佔整體重量比例 </td><td> 4% </td><td> 4% </td><td> 4% </td></tr><tr><td> 添加劑所佔整體重量比例 </td><td> 1% </td><td> 1% </td><td> 1% </td></tr><tr><td> 合計 </td><td> 100% </td><td> 100% </td><td> 100% </td></tr></TBODY></TABLE>Table 1 的 Relative weight ratios of the components of the surface protection materials of electronic components of Examples 1 to 3 <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Items </ td> <td> Example 1 </ td> <td> Example 2 </ td> <td> Example 3 </ td> </ tr> <tr> <td> Glass mother paste and ceramics Mixing weight ratio of paste </ td> <td> 13: 1 </ td> <td> 4: 1 </ td> <td> 4: 3 </ td> </ tr> <tr> <td> glass powder Proportion of total weight </ td> <td> 65% </ td> <td> 56% </ td> <td> 40% </ td> </ tr> <tr> <td> Ceramic powder Overall weight ratio </ td> <td> 5% </ td> <td> 14% </ td> <td> 30% </ td> </ tr> <tr> <td> Solvent in organic vehicle Proportion in total weight </ td> <td> 25% </ td> <td> 25% </ td> <td> 25% </ td> </ tr> <tr> <td> Adhesion in organic carrier Weight ratio of the additive </ td> <td> 4% </ td> <td> 4% </ td> <td> 4% </ td> </ tr> <tr> <td> Overall weight ratio </ td> <td> 1% </ td> <td> 1% </ td> <td> 1% </ td> </ tr> <tr> <td> Total </ td> < td> 100% </ td> <td> 100% </ td> <td> 100% </ td> </ tr> </ TBODY> </ TABLE>

接著進行產品試樣製作,首先準備同一批次的負溫度係數熱敏電阻陶瓷片共4片,其尺寸同為長100mm、寬100mm、厚0.7mm,接著利用絲網印刷技術將習用玻璃膏以及實施例1至3配製而成的電子元件表面保護材料分別製作於每一塊熱敏電阻陶瓷片的上、下面,並且使習用玻璃膏與電子元件表面保護材料固化而成的玻璃層單層的濕膜厚度控制在25-30微米。接著將樣品經過130℃乾燥10分鐘後,再進行780℃的高溫玻璃燒結程序10分鐘,使玻璃層形成單層厚度為20-25微米的保護層,待冷卻後進行以下測試:Next, product samples are produced. First, a total of 4 negative temperature coefficient thermistor ceramic sheets of the same batch are prepared, with the same dimensions of 100mm in length, 100mm in width, and 0.7mm in thickness. Then, the conventional glass paste and The electronic component surface protection materials prepared in Examples 1 to 3 were fabricated on the top and bottom of each thermistor ceramic sheet, respectively, and the single layer of the glass layer obtained by curing the conventional glass paste and the electronic component surface protection material was wet. The film thickness is controlled at 25-30 microns. Then the sample was dried at 130 ° C for 10 minutes, and then subjected to a high-temperature glass sintering procedure at 780 ° C for 10 minutes, so that the glass layer formed a single-layer protective layer with a thickness of 20-25 microns. After cooling, the following tests were performed:

表面粗糙度測試:Surface roughness test:

表面粗糙度的測量方法為將被測物放置於粗糙度量測儀探針下後進行量測,其量測所得數值S代表一被測物50之粗糙表面的兩波峰間的距離,如圖3所示,其中量測結果如表2所示:The surface roughness measurement method is to measure the object under the probe of the roughness measuring instrument, and the measured value S represents the distance between two peaks of the rough surface of an object 50, as shown in the figure. 3, the measurement results are shown in Table 2:

表2 表面粗糙度測試結果<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 項目 </td><td> 粗糙度測試(S) S表示波峰間的距離 </td></tr><tr><td> No </td><td> 習用玻璃膏(µm) </td><td> 實施例1(µm) </td><td> 實施例2(µm) </td><td> 實施例3(µm) </td></tr><tr><td> 1 </td><td> 134 </td><td> 101 </td><td> 41 </td><td> 22 </td></tr><tr><td> 2 </td><td> 148 </td><td> 126 </td><td> 58 </td><td> 31 </td></tr><tr><td> 3 </td><td> 141 </td><td> 93 </td><td> 45 </td><td> 39 </td></tr><tr><td> 4 </td><td> 136 </td><td> 88 </td><td> 42 </td><td> 20 </td></tr><tr><td> 5 </td><td> 139 </td><td> 110 </td><td> 51 </td><td> 18 </td></tr><tr><td> 6 </td><td> 152 </td><td> 112 </td><td> 55 </td><td> 26 </td></tr><tr><td> 7 </td><td> 150 </td><td> 105 </td><td> 59 </td><td> 14 </td></tr><tr><td> 8 </td><td> 144 </td><td> 93 </td><td> 49 </td><td> 24 </td></tr><tr><td> 9 </td><td> 147 </td><td> 89 </td><td> 48 </td><td> 27 </td></tr><tr><td> 10 </td><td> 152 </td><td> 94 </td><td> 52 </td><td> 30 </td></tr><tr><td> 平均 </td><td> 144 </td><td> 101 </td><td> 50 </td><td> 25 </td></tr></TBODY></TABLE>Table 2 Surface roughness test results <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Items </ td> <td> Roughness test (S) S represents the distance between the wave peaks </ td> </ tr> <tr> <td> No </ td> <td> Conventional glass paste (µm) </ td> <td> Example 1 (µm) </ td > <td> Example 2 (µm) </ td> <td> Example 3 (µm) </ td> </ tr> <tr> <td> 1 </ td> <td> 134 </ td> <td> 101 </ td> <td> 41 </ td> <td> 22 </ td> </ tr> <tr> <td> 2 </ td> <td> 148 </ td> <td> 126 </ td> <td> 58 </ td> <td> 31 </ td> </ tr> <tr> <td> 3 </ td> <td> 141 </ td> <td> 93 </ td> <td> 45 </ td> <td> 39 </ td> </ tr> <tr> <td> 4 </ td> <td> 136 </ td> <td> 88 </ td> < td> 42 </ td> <td> 20 </ td> </ tr> <tr> <td> 5 </ td> <td> 139 </ td> <td> 110 </ td> <td> 51 </ td> <td> 18 </ td> </ tr> <tr> <td> 6 </ td> <td> 152 </ td> <td> 112 </ td> <td> 55 </ td > <td> 26 </ td> </ tr> <tr> <td> 7 </ td> <td> 150 </ td> <td> 105 </ td> <td> 59 </ td> <td > 14 </ td> </ tr> <tr> <td> 8 </ td> <td> 144 </ td> <td> 93 </ td> <td> 49 </ td> <td> 24 < / td> </ tr> <tr> <td> 9 </ td> <td> 147 </ td> <td> 89 </ td> <td> 48 </ td> <td> 27 </ td> </ tr> <tr> <td> 10 </ td> <td> 152 </ td> <td> 94 </ td> <td> 52 </ td> <td> 30 </ td> </ tr> <tr> <td> Average </ td> <td> 144 </ td> <td> 101 </ td> <td> 50 </ td> <td> 25 </ td> </ tr> </ TBODY> </ TABLE>

由表2的測試結果可以得知,習用玻璃膏經過10次的量測結果並且平均計算後得到其表面之兩波峰間的平均距離為144微米,而本發明實施例1所製做出來的電子元件表面保護材料其表面之兩波峰間的平均距離為101微米,本發明實施例2所製做出來的電子元件表面保護材料其表面之兩波峰間的平均距離為50微米,而本發明實施例3所製做出來的電子元件表面保護材料其表面之兩波峰間的平均距離僅為25微米,其中量測所得材料表面之兩波峰間的平均距離越小代表著該材料表面高低起伏的頻率越高,即該材料表面越粗糙,所以由表2的測試結果可以證實隨著本發明之實施例1至3所混合的陶瓷粉重量比例逐漸增高,其製作而成的電子元件表面保護材料的表面性質也越粗糙。From the test results in Table 2, it can be known that the average distance between the two peaks on the surface of the conventional glass paste after 10 measurements and average calculations is 144 microns, and the electrons made in Example 1 of the present invention The average distance between the two wave peaks on the surface of the component surface protection material is 101 micrometers. The average distance between the two wave peaks on the surface of the electronic component surface protection material made in Example 2 of the present invention is 50 microns, and the embodiment of the present invention The average distance between the two peaks on the surface of the electronic component surface protection material made in 3 is only 25 micrometers. The smaller the average distance between the two peaks on the measured surface of the material, the more the frequency of the material's surface fluctuations. High, that is, the rougher the surface of the material, the test results in Table 2 can confirm that as the weight ratio of the ceramic powders mixed in Examples 1 to 3 of the present invention gradually increases, the surface of the electronic component surface protection material produced by the same The rougher the nature.

翹曲度測試:Warpage test:

翹曲度的測量方法為將被測瓷片60置於花崗岩平台70上,使用千分尺分別量測瓷片60正反兩面的中心厚度,再將瓷片60正反兩面的中心厚度相減即可得到瓷片60的翹曲度,如圖4A與4B所示。其中量測結果如表3所示:The method of measuring warpage is to place the tested piece 60 on a granite platform 70, use a micrometer to measure the center thickness of the front and back of the piece 60, and then subtract the center thickness of the front and back of the piece 60. The warpage of the ceramic plate 60 is obtained, as shown in FIGS. 4A and 4B. The measurement results are shown in Table 3:

表3 翹曲度測試結果<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 項目 </td><td> 翹曲度測試 </td></tr><tr><td> No </td><td> 習用玻璃膏(µm) </td><td> 實施例1(µm) </td><td> 實施例2(µm) </td><td> 實施例3(µm) </td></tr><tr><td> 1 </td><td> 308 </td><td> 153 </td><td> 55 </td><td> 32 </td></tr><tr><td> 2 </td><td> 354 </td><td> 182 </td><td> 48 </td><td> 25 </td></tr><tr><td> 3 </td><td> 312 </td><td> 202 </td><td> 61 </td><td> 28 </td></tr><tr><td> 4 </td><td> 392 </td><td> 178 </td><td> 56 </td><td> 31 </td></tr><tr><td> 5 </td><td> 373 </td><td> 132 </td><td> 53 </td><td> 29 </td></tr><tr><td> 6 </td><td> 331 </td><td> 168 </td><td> 57 </td><td> 20 </td></tr><tr><td> 7 </td><td> 365 </td><td> 133 </td><td> 49 </td><td> 22 </td></tr><tr><td> 8 </td><td> 336 </td><td> 142 </td><td> 63 </td><td> 33 </td></tr><tr><td> 9 </td><td> 328 </td><td> 178 </td><td> 55 </td><td> 17 </td></tr><tr><td> 10 </td><td> 344 </td><td> 184 </td><td> 54 </td><td> 38 </td></tr><tr><td> 平均 </td><td> 344 </td><td> 165 </td><td> 55 </td><td> 28 </td></tr></TBODY></TABLE>Table 3 Warpage test results <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> items </ td> <td> Warpage test </ TABLE td> </ tr> <tr> <td> No </ td> <td> Custom glass paste (µm) </ td> <td> Example 1 (µm) </ td> <td> Example 2 ( µm) </ td> <td> Example 3 (µm) </ td> </ tr> <tr> <td> 1 </ td> <td> 308 </ td> <td> 153 </ td> <td> 55 </ td> <td> 32 </ td> </ tr> <tr> <td> 2 </ td> <td> 354 </ td> <td> 182 </ td> <td> 48 </ td> <td> 25 </ td> </ tr> <tr> <td> 3 </ td> <td> 312 </ td> <td> 202 </ td> <td> 61 </ td> <td> 28 </ td> </ tr> <tr> <td> 4 </ td> <td> 392 </ td> <td> 178 </ td> <td> 56 </ td> < td> 31 </ td> </ tr> <tr> <td> 5 </ td> <td> 373 </ td> <td> 132 </ td> <td> 53 </ td> <td> 29 </ td> </ tr> <tr> <td> 6 </ td> <td> 331 </ td> <td> 168 </ td> <td> 57 </ td> <td> 20 </ td > </ tr> <tr> <td> 7 </ td> <td> 365 </ td> <td> 133 </ td> <td> 49 </ td> <td> 22 </ td> </ tr> <tr> <td> 8 </ td> <td> 336 </ td> <td> 142 </ td> <td> 63 </ td> <td> 33 </ td> </ tr> < tr> <td> 9 </ td> <td> 328 </ td> <td> 178 </ td> <td> 55 </ td> <td> 17 </ td> </ tr> <tr> < td> 10 </ td> <td> 344 </ td> <td> 184 </ td> <td> 54 </ td> <td> 38 </ td> </ tr> <tr> <td> Average </ td> <td> 344 </ td> <td> 165 </ td > <td> 55 </ td> <td> 28 </ td> </ tr> </ TBODY> </ TABLE>

由表3的測試結果可以得知,習用玻璃膏經過10次的量測結果並且平均計算後得到其翹曲度的平均數值為344微米,而本發明實施例1所製做出來的電子元件表面保護材料其翹曲度的平均數值為165微米,本發明實施例2所製做出來的電子元件表面保護材料其翹曲度的平均數值為55微米,而本發明實施例3所製做出來的電子元件表面保護材料其翹曲度的平均數值僅為28微米,其中量測所得平均數值越小代表著該材料翹曲變形的程度越小,所以由表3的測試結果可以證實隨著本發明之實施例1至3所混合的陶瓷粉重量比例逐漸增高,其製作而成的電子元件表面保護材料越不容易翹曲變形。From the test results in Table 3, it can be known that the average value of the warpage degree of the conventional glass paste after 10 measurements and the average calculation is 344 microns, and the surface of the electronic component made in Example 1 of the present invention The average value of the warpage of the protective material is 165 micrometers. The average value of the warpage of the electronic component surface protection material made in Example 2 of the present invention is 55 micrometers. The average value of the warpage of the electronic component surface protection material is only 28 microns, and the smaller the average value measured, the smaller the degree of warpage and deformation of the material. Therefore, the test results in Table 3 can confirm that with the present invention The weight ratio of the ceramic powders mixed in Examples 1 to 3 is gradually increased, and the surface protection materials of the electronic components manufactured by them are less likely to warp and deform.

附著力測試:Adhesion test:

附著力的測量方法為將上述試樣切割成長1.6mm、寬0.8mm的晶粒,再將印刷電路板(PCB)上焊點間點上晶粒貼裝用黏合劑後再放上上述晶粒,之後以高溫140℃烘烤10分鐘,再放推力機測試,記錄晶粒脫落前之推力最大值。量測結果如表4所示:The method for measuring the adhesion is to cut the above-mentioned sample into 1.6mm and 0.8mm wide grains, and then place the above-mentioned crystal grains on the printed circuit board (PCB) with the bonding agent for the placement of the grains between the solder joints. Then, bake at a high temperature of 140 ° C for 10 minutes, and then test with a thruster to record the maximum thrust before the grains fall off. The measurement results are shown in Table 4:

表4 附著力測試結果<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 項目 </td><td> 附著力測試 </td></tr><tr><td> No </td><td> 習用玻璃膏(Kg) </td><td> 實施例1(Kg) </td><td> 實施例2(Kg) </td><td> 實施例3(Kg) </td></tr><tr><td> 1 </td><td> 0.26 </td><td> 0.56 </td><td> 1.49 </td><td> 1.55 </td></tr><tr><td> 2 </td><td> 0.25 </td><td> 0.64 </td><td> 1.31 </td><td> 1.48 </td></tr><tr><td> 3 </td><td> 0.36 </td><td> 0.73 </td><td> 1.3 </td><td> 1.74 </td></tr><tr><td> 4 </td><td> 0.31 </td><td> 0.52 </td><td> 1.54 </td><td> 1.39 </td></tr><tr><td> 5 </td><td> 0.33 </td><td> 0.55 </td><td> 1.46 </td><td> 1.58 </td></tr><tr><td> 6 </td><td> 0.28 </td><td> 0.48 </td><td> 1.28 </td><td> 1.67 </td></tr><tr><td> 7 </td><td> 0.27 </td><td> 0.51 </td><td> 1.47 </td><td> 1.51 </td></tr><tr><td> 8 </td><td> 0.35 </td><td> 0.58 </td><td> 1.5 </td><td> 1.49 </td></tr><tr><td> 9 </td><td> 0.26 </td><td> 0.64 </td><td> 1.31 </td><td> 1.63 </td></tr><tr><td> 10 </td><td> 0.34 </td><td> 0.57 </td><td> 1.28 </td><td> 1.66 </td></tr><tr><td> 平均 </td><td> 0.3 </td><td> 0.58 </td><td> 1.39 </td><td> 1.57 </td></tr></TBODY></TABLE>Table 4 Results of adhesion test <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> item </ td> <td> Adhesion test </ td> </ tr> <tr> <td> No </ td> <td> Conventional glass paste (Kg) </ td> <td> Example 1 (Kg) </ td> <td> Example 2 (Kg) </ td> <td> Example 3 (Kg) </ td> </ tr> <tr> <td> 1 </ td> <td> 0.26 </ td> <td> 0.56 </ td> <td > 1.49 </ td> <td> 1.55 </ td> </ tr> <tr> <td> 2 </ td> <td> 0.25 </ td> <td> 0.64 </ td> <td> 1.31 < / td> <td> 1.48 </ td> </ tr> <tr> <td> 3 </ td> <td> 0.36 </ td> <td> 0.73 </ td> <td> 1.3 </ td> <td> 1.74 </ td> </ tr> <tr> <td> 4 </ td> <td> 0.31 </ td> <td> 0.52 </ td> <td> 1.54 </ td> <td> 1.39 </ td> </ tr> <tr> <td> 5 </ td> <td> 0.33 </ td> <td> 0.55 </ td> <td> 1.46 </ td> <td> 1.58 </ td> </ tr> <tr> <td> 6 </ td> <td> 0.28 </ td> <td> 0.48 </ td> <td> 1.28 </ td> <td> 1.67 </ td> < / tr> <tr> <td> 7 </ td> <td> 0.27 </ td> <td> 0.51 </ td> <td> 1.47 </ td> <td> 1.51 </ td> </ tr> <tr> <td> 8 </ td> <td> 0.35 </ td> <td> 0.58 </ td> <td> 1.5 </ td> <td> 1.49 </ td> </ tr> <tr> <td> 9 </ td> <td> 0.26 </ td> <td> 0.64 </ td> <td> 1.31 </ td> <td> 1.63 < / td> </ tr> <tr> <td> 10 </ td> <td> 0.34 </ td> <td> 0.57 </ td> <td> 1.28 </ td> <td> 1.66 </ td> </ tr> <tr> <td> Average </ td> <td> 0.3 </ td> <td> 0.58 </ td> <td> 1.39 </ td> <td> 1.57 </ td> </ tr > </ TBODY> </ TABLE>

由表4的測試結果可以得知,習用玻璃膏經過10次的量測結果並且平均計算後得到其需施予0.3Kg的推力方可使試樣的晶粒脫落,而本發明實施例1所製做出來的電子元件表面保護材料其需施予0.58Kg的推力方可使試樣的晶粒脫落,本發明實施例2所製做出來的電子元件表面保護材料其需施予1.39Kg的推力方可使試樣的晶粒脫落,而本發明實施例3所製做出來的電子元件表面保護材料其需施予1.57Kg的推力方可使試樣的晶粒脫落,其中量測所得平均數值越大代表著該材料藉由黏合劑與印刷電路板結合的能力越佳,所以由表4的測試結果可以證實隨著本發明之實施例1至3所混合的陶瓷粉重量比例逐漸增高,其製作而成的電子元件表面保護材料與紅膠的結合能力就越佳,亦較不容易發生掉料的情形。From the test results in Table 4, it can be known that the conventional glass paste has been measured 10 times and averaged to obtain a thrust of 0.3 kg to obtain the crystal grains of the sample. The surface protection material of the electronic component manufactured requires a thrust of 0.58Kg before the grains of the sample can fall off. The surface protection material of the electronic component manufactured in Example 2 of the present invention requires a thrust of 1.39Kg. The crystal grains of the sample can be peeled off, and the electronic component surface protection material manufactured in Example 3 of the present invention needs to apply a thrust of 1.57 Kg to cause the crystal grains of the specimen to fall off. A larger value indicates that the material has a better ability to combine with the printed circuit board through an adhesive, so the test results in Table 4 can confirm that as the weight ratio of the ceramic powders mixed in Examples 1 to 3 of the present invention gradually increases, its The better the combination of the surface protection material of the electronic component and the red glue is made, and the less likely that the material will fall out.

經由以上表面粗糙度、翹曲度以及附著力測試結果顯示,本發明經由於習用玻璃膏中進一步添加陶瓷粉,確實可以有效增加電子元件表面保護材料10的表面粗糙度以及電子元件表面保護材料10與膠體的附著力,並且有效降低電子元件表面保護材料10因為製作過程中高溫燒結所導致的翹曲變形,其不但可以解決過去所面臨的掉料問題,且便於電子元件表面保護材料10成形後的加工工作,提供電子元件產品更佳的表面保護材料,使電子元件不會因為表面保護材料掉料、翹曲變形而影響其防潮、抗酸鹼的能力。The test results of the surface roughness, warpage, and adhesion show that the present invention can effectively increase the surface roughness of the electronic component surface protection material 10 and the electronic component surface protection material 10 by further adding ceramic powder to the conventional glass paste. Adhesion to colloids, and effectively reduce the warpage deformation of the electronic component surface protection material 10 due to high temperature sintering during the manufacturing process, which can not only solve the problem of blanking in the past, but also facilitate the electronic component surface protection material 10 after forming Processing, to provide better surface protection materials for electronic component products, so that electronic components will not be affected by moisture, acid and alkali resistance due to surface protection material blanking, warping and deformation.

本發明另提供一種簡易製備前述電子元件表面保護材料的方法,其包括下列步驟:提供一玻璃粉,在一第一溫度下將二氧化矽、氧化鋅、三氧化二硼以及其等之組合的玻璃材料加熱融化並混合後,再加以冷卻粉碎,以形成玻璃粉。接著提供一玻璃膏,在一第二溫度下將該玻璃粉與有機載體、添加劑以及陶瓷粉相混合,以形成電子元件表面保護材料,其中該陶瓷粉的平均粒徑為1.8微米,且該第二溫度係低於第一溫度,該第二溫度係為環境溫度-10℃至40℃。The invention further provides a method for easily preparing the aforementioned surface protection material for electronic components, which comprises the following steps: providing a glass powder, and combining a combination of silicon dioxide, zinc oxide, boron trioxide, and the like at a first temperature; After the glass material is heated and melted and mixed, it is then cooled and crushed to form glass frit. Next, a glass paste is provided, and the glass powder is mixed with an organic carrier, an additive, and a ceramic powder at a second temperature to form an electronic component surface protection material, wherein the average particle diameter of the ceramic powder is 1.8 micrometers, and the first The two temperatures are lower than the first temperature, and the second temperature is -10 ° C to 40 ° C.

本發明亦提供一種方便調整材料膨脹係數以及表面粗糙度之電子元件表面保護材料的製備方法,其包括下列步驟:提供一玻璃母膏,在一第一溫度下將玻璃材料加熱融化並混合後,再加以冷卻粉碎以形成一玻璃粉,再於一第二溫度下將該玻璃粉與有機載體以及添加劑相混合,以形成一玻璃母膏。提供一陶瓷子膏,在第二溫度下將陶瓷粉與有機載體以及添加劑相混合以形成一陶瓷子膏,其中該陶瓷粉的平均粒徑為1.8微米,而該第二溫度係為環境溫度-10℃至40℃,該第二溫度低於第一溫度。最後,依任意比例均勻混合上述玻璃母膏與陶瓷子膏,在環境溫度-10℃至40℃下將玻璃母膏與陶瓷子膏相混合,並依玻璃母膏與陶瓷子膏相對應的不同比例調整出具有特定材料膨脹係數以及表面粗糙度之電子元件表面保護材料。The invention also provides a method for preparing a surface protection material for electronic components, which is convenient for adjusting the material expansion coefficient and surface roughness, which includes the following steps: providing a glass mother paste, heating and melting the glass material at a first temperature and mixing, It is then cooled and pulverized to form a glass powder, and the glass powder is mixed with an organic carrier and additives at a second temperature to form a glass mother paste. A ceramic paste is provided. The ceramic powder is mixed with an organic vehicle and additives at a second temperature to form a ceramic paste. The average particle diameter of the ceramic powder is 1.8 microns, and the second temperature is the ambient temperature. 10 ° C to 40 ° C, the second temperature is lower than the first temperature. Finally, the above-mentioned glass mother paste and ceramic sub paste are uniformly mixed at any ratio, and the glass mother paste and the ceramic sub paste are mixed at an ambient temperature of -10 ° C to 40 ° C. Proportionally adjusted the surface protection material of electronic components with specific material expansion coefficient and surface roughness.

綜上所述,本發明無論是利用簡易的方法製備電子元件表面保護材料,抑或是利用步驟較繁雜但方便調整材料膨脹係數以及表面粗糙度之製備方法製備電子元件表面保護材料,均可以製備出相較於習用玻璃膏其表面更為粗糙,更能夠與膠體緊密附著,並且不易翹曲變形的電子元件表面保護材料,藉此解決過去電子元件與紅膠的結合效果不佳、波峰焊接過程中時常發生掉料的問題,並且不易翹曲變形的材料外觀亦方便後續電子元件的加工,更能有效提升電子產品的良率,節省近20%的材料成本,降低生產所需耗費的成本,如表5所示。此外,本發明之電子元件表面保護材料特別適用於SMD型負溫度係數(NTC)熱敏電阻器、SMD型正溫度係數(PTC)熱敏電阻器以及SMD型氧化鋅壓敏電阻器(MOV),為電子保護元件產業提供更高層次的技術。In summary, the present invention can be used to prepare electronic component surface protection materials by using a simple method, or by using a method that is more complicated but easy to adjust the material expansion coefficient and surface roughness. Compared with the conventional glass paste, its surface is rougher, can adhere closely to the colloid, and is not easy to warp and deform the electronic component surface protection material, thereby solving the poor combination effect of electronic components and red glue in the past and the wave soldering process. The problem of blanking often occurs, and the appearance of the material that is not easily warped and deformed also facilitates the subsequent processing of electronic components, which can effectively improve the yield of electronic products, save nearly 20% of material costs, and reduce the cost of production costs, such as Table 5 shows. In addition, the electronic component surface protection material of the present invention is particularly suitable for SMD-type negative temperature coefficient (NTC) thermistors, SMD-type positive temperature coefficient (PTC) thermistors, and SMD-type zinc oxide varistor (MOV) Provide higher-level technology for the electronic protection component industry.

表5 本發明之電子元件表面保護材料與習用玻璃膏比較<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 項目 </td><td> 本發明之電子元件表面保護材料 </td><td> 習用玻璃膏 </td></tr><tr><td> 表面性質 </td><td> 粗糙 </td><td> 光滑 </td></tr><tr><td> 紅膠附著力 </td><td> 強 </td><td> 弱 </td></tr><tr><td> 熱膨脹係數 </td><td> 可依陶瓷粉含量進行調整 </td><td> 固定 </td></tr><tr><td> 材料成本 </td><td> 低(節省約20%) </td><td> 高 </td></tr><tr><td> 備料成本 </td><td> 低(廠商自製毋須採購備料) </td><td> 長 </td></tr><tr><td> 產品應用 </td><td> 多樣化 </td><td> 侷現於特定產品 </td></tr></TBODY></TABLE>Table 5: Comparison of surface protection materials of electronic components of the present invention with conventional glass pastes. <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Items </ td> < td> Surface protection material for electronic components of the present invention </ td> <td> Custom glass paste </ td> </ tr> <tr> <td> Surface properties </ td> <td> Rough </ td> <td > Smooth </ td> </ tr> <tr> <td> red glue adhesion </ td> <td> strong </ td> <td> weak </ td> </ tr> <tr> <td> Thermal expansion coefficient </ td> <td> Can be adjusted according to ceramic powder content </ td> <td> Fixed </ td> </ tr> <tr> <td> Material cost </ td> <td> Low (saving About 20%) </ td> <td> High </ td> </ tr> <tr> <td> Cost of material preparation </ td> <td> Low (manufacturer does not need to purchase material) </ td> <td> Long </ td> </ tr> <tr> <td> Product Applications </ td> <td> Diversified </ td> <td> Localized in specific products </ td> </ tr> </ TBODY> </ TABLE>

以上所述僅是本發明的較佳實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。The above are only the preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Although the present invention has been disclosed as above with the preferred embodiments, they are not intended to limit the present invention. Generally, a person skilled in the art can use the disclosed technical content to make minor changes or modifications to equivalent embodiments without departing from the technical solution of the present invention. Anyone who does not depart from the technical solution of the present invention according to the present invention Technical essence of the invention Any simple modifications, equivalent changes, and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.

10‧‧‧電子元件表面保護材料
20、110‧‧‧電路板
30、120‧‧‧電子元件
40、100‧‧‧紅膠
50‧‧‧被測物
60‧‧‧被測瓷片
70‧‧‧花崗岩平台
90‧‧‧玻璃層
S‧‧‧材料表面的波峰間距
10‧‧‧Electronic component surface protection material
20, 110‧‧‧ circuit board
30, 120‧‧‧Electronic components
40, 100‧‧‧ red plastic
50‧‧‧Measured
60‧‧‧Porcelain to be tested
70‧‧‧ granite platform
90‧‧‧ glass layer
S‧‧‧ peak spacing of material surface

圖1係本發明之電子元件表面保護材料與相關電子組件的組合示意圖。 圖2係本發明之電子元件表面保護材料與紅膠黏合的示意圖。 圖3係本發明之電子元件表面保護材料的表面粗糙度測試示意圖。 圖4A係本發明之電子元件表面保護材料第一擺放狀態的翹曲度量測示意圖。 圖4B係本發明之電子元件表面保護材料第二擺放狀態的翹曲度量測示意圖。 圖5係現有技術之光滑玻璃層與紅膠黏合的示意圖。FIG. 1 is a schematic diagram of the combination of the surface protection material for electronic components and related electronic components according to the present invention. FIG. 2 is a schematic diagram showing the bonding of the surface protection material of the electronic component and the red glue of the present invention. FIG. 3 is a schematic diagram of a surface roughness test of a surface protection material of an electronic component of the present invention. FIG. 4A is a schematic diagram of warpage measurement in a first placement state of a surface protection material of an electronic component of the present invention. FIG. 4B is a schematic diagram of warpage measurement in the second placement state of the surface protection material of the electronic component of the present invention. FIG. 5 is a schematic diagram of the prior art smooth glass layer and red glue bonding.

10‧‧‧電子元件表面保護材料 10‧‧‧Electronic component surface protection material

20‧‧‧電路板 20‧‧‧Circuit Board

30‧‧‧電子元件 30‧‧‧Electronic components

40‧‧‧紅膠 40‧‧‧ red plastic

Claims (9)

一種電子元件表面保護材料,其係包括:一玻璃粉、一有機載體、一添加劑以及一陶瓷粉;其中,該陶瓷粉的平均粒徑為0.5微米至20微米。 An electronic component surface protection material includes: a glass powder, an organic carrier, an additive, and a ceramic powder; wherein the average particle diameter of the ceramic powder is 0.5 micrometer to 20 micrometers. 如請求項1所述之電子元件表面保護材料,其中該玻璃粉係選自下列所構成之群組:二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合;而該陶瓷粉係選自下列所構成之群組:三氧化二鋁、二氧化矽、氧化鎂、二氧化鈦、氧化鋅以及其等之組合。 The surface protection material for electronic components according to claim 1, wherein the glass powder is selected from the group consisting of silicon dioxide, zinc oxide, boron trioxide, bismuth trioxide, lead oxide, and dioxide Aluminum and combinations thereof; and the ceramic powder is selected from the group consisting of aluminum oxide, silicon dioxide, magnesium oxide, titanium dioxide, zinc oxide, and combinations thereof. 如請求項1或2所述之電子元件表面保護材料,其中該有機載體包括一溶劑與一黏結劑,該溶劑係選自下列所構成之群組:松油醇、二甘醇單丁基醚乙酸酯、二甘醇二丁醚、酯醇以及其等之組合;而該黏結劑係選自下列所構成之群組:纖維素樹脂、乙基纖維素、壓克力樹脂、聚乙稀醇縮丁醛樹脂、酚醛樹脂以及其等之組合。 The surface protection material for electronic components according to claim 1 or 2, wherein the organic vehicle comprises a solvent and a binder, and the solvent is selected from the group consisting of terpineol, diethylene glycol monobutyl ether Acetate, diethylene glycol dibutyl ether, ester alcohol, and combinations thereof; and the binder is selected from the group consisting of cellulose resin, ethyl cellulose, acrylic resin, polyethylene Butyral resin, phenol resin, and combinations thereof. 如請求項1或2所述之電子元件表面保護材料,其中該添加劑係選自下列所構成之群組:分散劑、流變劑、黏度調整劑、消泡劑以及其等之組合。 The electronic component surface protection material according to claim 1 or 2, wherein the additive is selected from the group consisting of a dispersant, a rheological agent, a viscosity adjusting agent, a defoaming agent, and combinations thereof. 如請求項3所述之電子元件表面保護材料,其中該添加劑係選自下列所構成之群組:分散劑、流變劑、黏度調整劑、消泡劑以及其等之組合。 The electronic component surface protection material according to claim 3, wherein the additive is selected from the group consisting of a dispersant, a rheological agent, a viscosity adjusting agent, a defoaming agent, and combinations thereof. 一種製備如請求項1至5項任一項所述之電子元件表面保護材料的方法,其係包括下列步驟:在一第一溫度下將選自由含有二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合所構成之群組的玻璃材料加熱融化並混合後,再加以冷卻粉碎,進而提供一玻璃粉;以及 在一第二溫度下將該玻璃粉與有機載體、添加劑以及陶瓷粉相混合,以提供一玻璃膏,進而以該玻璃膏形成一電子元件表面保護材料;其中,該陶瓷粉的平均粒徑為0.5微米至20微米,該第二溫度係低於第一溫度。 A method for preparing an electronic component surface protection material according to any one of claims 1 to 5, comprising the steps of: at a first temperature, selecting a material selected from the group consisting of silicon dioxide, zinc oxide, and boron trioxide. Glass materials consisting of bismuth trioxide, lead oxide, aluminum oxide, and combinations thereof are heated and melted and mixed, and then cooled and crushed to provide a glass powder; and The glass powder is mixed with an organic carrier, an additive and a ceramic powder at a second temperature to provide a glass paste, and then the glass paste is used to form an electronic component surface protection material; wherein the average particle diameter of the ceramic powder is 0.5 to 20 microns, the second temperature is lower than the first temperature. 如請求項6所述之製備電子元件表面保護材料的方法,其中,該第二溫度係為環境溫度-10℃至40℃。 The method for preparing a surface protection material for an electronic component according to claim 6, wherein the second temperature is an ambient temperature of -10 ° C to 40 ° C. 一種製備如請求項1至5項任一項所述之電子元件表面保護材料的方法,其係包括下列步驟:在一第一溫度下將選自由含有二氧化矽、氧化鋅、三氧化二硼、三氧化二鉍、氧化鉛、三氧化二鋁以及其等之組合所構成之群組的玻璃材料加熱融化並混合後,再加以冷卻粉碎,進而提供一玻璃粉,再於一第二溫度下將該玻璃粉與有機載體以及添加劑相混合,以提供一玻璃母膏;在第二溫度下將該陶瓷粉與有機載體以及添加劑相混合,以提供一陶瓷子膏,其中,該陶瓷粉的平均粒徑為0.5微米至20微米,該第二溫度低於第一溫度;以及混合上述玻璃母膏與陶瓷子膏,在第二溫度下將該玻璃母膏與該陶瓷子膏依任意比例混合,使玻璃母膏與陶瓷子膏均勻混合進而形成一具有表面粗糙度以及特定膨脹係數的電子元件表面保護材料。 A method for preparing an electronic component surface protection material according to any one of claims 1 to 5, comprising the steps of: at a first temperature, selecting a material selected from the group consisting of silicon dioxide, zinc oxide, and boron trioxide. Glass materials consisting of bismuth trioxide, lead oxide, alumina, and combinations thereof are heated and melted and mixed, and then cooled and crushed to provide a glass powder, and then at a second temperature The glass powder is mixed with an organic vehicle and additives to provide a glass mother paste; the ceramic powder is mixed with the organic vehicle and additives at a second temperature to provide a ceramic paste, wherein the average of the ceramic powder is The particle diameter is 0.5 micrometer to 20 micrometers, the second temperature is lower than the first temperature; and the glass mother paste and the ceramic sub paste are mixed, and the glass mother paste and the ceramic sub paste are mixed at an arbitrary ratio at the second temperature. The glass mother paste and the ceramic sub paste are uniformly mixed to form an electronic component surface protection material with a surface roughness and a specific expansion coefficient. 如請求項8所述之製備電子元件表面保護材料的方法,其中,該第二溫度係為環境溫度-10℃至40℃。 The method for preparing a surface protection material for an electronic component according to claim 8, wherein the second temperature is -10 ° C to 40 ° C.
TW104123503A 2015-07-21 2015-07-21 Electronic component surface protection material and preparation method thereof TWI610812B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104123503A TWI610812B (en) 2015-07-21 2015-07-21 Electronic component surface protection material and preparation method thereof
CN201510962099.8A CN106373682A (en) 2015-07-21 2015-12-21 Electronic element surface protection material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104123503A TWI610812B (en) 2015-07-21 2015-07-21 Electronic component surface protection material and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201704033A TW201704033A (en) 2017-02-01
TWI610812B true TWI610812B (en) 2018-01-11

Family

ID=57880834

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104123503A TWI610812B (en) 2015-07-21 2015-07-21 Electronic component surface protection material and preparation method thereof

Country Status (2)

Country Link
CN (1) CN106373682A (en)
TW (1) TWI610812B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920599A (en) * 2017-03-22 2017-07-04 合肥仁德电子科技有限公司 A kind of preparation method of electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW555827B (en) * 2001-07-19 2003-10-01 Microcosm Technology Co Ltd Method for producing soft circuit board cover film and adhesive used by the method
US20050113489A1 (en) * 2003-11-25 2005-05-26 3M Innovative Properties Company Solution containing surface-modified nanoparticles
US20070093576A1 (en) * 2003-10-15 2007-04-26 Ciba Specialty Chemicals Holding Inc. Reinforced coatings with improved scratch resistance
US20080255288A1 (en) * 2007-04-12 2008-10-16 Ppg Industries Ohio, Inc. Curable film-forming compositions demonstrating burnish resistance and low gloss
CN102604163A (en) * 2012-02-24 2012-07-25 四川大学 Inorganic nano compound and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709207B (en) * 2009-11-04 2012-11-14 广东健诚高科玻璃制品股份有限公司 Mucilage glue suitable for large-gap bonding of respective ceramics and glass products or between same
CN103044975A (en) * 2011-11-30 2013-04-17 成都盛尔嘉科技有限公司 Organic conducting coating and preparation method thereof
CN103296345B (en) * 2012-03-01 2017-08-25 深圳光启创新技术有限公司 A kind of medium of dielectric filter and attaching method thereof
CN103469207B (en) * 2013-08-16 2015-06-03 中国科学院金属研究所 High-temperature oxidation resistant and corrosion resistant glass ceramic composite coating and preparation technology thereof
CN104163635B (en) * 2014-07-04 2017-03-15 北京大学深圳研究生院 A kind of ceramic binder and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW555827B (en) * 2001-07-19 2003-10-01 Microcosm Technology Co Ltd Method for producing soft circuit board cover film and adhesive used by the method
US20070093576A1 (en) * 2003-10-15 2007-04-26 Ciba Specialty Chemicals Holding Inc. Reinforced coatings with improved scratch resistance
US20050113489A1 (en) * 2003-11-25 2005-05-26 3M Innovative Properties Company Solution containing surface-modified nanoparticles
US20080255288A1 (en) * 2007-04-12 2008-10-16 Ppg Industries Ohio, Inc. Curable film-forming compositions demonstrating burnish resistance and low gloss
CN102604163A (en) * 2012-02-24 2012-07-25 四川大学 Inorganic nano compound and preparation method and application thereof

Also Published As

Publication number Publication date
TW201704033A (en) 2017-02-01
CN106373682A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
TW538012B (en) Lead and cadmium-free encapsulant composition
JPS59146103A (en) Conductive paste
WO2013005600A1 (en) Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same
US20090098350A1 (en) Conductor composition v
JP5349694B2 (en) Bonding material
KR20120028026A (en) Sheet type heating element using ceramic glass
JPS61142759A (en) Substrate for ic package
JP6708093B2 (en) Resistor paste and resistor produced by firing the paste
EP2589577A1 (en) Low-melting-point glass composition and conductive paste material using same
US10074456B2 (en) Dielectric glass composition
TWI610812B (en) Electronic component surface protection material and preparation method thereof
JP7164775B2 (en) Conductive paste for bonding
JP5910509B2 (en) Conductive paste and solar cell element using the conductive paste
CN107910143A (en) A kind of preparation method of ultra-thin chip type thermistor
EP3127878B1 (en) Glass powder mixture, glass powder slurry and photoelectric packaging assembly
TWI784000B (en) Conductor-forming composition and manufacturing method thereof, conductor and manufacturing method thereof, chip resistor
JP4163003B2 (en) Use of conductor compositions in electronic circuits
CN113214744A (en) Substrate-free heat conduction adhesive tape
JP6951657B2 (en) Manufacturing method of inorganic porous sheet
TW201303893A (en) Conductive slurry
CN112125527A (en) High-thermal-expansion glass powder for copper slurry and preparation method and application thereof
JP3807257B2 (en) Manufacturing method of ceramic parts
CN111128494B (en) Thermosensitive chip with stress buffering metal electrode structure
CN116189956A (en) Leadless superhigh resistance slurry and preparation method thereof
CN114300208A (en) Preparation method of heat dissipation insulating protective layer of piezoresistor