TWI609539B - 用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法 - Google Patents

用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法 Download PDF

Info

Publication number
TWI609539B
TWI609539B TW103103518A TW103103518A TWI609539B TW I609539 B TWI609539 B TW I609539B TW 103103518 A TW103103518 A TW 103103518A TW 103103518 A TW103103518 A TW 103103518A TW I609539 B TWI609539 B TW I609539B
Authority
TW
Taiwan
Prior art keywords
pulse
pulse width
euv
main
width
Prior art date
Application number
TW103103518A
Other languages
English (en)
Other versions
TW201442380A (zh
Inventor
詹姆斯H 克羅奇
馬修R 葛拉漢
羅伯特J 拉法斯
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201442380A publication Critical patent/TW201442380A/zh
Application granted granted Critical
Publication of TWI609539B publication Critical patent/TWI609539B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Description

用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法 發明領域
本發明係概括有關雷射生成式極紫外光源。更確切來說,本發明係有關一使用種子雷射作為如是光源之系統及方法。
發明背景
半導體產業係持續開發能夠列印愈來愈小的積體電路維度之微影技術。極紫外(EUV)光(有時亦稱為軟x射線)係概括被定義為具有10與20奈米(nm)之間波長之電磁輻射。EUV微影術現今概括被視為包括具有10至14nm範圍的波長之EUV光,且用來在諸如矽晶圓等基材中產生極小的形貌體,例如次32nm形貌體。為了商業上有用,欲使這些系統高度地可靠並提供合乎成本效益的產出率及合理的製程寬容度。
用以產生EUV光的方法係包括但未必限於將一材料轉換成一電漿狀態,其具有一或多種擁有位於EUV範圍的一或多個發射線之譬如氙、鋰、錫、銦、銻、碲、鋁 等元素。在一種常稱為雷射生成式電漿(LPP)的如是方法中,可利用在一輻照部位以一雷射束輻照諸如具有所欲線發射元素之一諸如一微滴、流束或叢簇材料形式的靶材料,藉以生成所需要的電漿。線發射元素可為純粹形式或合金形式,例如一在所欲溫度下身為液體之合金,或者可混合或散佈於另一材料諸如一液體。
在一些先前技藝的LPP系統中,一微滴流束中的微滴係被一分離的雷射脈衝所輻照,以從各微滴形成一電漿。替代性地,已經揭露一些先前技藝系統,其中各微滴依序被不只一個光脈衝所照射。在一些實例中,各微滴可曝露於一所謂“預脈衝”以加熱、擴張、氣化、汽化及/或離子化靶材料及/或產生一弱電漿,接著係為一所謂“主脈衝”以產生一強電漿並將大部分或全部預脈衝影響的材料轉換成電漿,並因此產生一EUV光發射。將瞭解:可使用不只一個預脈衝並可使用不只一個主脈衝,且預脈衝及主脈衝的功能可能某程度地重疊。
由於一LPP系統中的EUV輸出功率概括係隨著用以輻照靶材料的驅動雷射功率而縮放大小,在部分實例中可能亦認為欲採用一包括一相對低功率振盪器或“種子雷射”及一或多個放大器以放大來自種子雷射的脈衝之配置。利用一大的放大器係容許使用一低功率、穩定的種子雷射、同時仍提供使用於LPP製程中之相對高功率脈衝。
現今已知且使用於該技藝中的系統係設定對於主脈衝之一固定的脈衝寬度,其預期在理想條件下產生最 大量的EUV能量。施加至放大器之驅動雷射RF泵功率隨後係經過一RF產生器被調整,其使用脈衝寬度調變(PWM)來調整任務循環(使RF功率被產生的操作時間之比例部分),以獲得最大值或所欲量的EUV能量。
此途徑有數項限制。首先,其相較於系統的操作而言係相對地慢。雷射功率僅可逐一脈衝作小量改變,且因此當任務循環改變時,系統典型需花費一數量的脈衝以改變輸出。
此外,由於對於各脈衝提供一分離組的放大器一般被認為太過昂貴,主脈衝及預脈衝典型係經歷相同的放大器。若兩脈衝皆被相同放大器所放大,藉由改變任務循環所達成之增益的任何變化係會影響兩脈衝。然而,常使預脈衝最適化以對於靶微滴之擴張及軌跡產生所欲的效應;因此,亦會改變預脈衝中的能量之任務循環的一變化係有可能對於系統效能具有有害的效應。因此較佳將基於標定穩定性而維持一恆定的預脈衝能量,並且若可能的話僅調整主脈衝。
為此,欲能夠在如是一EUV光源中比起藉由調整任務循環及藉由盡可能少量調整任務循環而言更快速地調整EUV輸出能量,並且也能夠調整主脈衝的能量而不亦調整預脈衝的能量。
發明概要
本文揭露一用於調整一種子雷射之主脈衝的脈 衝寬度以控制一EUV系統的輸出能量之系統及方法。
一實施例係描述一用於控制一具有產生預脈衝及主脈衝的種子雷射之EUV LLP系統的輸出之方法,其包含:操作種子雷射以產生分別處於一預脈衝寬度及一主脈衝寬度的一預脈衝及一主脈衝;以一具有一任務循環控制式RF泵速率的放大器放大主脈衝及以經放大脈衝輻照一靶材料以產生一具有能量的EUV輸出;藉由若所產生的EUV輸出能量高於一所欲EUV輸出能量則縮短主脈衝寬度以及若EUV能量低於所欲EUV輸出能量則加長主脈衝寬度來調整主脈衝寬度;藉由若主脈衝寬度比一所欲範圍更長則增大任務循環及若主脈衝寬度比所欲範圍更短則減小任務循環來調整任務循環。
另一實施例係描述一用於控制一具有種子雷射之EUV LLP系統的輸出能量之系統,種子雷射係產生分別處於一預脈衝寬度及一主脈衝寬度的一預脈衝及一主脈衝,包含:光學開關,其能夠使預脈衝及主脈衝通過並在一所欲時間開啟及關閉以決定通過開關之各脈衝的寬度;一放大器,其具有一任務循環以供放大主脈衝;一靶腔室,以供以經放大脈衝輻照一靶材料俾以產生EUV輸出能量;一感測器,以供測量EUV輸出能量及產生一感測器信號,其指示出相較於一所欲EUV輸出能量而言之EUV輸出能量的位準;一脈衝寬度控制器以供:接收感測器信號及產生一第一脈衝寬度信號,其指示光學開關若EUV輸出能量高於所欲能量則縮短下個主脈衝的寬度及若EUV能量低於所 欲輸出能量則加長下個主脈衝的寬度,以及產生一第二脈衝寬度信號,其指示出相較於一可接受範圍而言之主脈衝寬度的長度;及一任務循環控制器,以供接收第二脈衝寬度信號並且若主脈衝寬度比可接受範圍更長則增大任務循環及若主脈衝寬度比可接受範圍更短則減小任務循環。
又另一實施例係描述一其上實施有一程式之非暫態電腦可讀取式媒體,該程式可藉由一處理器被執行以進行一用於控制一具有一種子雷射之EUV LPP系統的輸出之方法,種子雷射產生預脈衝及主脈衝,該方法包含下列步驟:操作種子雷射以產生分別處於一預脈衝寬度及一主脈衝寬度的一預脈衝及一主脈衝;以一具有一任務循環控制式RF泵速率的放大器放大主脈衝及以經放大脈衝輻照一靶材料以產生一具有能量的EUV輸出;藉由若所產生的EUV輸出能量高於一所欲EUV輸出能量則縮短主脈衝寬度以及若EUV能量低於所欲EUV輸出能量則加長主脈衝寬度來調整主脈衝寬度;藉由若主脈衝寬度比一所欲範圍更長則增大任務循環及若主脈衝寬度比所欲範圍更短則減小任務循環來調整任務循環。
10‧‧‧LPP EUV光源
12‧‧‧雷射源
14‧‧‧腔室
16‧‧‧輻照區
18‧‧‧光學元件
20‧‧‧中間區
22‧‧‧聚焦單元
24‧‧‧束調控單元
26‧‧‧靶材料輸送系統
201,402,404,604,606,702,704,706,802,804,806‧‧‧曲線
300‧‧‧EOM
302‧‧‧晶體
304,306‧‧‧電極
308‧‧‧雷射脈衝
310‧‧‧脈衝
500‧‧‧使用RF(任務循環)控制及脈衝寬度控制來調整EUV輸出之系統
502‧‧‧種子雷射
504‧‧‧雷射放大器
506‧‧‧脈衝寬度控制器
508‧‧‧RF控制器
510‧‧‧靶腔室
512‧‧‧感測器
514,516‧‧‧比較器
602‧‧‧線
901,902,903,904,905,906‧‧‧步驟
P1,P2‧‧‧偏光器
圖1是如同先前技藝中已知之一LPP EUV系統的一實施例之部分組件的圖示;圖2是來自一CO2種子雷射之一樣本主雷射脈衝的圖形;圖3是在一實施例中可連同一種子雷射使用之一 類型的一光電調變器(EOM)之圖式;圖4是諸如圖2所示的一主雷射脈衝所導致之EUV輸出的圖形;圖5是在一實施例中之一用於調整一種子雷射的主脈衝之脈衝寬度及種子雷射的任務循環以調整一EUV系統的輸出能量之系統的簡化方塊圖;圖6是在一實施例中處於特定操作參數之一系統的EUV輸出之圖形;圖7是根據一實施例之一系統的EUV輸出之圖形,顯示操作參數的調整;圖8是根據另一實施例之一系統的EUV輸出之圖形,顯示操作參數的調整;圖9是根據一實施例之一用於調整一EUV系統中的一種子雷射的操作參數之方法的流程圖。
發明的詳細描述
本申請案係描述一用於調整一種子雷射之主脈衝的脈衝寬度以控制一EUV LPP系統的輸出能量之系統及方法。
在一實施例中,主脈衝之脈衝寬度的一可接受範圍係受識別,且種子雷射開始產生處於該範圍內的一靶寬度之主脈衝。後續主脈衝的脈衝寬度係隨後作調整以使EUV輸出能量保持在一所欲範圍中。當主脈衝的脈衝寬度被認為太遠離靶寬度或位於可接受範圍外時,雷射放大器 RF功率任務循環係作調整俾使主脈衝的脈衝寬度可返回到可接受範圍。
圖1是一LPP EUV光源10的一實施例之部分組件的簡化示意圖。如圖1所示,EUV光源10係包括一雷射源12以供產生一束雷射脈衝並從雷射源12沿著一或多個束路徑輸送該束進入一腔室14中,以將一各別靶、諸如一微滴照射於一輻照區16。
圖1中亦顯示:EUV光源10亦可包括一靶材料輸送系統26,其例如輸送一靶材料的微滴至腔室14的內部來到輻照區16,其中微滴將與一或多個雷射脈衝交互作用以最終產生電漿並產生一EUV發射。先前技藝中已經提出不同的靶材料輸送系統,且熟悉該技藝者將得知其相對優點。
如上,靶材料係為一EUV發射元素,其可包括但未必限於一包括錫、鋰、氙或其組合之材料。靶材料可為液體微滴的形式,或替代性可為被包含在液體微滴內的固體粒子。例如,元素錫可被提出作為靶材料,作為純錫;作為一錫化合物諸如SnBr4、SnBr2、SnH4;作為一錫合金,例如錫-鎵合金、錫-銦合金、錫-銦-鎵合金、或其一組合。依據使用材料而定,靶材料可以不同溫度包括室溫或接近室溫(例如錫合金或SnBr4)以高於室溫的溫度(例如純錫)或以低於室溫的溫度(例如SnH4)被提供至輻照區16。在部分實例中,這些化合物可相對具揮發性,諸如SnBr4。熟悉該技藝者將得知錫以外之EUV發射元素的類似合金及化合物,及如是材料與上述者之相對優點。
回到圖1,EUV光源10亦可包括一光學元件18諸如一近法向入射收集器面鏡,具有一呈現長球體(亦即繞主軸線旋轉的橢圓)形式之反射表面,俾使光學元件18具有一位於或接近於輻照區16之第一焦點及一位於一所謂中間區20之第二焦點,其中EUV光可從EUV光源10輸出並輸入至一利用EUV光之裝置諸如積體電路微影術工具(未圖示)中。如圖1所示,光學元件18形成有一開孔以容許雷射源12所產生的雷射光脈衝通過且抵達輻照區16。
光學元件18應具有一適當表面以供收集EUV光並將其導引至中間區20以供後續輸送至利用EUV光之裝置。例如,光學元件18有可能具有一階化多層塗覆物,其具有交替層的鉬及矽,且在部分實例中,一或多個高溫擴散障壁層、平化層、蓋覆層及/或蝕刻停止層。
熟悉該技藝者將瞭解:可使用長球體面鏡以外的光學元件作為光學元件18。例如,光學元件18係可替代性為繞一主軸線旋轉的拋物線或者可組構以將一具有一環形橫剖面的束輸送至一中間區位。在其他實施例中,光學元件18可利用相對於本文所描述者而言為添加物或取代物之塗覆物及層。熟悉該技藝者將能夠在一特定情形中對於光學元件18選擇一適當形狀及組成物。
如圖1所示,EUV光源10可包括一聚焦單元22,其包括一或多個光學元件以供在輻照區將雷射束聚焦至一焦斑。EUV光源10亦可包括一束調控單元24,其具有一或多個光學元件,位於雷射源12與聚焦單元22之間,以供擴 大、操縱及/或定形雷射束。不同的聚焦單元及束調控單元係為該技藝所已知,並可由熟悉該技藝者作適當選擇。
如上述,在部分實例中,雷射源12包含種子雷射及一或多個放大器。種子雷射產生雷射脈衝,其隨後被放大變成在輻照部位16輻照靶材料之雷射束,以形成一產生EUV發射之電漿。
熟悉該技藝者將瞭解:可使用一數量類型的種子雷射以產生預脈衝及主脈衝。例如,可使用傳統上稱為“主振盪器功率放大器(MOPA)”組態之一習見的雙腔室橫向流雷射源。替代性地,可使用稱為快速軸向流雷射之一較新類型雷射。單一雷射源可產生預脈衝及主脈衝兩者。替代性地,可使用分離的種子雷射產生預脈衝及主脈衝,常稱為MOPA+PP雷射。
在EUV系統的部分實施例中常用之一類型種子雷射係為一CO2雷射,而其他實施例則可使用一YAG(釔鋁石榴石)雷射。若具有兩種子雷射,則其可屬於不同類型;然而,例如一YAG雷射將需要一CO2雷射以外之一分離的放大器或放大器鏈。熟悉該技藝者將認識到:具有CO2及YAG雷射以外之其他類型的雷射,及MOPA與MOPA+PP雷射以外的其他組態,且將能夠決定何者類型及組態的雷射將適合於所欲的應用。
圖2是來自一CO2驅動雷射的一典型主雷射脈衝在通過一放大器後之圖形,其中曲線201顯示脈衝隨時間之強度(intensity)。可看出在強度初始峰值之後陡峭地下降; 這是一脈衝通過一放大器之典型所見,原因在於脈衝的引領邊緣使得放大器飽和並在其通過時使用了大部分的增益。所顯示的脈衝寬度係從引領邊緣(位於x軸的約80ns)至尾隨邊緣(位於x軸的約330ns)為近似250奈秒(ns)。這是一傳統MOPA組態中的一主脈衝之典型所見,其一般已經位於100至300ns的範圍,且比一MOPA+PP組態中的一典型主脈衝更長,在該等主脈衝中此時使用接近100ns。預脈衝一般已經位於50至150ns、且此時可為30至70ns的範圍。主脈衝及預脈衝係預期會繼續縮短,可能甚至進入以皮秒(picosecond)測量的範圍。
如上述,在先前技藝中,一般提前選擇來自種子雷射比起Q切換式脈衝更短之一脈衝寬度。可例如藉由使脈衝通過一光學開關諸如光電調變器(EOM)來達成此作用,其可能位居圖1的束調控單元24中並作為一擋板以縮短脈衝、開啟以容許脈衝的引領邊緣通過且隨後關閉以在所欲點切除脈衝的尾端。
圖3是被嵌夾於兩電極304及306之間的一晶體302組成之一類型的如是一EOM 300之圖式。一可使用於如是晶體之材料係為碲化鎘(CdTe);亦具有使用於EOM中的其他材料。
當一高電壓HV(約5000伏特,或5仟伏或KV)被施加至電極304及306時,產生平行於晶體302的光軸之一電場,其造成通過晶體之光的偏振以旋轉90度。
偏光器P1及P2被放置於EOM 300的任一側上;偏 光器P1及P2係“交叉”,亦即將通過偏光器之光的定向相對於彼此旋轉90度。因此,若缺少EOM 300,由於偏光器P2相對於偏光器P1的定向之90度變化,一被定向成通過偏光器P1之雷射脈衝308將不通過偏光器P2。
當並無電壓施加至EOM 300時,已經通過偏光器P1之脈衝308的定向係未被其通過晶體302所更改且因此不通過偏光器302。然而,當電壓HV被施加至EOM 300時,脈衝308的定向隨著其通過晶體302而旋轉90度,且因此通過偏光器P2。
當施加電壓時,一使用一CdTe晶體之EOM係能夠在約3.5ns中從“關斷(off)(通過的光之定向並無變化,故防止脈衝308通過偏光器P1及P2)”切換至“接通(on)(脈衝308的定向在通過偏光器P1之後發生一變化,俾使其亦可通過偏光器P2並變成脈衝310)”,或從“接通”至“關斷”。因此,藉由在脈衝的引領邊緣抵達之前施加電壓並“接通”EOM且隨後藉由在適當時間移除所施加電壓來“關斷”EOM,可使用如是一EOM縮短一通過的雷射脈衝。
這事實上係為如上述般先前技藝的系統將一雷射脈衝諸如脈衝308從其諸如圖3所示完整寬度縮短至一具有預定長度的脈衝諸如脈衝310之一種常見方式。然而,此外。如是一EOM係足夠快速地操作以依意願改變各個個別脈衝的寬度。
亦將注意到:若單一種子雷射產生預脈衝及主脈衝兩者,預脈衝亦可通過EOM,且通過相同的放大器。由 於一主脈衝與下個預脈衝之間隔典型係位於15至20微秒(μs)的級數,已知給定了如上述EOM的典型切換時間,具有充沛時間依需要接通或關斷EOM,且因此只調整主脈衝的寬度而不影響預脈衝。
在具有用於預脈衝及主脈衝之分離的種子雷射之實施例中,可較佳具有兩EOM,對於各個種子雷射各具有一者,且所產生的束在EOM與放大器之間被組合。由於種子雷射的波長可能不同,如是實施例在一些方面可能較為簡單,且一預脈衝與對應的預脈衝之間隔典型係顯著地比起一主脈衝與下個預脈衝之間的時間更短。替代性地,在部分實施例中,預脈衝可能未通過一EOM或一放大器,或可通過不同於主脈衝所用者之一放大器。
圖4是有可能從來自一MOPA+PP種子雷射的一脈衝所獲得之EUV輸出的圖形,其具有已限於約120ns的脈衝寬度、即一種有時在先前技藝中所選擇的脈衝寬度。曲線402顯示在各時間點所產生之EUV信號,而曲線404顯示從脈衝開始以來累積之EUV能量。
在圖4中可看出:EUV能量的產生速率在雷射脈衝全程並不均勻,且在接近脈衝終點處減小。因此,曲線402指示出在脈衝中早期產生較大EUV能量,而後續作一下降。咸信這是由於電漿散佈所致,指示出大部分靶材料已被汽化。曲線404類似地顯示累積能量在脈衝中早期較快速增大且隨後朝向脈衝終點變平。
可看出曲線404顯示了週期從約50ns至110ns的 粗略線性增加,指示出在此週期期間之一近似恆定的EUV產生速率。基於此理由,脈衝進一步從120ns縮短至低達50ns將會導致所產生的累積EUV能量之減小,其隨著脈衝寬度減小而粗略呈線性。這容許藉由控制來自種子雷射的脈衝寬度而將EUV累積能量或“產率(yield)”控制於一範圍內。如上述,脈衝寬度的控制可逐一脈衝而快速地產生,而不像先前技藝的任務循環控制般需要複數個脈衝才生效。
然而,如同熟悉該技藝者將得知:EUV產率亦依據經放大的種子雷射脈衝賦予靶材料之功率而定,其轉而依據雷射放大器的RF任務循環而定。甚至可能使得如圖4所示從一脈衝所獲得的最大累積EUV將低於所欲量。並且,欲使脈衝寬度保持在其中與EUV輸出的交叉相關近似呈線性之範圍(線性範圍)內,如圖4所示。因此係欲組合具備脈衝寬度之較快控制以及先前技藝的任務循環之較慢控制。
圖5是一使用RF(任務循環)控制及脈衝寬度控制來調整EUV輸出之系統500的簡化方塊圖。一種子雷射502產生被一雷射放大器504所放大之脈衝。脈衝的產生係由一脈衝寬度控制器506及一控制器508所控制,脈衝寬度控制器506如上述般決定各脈衝的寬度,控制器508如同先前技藝般決定雷射放大器504的任務循環。脈衝係被放大且通往一靶腔室510,其在該處輻照一靶材料,而如上述般生成一電漿。
系統開始操作係具有一預選定的初始任務循環及主脈衝的靶脈衝寬度,暨脈衝寬度的一可接受範圍;熟悉該技藝者可決定什麼被認為是可接受的,但一般咸信:可接受範圍可能類似於諸如圖4所示的線性範圍。靶脈衝寬度將較佳穩穩位於該線性範圍內;將隨著脈衝寬度控制器506以逐一脈衝基礎作出其調整而使實際脈衝寬度在靶脈衝寬度周圍作變化。初始任務循環將作估計以達成一所欲EUV靶輸出,該輸出可例如由使用者選擇。
預脈衝亦可具有一靶寬度,其不需與主脈衝者相同。並且,如上述,欲使得預脈衝對於在主脈衝抵達之前而言使其對於靶材料的效應作最適化。因此預期:較佳將使預脈衝中的能量保持恆定。
一旦系統開始運作,雷射開始係為初始任務循環及靶脈衝寬度;種子雷射脈衝被放大且輻照靶腔室510中的靶材料,如圖1更詳細顯示。來自靶腔室510的EUV輸出隨後由一感測器512測量並藉由一比較器514與EUV靶輸出作比較,且結果被饋送回到脈衝寬度控制器506。若EUV輸出過低,脈衝寬度控制器506將增大下個主脈衝的寬度,位於其範圍內(再度為圖4中曲線404的線性部分),且若EUV輸出過高,脈衝寬度控制器506將反之縮短下個主脈衝的寬度,再度位於其範圍內,且重覆該製程,藉此產生以逐一脈衝基礎使其寬度被調整之一串的主脈衝。
然而,縱使EUV輸出能夠利用此方式抵達所欲位準,以逐一脈衝基礎使主脈衝的脈衝寬度作調整,以使EUV 輸出保持在所欲位準,脈衝寬度可能未居中位於靶脈衝寬度周圍,或可能未留在可接受範圍內。並且,即使當脈衝寬度已分別被調整至可接受範圍中的最短或最長數值時,EUV輸出位準仍可能留在過高或過低。
為了修正這些問題,脈衝寬度控制器506的輸出亦被饋送至一比較器516,其比較由脈衝寬度控制器506所決定的脈衝寬度與靶脈衝寬度。此比較的結果係饋送至RF控制器508。若主脈衝的脈衝寬度位於可接受範圍內,則不需要調整任務循環,且RF控制器508將繼續以初始任務循環來運轉雷射放大器504。
然而,若脈衝寬度控制器506輸出指示出:脈衝寬度未位於可接受範圍內,或EUV輸出過高或過低,RF控制器508將更改任務循環以改變EUV輸出。若EUV輸出過低或主脈衝寬度過長則RF控制器508將增大任務循環,或者若EUV輸出過高或主脈衝寬度過短則減小任務循環。
如上述,如是變化典型係需花費某數量的脈衝以使任務循環生效。隨著任務循環及因此包括EUV輸出產生改變,脈衝寬度控制器506繼續接收EUV輸出的回饋;隨著EUV輸出回應於任務循環的變化而移動,脈衝寬度控制器506將繼續調整主脈衝的寬度以使EUV輸出返回可接受範圍。
因此,若脈衝寬度控制器506的輸出造成RF控制器508增大任務循環,隨著任務循環增大,脈衝寬度控制器506將縮短主脈衝寬度直到其再度位於可接受範圍內為 止。反之,若脈衝寬度控制器506的輸出造成RF控制器508減小任務循環,隨著任務循環減小,脈衝寬度控制器506將加長主脈衝寬度直到其位於可接受範圍內為止。
利用此方式,脈衝寬度控制器506將以快速逐一脈衝基礎調整主脈衝寬度,以使EUV輸出保持在所欲數值,至少與其範圍所容許般一樣快速。當主脈衝寬度未位於可接受範圍內時,脈衝寬度控制器506的輸出將造成較慢的RF控制器508依需要調整任務循環,以容許脈衝寬度控制器506使脈衝寬度保持在可接受範圍內同時使EUV輸出保持在所欲數值。
應注意:如上述,若預脈衝及主脈衝皆經歷相同的放大器,則調整任務循環將改變預脈衝暨主脈衝的能量。然而,藉由容許脈衝寬度控制器在改變任務循環之前於可接受範圍內改變主脈衝的脈衝寬度,將降低預脈衝的能量所作之改變。並且,任務循環所作的變化亦將更慢發生,且因此可容許預脈衝能量的更改之其他補償。
如是操作的模擬係已經被產生並可以圖形作顯示。圖6顯示一實施例中之一系統的經數學建模EUV輸出之圖形。此處,已經在線性範圍近似中央、近似90ns處,選擇了所欲脈衝寬度。在此實例中,RF控制器508被設定以使種子雷射502產生0.85的一恆定任務循環,如線602所示。所欲的EUV輸出(脈衝EUV)為1.5。
可從曲線604看出:系統正產生所欲輸出,亦即EUV輸出係居中位於1.5周圍且在任一方向變化小於0.5。然 而,如曲線606所示,脈衝寬度未居中位於90ns周圍,而是居中位於65至70ns周圍並因此可能在線性範圍外、或接近如此。
圖7顯示在一實施例中可如何解決此問題。在此實例中,一EUV產生系統開始係為與上文就圖6所描述者相同之參數。然而,不採用一恆定的任務循環,一RF控制器(例如圖5的RF控制器508)係接收有關脈衝寬度之回饋並可如上述般改變任務循環。
曲線702顯示種子雷射的任務循環,其開始(起動係發生於x軸的0脈衝處)於與圖6範例採用者相同之數值0.85。曲線704顯示系統類似地產生所欲的EUV輸出1.5±0.5,且曲線706顯示脈衝寬度初始(亦位於x軸的0脈衝)再度位於65至70ns範圍、而非所欲的90ns。
在圖5的系統中,脈衝寬度控制器506將一信號送到RF控制器508,指示出脈衝寬度居中位於一低於所欲靶數值之位準。與之回應,如曲線702所見,RF控制器508將縮短任務循環。這具有減小系統的EUV輸出之效應,亦如上述般隨著某數量的脈衝達成。
回應於EUV輸出的減小,脈衝寬度控制器504將加長脈衝寬度,藉此增大EUV輸出。並繼續以信號告知RF控制器506:脈衝寬度仍太短直到脈衝寬度返回到適當數值或範圍為止。一旦脈衝寬度再度居中位於靶寬度周圍,脈衝寬度控制器504送到RF控制器508的信號將指示出如此,且RF控制器508將停止降低任務循環。
曲線702因此指示出:在一範例中,任務循環係從初始數值0.85縮短且隨後安頓於近似0.65周圍(隨時間而略微起伏),而曲線706則顯示:平均脈衝寬度從近似65至70ns增大至所欲的平均數值90ns,同時使EUV數值保持在所欲範圍中。如同可從x軸看出:這可能需花費100至200脈衝,亦需花費一數量的脈衝使得任務循環的變化反映在EUV輸出上、且因此反映在較快速改變的脈衝寬度上。
請注意:圖7雖顯示任務循環充分降低以使脈衝寬度回到一平均值90ns,並不必然如此,且事實上可能不欲如此。並且,任務循環的變化亦將影響預脈衝中的能量。因此,若平均65至70ns脈衝寬度仍位於脈衝寬度的可接受範圍內,則預脈衝能量將因此根本無變化、同時主脈衝能量係由對於脈衝寬度的變化所控制。替代性地,平均脈衝寬度可回到仍小於90ns、諸如75至80ns之某數值,因此降低了任務循環中所需要的變化並減低預脈衝能量中的所產生變化。
圖8顯示另一模擬的結果。如曲線802所見,任務循環再度開始於0.85,而曲線804中的EUV輸出再度顯示一輸出1.5±0.5,且曲線806所顯示的脈衝寬度開始於70ns周圍。如同圖7中,在約100脈衝或其左右以內,任務循環在曲線802上已經下降至約0.65,且脈衝寬度在曲線806已經增大,俾使平均值呈現出位於大約靶脈衝寬度90ns。
然而,接著,種子雷射的能量係被更改以模擬效率的變化。首先,在脈衝2500(T1),種子雷射能量係降低。 由於脈衝寬度控制器504依需要增大脈衝寬度以使EUV輸出保持在所欲範圍,脈衝寬度的一尖凸可出現在曲線806的T1處。接著係為在曲線802的T1處之任務循環作一上移回到約0.8,再度需花費100脈衝左右,其轉而容許脈衝寬度下降回到一平均寬度90ns。
類似地,在脈衝7500(T2),種子雷射能量係增大回到其原始數值。如曲線806上的T2處所見,平均脈衝寬度係回應而下降,以再度使EUV輸出保持在所欲範圍中,直到RF控制器506可使任務循環下降回到先前數值0.65為止,如曲線802上的T2處所見,轉而容許脈衝寬度增大回到靶平均值90ns。
並且,可能不需要或不欲使平均脈衝寬度返回至90ns,而是只回到一仍位於可接受範圍內之數值,以再度降低所需要之任務循環的變化及預脈衝能量的所產生變化。
圖9顯示根據一實施例之一用於控制來自一EUV LLP系統中的一種子雷射的主脈衝之方法的流程圖。在步驟901,種子雷射、例如圖5的種子雷射502係產生一主脈衝。如上述,第一脈衝將假定為位於脈衝寬度的可接受範圍(再度假定為線性範圍)內之一預選定的靶脈衝寬度,其中種子雷射以一估計可產生一所欲EUV輸出之任務循環操作。種子雷射脈衝將打擊諸如位於圖5的靶腔室510中之一靶材料,並產生一EUV輸出。
在步驟902,EUV輸出係藉由一感測器、諸如圖5 的感測器512所測量,而在步驟903,EUV輸出例如藉由圖5的比較器514而與所欲輸出位準作比較。若EUV輸出未位於所欲位準,一信號例如藉由圖5的脈衝寬度控制器506被送到種子雷射,以改變下個主脈衝的脈衝寬度;如上述,若EUV輸出過低則加長脈衝寬度,且若EUV輸出過高則縮短脈衝寬度。可例如利用一諸如圖3所示者等EOM來改變脈衝寬度;熟悉該技藝者將瞭解:亦可取得其他類型的光學開關達成此作用。該方法回到步驟901以產生下個主脈衝(預脈衝發生於主脈衝之間且此處未予顯示)。
若在步驟903的比較結果係為:EUV輸出位於所欲位準、或一所欲範圍內,則在步驟905使脈衝寬度與可接受範圍作比較。若脈衝寬度位於可接受範圍內,則該方法回到步驟901以產生另一脈衝。然而,若脈衝寬度位於可接受範圍外,則一信號被送到RF產生器以藉由圖5的RF控制器508改變雷射放大器的任務循環。如上述,若脈衝寬度過短則雷射放大器的任務循環將減小,而使EUV輸出減小俾使脈衝寬度可加長以再度落入可接受範圍內,而若脈衝寬度過長則任務循環將增大,而使EUV輸出增大俾使脈衝寬度可縮短以落入可接受範圍內。隨著重覆地產生脈衝,利用此方式繼續系統的操作及雷射放大器任務循環及主脈衝寬度之控制。
上文已經參照數個實施例說明了所揭露的方法及裝備。熟悉該技藝鑑於此揭示將可得知其他實施例。可易於利用上列實施例所述者以外的組態或連同上述者以外 的元件,來實行所揭露方法及裝備之特定形態。例如,可使用用以決定種子雷射操作的初始條件之不同數學建模演算法或不同類型的種子雷射。RF控制器及脈衝寬度控制器可以多種不同方式實行,如同熟悉該技藝者所知。熟悉該技藝者將瞭解:具有多種不同方式來實行就圖9所描述的製程;例如,明確來說不需要“若-則”指令,而是可在所欲數值與實際測量數值之間作出比較,且該比較所產生的一數量係傳遞至適當控制器,如圖5所示。
如同所述,可以使得預脈衝可能不需通過一EOM或根本不需被放大,或者可藉由不同於用來放大主脈衝者的一放大器所放大。然而,利用EOM係容許預脈衝依意願通過與主脈衝相同的放大器,而不具有第二放大器的費用或複雜度。亦如所述,可使用CO2或YAG雷射以外之其他類型的雷射,及MOPA或MOPA+PP以外之其他組態。
亦應瞭解:所描述的方法及裝備可以多種方式實行,包括作為一製程、一裝備或一系統。可藉由用於指示一處理器進行如是方法之程式指示來實行本文所描述的方法,且如是指示係被記錄在一電腦可讀取式儲存媒體諸如硬碟機、軟碟片、光碟片諸如CD或數位多功用碟片(DVD)、快閃記憶體等、或其中經由光學或電子導通連結件傳送程式指示之電腦網路上。如是程式指示可藉由一處理器或控制器執行,或可被併入固定式邏輯元件中。應注意:本文所描述方法的步驟次序係可更改而仍位於揭示的範圍內。
該等實施例的這些及其他變化係擬為本揭露內容所涵蓋,其僅受隨附之申請專利範圍之限制。
500‧‧‧使用RF(任務循環)控制及脈衝寬度控制來調整EUV輸出之系統
502‧‧‧種子雷射
504‧‧‧雷射放大器
506‧‧‧脈衝寬度控制器
508‧‧‧RF控制器
510‧‧‧靶腔室
512‧‧‧感測器

Claims (18)

  1. 一種用於控制一EUV LLP系統的輸出之方法,該EUV LLP系統具有產生預脈衝(pre-pulses)及主脈衝(main pulses)的種子(seed)雷射,該方法包含:操作該等種子雷射來產生一預脈衝及一主脈衝,該預脈衝及該主脈衝之各者具有一分別的脈衝寬度;以一具有一任務循環(duty cycle)控制式RF泵速率的放大器放大該主脈衝,及以該等經放大脈衝輻照一靶材料(target material)以產生一具有能量的EUV輸出;調整該主脈衝的該脈衝寬度,若該產生的EUV輸出能量高於一所欲EUV輸出能量則縮短該主脈衝的該脈衝寬度,以及若該EUV能量低於該所欲EUV輸出能量則加長該主脈衝的該脈衝寬度;調整該任務循環,若該主脈衝的該脈衝寬度比一所欲範圍更長則增大該任務循環,及若該主脈衝的該脈衝寬度比該所欲範圍更短則減小該任務循環。
  2. 如請求項1之方法,其進一步包含若該任務循環增大則縮短該主脈衝的該脈衝寬度,以及若該任務循環減小則加長該主脈衝的該脈衝寬度。
  3. 如請求項1之方法,其中調整該主脈衝的脈衝寬度係包含使該主脈衝通往一光學開關以及調整該開關開啟的時間藉以僅容許各脈衝的一所欲寬度通過該開關。
  4. 如請求項3之方法,其中該光學開關為一光電調變器。
  5. 如請求項4之方法,其中該光電調變器包含一碲化鎘晶體。
  6. 如請求項1之方法,其中該等種子雷射的一者係為一CO2雷射。
  7. 如請求項1之方法,其中該等種子雷射的一者係為一YAG雷射。
  8. 如請求項1之方法,其進一步包含放大該預脈衝。
  9. 如請求項8之方法,其中放大該預脈衝係包含使該預脈衝通過該放大器。
  10. 如請求項8之方法,其中放大該預脈衝係包含使該預脈衝通過一第二放大器。
  11. 一種用於控制一EUV LLP系統的輸出能量之系統,該EUV LLP系統具有產生一預脈衝及一主脈衝的種子雷射,該預脈衝及該主脈衝之各者具有一分別的脈衝寬度,該系統包含:光學開關(optical switches),其能夠使該預脈衝及該主脈衝通過並在一所欲時間開啟及關閉以決定通過該開關之各脈衝的寬度;一放大器,其具有一任務循環以供放大該主脈衝;一靶腔室(target chamber),以該等經放大脈衝輻照一靶材料俾以產生EUV輸出能量;一感測器,以用測量該EUV輸出能量及產生一感測器信號(sensor signal),其指示出相較於一所欲EUV輸出能量而言之該EUV輸出能量的位準; 一脈衝寬度控制器,以供:接收該感測器信號及產生一第一脈衝寬度信號,其指示該光學開關若該EUV輸出能量高於該所欲能量則縮短下個主脈衝的寬度及若該EUV能量低於該所欲輸出能量則加長下個主脈衝的寬度,及產生一第二脈衝寬度信號,其指示出相較於一可接受範圍而言之該主脈衝的該脈衝寬度的長度;及一任務循環控制器,以接收該第二脈衝寬度信號並且若該主脈衝的該脈衝寬度比該可接受範圍更長則增大該任務循環及若該主脈衝的該脈衝寬度比該可接受範圍更短則減小該任務循環。
  12. 如請求項11之系統,其中該光學開關為一光電調變器。
  13. 如請求項12之系統,其中該光電調變器包含一碲化鎘晶體。
  14. 如請求項11之系統,其中該等種子雷射的一者係為一CO2雷射。
  15. 如請求項11之系統,其中該等種子雷射的一者係為一YAG雷射。
  16. 如請求項11之系統,其中該放大器亦用於放大該預脈衝。
  17. 如請求項11之系統,其進一步包含一第二放大器以供放大該預脈衝。
  18. 一種其上實施有一程式之非暫態電腦可讀取式媒體,該程式可藉由一處理器被執行以進行一用於控制一具有 一種子雷射之EUV LPP系統的輸出之方法,該種子雷射產生預脈衝及主脈衝,該方法包含下列步驟:操作該等種子雷射來產生一預脈衝及一主脈衝,該預脈衝及該主脈衝之各者具有一分別的脈衝寬度;以一具有一任務循環控制式RF泵速率的放大器放大該主脈衝,及以該等經放大脈衝輻照一靶材料以產生一具有能量的EUV輸出;調整該主脈衝的該脈衝寬度,若該產生的EUV輸出能量高於一所欲EUV輸出能量則縮短該主脈衝的該脈衝寬度,以及若該EUV能量低於該所欲EUV輸出能量則加長該主脈衝的該脈衝寬度;調整該任務循環,若該主脈衝的該脈衝寬度比一所欲範圍更長則增大該任務循環,及若該主脈衝的該脈衝寬度比該所欲範圍更短則減小該任務循環。
TW103103518A 2013-02-15 2014-01-29 用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法 TWI609539B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/768,588 US9000403B2 (en) 2013-02-15 2013-02-15 System and method for adjusting seed laser pulse width to control EUV output energy

Publications (2)

Publication Number Publication Date
TW201442380A TW201442380A (zh) 2014-11-01
TWI609539B true TWI609539B (zh) 2017-12-21

Family

ID=51350946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103518A TWI609539B (zh) 2013-02-15 2014-01-29 用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法

Country Status (5)

Country Link
US (1) US9000403B2 (zh)
JP (1) JP6325003B2 (zh)
KR (1) KR102115768B1 (zh)
TW (1) TWI609539B (zh)
WO (1) WO2014126667A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798268B (zh) * 2012-11-14 2018-04-20 视乐有限公司 激光脉冲聚焦
US9713240B2 (en) 2015-08-12 2017-07-18 Asml Netherlands B.V. Stabilizing EUV light power in an extreme ultraviolet light source
TWI739755B (zh) * 2015-08-12 2021-09-21 荷蘭商Asml荷蘭公司 極紫外線光源中之目標擴張率控制
US9832854B2 (en) * 2015-08-12 2017-11-28 Asml Netherlands B.V. Systems and methods for stabilization of droplet-plasma interaction via laser energy modulation
US9820368B2 (en) 2015-08-12 2017-11-14 Asml Netherlands B.V. Target expansion rate control in an extreme ultraviolet light source
US9918375B2 (en) * 2015-11-16 2018-03-13 Kla-Tencor Corporation Plasma based light source having a target material coated on a cylindrically-symmetric element
US10804886B2 (en) * 2016-06-21 2020-10-13 Eagle Harbor Technologies, Inc. High voltage pre-pulsing
US9832852B1 (en) * 2016-11-04 2017-11-28 Asml Netherlands B.V. EUV LPP source with dose control and laser stabilization using variable width laser pulses
US9755396B1 (en) * 2016-11-29 2017-09-05 Asml Netherlands B.V. EUV LPP source with improved dose control by combining pulse modulation and pulse control mode
US10299361B2 (en) * 2017-03-24 2019-05-21 Asml Netherlands B.V. Optical pulse generation for an extreme ultraviolet light source
CN113661788A (zh) 2019-04-04 2021-11-16 Asml荷兰有限公司 辐射系统
JP2022059163A (ja) * 2020-10-01 2022-04-13 ギガフォトン株式会社 極端紫外光生成システム、及び電子デバイスの製造方法
JP2022063595A (ja) * 2020-10-12 2022-04-22 住友重機械工業株式会社 レーザ加工機の制御装置、レーザ加工機、及びレーザ加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201101939A (en) * 2009-04-09 2011-01-01 Cymer Inc System, method and apparatus for aligning and synchronizing target material for optimum extreme ultraviolet light output
TW201245899A (en) * 2011-03-31 2012-11-16 Cymer Inc System and method for compensating for thermal effects in an EUV light source

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
AU2003240233A1 (en) * 2002-05-13 2003-11-11 Jettec Ab Method and arrangement for producing radiation
JP5358060B2 (ja) 2007-02-20 2013-12-04 ギガフォトン株式会社 極端紫外光源装置
US8009705B2 (en) * 2007-07-05 2011-08-30 Mobius Photonics, Inc. Fiber MOPA system without stimulated brillouin scattering
JP2012191171A (ja) * 2011-02-25 2012-10-04 Gigaphoton Inc レーザ装置、それを備える極端紫外光生成装置およびレーザ光出力制御方法
JP2012216769A (ja) * 2011-03-29 2012-11-08 Gigaphoton Inc レーザシステム、レーザ光生成方法、および極端紫外光生成システム
JP2012216768A (ja) * 2011-03-30 2012-11-08 Gigaphoton Inc レーザシステム、極端紫外光生成システム、およびレーザ光生成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201101939A (en) * 2009-04-09 2011-01-01 Cymer Inc System, method and apparatus for aligning and synchronizing target material for optimum extreme ultraviolet light output
TW201245899A (en) * 2011-03-31 2012-11-16 Cymer Inc System and method for compensating for thermal effects in an EUV light source

Also Published As

Publication number Publication date
KR20150119054A (ko) 2015-10-23
JP2016513280A (ja) 2016-05-12
US20140233005A1 (en) 2014-08-21
TW201442380A (zh) 2014-11-01
JP6325003B2 (ja) 2018-05-16
US9000403B2 (en) 2015-04-07
WO2014126667A3 (en) 2015-10-29
WO2014126667A2 (en) 2014-08-21
KR102115768B1 (ko) 2020-05-28

Similar Documents

Publication Publication Date Title
TWI609539B (zh) 用於調整種子雷射脈衝寬度以控制極紫外光輸出能量之系統及方法
US8704200B2 (en) Laser produced plasma EUV light source
TWI558045B (zh) 用於種源雷射模式穩定化之系統及方法
CN108029186B (zh) 经由激光能量调制来稳定液滴-等离子体相互作用的系统和方法
US9693440B1 (en) EUV LPP source with improved dose control by tracking dose over specified window
US9980359B2 (en) Systems and methods for controlling EUV energy generation using pulse intensity
US9426872B1 (en) System and method for controlling source laser firing in an LPP EUV light source
TWI759344B (zh) 用於控制極紫外光(euv)輻射之劑量之方法與系統及相關之非暫時性電腦可讀儲存媒體
US9755396B1 (en) EUV LPP source with improved dose control by combining pulse modulation and pulse control mode
CN110612482B (zh) 激光产生的等离子体源
TW202414101A (zh) 脈衝雷射及操作方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees