TWI608882B - Alloy powder manufacturing equipment and method with temperature control design - Google Patents

Alloy powder manufacturing equipment and method with temperature control design Download PDF

Info

Publication number
TWI608882B
TWI608882B TW105136883A TW105136883A TWI608882B TW I608882 B TWI608882 B TW I608882B TW 105136883 A TW105136883 A TW 105136883A TW 105136883 A TW105136883 A TW 105136883A TW I608882 B TWI608882 B TW I608882B
Authority
TW
Taiwan
Prior art keywords
temperature
molten
melt
outlet
alloy powder
Prior art date
Application number
TW105136883A
Other languages
Chinese (zh)
Other versions
TW201817515A (en
Inventor
陳冠宇
黃揚升
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW105136883A priority Critical patent/TWI608882B/en
Application granted granted Critical
Publication of TWI608882B publication Critical patent/TWI608882B/en
Publication of TW201817515A publication Critical patent/TW201817515A/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

具溫控設計的合金粉末製造設備及方法 Alloy powder manufacturing equipment and method with temperature control design

本發明有關於一種合金粉末製造設備及方法,特別是關於一種適用於熔湯輸送再加熱之具溫控設計的合金粉末製造設備及方法。 The invention relates to an alloy powder manufacturing equipment and method, in particular to an alloy powder manufacturing equipment and method suitable for temperature control design of molten steel conveying and reheating.

目前,真空感應熔煉氣體霧化法(VIGA,Vacuum Induction-melting Gas Atomization)可用以製造金屬合金粉末。參考圖1,習知製造合金粉末的方法如下:先以感應線圈99將位於一熔爐98內之合金材料棒於真空環境下進行感應加熱,使該合金材料棒熔化成熔湯91;然後,將該熔湯91倒入一承載坩堝92內;最後,該熔湯91以流動型態通過一熔湯輸送導管93並進入一噴嘴95後,被高速惰性氣體G沖擊霧化後並快速凝固成合金粉末P。 Currently, Vacuum Induction-melting Gas Atomization (VIGA) can be used to produce metal alloy powders. Referring to FIG. 1, a conventional method for manufacturing an alloy powder is as follows: first, an alloy rod of a material rod located in a furnace 98 is inductively heated in a vacuum environment by an induction coil 99 to melt the alloy material rod into a molten soup 91; The melt 91 is poured into a carrier 92; finally, the melt 91 passes through a melt transfer conduit 93 in a flowing form and enters a nozzle 95, which is atomized by a high-speed inert gas G and rapidly solidified into an alloy. Powder P.

然而,習知製造合金粉末的方法不包括熔湯再加熱之設計,僅以熱傳係數較低之材質,例如氧化鋁(Al2O3)或二氧化鋯(ZrO2),製造該熔湯輸送導管以阻絕熱的散失。因此,通過該熔湯輸送導管的熔湯仍持續降溫,進而該熔湯降溫後之溫度將直接影響該合金粉末之粒徑及真圓度(實際上若滴狀熔湯被高速惰性氣體沖擊霧化的話,則會影響凝固後之鈦合金粉末的品質)。再者,習知熔湯91流經在該噴嘴出口93受氣體作用形成粉末的過程可能持續一段時間,由於高速惰性氣體G作用於該熔湯輸送導管93之出口,因此會造成其周圍溫度逐步冷卻,引發熔湯阻塞於該熔湯輸送導管93之出口的問題。更嚴重者,該熔湯輸送導管93之出口尖端冷卻,將造成整個噴粉製程的中斷。 However, the conventional method for producing an alloy powder does not include a design of remelting and reheating, and the melting of the material is only made of a material having a low heat transfer coefficient such as alumina (Al 2 O 3 ) or zirconium dioxide (ZrO 2 ). The catheter is delivered to resist heat loss. Therefore, the melt passing through the melt transfer conduit is continuously cooled, and the temperature after the melt is cooled will directly affect the particle size and roundness of the alloy powder (in fact, if the drop melt is impacted by a high-speed inert gas) If it is, it will affect the quality of the titanium alloy powder after solidification). Furthermore, the process in which the conventional melt 91 flows through the gas at the nozzle outlet 93 to form a powder may continue for a period of time. Since the high-speed inert gas G acts on the outlet of the melt delivery conduit 93, the ambient temperature thereof is gradually formed. Cooling causes a problem that the melt is blocked at the outlet of the melt delivery conduit 93. More seriously, the outlet tip of the melt delivery conduit 93 is cooled, which will cause an interruption in the entire dusting process.

有鑑於此,便有需要提供一種適用於熔湯輸送再加熱之具溫控設計的合金粉末製造設備及方法,來解決前述的問題。 In view of the above, there is a need to provide an alloy powder manufacturing apparatus and method for temperature control design suitable for melt transfer and reheating to solve the aforementioned problems.

本發明的主要目的在於提供一種具溫控設計的合金粉末製造設備及方法,使凝固後之合金粉末的粒徑更減小及真圓度(球狀)更佳。 The main object of the present invention is to provide an alloy powder manufacturing apparatus and method with a temperature control design, which can reduce the particle size of the solidified alloy powder and the roundness (spherical shape).

為達成上述目的,本發明提供一種具溫控設計的合金粉末製造設備,包括:一坩堝單元,用以容置一熔湯;一熔湯輸送導管,包括一進口及一出口,該進口連通於該坩堝單元之底部,用以輸送該坩堝單元之熔湯;一溫控單元,包括:一感應線圈,環繞該熔湯輸送導管,並用以感應加熱該熔湯輸送導管及位於其中之熔湯,以產生一超溫熔湯;一可調功率之主機,電性連接於該感應線圈,並提供該感應線圈之功率;一第一溫度感測器,用以量測該熔湯輸送導管之出口溫度;以及一微處理器,電性連接於該可調功率之主機及該第一溫度感測器,其中該微處理器根據該熔湯輸送導管之出口溫度而調整該感應線圈之功率,以控制該熔湯輸送導管之出口溫度,使該超溫熔湯離開該熔湯輸送導管之溫度達到一預定溫度;以及一噴粉單元,連通於該熔湯輸送導管之出口,用以將具有該預定溫度之超溫熔湯沖擊霧化後而快速凝固成合金粉末。 In order to achieve the above object, the present invention provides an alloy powder manufacturing apparatus with a temperature control design, comprising: a unit for accommodating a molten soup; a molten soup delivery duct including an inlet and an outlet, the inlet being connected to a bottom of the crucible unit for conveying the crucible of the crucible unit; a temperature control unit comprising: an induction coil surrounding the molten conveying conduit, and configured to inductively heat the molten conveying conduit and the molten soup therein, To generate an ultra-warm melt soup; a power-controlled mainframe is electrically connected to the induction coil and provides power of the induction coil; and a first temperature sensor for measuring the outlet of the melt delivery conduit And a microprocessor electrically coupled to the adjustable power host and the first temperature sensor, wherein the microprocessor adjusts the power of the induction coil according to an outlet temperature of the melt delivery conduit to Controlling an outlet temperature of the melt delivery conduit such that the temperature of the ultra-warm melt away from the melt delivery conduit reaches a predetermined temperature; and a dusting unit communicating with the molten delivery conduit Port for having the predetermined temperature after the impact of over-temperature molten metal to be atomized and rapidly solidified alloy powder.

本發明利用感應線圈進行該熔湯的超溫控制,使該超溫熔湯進入該噴粉單元之溫度達到一預定溫度,可確保維持超溫熔湯的型態,並使凝固後之合金粉末的粒徑更減小及真圓度(球狀)更佳。再者,本發明利用感應線圈持續對該熔湯輸送導管之出口加熱,可克服習知熔湯阻塞於該熔湯輸送導管之出口的問題。 The invention utilizes an induction coil to perform over-temperature control of the melt, so that the temperature of the ultra-warm melt into the powder-spraying unit reaches a predetermined temperature, thereby ensuring maintaining the shape of the over-temperature melt soup and allowing the alloy powder after solidification The particle size is further reduced and the roundness (spherical shape) is better. Furthermore, the present invention utilizes an induction coil to continuously heat the outlet of the melt delivery conduit, overcoming the problem of conventional melt clogging at the outlet of the melt delivery conduit.

為了讓本發明之上述和其他目的、特徵和優點 能更明顯,下文將配合所附圖示,作詳細說明如下。 The above and other objects, features and advantages of the present invention are obtained. It can be more obvious, and the following description will be made in conjunction with the attached drawings.

1‧‧‧合金粉末製造設備 1‧‧‧ alloy powder manufacturing equipment

10‧‧‧坩堝單元 10‧‧‧坩埚 unit

11‧‧‧熔湯 11‧‧‧ molten soup

110‧‧‧超溫熔湯 110‧‧‧Super warm melt soup

12‧‧‧承載坩堝 12‧‧‧ Carrying equipment

13‧‧‧熔湯輸送導管 13‧‧‧ molten soup delivery catheter

130‧‧‧進口 130‧‧‧Import

131‧‧‧出口 131‧‧‧Export

132‧‧‧進口部 132‧‧ ‧Import Department

133‧‧‧連接部 133‧‧‧Connecting Department

134‧‧‧出口部 134‧‧‧Exports Department

135‧‧‧感應套筒 135‧‧‧Induction sleeve

14‧‧‧溫控單元 14‧‧‧temperature control unit

141‧‧‧感應線圈 141‧‧‧Induction coil

142‧‧‧可調功率之主機 142‧‧‧Power of adjustable power

143‧‧‧第一溫度感測器 143‧‧‧First temperature sensor

144‧‧‧微處理器 144‧‧‧Microprocessor

145‧‧‧第二溫度感測器 145‧‧‧Second temperature sensor

15‧‧‧噴粉單元 15‧‧‧Dusting unit

151‧‧‧噴嘴出口 151‧‧‧Nozzle exit

16‧‧‧水冷式銅坩堝 16‧‧‧Water-cooled copper gong

18‧‧‧熔爐 18‧‧‧Furn

19‧‧‧感應線圈 19‧‧‧Induction coil

91‧‧‧熔湯 91‧‧‧ molten soup

92‧‧‧承載坩堝 92‧‧‧ carrying area

93‧‧‧熔湯輸送導管 93‧‧‧ molten soup delivery catheter

95‧‧‧噴嘴 95‧‧‧ nozzle

98‧‧‧熔爐 98‧‧‧Furn

99‧‧‧感應線圈 99‧‧‧Induction coil

G‧‧‧惰性氣體 G‧‧‧Inert gas

P‧‧‧合金粉末 P‧‧‧ alloy powder

S100~S600‧‧‧步驟 S100~S600‧‧‧Steps

圖1為習知合金粉末製造設備之剖面示意圖;圖2為本發明之一實施例之具有熔湯輸送再加熱之溫控設計的合金粉末製造設備之剖面示意圖;圖3為本發明之一實施例之具有熔湯輸送再加熱之溫控設計的合金粉末製造設備之剖面示意圖;圖4為本發明之一實施例之熔湯輸送導管及噴粉單元之剖面示意圖;以及圖5為本發明之具有熔湯輸送再加熱之溫控設計的合金粉末製造方法之流程圖。 1 is a schematic cross-sectional view of a conventional alloy powder manufacturing apparatus; FIG. 2 is a schematic cross-sectional view showing an alloy powder manufacturing apparatus having a temperature-controlled design of melt transfer and reheating according to an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic cross-sectional view showing a molten steel conveying conduit and a dusting unit according to an embodiment of the present invention; and FIG. 5 is a schematic view of the present invention A flow chart of a method for producing an alloy powder having a temperature-controlled design of melt transfer and reheating.

參考圖2,其顯示一實施例之具有熔湯輸送再加熱之溫控設計的合金粉末製造設備。在本實施例中,該合金粉末以鈦合金粉末為例說明如後。 Referring to Fig. 2, there is shown an alloy powder manufacturing apparatus having a temperature control design of melt transfer reheating according to an embodiment. In the present embodiment, the alloy powder is exemplified by a titanium alloy powder as described later.

本發明之合金粉末製造設備1包括:一坩堝單元10、一熔湯輸送導管(DT:Melts Delivery Tube)13、一溫控單元14及一噴粉單元15。 The alloy powder manufacturing apparatus 1 of the present invention comprises: a unit 10, a melt delivery tube (DT: Melts Delivery Tube) 13, a temperature control unit 14, and a dusting unit 15.

該坩堝單元10用以容置一熔湯11。在本實施例中,該坩堝單元10可為一承載坩堝12。一高週波之感應線圈19(例如30KW、8kHz)用以將位於一熔爐18內之合金材料棒(例如鈦合金材料棒)於真空環境下進行感應加熱,使該合金材料棒熔化成該熔湯11,然後將該熔湯11倒入該承載坩堝12內。 The crucible unit 10 is for accommodating a molten soup 11. In this embodiment, the unit 10 can be a carrier 12 . A high-frequency induction coil 19 (for example, 30 KW, 8 kHz) is used for inductively heating a rod of alloy material (for example, a rod of titanium alloy material) located in a furnace 18 in a vacuum environment to melt the alloy material rod into the melt. 11. The melt 11 is then poured into the carrier 12 .

參考圖3,在另一實施例中,該坩堝單元10可 為一水冷式銅坩堝16,該坩堝單元10之熔湯11可藉由一高週波之感應線圈19(例如30KW、8kHz)感應加熱一合金材料棒(例如鈦合金材料棒)而產生。 Referring to FIG. 3, in another embodiment, the unit 10 can be For a water-cooled copper crucible 16, the melt 11 of the crucible unit 10 can be produced by inductively heating an alloy material rod (for example, a rod of titanium alloy material) by a high-frequency induction coil 19 (for example, 30 kW, 8 kHz).

該熔湯輸送導管13包括一進口130及一出口131,該進口130連通於該坩堝單元10之底部101,用以輸送該坩堝單元10之熔湯11。 The melt delivery conduit 13 includes an inlet 130 and an outlet 131. The inlet 130 is in communication with the bottom 101 of the crucible unit 10 for conveying the melt 11 of the crucible unit 10.

該溫控單元14包括:一感應線圈141、一可調功率之主機142、一第一溫度感測器143及一微處理器144。該感應線圈141環繞該熔湯輸送導管13,並用以感應加熱該熔湯輸送導管13及位於其中之熔湯11,以產生一超溫熔湯110。該可調功率之主機142電性連接於該感應線圈141,並提供該感應線圈141之功率。該第一溫度感測器143用以量測該熔湯輸送導管13之出口溫度。該第一溫度感測器143可為熱電偶溫度感測器。該微處理器144電性連接於該可調功率之主機142及該第一溫度感測器143。該微處理器144根據該熔湯輸送導管13之出口溫度而調整該感應線圈141之功率而控制該熔湯輸送導管13之出口溫度,使該超溫熔湯110離開該熔湯輸送導管13之溫度(該超溫熔湯110之溫度可由該熔湯輸送導管13之出口溫度計算得知)達到一預定溫度。例如,該感應線圈之功率為50KW,該超溫熔湯110之溫度到達攝氏2000度;或者,該感應線圈141之功率為30KW,該超溫熔湯110之溫度到達攝氏1900度;或者,該感應線圈141之功率為10KW,該超溫熔湯110之溫度到達攝氏1800度。該感應線圈141為高週波線圈,例如200KHz。該微處理器144可更包括一比例積分微分(PID)控制器,用以根據該預定溫度而輸出該感應線圈141之功率,以感應加熱該熔湯輸送導管13及該超溫熔湯110,使該超溫熔湯110之溫度達到該預定溫度。 The temperature control unit 14 includes an induction coil 141, an adjustable power host 142, a first temperature sensor 143, and a microprocessor 144. The induction coil 141 surrounds the melt delivery conduit 13 and is used to inductively heat the melt delivery conduit 13 and the melt 11 located therein to produce an overheated melt 110. The adjustable power host 142 is electrically connected to the induction coil 141 and provides power of the induction coil 141. The first temperature sensor 143 is configured to measure the outlet temperature of the melt delivery conduit 13. The first temperature sensor 143 can be a thermocouple temperature sensor. The microprocessor 144 is electrically connected to the adjustable power host 142 and the first temperature sensor 143. The microprocessor 144 adjusts the power of the induction coil 141 according to the outlet temperature of the melt delivery conduit 13 to control the outlet temperature of the melt delivery conduit 13, so that the ultra-warm melt 110 leaves the melt delivery conduit 13. The temperature (the temperature of the over-temperature melt 110 can be calculated from the outlet temperature of the melt delivery conduit 13) reaches a predetermined temperature. For example, the power of the induction coil is 50 KW, the temperature of the over-temperature melt 110 reaches 2000 degrees Celsius; or the power of the induction coil 141 is 30 KW, and the temperature of the over-temperature melt 110 reaches 1900 degrees Celsius; The power of the induction coil 141 is 10 KW, and the temperature of the over-temperature melt 110 reaches 1800 degrees Celsius. The induction coil 141 is a high frequency coil, for example 200 KHz. The microprocessor 144 may further include a proportional integral derivative (PID) controller for outputting the power of the induction coil 141 according to the predetermined temperature to inductively heat the molten delivery conduit 13 and the overheating melt 110. The temperature of the overheated melt 110 is brought to the predetermined temperature.

參考圖4及圖2,該熔湯輸送導管13為一組合 式熔湯輸送管,其包括一進口部132、一連接部133、一出口部134及一感應套筒135。該坩堝單元10、該進口部132、該出口部134及噴粉單元15依序連通,該感應套筒135套接於該出口部134,且該連接部133螺接於該進口部132及該出口部134,用以將該進口部132、該連接部133、該出口部134及該感應套筒135固定在一起。該熔湯輸送導管13之進口部132、連接部133及出口部134可為氮化硼之耐熱材質所製,而該感應套筒135可為石墨、鎢鋼等之耐熱材質所製,如此以增加感應加熱之效率。 Referring to Figures 4 and 2, the melt delivery conduit 13 is a combination The molten steel delivery tube includes an inlet portion 132, a connecting portion 133, an outlet portion 134 and an induction sleeve 135. The sputum unit 10, the inlet portion 132, the outlet portion 134 and the dusting unit 15 are sequentially connected, the induction sleeve 135 is sleeved on the outlet portion 134, and the connecting portion 133 is screwed to the inlet portion 132 and the The outlet portion 134 is configured to fix the inlet portion 132, the connecting portion 133, the outlet portion 134, and the induction sleeve 135 together. The inlet portion 132, the connecting portion 133 and the outlet portion 134 of the melt transfer conduit 13 may be made of a heat-resistant material of boron nitride, and the induction sleeve 135 may be made of a heat-resistant material such as graphite or tungsten steel. Increase the efficiency of induction heating.

再參考圖2,該噴粉單元15連通於該熔湯輸送導管13之出口131,並包括一噴嘴出口151及一高速惰性氣體G,該高速惰性氣體G用以在該噴嘴出口151的位置將具有該預定溫度之超溫熔湯110沖擊霧化後而快速凝固成合金粉末P。舉例,該超溫熔湯110進入該噴粉單元15,使具有該預定溫度之超溫熔湯110被高速惰性氣體G(例如氬氣)沖擊霧化後而快速凝固成鈦合金粉末。由於該超溫熔湯110經過超溫控制,因此該超溫熔湯110之溫度上升可造成該超溫熔湯110之黏滯性下降,使凝固後之鈦合金粉末的粒徑更減小及真圓度(球狀)更佳。 Referring again to FIG. 2, the dusting unit 15 is connected to the outlet 131 of the melt delivery conduit 13, and includes a nozzle outlet 151 and a high-speed inert gas G for use at the nozzle outlet 151. The ultra-warm melt 110 having the predetermined temperature is rapidly solidified into the alloy powder P after impact atomization. For example, the ultra-warm melt 110 enters the dusting unit 15 to rapidly solidify the over-temperature melt 110 having the predetermined temperature into a titanium alloy powder by impact atomization by a high-speed inert gas G (for example, argon gas). Since the ultra-warm melt soup 110 is subjected to over-temperature control, the temperature rise of the ultra-warm melt soup 110 may cause the viscosity of the ultra-warm melt soup 110 to decrease, and the particle size of the solidified titanium alloy powder is further reduced. The roundness (spherical) is better.

該溫控單元14可更包括一第二溫度感測器145,電性連接於該微處理器144,並用以量測該噴嘴出口151之溫度,藉此得知該超溫熔湯110被沖擊霧化後之溫度分佈圖。該第二溫度感測器145可為紅外線溫度感測器。 The temperature control unit 14 further includes a second temperature sensor 145 electrically connected to the microprocessor 144 and configured to measure the temperature of the nozzle outlet 151, thereby knowing that the over-temperature melt 110 is impacted. Temperature profile after atomization. The second temperature sensor 145 can be an infrared temperature sensor.

參考圖5,簡言之,本發明提供一種具有熔湯輸送再加熱之溫控設計的合金粉末製造方法,包括下列步驟:在步驟S100中,產生一熔湯;在步驟S200中,提供一熔湯輸送導管,用以輸送該熔湯;在步驟S300中,提供一感應線圈,用以感應加熱該熔湯輸送導管及位於其中之熔湯,以產生一超溫熔湯;在步驟S400中,量測該熔湯輸送導管之出口 溫度;在步驟S500中,根據該熔湯輸送導管之出口溫度而調整該感應線圈之功率,以控制該熔湯輸送導管之出口溫度,使該超溫熔湯離開該熔湯輸送導管之溫度達到一預定溫度;以及在步驟S600中,將具有該預定溫度之超溫熔湯沖擊霧化後而快速凝固成合金粉末。 Referring to FIG. 5, in brief, the present invention provides a method for manufacturing an alloy powder having a temperature control design of melt transfer reheating, comprising the steps of: in step S100, generating a melt; and in step S200, providing a melt a soup delivery conduit for transporting the melt; in step S300, an induction coil is provided for inductively heating the melt delivery conduit and the melt located therein to produce an overheated melt; in step S400, Measuring the outlet of the melt delivery catheter Temperature; in step S500, adjusting the power of the induction coil according to the outlet temperature of the melt delivery conduit to control the outlet temperature of the melt delivery conduit, so that the temperature of the overheated melt exiting the melt delivery conduit reaches a predetermined temperature; and in step S600, the ultra-warm melt having the predetermined temperature is subjected to impact atomization to rapidly solidify into an alloy powder.

本發明利用感應線圈進行該熔湯的超溫控制,使該超溫熔湯進入該噴粉單元之溫度達到一預定溫度,可確保維持超溫熔湯的型態,並使凝固後之合金粉末的粒徑更減小及真圓度(球狀)更佳。再者,本發明利用感應線圈持續對該熔湯輸送導管之出口加熱,可克服習知熔湯阻塞於該熔湯輸送導管之出口的問題。 The invention utilizes an induction coil to perform over-temperature control of the melt, so that the temperature of the ultra-warm melt into the powder-spraying unit reaches a predetermined temperature, thereby ensuring maintaining the shape of the over-temperature melt soup and allowing the alloy powder after solidification The particle size is further reduced and the roundness (spherical shape) is better. Furthermore, the present invention utilizes an induction coil to continuously heat the outlet of the melt delivery conduit, overcoming the problem of conventional melt clogging at the outlet of the melt delivery conduit.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In the above, it is merely described that the present invention is an embodiment or an embodiment of the technical means for solving the problem, and is not intended to limit the scope of implementation of the present invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

1‧‧‧合金粉末製造設備 1‧‧‧ alloy powder manufacturing equipment

10‧‧‧坩堝單元 10‧‧‧坩埚 unit

11‧‧‧熔湯 11‧‧‧ molten soup

110‧‧‧超溫熔湯 110‧‧‧Super warm melt soup

12‧‧‧承載坩堝 12‧‧‧ Carrying equipment

13‧‧‧熔湯輸送導管 13‧‧‧ molten soup delivery catheter

130‧‧‧進口 130‧‧‧Import

131‧‧‧出口 131‧‧‧Export

14‧‧‧溫控單元 14‧‧‧temperature control unit

141‧‧‧感應線圈 141‧‧‧Induction coil

142‧‧‧可調功率之主機 142‧‧‧Power of adjustable power

143‧‧‧第一溫度感測器 143‧‧‧First temperature sensor

144‧‧‧微處理器 144‧‧‧Microprocessor

145‧‧‧第二溫度感測器 145‧‧‧Second temperature sensor

15‧‧‧噴粉單元 15‧‧‧Dusting unit

151‧‧‧噴嘴出口 151‧‧‧Nozzle exit

18‧‧‧熔爐 18‧‧‧Furn

19‧‧‧感應線圈 19‧‧‧Induction coil

G‧‧‧惰性氣體 G‧‧‧Inert gas

P‧‧‧合金粉末 P‧‧‧ alloy powder

Claims (9)

一種具溫控設計的合金粉末製造設備,包括:一坩堝單元,用以容置一熔湯;一熔湯輸送導管,包括一進口及一出口,該進口連通於該坩堝單元之底部,用以輸送該坩堝單元之熔湯;一溫控單元,包括:一感應線圈,環繞該熔湯輸送導管,並用以感應加熱該熔湯輸送導管及位於其中之熔湯,以產生一超溫熔湯;一可調功率之主機,電性連接於該感應線圈,並提供該感應線圈之功率;一第一溫度感測器,用以量測該熔湯輸送導管之出口溫度;以及一微處理器,電性連接於該可調功率之主機及該第一溫度感測器,其中該微處理器根據該熔湯輸送導管之出口溫度而調整該感應線圈之功率,以控制該熔湯輸送導管之出口溫度,使該超溫熔湯離開該熔湯輸送導管之溫度達到一預定溫度;以及一噴粉單元,連通於該熔湯輸送導管之出口,並包括一噴嘴出口及一高速惰性氣體,該高速惰性氣體用以在該噴嘴出口的位置將具有該預定溫度之超溫熔湯沖擊霧化後而快速凝固成合金粉末;其中該溫控單元更包括一第二溫度感測器,電性連接於該微處理器,並用以量測該噴嘴出口溫度,藉此該微處理器得知該超溫熔湯被沖擊霧化後之溫度分佈圖。 An alloy powder manufacturing device with temperature control design includes: a unit for accommodating a molten soup; a molten soup delivery conduit including an inlet and an outlet, the inlet being connected to the bottom of the crucible unit for a melting unit for conveying the crucible unit; a temperature control unit comprising: an induction coil surrounding the molten conveying conduit, and configured to inductively heat the molten conveying conduit and the molten material located therein to generate an over-temperature melting soup; An adjustable power host electrically connected to the induction coil and providing power of the induction coil; a first temperature sensor for measuring an outlet temperature of the molten delivery conduit; and a microprocessor Electrically connected to the adjustable power host and the first temperature sensor, wherein the microprocessor adjusts the power of the induction coil according to the outlet temperature of the melt delivery conduit to control the outlet of the molten delivery conduit a temperature such that the temperature of the overheated molten soup leaves the molten steel delivery conduit reaches a predetermined temperature; and a powder spraying unit is connected to the outlet of the molten steel delivery conduit and includes a nozzle outlet and a a high-speed inert gas for rapidly solidifying into an alloy powder after impact atomization of the over-temperature melt having the predetermined temperature at a position of the nozzle outlet; wherein the temperature control unit further comprises a second temperature sensing The device is electrically connected to the microprocessor and is configured to measure the temperature of the nozzle outlet, so that the microprocessor knows the temperature profile of the overheated molten soup after being impact atomized. 如申請專利範圍第1項所述之具溫控設計的合金粉末製造設備,其中該第二溫度感測器為一紅外線溫度感測器。 The alloy powder manufacturing apparatus with temperature control design according to claim 1, wherein the second temperature sensor is an infrared temperature sensor. 如申請專利範圍第1項所述之具溫控設計的合金粉末製造設備,其中該第一溫度感測器為一熱電偶溫度感測器。 The alloy powder manufacturing apparatus with temperature control design according to claim 1, wherein the first temperature sensor is a thermocouple temperature sensor. 如申請專利範圍第1項所述之具溫控設計的合金粉末製造設備,其中該熔湯輸送導管為一組合式熔湯輸送管,其包括一進口部、一連接部、一出口部及一感應套筒,該坩堝單元、該進口部、該出口部及噴粉單元依序連通,該感應套筒套接於該出口部,且該連接部螺接於該進口部及該出口部,用以將該進口部、該連接部、該出口部及該感應套筒固定在一起。 The alloy powder manufacturing device with temperature control design according to claim 1, wherein the molten steel delivery conduit is a combined molten steel delivery tube, comprising an inlet portion, a connecting portion, an outlet portion and a Inductive sleeve, the 坩埚 unit, the inlet portion, the outlet portion and the powder spraying unit are sequentially connected, the induction sleeve is sleeved at the outlet portion, and the connecting portion is screwed to the inlet portion and the outlet portion, The inlet portion, the connecting portion, the outlet portion, and the induction sleeve are fixed together. 如申請專利範圍第5項所述之具溫控設計的合金粉末製造設備,其中該感應套筒為石墨、鎢鋼等耐熱材質所製。 The alloy powder manufacturing equipment with temperature control design as described in claim 5, wherein the induction sleeve is made of heat-resistant materials such as graphite and tungsten steel. 如申請專利範圍第6項所述之具溫控設計的合金粉末製造設備,其中該進口部、連接部及出口部為氮化硼之耐熱材質所製。 The alloy powder manufacturing apparatus with temperature control design according to claim 6, wherein the inlet portion, the connecting portion and the outlet portion are made of a heat-resistant material of boron nitride. 如申請專利範圍第1項所述之具溫控設計的合金粉末製造設備,其中該坩堝單元為一承載坩堝或一水冷式銅坩堝。 The alloy powder manufacturing apparatus with temperature control design according to claim 1, wherein the crucible unit is a bearing crucible or a water-cooled copper crucible. 如申請專利範圍第1項所述之具溫控設計的合金粉末製造設備,其中該微處理器更包括一比例積分微分控制器,用以根據該預定溫度而輸出該感應線圈之功率,以感應加熱該熔湯輸送導管及該超溫熔湯,使該超溫熔湯之溫度達到該預定溫度。 The alloy powder manufacturing apparatus with temperature control design according to claim 1, wherein the microprocessor further comprises a proportional integral derivative controller for outputting the power of the induction coil according to the predetermined temperature to sense The molten conveying conduit and the overheated melt are heated to bring the temperature of the overheated melt to the predetermined temperature. 一種具溫控設計的合金粉末製造方法,包括下列步驟:產生一熔湯;提供一熔湯輸送導管,用以輸送該熔湯;提供一感應線圈,用以感應加熱該熔湯輸送導管及位於其中之熔湯,以產生一超溫熔湯;提供一第一溫度感測器,用以量測該熔湯輸送導管之出口溫度;根據該熔湯輸送導管之出口溫度而調整該感應線圈之功率,以控制該熔湯輸送導管之出口溫度,使該超溫熔湯離開該熔湯輸送導管之溫度達到一預定溫度;以及 在一噴嘴出口的位置將具有該預定溫度之超溫熔湯沖擊霧化後而快速凝固成合金粉末;提供一第二溫度感測器,用以量測該噴嘴出口溫度,藉此得知該超溫熔湯被沖擊霧化後之溫度分佈圖。 A method for manufacturing an alloy powder with temperature control design, comprising the steps of: producing a molten soup; providing a molten soup delivery conduit for transporting the molten soup; providing an induction coil for inductively heating the molten delivery conduit and located a molten soup to produce an over-temperature melting soup; a first temperature sensor for measuring an outlet temperature of the molten steel delivery conduit; and adjusting the induction coil according to an outlet temperature of the molten delivery conduit Power to control an outlet temperature of the melt delivery conduit such that the temperature of the overheated melt exiting the melt delivery conduit reaches a predetermined temperature; Forming an ultra-warm melt having the predetermined temperature after impact atomization at a nozzle outlet to rapidly solidify into an alloy powder; providing a second temperature sensor for measuring the nozzle outlet temperature, thereby knowing the The temperature distribution of the ultra-warm melt soup after being atomized by impact.
TW105136883A 2016-11-11 2016-11-11 Alloy powder manufacturing equipment and method with temperature control design TWI608882B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105136883A TWI608882B (en) 2016-11-11 2016-11-11 Alloy powder manufacturing equipment and method with temperature control design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105136883A TWI608882B (en) 2016-11-11 2016-11-11 Alloy powder manufacturing equipment and method with temperature control design

Publications (2)

Publication Number Publication Date
TWI608882B true TWI608882B (en) 2017-12-21
TW201817515A TW201817515A (en) 2018-05-16

Family

ID=61230879

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136883A TWI608882B (en) 2016-11-11 2016-11-11 Alloy powder manufacturing equipment and method with temperature control design

Country Status (1)

Country Link
TW (1) TWI608882B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112872361A (en) * 2021-01-13 2021-06-01 南京工业大学 Titanium and titanium alloy liquid finish machining linkage precise regulation and control method based on melt temperature
CN113165074A (en) * 2018-11-29 2021-07-23 三菱动力株式会社 Metal powder manufacturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734231B (en) * 2019-10-25 2021-07-21 財團法人金屬工業研究發展中心 Metal part manufacturing process equipment and manufacturing method capable of continuously melting metal block in vacuum environment
CN112846201A (en) * 2019-11-28 2021-05-28 财团法人金属工业研究发展中心 Metal piece processing equipment capable of continuously melting metal block material and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366204A (en) * 1992-06-15 1994-11-22 General Electric Company Integral induction heating of close coupled nozzle
TW201435099A (en) * 2013-03-04 2014-09-16 Sintokogio Ltd Powder made of iron-based metallic glass
CN204545419U (en) * 2015-03-10 2015-08-12 沈阳好智多新材料制备技术有限公司 A kind of high vacuum induction is without crucible and have crucible inert gas atomizer powder manufacturing apparatus
US20160014850A1 (en) * 2014-07-14 2016-01-14 Illinois Tool Works Inc. Systems and methods for control of a workpiece heating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366204A (en) * 1992-06-15 1994-11-22 General Electric Company Integral induction heating of close coupled nozzle
TW201435099A (en) * 2013-03-04 2014-09-16 Sintokogio Ltd Powder made of iron-based metallic glass
US20160014850A1 (en) * 2014-07-14 2016-01-14 Illinois Tool Works Inc. Systems and methods for control of a workpiece heating system
CN204545419U (en) * 2015-03-10 2015-08-12 沈阳好智多新材料制备技术有限公司 A kind of high vacuum induction is without crucible and have crucible inert gas atomizer powder manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165074A (en) * 2018-11-29 2021-07-23 三菱动力株式会社 Metal powder manufacturing device
CN112872361A (en) * 2021-01-13 2021-06-01 南京工业大学 Titanium and titanium alloy liquid finish machining linkage precise regulation and control method based on melt temperature

Also Published As

Publication number Publication date
TW201817515A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
TWI608882B (en) Alloy powder manufacturing equipment and method with temperature control design
TWI787148B (en) An apparatus and a method to produce power from a wire by plasma atomization, and a power produced by the same
US10711617B2 (en) Casting method, apparatus and product
KR102533933B1 (en) Plasma atomized metal powder manufacturing process and system for plasma atomized metal powder manufacturing process
US20180147631A1 (en) Alloy powder manufacturing device and method with temperature control design
US7617863B2 (en) Method and apparatus for temperature control in a continuous casting furnace
US9561540B2 (en) Die casting nozzle and method for operating a die casting nozzle
CN104475744A (en) Device and method for preparing spherical titanium powder and titanium alloy powder through gas atomization
JP5282814B2 (en) Method of reducing thermal shrinkage cracking in casting of nickel-base superalloy, method of preparing a product made of nickel-base superalloy, and method of manufacturing a high-pressure steam turbine casing
US10383179B2 (en) Crucible device with temperature control design and temperature control method therefor
TWI593484B (en) Alloy powder manufacturing equipment and methods
JP5803197B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JPH07100802B2 (en) Device and method for controlling the flow of a metal stream
JP6907184B2 (en) Treatment of basalt by electrically induction heating and melting
CN104227005A (en) Integrated type equipment for preparing metal powder through smelting, current-limiting pouring and atomizing
JP2018529607A5 (en)
TWI630365B (en) Radon device with temperature control design and temperature control method thereof
Wang et al. Additive technology of high-frequency induction-assisted laser wire deposition
JP7313122B2 (en) Hot water tapping method in induction heating melting device and induction heating melting device
JPS6030565A (en) Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method
TW561081B (en) Method to adjust the temperature of a moulding trough and the moulding trough to implement this method
CN206455178U (en) A kind of powder by atomization bottom pour ladle
JP7266009B2 (en) atomizing device
JP2010236026A (en) Atomization apparatus
Spitans et al. EIGA-TYPE ELECTRODE MELTING FOR HIGHEST-PURITY CAST PARTS