TWI610429B - Method of fabricating complementary resistive switching memory - Google Patents

Method of fabricating complementary resistive switching memory Download PDF

Info

Publication number
TWI610429B
TWI610429B TW104133810A TW104133810A TWI610429B TW I610429 B TWI610429 B TW I610429B TW 104133810 A TW104133810 A TW 104133810A TW 104133810 A TW104133810 A TW 104133810A TW I610429 B TWI610429 B TW I610429B
Authority
TW
Taiwan
Prior art keywords
layer
oxide
conductor layer
conductor
nitride
Prior art date
Application number
TW104133810A
Other languages
Chinese (zh)
Other versions
TW201714294A (en
Inventor
周賢鎧
林吉欽
王浩宇
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW104133810A priority Critical patent/TWI610429B/en
Publication of TW201714294A publication Critical patent/TW201714294A/en
Application granted granted Critical
Publication of TWI610429B publication Critical patent/TWI610429B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一種互補式電阻式記憶體之製造方法,其包括: 依序形成一第一導體層、一第二導體層與一第三導體層;進行一熱處理以使第一導體層與第二導體層之介面形成一第一氧化物層及第二導體層與第三導體層之介面形成一第二氧化物層,進而轉變成五層疊層結構之一互補式電阻式記憶體。在另一實施例中,依序形成一第一導體層、一氧化物絕緣層與一第三導體層;進行一熱處理以使第一導體層與氧化物絕緣層之介面形成一第一氧化物層及氧化物絕緣層與第三導體層之介面形成一第二氧化物層,進而使氧化物絕緣層轉變成一第二導體層,進而轉變成五層疊層結構之一互補式電阻式記憶體。A manufacturing method of a complementary resistive memory, comprising: sequentially forming a first conductor layer, a second conductor layer and a third conductor layer; performing a heat treatment to make the first conductor layer and the second conductor layer The interface forms a first oxide layer and a second oxide layer on the interface between the second conductor layer and the third conductor layer, and then transforms into a complementary resistive memory of one of the five-layer structure. In another embodiment, a first conductor layer, an oxide insulating layer and a third conductor layer are sequentially formed; and a heat treatment is performed to form a first oxide between the interface of the first conductor layer and the oxide insulating layer. The layer and the interface between the oxide insulating layer and the third conductor layer form a second oxide layer, thereby converting the oxide insulating layer into a second conductor layer, and then converting into a complementary resistive memory of one of the five-layer structure.

Description

互補式電阻式記憶體之製造方法Method for manufacturing complementary resistive memory

本發明為一種電阻式記憶體之製造方法,尤其是指一種將兩組電阻式記憶體背向串聯的互補式電阻式記憶體之製造方法。 The invention relates to a method for manufacturing a resistive memory, in particular to a method for manufacturing a complementary resistive memory in which two sets of resistive memories are connected in series.

電阻式記憶體(Resistive Random Access Memory,RRAM)為一種新世代的非揮發性記憶體,可以將數位“0”與數位“1”的數位資訊以電阻式記憶體之高電阻態(High Resistive State,HRS)與低電阻態(Low Resistive State,LRS)進行穩定數位儲存與循環切換。電阻式記憶體的構造單純且元件尺寸小,因此可以將元件以縱橫式交叉點(Crossbar)陣列形態排列於電極欄與電極列交叉的位置,然而這種縱橫式交叉點陣列之電阻式記憶體在電性操作時會受到相鄰元件之潛行電流(Sneak Current)干擾而失效,因此每一個電阻式記憶體必須具有優良的非線性(Nonlinearity)電流電壓曲線(I-V Curve)特性,以具有在操作電壓與非操作電壓時之電流比值高或電阻比值高之優點,進而使得相鄰元件之潛行電流效應降低。 Resistive Random Access Memory (RRAM) is a new generation of non-volatile memory. It can display digital information of digits “0” and digit “1” in the high resistance state of resistive memory (High Resistive State). , HRS) and Low Resistive State (LRS) for stable digital storage and cyclic switching. The structure of the resistive memory is simple and the component size is small. Therefore, the components can be arranged in a crossbar array of crossbars at the intersection of the electrode column and the electrode column. However, the resistive memory of the crossbar array of the crossbar type In electrical operation, it will be interrupted by the sneak current of adjacent components, so each resistive memory must have excellent nonlinearity (IV Curve) characteristics to operate. The advantage of high current ratio or high resistance ratio between voltage and non-operating voltage, so that the sneak current effect of adjacent components is reduced.

在傳統應用上,可將兩組電阻式記憶體背向串聯而形成互補式電阻式記憶體(Complementary Resistive Switching Memory,CRS Memory),進而獲得相較於單一電阻式記憶體更佳的非線性電流電壓曲線特性,然而習知的互補式 電阻式記憶體在製作時,必須藉由五道光罩之半導體製程,例如依序經過五次的鍍膜、微影與蝕刻製程以形成互補式電阻式記憶體,而複雜費時的多道光罩半導體製程將造成製作成本提高與產品良率降低。 In conventional applications, two sets of resistive memories can be connected in series to form a complementary Resistive Switching Memory (CRS Memory), thereby obtaining a better nonlinear current than a single resistive memory. Voltage curve characteristic, but conventional complementary Resistive memory must be fabricated by a semiconductor process with five masks, for example, five times of coating, lithography and etching processes to form complementary resistive memory, and complex and time-consuming multi-mask semiconductor process This will result in increased production costs and reduced product yield.

本發明係將第一、第二與第三導體層之Metal/Metal/Metal(MMM)三明治結構,藉由熱處理對三層導體層中之金屬材料或氮化物導體材料之金屬元素分別於第一與第二導體層的介面及第二與第三導體層的介面與氧原子結合,進而產生具有電阻特性的氧化物層,經由三道光罩之半導體製程可以同時完成兩組背向串聯之電阻式記憶體,進而同時完成互補式電阻式記憶體之製作。 The invention relates to a metal/Metal/Metal (MMM) sandwich structure of the first, second and third conductor layers, which is respectively subjected to heat treatment to the metal material of the three-layer conductor layer or the metal element of the nitride conductor material respectively. The interface with the second conductor layer and the interface between the second and third conductor layers are combined with oxygen atoms to generate an oxide layer having resistive characteristics, and the two sets of back-to-back series resistance can be simultaneously completed by the semiconductor process of the three masks. The memory, and at the same time, complete the fabrication of the complementary resistive memory.

本發明係將第一導體層、氧化物絕緣層與第三導體層之Metal/Insulator/Metal(MIM)三明治結構,藉由熱處理對氧化物絕緣層之氧原子產生氧原子遷徙之功效,以使得氧原子分別遷徙至第一導體層與氧化物絕緣層的介面及第三導體層與氧化物絕緣層的介面與金屬離子結合,進而產生具有電阻特性的氧化物層,並使得本身氧化物絕緣層因氧原子遷徙而轉變成導體層,經由三道光罩之半導體製程可以同時完成兩組背向串聯之電阻式記憶體,進而同時完成互補式電阻式記憶體之製作。 The invention relates to a Metal/Insulator/Metal (MIM) sandwich structure of a first conductor layer, an oxide insulating layer and a third conductor layer, which has an effect of migrating oxygen atoms to oxygen atoms of the oxide insulating layer by heat treatment, so that The oxygen atoms migrate to the interface between the first conductor layer and the oxide insulating layer, respectively, and the interface between the third conductor layer and the oxide insulating layer is combined with the metal ions, thereby generating an oxide layer having resistance characteristics and causing the oxide insulating layer itself. Due to the migration of oxygen atoms into a conductor layer, two sets of resistive memory connected in series can be completed simultaneously through a semiconductor process of three masks, thereby simultaneously completing the fabrication of the complementary resistive memory.

本發明提出一種互補式電阻式記憶體之製造方法,其三道光罩之半導體製程相較於習知應用的五道光罩元件製程,將使得元件製作成本降低與產品良率提高。 The invention provides a method for manufacturing a complementary resistive memory, wherein the semiconductor process of the three masks is reduced in the manufacturing cost of the component and the yield of the product compared to the five mask component processes of the conventional application.

在一實施例中,本發明提出一種互補式電阻式記憶體之製造方法,其步驟包括:形成一第一導體層;形成一第二導體層於第一導體層上;形成一 第三導體層於第二導體層上,其中第三導體層與第一導體層係由相同材料所組成;進行一熱處理以使第一導體層與第二導體層之介面形成一第一氧化物層及第二導體層與第三導體層之介面形成一第二氧化物層,進而轉變成五層疊層結構之一互補式電阻式記憶體,其中第一氧化物層與第二氧化物層係由相同材料所組成。 In one embodiment, the present invention provides a method of fabricating a complementary resistive memory, the method comprising: forming a first conductor layer; forming a second conductor layer on the first conductor layer; forming a The third conductor layer is on the second conductor layer, wherein the third conductor layer and the first conductor layer are composed of the same material; and a heat treatment is performed to form a first oxide between the interface of the first conductor layer and the second conductor layer Forming a second oxide layer between the layer and the interface between the second conductor layer and the third conductor layer, and converting into a complementary resistive memory of the five-layer layer structure, wherein the first oxide layer and the second oxide layer are Consists of the same material.

在另一實施例中,本發明提出一種互補式電阻式記憶體之製造方法,其步驟包括:形成一第一導體層;形成一氧化物絕緣層於第一導體層上;形成一第三導體層於氧化物絕緣層上,其中第三導體層與第一導體層係由相同材料所組成;進行一熱處理以使第一導體層與氧化物絕緣層之介面形成一第一氧化物層及氧化物絕緣層與第三導體層之介面形成一第二氧化物層,進而使本身氧化物絕緣層轉變成一第二導體層,進而轉變成五層疊層結構之一互補式電阻式記憶體,其中第一氧化物層與第二氧化物層係由相同材料所組成。 In another embodiment, the present invention provides a method of fabricating a complementary resistive memory, the method comprising: forming a first conductor layer; forming an oxide insulating layer on the first conductor layer; forming a third conductor Laying on the oxide insulating layer, wherein the third conductor layer and the first conductor layer are composed of the same material; performing a heat treatment to form a first oxide layer and oxidizing the interface between the first conductor layer and the oxide insulating layer Forming a second oxide layer on the interface between the insulating layer and the third conductive layer, thereby converting the oxide insulating layer itself into a second conductive layer, and converting into a complementary resistive memory of a five-layer laminated structure, wherein The oxide layer and the second oxide layer are composed of the same material.

10‧‧‧互補式電阻式記憶體 10‧‧‧Complementary Resistive Memory

10A、10B‧‧‧電阻式記憶體之三層疊層結構 10A, 10B‧‧‧Three-layer structure of resistive memory

20‧‧‧互補式電阻式記憶體 20‧‧‧Complementary Resistive Memory

20A、20B‧‧‧電阻式記憶體之三層疊層結構 20A, 20B‧‧‧Three-layer structure of resistive memory

100‧‧‧基板 100‧‧‧Substrate

110‧‧‧第一導體層 110‧‧‧First conductor layer

120‧‧‧第二導體層 120‧‧‧Second conductor layer

130‧‧‧第三導體層 130‧‧‧3rd conductor layer

140‧‧‧熱處理 140‧‧‧ heat treatment

150‧‧‧第一氧化物層 150‧‧‧First oxide layer

152‧‧‧第二氧化物層 152‧‧‧Second oxide layer

160‧‧‧氧化物絕緣層 160‧‧‧Oxide insulation

170‧‧‧第一氧化物層 170‧‧‧First oxide layer

172‧‧‧第二氧化物層 172‧‧‧Second oxide layer

圖1為本發明第一實施例之互補式電阻式記憶體之製造方法流程圖。 1 is a flow chart showing a method of manufacturing a complementary resistive memory according to a first embodiment of the present invention.

圖2A至圖2D為本發明第一實施例之互補式電阻式記憶體示意圖。 2A to 2D are schematic views of a complementary resistive memory according to a first embodiment of the present invention.

圖3為本發明第二實施例之互補式電阻式記憶體之製造方法流程圖。 3 is a flow chart showing a method of manufacturing a complementary resistive memory according to a second embodiment of the present invention.

圖4A至圖4D為本發明第二實施例之互補式電阻式記憶體示意圖。 4A to 4D are schematic views of a complementary resistive memory according to a second embodiment of the present invention.

圖5為本發明第一實施例之五層疊層結構ITO/TiOy/TiNx/TiOy/ITO的互補式電阻式記憶體非線性電流電壓曲線圖。 5 is a graph showing a non-linear current-voltage curve of a complementary resistive memory of a five-layer laminated structure of ITO/TiOy/TiNx/TiOy/ITO according to a first embodiment of the present invention.

圖1為本發明第一實施例之互補式電阻式記憶體之製造方法流程圖、圖2A至圖2D為本發明第一實施例之互補式電阻式記憶體示意圖。互補式電阻式記憶體之製造方法,其步驟包括: 1 is a flow chart showing a method of manufacturing a complementary resistive memory according to a first embodiment of the present invention, and FIGS. 2A to 2D are schematic views showing a complementary resistive memory according to a first embodiment of the present invention. The manufacturing method of the complementary resistive memory, the steps thereof include:

步驟S102,如圖2A所示,形成一第一導體層110於一基板100上。其中,第一導體層110可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第一道光罩之半導體製程,例如微影製程與蝕刻製程而形成第一導體層110,但不以此為限;在本實施例中,第一導體層110即為一下電極。此外,基板100可包括一半導體晶圓基板,或是已形成任何所需半導體元件於半導體晶圓基板上,亦可包括一玻璃基板或一軟性基板,但皆不以此為限。 Step S102, as shown in FIG. 2A, a first conductor layer 110 is formed on a substrate 100. The first conductor layer 110 can be coated by an electroplating (Electrolytic Plating) technique, an electroless plating technique, a sputtering technique, or a thermal coating technique, and then passed through a first light. The first conductor layer 110 is formed by a semiconductor process of the mask, such as a lithography process and an etching process, but is not limited thereto; in the embodiment, the first conductor layer 110 is a lower electrode. In addition, the substrate 100 may include a semiconductor wafer substrate or any desired semiconductor component formed on the semiconductor wafer substrate, and may include a glass substrate or a flexible substrate, but is not limited thereto.

步驟S104,如圖2B所示,形成一第二導體層120於第一導體層110上。其中,第二導體層120可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第二道光罩之半導體製程,例如微影製程與蝕刻製程而形成第二導體層120,但不以此為限。 Step S104, as shown in FIG. 2B, a second conductor layer 120 is formed on the first conductor layer 110. Wherein, the second conductor layer 120 can be coated by an electroplating (Electrolytic Plating) technology, an electroless plating (Electroless Plating) technique, a sputtering (Sputtering Coating) technique or a vapor deposition (Thermal Coating) technique, and then passed through a second mask. The second conductor layer 120 is formed by a semiconductor process, such as a lithography process and an etching process, but is not limited thereto.

步驟S106,如圖2C所示,形成一第三導體層130於第二導體層120上,其中第三導體層130與第一導體層110係由相同材料所組成。而第三導體層130可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第三道光罩之半導體製程,例如微影製程與蝕刻製程而形成第三導體層130,但不以此為限;在本實施例中,第三導體層130即為一上電極。 Step S106, as shown in FIG. 2C, a third conductor layer 130 is formed on the second conductor layer 120, wherein the third conductor layer 130 and the first conductor layer 110 are composed of the same material. The third conductor layer 130 can be coated by an electroplating (Electrolytic Plating) technique, an electroless plating technique, a sputtering technique, or a thermal coating technique, and then passed through a third mask. The third conductor layer 130 is formed by a semiconductor process, such as a lithography process and an etch process, but is not limited thereto; in the embodiment, the third conductor layer 130 is an upper electrode.

在一實施例中,第一導體層110與第二導體層120兩者其中之一係為一氧化物導體材料,而兩者其中之另一係為一金屬材料或一氮化物導體材料。 舉例而言,當第一導體層110為一氧化物導體材料時,則第二導體層120則為一金屬材料或一氮化物導體材料;同理,當第二導體層120為一氧化物導體材料時,則第一導體層110則為一金屬材料或一氮化物導體材料,但不以此為限。 In one embodiment, one of the first conductor layer 110 and the second conductor layer 120 is an oxide conductor material, and the other of the two is a metal material or a nitride conductor material. For example, when the first conductor layer 110 is an oxide conductor material, the second conductor layer 120 is a metal material or a nitride conductor material; similarly, when the second conductor layer 120 is an oxide conductor In the case of the material, the first conductor layer 110 is a metal material or a nitride conductor material, but is not limited thereto.

在另一實施例中,氧化物導體材料係為氧化銦錫(ITO)或氧化鋁鋅(AZO),該金屬材料係為鈦(Ti)、鋁(Al)、鉭(Ta)、鋯(Zr)、鎢(W)或鉻(Cr),該氮化物導體材料係為氮化鈦(TiNx)、氮化鉭(TaNx)、氮化鋯(ZrNx)、氮化鎢(WNx)或氮化鉻(CrNx),但不以此為限。 In another embodiment, the oxide conductor material is indium tin oxide (ITO) or aluminum zinc oxide (AZO), and the metal material is titanium (Ti), aluminum (Al), tantalum (Ta), zirconium (Zr). ), tungsten (W) or chromium (Cr), the nitride conductor material is titanium nitride (TiN x ), tantalum nitride (TaN x ), zirconium nitride (ZrN x ), tungsten nitride (WN x ) Or chromium nitride (CrN x ), but not limited to this.

舉例而言,第一導體層110、第二導體層120與第三導體層130之三層疊層結構實施例可為ITO/Ti/ITO、Ti/ITO/Ti、ITO/TiNx/ITO或TiNx/ITO/TiNx等之疊層結構,但不以此為限。 For example, the three-layer layer structure embodiment of the first conductor layer 110, the second conductor layer 120, and the third conductor layer 130 may be ITO/Ti/ITO, Ti/ITO/Ti, ITO/TiNx/ITO or TiNx/ A laminated structure of ITO/TiNx or the like, but not limited thereto.

步驟S108,如圖2D所示,進行一熱處理140以使第一導體層110與第二導體層120之介面形成一第一氧化物層150及第二導體層120與第三導體層130之介面形成一第二氧化物層152,進而轉變成五層疊層結構之一互補式電阻式記憶體10,其中第一氧化物層150與第二氧化物層152係由相同材料所組成。此外,熱處理140係為一退火處理、一微波加熱處理或一雷射熱處理,而五層疊層結構之互補式電阻式記憶體10係分別由兩組電阻式記憶體之三層疊層結構10A、10B背向串聯所形成。 Step S108, as shown in FIG. 2D, a heat treatment 140 is performed to form a first oxide layer 150 and a second conductor layer 120 and a third conductor layer 130 interface between the interface of the first conductor layer 110 and the second conductor layer 120. A second oxide layer 152 is formed, which in turn is converted into a complementary resistive memory 10 of a five-layered layer structure, wherein the first oxide layer 150 and the second oxide layer 152 are composed of the same material. In addition, the heat treatment 140 is an annealing treatment, a microwave heating treatment or a laser heat treatment, and the five-layer laminated structure of the complementary resistive memory 10 is composed of three layers of resistive memory three-layer structure 10A, 10B, respectively. Formed in a back-to-back arrangement.

在一實施例中,第一氧化物層150與第二氧化物層152係為氧化鈦(TiOy)、氧化鋁(AlOy)、氧化鉭(TaOy)、氧化鋯(ZrOy)、氧化鎢(WOy)或氧化鉻(CrOy),但不以此為限。 In one embodiment, the first oxide layer 150 and the second oxide layer 152 are titanium oxide (TiOy), aluminum oxide (AlOy), tantalum oxide (TaOy), zirconium oxide (ZrOy), and tungsten oxide (WOy). Or chromium oxide (CrOy), but not limited to this.

根據上述舉例,第一導體層110、第二導體層120與第三導體層130之三層疊層結構實施例可為ITO/Ti/ITO、Ti/ITO/Ti、ITO/TiNx/ITO或TiNx/ITO/TiNx等等之疊層結構,後續再進行熱處理140以轉變成第一導體層110、第一氧化物層150、第二導體層120、第二氧化物層152與第三導體層130 之五層疊層結構實施例可為ITO/TiOy/Ti/TiOy/ITO、Ti/TiOy/ITO/TiOy/Ti、ITO/TiOy/TiNx/TiOy/ITO或TiNx/TiOy/ITO/TiOy/TiNx等之疊層結構,亦即五層疊層結構之互補式電阻式記憶體10實施例係可分別由兩組電阻式記憶體之三層疊層結構ITO/TiOy/Ti與Ti/TiOy/ITO、Ti/TiOy/ITO與ITO/TiOy/Ti、ITO/TiOy/TiNx與TiNx/TiOy/ITO、TiNx/TiOy/ITO與ITO/TiOy/TiNx背向串聯所形成,但不以此為限。 According to the above example, the three-layer layer structure embodiment of the first conductor layer 110, the second conductor layer 120 and the third conductor layer 130 may be ITO/Ti/ITO, Ti/ITO/Ti, ITO/TiNx/ITO or TiNx/ The stacked structure of ITO/TiNx or the like is subsequently subjected to heat treatment 140 to be converted into the first conductor layer 110, the first oxide layer 150, the second conductor layer 120, the second oxide layer 152, and the third conductor layer 130. The fifth layer layer structure embodiment may be ITO/TiOy/Ti/TiOy/ITO, Ti/TiOy/ITO/TiOy/Ti, ITO/TiOy/TiNx/TiOy/ITO or TiNx/TiOy/ITO/TiOy/TiNx, etc. The laminated structure, that is, the complementary resistive memory 10 embodiment of the five-layer laminated structure, can be composed of three layers of resistive memory, ITO/TiOy/Ti and Ti/TiOy/ITO, Ti/TiOy, respectively. /ITO is formed by ITO/TiOy/Ti, ITO/TiOy/TiNx and TiNx/TiOy/ITO, TiNx/TiOy/ITO and ITO/TiOy/TiNx in series, but not limited thereto.

在此特別說明,本發明係藉由熱處理對三層導體層中之金屬材料或氮化物導體材料之金屬元素分別於第一與第二導體層的介面及第二與第三導體層的介面與氧原子結合,其中第一與第三導體層需由相同材料所組成以避免因活性不同而造成與氧原子結合的能力不同,進而產生具有電阻特性的氧化物層,經由三道光罩之半導體製程可以同時完成兩組背向串聯之電阻式記憶體,進而同時完成互補式電阻式記憶體之製作,其相較於僅單一電阻式記憶體具有更優良的非線性電流電壓曲線特性,更具有在操作電壓與非操作電壓時之電流比值高或電阻比值高之優點,進而使得相鄰元件之潛行電流效應降低。此外,三道光罩之半導體製程相較於習知應用的五道光罩元件製程,將使得元件製作成本降低與產品良率提高。 Specifically, the present invention relates to the interface between the metal material of the three-layer conductor layer or the metal material of the nitride conductor material on the interface of the first and second conductor layers and the interface between the second and third conductor layers by heat treatment. The oxygen atoms are combined, wherein the first and third conductor layers are composed of the same material to avoid different ability to bond with oxygen atoms due to different activities, thereby producing an oxide layer having resistive properties, and a semiconductor process via three masks. Two sets of resistive memory connected in series can be completed at the same time, and the complementary resistive memory is simultaneously fabricated, which has better nonlinear current-voltage curve characteristics than only a single resistive memory, and has more The advantage of the current ratio between the operating voltage and the non-operating voltage is high or the resistance ratio is high, so that the sneak current effect of adjacent components is reduced. In addition, the semiconductor process of the three masks will reduce the component manufacturing cost and product yield compared to the conventional five-mask process.

圖3為本發明第二實施例之互補式電阻式記憶體之製造方法流程圖、圖4A至圖4D為本發明第二實施例之互補式電阻式記憶體示意圖。互補式電阻式記憶體之製造方法,其步驟包括: 3 is a flow chart showing a method of manufacturing a complementary resistive memory according to a second embodiment of the present invention, and FIGS. 4A to 4D are schematic views showing a complementary resistive memory according to a second embodiment of the present invention. The manufacturing method of the complementary resistive memory, the steps thereof include:

步驟S302,如圖4A所示,形成一第一導體層110於一基板100上。其中,第一導體層110可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第一道光罩之半導體製程,例如微影製程與蝕刻製程而形成第一導體層110,但不以此為限;在本實施例中,第一 導體層110即為一下電極。此外,基板100可包括一半導體晶圓基板,或是已形成任何所需半導體元件於半導體晶圓基板上,亦可包括一玻璃基板或一軟性基板,但皆不以此為限。 Step S302, as shown in FIG. 4A, a first conductor layer 110 is formed on a substrate 100. The first conductor layer 110 can be coated by an electroplating (Electrolytic Plating) technique, an electroless plating technique, a sputtering technique, or a thermal coating technique, and then passed through a first light. The first conductor layer 110 is formed by a semiconductor process of the mask, such as a lithography process and an etching process, but is not limited thereto; in this embodiment, the first The conductor layer 110 is a lower electrode. In addition, the substrate 100 may include a semiconductor wafer substrate or any desired semiconductor component formed on the semiconductor wafer substrate, and may include a glass substrate or a flexible substrate, but is not limited thereto.

步驟S304,如圖4B所示,形成一氧化物絕緣層160於第一導體層110上。其中,氧化物絕緣層160可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第二道光罩之半導體製程,例如微影製程與蝕刻製程而形成氧化物絕緣層160,但不以此為限。 Step S304, as shown in FIG. 4B, an oxide insulating layer 160 is formed on the first conductor layer 110. The oxide insulating layer 160 may be subjected to a plating process using an electroplating (Electrolytic Plating) technique, an electroless plating (Electroless Plating) technique, a sputtering (Sputtering Coating) technique, or a vapor deposition (Thermal Coating) technique, and then passing through a second mask. The semiconductor process, such as a lithography process and an etch process, forms the oxide insulating layer 160, but is not limited thereto.

步驟S306,如圖4C所示,形成一第三導體層130於氧化物絕緣層上,其中第三導體層130與第一導體層110係由相同材料所組成。而第三導體層130可應用電鍍(Electrolytic Plating)技術、無電鍍(Electroless Plating)技術、濺鍍(Sputtering Coating)技術或蒸鍍(Thermal Coating)技術等進行鍍膜製程,再經由第三道光罩之半導體製程,例如微影製程與蝕刻製程而形成第三導體層130,但不以此為限;在本實施例中,第三導體層130即為一上電極。 Step S306, as shown in FIG. 4C, a third conductor layer 130 is formed on the oxide insulating layer, wherein the third conductor layer 130 and the first conductor layer 110 are composed of the same material. The third conductor layer 130 can be coated by an electroplating (Electrolytic Plating) technique, an electroless plating technique, a sputtering technique, or a thermal coating technique, and then passed through a third mask. The third conductor layer 130 is formed by a semiconductor process, such as a lithography process and an etch process, but is not limited thereto; in the embodiment, the third conductor layer 130 is an upper electrode.

步驟S308,如圖4D所示,進行一熱處理140以使第一導體層110與氧化物絕緣層160之介面形成一第一氧化物層170及氧化物絕緣層160與第三導體層130之介面形成一第二氧化物層172,進而使氧化物絕緣層160轉變成一第二導體層120,進而轉變成五層疊層結構之一互補式電阻式記憶體20,其中第一氧化物層170與第二氧化物層172係由相同材料所組成。此外,熱處理140係為一退火處理、一微波加熱處理或一雷射熱處理,而五層疊層結構之互補式電阻式記憶體20係分別由兩組電阻式記憶體之三層疊層結構20A、20B背向串聯所形成。 Step S308, as shown in FIG. 4D, a heat treatment 140 is performed to form a first oxide layer 170 and an interface between the oxide insulating layer 160 and the third conductor layer 130 between the interface of the first conductor layer 110 and the oxide insulating layer 160. Forming a second oxide layer 172, thereby converting the oxide insulating layer 160 into a second conductive layer 120, and converting into a complementary layered resistive memory 20 of a five-layer laminated structure, wherein the first oxide layer 170 and the first oxide layer The dioxide layer 172 is composed of the same material. In addition, the heat treatment 140 is an annealing treatment, a microwave heating treatment or a laser heat treatment, and the five-layer laminated structure of the complementary resistive memory 20 is composed of two layers of resistive memory three-layer structure 20A, 20B, respectively. Formed in a back-to-back arrangement.

在一實施例中,第一導體層110係為一金屬材料或一氮化物導體材料,但不以此為限。第二導體層120係為氧化物絕緣層160組成內之金屬元素, 例如銅(Cu)或鎳(Ni)等金屬材料,但不以此為限。 In one embodiment, the first conductor layer 110 is a metal material or a nitride conductor material, but is not limited thereto. The second conductor layer 120 is a metal element composed of an oxide insulating layer 160. For example, metal materials such as copper (Cu) or nickel (Ni) are not limited thereto.

舉例而言,第一導體層110、氧化物絕緣層160與第三導體層130之三層疊層結構實施例可為Ti/CuOx/Ti或TiNx/CuOx/TiNx等之疊層結構,但不以此為限。 For example, the three-layer layer structure embodiment of the first conductor layer 110, the oxide insulating layer 160, and the third conductor layer 130 may be a stacked structure of Ti/CuOx/Ti or TiNx/CuOx/TiNx, etc., but not This is limited.

在另一實施例中,氧化物絕緣層160係為氧化銅(CuOx)或氧化鎳(NiOx),金屬材料係為鈦(Ti)、鋁(Al)、鉭(Ta)、鋯(Zr)、鎢(W)或鉻(Cr),氮化物導體材料係為氮化鈦(TiNx)、氮化鉭(TaNx)、氮化鋯(ZrNx)、氮化鎢(WNx)或氮化鉻(CrNx),其中0.2≦x≦1.5,但不以此例所列舉為限。 In another embodiment, the oxide insulating layer 160 is copper oxide (CuOx) or nickel oxide (NiOx), and the metal material is titanium (Ti), aluminum (Al), tantalum (Ta), zirconium (Zr), Tungsten (W) or chromium (Cr), nitride conductor material is titanium nitride (TiN x ), tantalum nitride (TaN x ), zirconium nitride (ZrN x ), tungsten nitride (WN x ) or nitride Chromium (CrN x ), of which 0.2 ≦ x ≦ 1.5, but not limited by the examples.

在又一實施例中,第一氧化物層170與第二氧化物層172係為氧化鈦(TiOy)、氧化鋁(AlOy)、氧化鉭(TaOy)、氧化鋯(ZrOy)、氧化鎢(WOy)或氧化鉻(CrOy),其中1.3≦y≦2,但不以此例所列舉為限。 In still another embodiment, the first oxide layer 170 and the second oxide layer 172 are titanium oxide (TiOy), aluminum oxide (AlOy), tantalum oxide (TaOy), zirconium oxide (ZrOy), tungsten oxide (WOy). Or chromium oxide (CrOy), of which 1.3 ≦ y ≦ 2, but not limited by the examples.

根據上述舉例,第一導體層110、氧化物絕緣層160與第三導體層130之三層疊層結構實施例可為Ti/CuOx/Ti或TiNx/CuOx/TiNx等之疊層結構,後續再進行熱處理140以轉變成第一導體層110、第一氧化物層170、第二導體層120、第二氧化物層172與第三導體層130之五層疊層結構實施例可為Ti/TiOy/Cu/TiOy/Ti或TiNx/TiOy/Cu/TiOy/TiNx等之疊層結構,亦即五層疊層結構之互補式電阻式記憶體20實施例係可分別由兩組電阻式記憶體之三層疊層結構Ti/TiOy/Cu與Cu/TiOy/Ti、TiNx/TiOy/Cu與Cu/TiOy/TiNx之電阻式記憶體背向串聯所形成,但不以此為限。 According to the above example, the three-layer layer structure embodiment of the first conductor layer 110, the oxide insulating layer 160 and the third conductor layer 130 may be a stacked structure of Ti/CuOx/Ti or TiNx/CuOx/TiNx, etc., and then performed. The heat treatment 140 to be converted into the first conductor layer 110, the first oxide layer 170, the second conductor layer 120, the second oxide layer 172 and the third conductor layer 130 may be Ti/TiOy/Cu. The stacked structure of /TiOy/Ti or TiNx/TiOy/Cu/TiOy/TiNx, that is, the complementary resistive memory 20 embodiment of the five-layer laminated structure can be respectively composed of three layers of resistive memory. The structure Ti/TiOy/Cu and Cu/TiOy/Ti, TiNx/TiOy/Cu and Cu/TiOy/TiNx resistive memory are formed in a back-to-back series, but are not limited thereto.

在此特別說明,本發明係藉由熱處理對氧化物絕緣層之氧原子產生氧原子遷徙之功效,以使得氧原子分別遷徙至第一導體層與氧化物絕緣層的介面及第三導體層與氧化物絕緣層的介面與金屬離子結合,其中第一與第三導體層需由相同材料所組成以避免因活性不同而造成與氧原子結合的能力不同,進而產生具有電阻特性的氧化物層,並使得本身氧化物絕緣層因氧原子遷徙而轉 變成導體層,經由三道光罩之半導體製程可以同時完成兩組背向串聯之電阻式記憶體,進而同時完成互補式電阻式記憶體之製作,其相較於僅單一電阻式記憶體具有更優良的非線性電流電壓曲線特性,更具有在操作電壓與非操作電壓時之電流比值高或電阻比值高之優點,進而使得相鄰元件之潛行電流效應降低。此外,三道光罩之半導體製程相較於習知應用的五道光罩元件製程,將使得元件製作成本降低與產品良率提高。 Specifically, the present invention is to effect the migration of oxygen atoms to the oxygen atoms of the oxide insulating layer by heat treatment, so that the oxygen atoms migrate to the interface of the first conductor layer and the oxide insulating layer, respectively, and the third conductor layer and The interface of the oxide insulating layer is combined with metal ions, wherein the first and third conductor layers are composed of the same material to avoid different ability to bond with oxygen atoms due to different activities, thereby producing an oxide layer having resistance characteristics. And make the oxide insulation layer itself change due to the migration of oxygen atoms. Turning into a conductor layer, two sets of resistive memory connected in series can be completed simultaneously through a semiconductor process of three masks, thereby simultaneously completing the fabrication of a complementary resistive memory, which is superior to a single resistive memory. The characteristics of the nonlinear current-voltage curve have the advantages of high current ratio or high resistance ratio between the operating voltage and the non-operating voltage, thereby reducing the sneak current effect of adjacent components. In addition, the semiconductor process of the three masks will reduce the component manufacturing cost and product yield compared to the conventional five-mask process.

圖5為本發明第一實施例之五層疊層結構ITO/TiOy/TiNx/TiOy/ITO的互補式電阻式記憶體非線性電流電壓曲線圖。其中,於Vth3與Vth1電壓之間的互補式電阻式記憶體為處於數位“0”或數位“1”的較高電阻狀態,亦即一個電阻式記憶體為LRS與另一個電阻式記憶體為HRS;於Vth1與Vth2電壓之間以及於Vth3與Vth4電壓之間的高電流區段,互補式電阻式記憶體為處於較低電阻之“ON”狀態,此時兩個電阻式記憶體皆為LRS。 5 is a graph showing a non-linear current-voltage curve of a complementary resistive memory of a five-layer laminated structure of ITO/TiOy/TiNx/TiOy/ITO according to a first embodiment of the present invention. Wherein, the complementary resistive memory between the V th3 and V th1 voltages is in a higher resistance state of a digital “0” or a digit “1”, that is, one resistive memory is LRS and another resistive memory The body is HRS; in the high current section between V th1 and V th2 voltages and between V th3 and V th4 voltages, the complementary resistive memory is in the "ON" state of lower resistance, at this time two Resistive memory is LRS.

互補式電阻式記憶體之循環電阻切換乃操作於非線性電流電壓曲線圖之第一與第三象限,於半個循環之第一象限中,首先互補式電阻式記憶體處於較高電阻狀態的數位“0”,隨著施加正偏壓由0V增高至Vth1時互補式電阻式記憶體轉變為“ON”,持續增高電壓時互補式電阻式記憶體維持為“ON”狀態,直到電壓到達Vth2時互補式電阻式記憶體切換成數位“1”的狀態,接著將電壓減低直至0V時互補式電阻式記憶體維持為數位“1”狀態。 The cyclic resistance switching of the complementary resistive memory operates in the first and third quadrants of the nonlinear current-voltage graph. In the first quadrant of the half cycle, the complementary resistive memory is first in a higher resistance state. The digit “0”, the complementary resistive memory changes to “ON” as the positive bias is applied from 0V to V th1 , and the complementary resistive memory remains “ON” when the voltage is continuously increased until the voltage reaches At V th2 , the complementary resistive memory is switched to the state of the digital "1", and then the complementary resistive memory is maintained in the digital "1" state when the voltage is reduced until 0V.

於第三象限的循環模式與第一象限的類似,施加負偏壓至Vth3時由數位“1”狀態切換為“ON”狀態,“ON”狀態維持至負偏壓達到Vth4時又切換至數位“0”,接著將負偏壓減低直至0V時互補式電阻式記憶體維持為數位“0”狀態。互補式電阻式記憶體於約大於Vth1(或|Vth3|)之讀取電壓VREAD時(約在0.5V或-0.5V的電壓位置),可以依據電流大小分辨元件為處於“ON”狀態或數位“1”狀態,或者是“ON”狀態或“0”狀態;而在VREAD/2時(約在0.25V或-0.25V的電壓位置),元 件處於數位“0”或數位“1”的而有小的電流,因此互補式電阻式記憶體可以獲得更優良的非線性電流電壓曲線。 The cyclic mode in the third quadrant is similar to that of the first quadrant. When the negative bias voltage is applied to V th3 , the digital "1" state is switched to the "ON" state, and the "ON" state is maintained until the negative bias voltage reaches V th4. To the digit "0", the complementary resistive memory is maintained in the digital "0" state when the negative bias voltage is reduced until 0V. Complementary RRAM than about greater than V th1 (or | V th3 |) when the read voltage V READ (about 0.5V or -0.5V in the position voltage), can be distinguished as being "ON" based on the current size of element State or digit "1" state, either "ON" state or "0"state; and at V READ /2 (approximately 0.25V or -0.25V voltage position), the component is in digit "0" or digit" There is a small current of 1", so the complementary resistive memory can obtain a more excellent nonlinear current-voltage curve.

綜上所述,本發明之互補式電阻式記憶體之製造方法,其係經由三道光罩之半導體製程與熱處理製程以同時完成兩組背向串聯之電阻式記憶體,進而同時完成互補式電阻式記憶體之製作,其相較於僅單一電阻式記憶體具有更優良的非線性電流電壓曲線特性,更具有在操作電壓與非操作電壓時之電流比值高或電阻比值高之優點,進而使得相鄰元件之潛行電流效應降低。此外,三道光罩之半導體製程相較於習知應用的五道光罩元件製程,將使得元件製作成本降低與產品良率提高。 In summary, the method for manufacturing the complementary resistive memory of the present invention is to complete two sets of resistive memories connected in series to each other through a semiconductor process and a heat treatment process of three masks, thereby simultaneously completing the complementary resistors. The production of the memory has better nonlinear current-voltage curve characteristics than the single resistive memory, and has the advantages of high current ratio or high resistance ratio at the operating voltage and the non-operating voltage, thereby The sneak current effect of adjacent components is reduced. In addition, the semiconductor process of the three masks will reduce the component manufacturing cost and product yield compared to the conventional five-mask process.

惟以上所述之具體實施例,僅係用於例釋本發明之特點及功效,而非用於限定本發明之可實施範疇,於未脫離本發明上揭之精神與技術範疇下,任何運用本發明所揭示內容而完成之等效改變及修飾,均仍應為下述之申請專利範圍所涵蓋。 However, the specific embodiments described above are merely used to exemplify the features and functions of the present invention, and are not intended to limit the scope of the present invention, and may be applied without departing from the spirit and scope of the present invention. Equivalent changes and modifications made to the disclosure of the present invention are still covered by the scope of the following claims.

10‧‧‧互補式電阻式記憶體 10‧‧‧Complementary Resistive Memory

10A、10B‧‧‧電阻式記憶體之三層疊層結構 10A, 10B‧‧‧Three-layer structure of resistive memory

100‧‧‧基板 100‧‧‧Substrate

110‧‧‧第一導體層 110‧‧‧First conductor layer

120‧‧‧第二導體層 120‧‧‧Second conductor layer

130‧‧‧第三導體層 130‧‧‧3rd conductor layer

140‧‧‧熱處理 140‧‧‧ heat treatment

150‧‧‧第一氧化物層 150‧‧‧First oxide layer

152‧‧‧第二氧化物層 152‧‧‧Second oxide layer

Claims (10)

一種互補式電阻式記憶體之製造方法,其步驟包括:形成一第一導體層;形成一第二導體層於該第一導體層上;形成一第三導體層於該第二導體層上,其中該第三導體層與該第一導體層係由相同材料所組成;以及進行一熱處理以使該第一導體層與該第二導體層之介面形成一第一氧化物層及該第二導體層與該第三導體層之介面形成一第二氧化物層,進而轉變成五層疊層結構之一互補式電阻式記憶體,其中該第一氧化物層與該第二氧化物層係由相同材料所組成。 A method for manufacturing a complementary resistive memory, the method comprising: forming a first conductor layer; forming a second conductor layer on the first conductor layer; forming a third conductor layer on the second conductor layer, Wherein the third conductor layer and the first conductor layer are composed of the same material; and a heat treatment is performed to form a first oxide layer and the second conductor between the interface of the first conductor layer and the second conductor layer Forming a second oxide layer between the layer and the interface of the third conductor layer, and converting into a complementary resistive memory of a five-layer layer structure, wherein the first oxide layer and the second oxide layer are the same Made up of materials. 如申請專利範圍第1項所述之製造方法,其中該第一導體層與該第二導體層兩者其中之一係為一氧化物導體材料,而兩者其中之另一係為一金屬材料或一氮化物導體材料。 The manufacturing method of claim 1, wherein one of the first conductor layer and the second conductor layer is an oxide conductor material, and the other of the two is a metal material. Or a nitride conductor material. 如申請專利範圍第2項所述之製造方法,其中該氧化物導體材料係為氧化銦錫(ITO)或氧化鋁鋅(AZO),該金屬材料係為鈦(Ti)、鋁(Al)、鉭(Ta)、鋯(Zr)、鎢(W)或鉻(Cr),該氮化物導體材料係為氮化鈦(TiNx)、氮化鉭(TaNx)、氮化鋯(ZrNx)、氮化鎢(WNx)或氮化鉻(CrNx),其中0.2≦x≦1.5。 The manufacturing method according to claim 2, wherein the oxide conductor material is indium tin oxide (ITO) or aluminum zinc oxide (AZO), and the metal material is titanium (Ti) or aluminum (Al). Tantalum (Ta), zirconium (Zr), tungsten (W) or chromium (Cr), the nitride conductor material is titanium nitride (TiN x ), tantalum nitride (TaN x ), zirconium nitride (ZrN x ) , tungsten nitride (WN x ) or chromium nitride (CrN x ), of which 0.2≦x≦1.5. 如申請專利範圍第3項所述之製造方法,其中該第一氧化物層與該第二氧化物層係為氧化鈦(TiOy)、氧化鋁(AlOy)、氧化鉭(TaOy)、氧化鋯(ZrOy)、氧化鎢(WOy)或氧化鉻(CrOy),其中1.3≦y≦2。 The manufacturing method according to claim 3, wherein the first oxide layer and the second oxide layer are titanium oxide (TiOy), aluminum oxide (AlOy), tantalum oxide (TaOy), and zirconium oxide ( ZrOy), tungsten oxide (WOy) or chromium oxide (CrOy), of which 1.3≦y≦2. 一種互補式電阻式記憶體之製造方法,其步驟包括:形成一第一導體層; 形成一氧化物絕緣層於該第一導體層上;形成一第三導體層於該氧化物絕緣層上,其中該第三導體層與該第一導體層係由相同材料所組成;以及進行一熱處理以使該第一導體層與該氧化物絕緣層之介面形成一第一氧化物層及該氧化物絕緣層與該第三導體層之介面形成一第二氧化物層,進而使該氧化物絕緣層轉變成一第二導體層,進而轉變成五層疊層結構之一互補式電阻式記憶體,其中該第一氧化物層與該第二氧化物層係由相同材料所組成。 A method for manufacturing a complementary resistive memory, the method comprising: forming a first conductor layer; Forming an oxide insulating layer on the first conductor layer; forming a third conductor layer on the oxide insulating layer, wherein the third conductor layer and the first conductor layer are composed of the same material; Heat treating to form a first oxide layer between the interface of the first conductor layer and the oxide insulating layer and a second oxide layer between the oxide insulating layer and the interface of the third conductor layer, thereby further forming the oxide The insulating layer is transformed into a second conductor layer, and then converted into a complementary resistive memory of one of the five-layered layer structure, wherein the first oxide layer and the second oxide layer are composed of the same material. 如申請專利範圍第5項所述之製造方法,其中該第一導體層係為一金屬材料或一氮化物導體材料。 The manufacturing method of claim 5, wherein the first conductor layer is a metal material or a nitride conductor material. 如申請專利範圍第5項所述之製造方法,其中該第二導體層係為該氧化物絕緣層組成內之金屬元素。 The manufacturing method of claim 5, wherein the second conductor layer is a metal element within the composition of the oxide insulating layer. 如申請專利範圍第7項所述之製造方法,其中該氧化物絕緣層係為氧化銅(CuOx)或氧化鎳(NiOx),該金屬材料係為鈦(Ti)、鋁(Al)、鉭(Ta)、鋯(Zr)、鎢(W)或鉻(Cr),該氮化物導體材料係為氮化鈦(TiNx)、氮化鉭(TaNx)、氮化鋯(ZrNx)、氮化鎢(WNx)或氮化鉻(CrNx),其中0.2≦x≦1.5。 The manufacturing method according to claim 7, wherein the oxide insulating layer is copper oxide (CuOx) or nickel oxide (NiOx), and the metal material is titanium (Ti), aluminum (Al), or Ta), zirconium (Zr), tungsten (W) or chromium (Cr), the nitride conductor material is titanium nitride (TiN x ), tantalum nitride (TaN x ), zirconium nitride (ZrN x ), nitrogen Tungsten (WN x ) or chromium nitride (CrN x ), of which 0.2≦x≦1.5. 如申請專利範圍第8項所述之製造方法,其中該第一氧化物層與該第二氧化物層係為氧化鈦(TiOy)、氧化鋁(AlOy)、氧化鉭(TaOy)、氧化鋯(ZrOy)、氧化鎢(WOy)或氧化鉻(CrOy),其中1.3≦y≦2。 The manufacturing method according to claim 8, wherein the first oxide layer and the second oxide layer are titanium oxide (TiOy), aluminum oxide (AlOy), tantalum oxide (TaOy), and zirconium oxide ( ZrOy), tungsten oxide (WOy) or chromium oxide (CrOy), of which 1.3≦y≦2. 如申請專利範圍第1或5項所述之製造方法,其中該熱處理係為一退火處理、一微波加熱處理或一雷射熱處理。 The manufacturing method according to claim 1 or 5, wherein the heat treatment is an annealing treatment, a microwave heating treatment or a laser heat treatment.
TW104133810A 2015-10-15 2015-10-15 Method of fabricating complementary resistive switching memory TWI610429B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104133810A TWI610429B (en) 2015-10-15 2015-10-15 Method of fabricating complementary resistive switching memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104133810A TWI610429B (en) 2015-10-15 2015-10-15 Method of fabricating complementary resistive switching memory

Publications (2)

Publication Number Publication Date
TW201714294A TW201714294A (en) 2017-04-16
TWI610429B true TWI610429B (en) 2018-01-01

Family

ID=59256729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133810A TWI610429B (en) 2015-10-15 2015-10-15 Method of fabricating complementary resistive switching memory

Country Status (1)

Country Link
TW (1) TWI610429B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467221B2 (en) * 2010-07-09 2013-06-18 International Business Machines Corporation Magnetic spin shift register memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467221B2 (en) * 2010-07-09 2013-06-18 International Business Machines Corporation Magnetic spin shift register memory

Also Published As

Publication number Publication date
TW201714294A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
CN101106171B (en) Non-volatile memory device including variable resistance material
JP7020690B2 (en) Memristor element and its manufacturing method
JPWO2004008535A1 (en) Nonvolatile memory and manufacturing method thereof
US9502647B2 (en) Resistive random-access memory (RRAM) with a low-K porous layer
CN103872245A (en) Self-rectifying rram storage cell structure and 3d crossbar array architecture thereof
Liu et al. An electronic synaptic device based on HfO2TiOx bilayer structure memristor with self-compliance and deep-RESET characteristics
US8907314B2 (en) MoOx-based resistance switching materials
CN102742163A (en) Method for driving a nonvolatile logic circuit as an exclusive-or circuit
KR20080105979A (en) Resistive random access memory device
US10305033B2 (en) Resistive random access memory
JP5113584B2 (en) Nonvolatile memory device and manufacturing method thereof
WO2020119738A1 (en) Memristor and method for manufacturing same
US11985911B2 (en) Methods for fabricating resistive random-access memory stacks
CN105206743B (en) Resistive random access memory with multilayer device structure(RRAM)
US20060273877A1 (en) Variable-resistance element and non-volatile memory using the same
WO2014094334A1 (en) Memristor based on aginsbte chalcogenide compounds, and preparation method therefor
US20140252296A1 (en) Resistive random-access memory
He et al. Interconversion between bipolar and complementary behavior in nanoscale resistive switching devices
TWI473209B (en) Method of fabricating resistance memory
CN102738387B (en) Memristor based on TiOx structure and manufacturing method of memristor
TWI553636B (en) Resistance random access memory and fabrication method thereof
TWI610429B (en) Method of fabricating complementary resistive switching memory
CN111785830A (en) Resistive random access memory based on gallium oxide film and preparation method thereof
KR101776858B1 (en) Resistance variable memory device and method for fabricating the same
KR101443271B1 (en) RRAM and RRAM-based Synaptic Electronics