TWI593484B - Alloy powder manufacturing equipment and methods - Google Patents

Alloy powder manufacturing equipment and methods Download PDF

Info

Publication number
TWI593484B
TWI593484B TW104140737A TW104140737A TWI593484B TW I593484 B TWI593484 B TW I593484B TW 104140737 A TW104140737 A TW 104140737A TW 104140737 A TW104140737 A TW 104140737A TW I593484 B TWI593484 B TW I593484B
Authority
TW
Taiwan
Prior art keywords
alloy
stage
heating unit
columnar
stage heating
Prior art date
Application number
TW104140737A
Other languages
Chinese (zh)
Other versions
TW201720550A (en
Inventor
Yang-Sheng Huang
Original Assignee
Metal Ind Res & Dev Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metal Ind Res & Dev Ct filed Critical Metal Ind Res & Dev Ct
Priority to TW104140737A priority Critical patent/TWI593484B/en
Publication of TW201720550A publication Critical patent/TW201720550A/en
Application granted granted Critical
Publication of TWI593484B publication Critical patent/TWI593484B/en

Links

Description

合金粉末製造設備及方法 Alloy powder manufacturing equipment and method

本發明有關於一種合金粉末製造設備及方法,特別是關於一種利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備及方法。 The present invention relates to an alloy powder manufacturing apparatus and method, and more particularly to an alloy powder manufacturing apparatus and method using an electrode induction melting gas atomization method (EIGA).

按,3D列印技術,又稱積層製造技術,是製造業領域正在迅速發展的一項新興技術。運用該3D列印技術進行生產的主要流程是指:應用電腦軟體設計出立體的加工樣式,然後藉由特定的成型設備(俗稱3D印表機),用粉末化的固體材料(例如合金粉末)逐層列印出產品。 According to 3D printing technology, also known as laminated manufacturing technology, it is an emerging technology that is rapidly developing in the manufacturing field. The main process of production using this 3D printing technology is to apply a computer software to design a three-dimensional processing pattern, and then use a powdered solid material (such as alloy powder) by a specific molding equipment (commonly known as 3D printer). Print the product layer by layer.

目前,電極感應熔煉氣體霧化法(EIGA,Electrode Induction-melting Inert Gas Atomization)可用以製備合金粉末。製造鈦合金粉末的方法如下:將鈦合金原料棒旋轉並送入感應線圈中加熱,使該鈦合金原料棒靠近感應線圈端熔化成鈦合金熔湯,然後該鈦合金熔湯以滴狀或柱狀的流動型態進入噴嘴後,被高速惰性氣體沖擊霧化後並快速凝固成鈦合金粉末。 Currently, Electrode Induction-melting Inert Gas Atomization (EIGA) can be used to prepare alloy powders. The method for manufacturing the titanium alloy powder is as follows: the titanium alloy raw material rod is rotated and sent to the induction coil for heating, so that the titanium alloy raw material rod is melted into the titanium alloy melt near the induction coil end, and then the titanium alloy molten soup is dropped or column After the flow pattern enters the nozzle, it is atomized by high-speed inert gas and rapidly solidified into titanium alloy powder.

然而,ALD鈦合金粉末製造設備的高週波線圈配置方式只能控制該鈦合金原料棒的錐形尖端熔化成鈦合金熔湯,該鈦合金熔湯進入噴嘴時,往往會變成滴狀熔湯(熔滴),而無法確保能維持柱狀熔湯(熔柱)。若該滴狀鈦合金熔湯被高速惰性氣體沖擊霧化的話,則會影響凝固後之鈦合金粉末的品質。 However, the high-frequency coil configuration of the ALD titanium alloy powder manufacturing apparatus can only control the taper tip of the titanium alloy material rod to be melted into a titanium alloy melt, and the titanium alloy melt tends to become a drop-shaped melt soup when entering the nozzle ( Droplets), and it is not guaranteed to maintain the columnar melt (solus). If the drop-shaped titanium alloy melt is atomized by a high-speed inert gas, the quality of the titanium alloy powder after solidification is affected.

相關鈦合金粉末技術之專利文獻或技術文獻如下: 例如材料研究學報(第24卷第1期2010年2月)揭示一種高溫鈦合金Ti-60粉末的製備和表徵。其採用電極感應熔煉氣體霧化法製備了摻雜稀土Nd高溫鈦合金Ti-60粉末。結果表明,在製備過程中合金元素增氧量小於100ppm;粉末的平均粒徑約為100μm,粉末粒徑分佈形態為常態分布,且粉末平均粒徑隨著霧化氣體的壓力增大而減小。 The patent literature or technical literature related to titanium alloy powder technology is as follows: For example, the Journal of Materials Research (Vol. 24, No. 1, February 2010) discloses the preparation and characterization of a high temperature titanium alloy Ti-60 powder. The Ti-60 powder doped with rare earth Nd high temperature titanium alloy was prepared by electrode induction smelting gas atomization method. The results show that the oxygen content of the alloy elements is less than 100ppm during the preparation process; the average particle size of the powder is about 100μm, the particle size distribution is normal, and the average particle size decreases with the pressure of the atomizing gas. .

然而,該技術文獻只揭示為了細化晶粒並對材料進行氣霧化製粉,在合金中添加了稀土元素Nd,該技術文獻並未揭示針對感應線圈配置方式同時進行柱狀熔湯的流量控制及超溫控制。 However, this technical literature only reveals that in order to refine the grains and gas atomize the powder, the rare earth element Nd is added to the alloy. The technical literature does not disclose the flow control of the column melting furnace for the induction coil arrangement. And over temperature control.

再例如德國專利DE19631582揭示一種合金粉末產品的製造方法(Method for obtaining a product made of alloy powders),將合金原料棒(電極棒)送入感應線圈中加熱,使該合金原料棒的尖端熔化成合金熔滴,然後該合金熔滴進入噴嘴,該合金熔滴被高速氣體沖擊霧化後而快速凝固成合金粉末產品。 Further, for example, German Patent No. DE 1963 1 582 discloses a method for obtaining a product made of alloy powders, which feeds an alloy raw material rod (electrode rod) into an induction coil to melt the tip of the alloy material rod into an alloy. The droplets are then passed into the nozzle, and the alloy droplets are rapidly atomized into an alloy powder product after being atomized by a high velocity gas.

然而,該專利文獻(DE19631582)所揭示之高週波線圈配置方式只能控制該合金原料棒的尖端熔化成合金熔湯,該鈦合金熔湯進入噴嘴時,往往會變成滴狀熔湯(熔滴),該專利文獻並未揭示針對感應線圈配置方式同時進行柱狀熔湯的流量控制及超溫控制。 However, the high-frequency coil arrangement disclosed in the patent document (DE19631582) can only control the tip of the alloy raw material rod to be melted into an alloy melt. When the titanium alloy melt enters the nozzle, it tends to become a drop-shaped melt soup (droplet) The patent document does not disclose the flow control and over-temperature control of the column melt at the same time for the induction coil arrangement.

又例如ADVANCED ENGINEERING MATERIA L(2004,6,No.1-2)揭示一種γ-TiAl(鈦鋁)介金屬合金之粉末冶金製程(Powder Metallurgical Processing of Intermetall ic Gamma Titanium Aluminides),藉由電力驅動將γ-TiAl合金原料棒送入感應線圈中加熱,使該γ-TiAl合金原料棒的尖端熔化成γ-TiAl合金熔滴,然後該γ-TiAl合金熔滴進入噴嘴,該γ-TiAl合金熔滴被高速氣體沖擊霧化後而快速凝固成γ-TiAl合金粉末。該γ-TiAl合金原料棒之熔化流量是由該感 應線圈之功率及該γ-TiAl合金原料棒之進給速度所控制。 For another example, ADVANCED ENGINEERING MATERIA L (2004, 6, No. 1-2) discloses a Powder Metallurgical Processing of Intermetall Gamma Titanium Aluminides, which will be driven by electric power. The γ-TiAl alloy raw material rod is sent to the induction coil for heating, so that the tip of the γ-TiAl alloy raw material rod is melted into a γ-TiAl alloy droplet, and then the γ-TiAl alloy droplet enters the nozzle, and the γ-TiAl alloy droplet After being atomized by high-speed gas, it is rapidly solidified into γ-TiAl alloy powder. The melting flow rate of the γ-TiAl alloy raw material rod is determined by the feeling The power of the coil and the feed rate of the γ-TiAl alloy material rod are controlled.

然而,該技術文獻只揭示該合金原料棒之熔化流量的控制是由該感應線圈之功率及該合金原料棒之進給速度所控制,該技術文獻並未揭示針對感應線圈配置方式同時進行柱狀熔湯的流量控制及超溫控制。 However, this technical document only discloses that the control of the melting flow rate of the alloy raw material rod is controlled by the power of the induction coil and the feed speed of the alloy raw material rod. The technical literature does not disclose simultaneous columnar arrangement for the induction coil arrangement. Flow control and over temperature control of the melt soup.

有鑑於此,便有需要提供一種合金粉末製造設備及方法,用以解決上述問題。 In view of this, there is a need to provide an alloy powder manufacturing apparatus and method for solving the above problems.

本發明的主要目的在於提供一種合金粉末製造設備,可對一合金原料棒加熱得到柱狀合金熔湯,使熔湯冷卻霧化形成合金粉末。 The main object of the present invention is to provide an alloy powder manufacturing apparatus which can heat an alloy raw material rod to obtain a columnar alloy melt, and cool and melt the molten soup to form an alloy powder.

為達成上述目的,本發明之合金粉末製造設備,包括:一合金原料棒、一第一級加熱單元、一第二級加熱單元及一噴嘴。該合金原料棒的尖端被旋轉並送入第一級加熱單元中加熱,進行該柱狀合金熔湯的流量控制,使該合金原料棒的尖端熔化成一柱狀合金熔湯。該柱狀鈦合金熔湯被通過該第二級加熱單元加熱,進行該柱狀合金熔湯的超溫控制,以控制該柱狀合金熔湯之溫度到達一預定溫度。該柱狀合金熔湯進入該噴嘴,使該柱狀合金熔湯被高速惰性氣體沖擊霧化後而快速凝固成合金粉末。 To achieve the above object, the alloy powder manufacturing apparatus of the present invention comprises: an alloy raw material rod, a first-stage heating unit, a second-stage heating unit, and a nozzle. The tip of the alloy material rod is rotated and sent to the first stage heating unit for heating, and the flow rate control of the columnar alloy melt is performed to melt the tip of the alloy material rod into a columnar alloy melt. The columnar titanium alloy melt is heated by the second-stage heating unit to perform over-temperature control of the columnar alloy melt to control the temperature of the columnar alloy melt to reach a predetermined temperature. The columnar alloy melt enters the nozzle, and the columnar alloy melt is rapidly solidified into an alloy powder by impact atomization by a high-speed inert gas.

在一較佳實施例中,該第一級加熱單元包括一主要線圈及一預熱線圈,該預熱線圈相連於該主要線圈。 In a preferred embodiment, the first stage heating unit includes a main coil and a preheating coil, and the preheating coil is coupled to the main coil.

在一較佳實施例中,該第二級加熱單元為一電漿槍。 In a preferred embodiment, the second stage heating unit is a plasma gun.

本發明的另一目的在於提供一種合金粉末製造方法,透過加熱一合金原料棒並得到柱狀合金熔湯,進而對該柱狀合金熔湯進行超溫控制,以及沖擊霧化而快速凝固成合金粉末。 Another object of the present invention is to provide a method for producing an alloy powder by heating an alloy raw material rod and obtaining a columnar alloy melt, thereby performing over-temperature control on the columnar alloy melt, and rapidly solidifying into an alloy by impact atomization. powder.

為達成上述目的,本發明之合金粉末製造方法,包括下列步驟:提供一合金原料棒;進行該柱狀合金熔湯的流量控制,使該合金原料棒的尖端熔化成一柱狀合金熔湯;進行該柱狀合金熔湯的超溫控制,以控制該柱狀合金熔湯之溫度到達一預定溫度;以及使該柱狀合金熔湯被高速惰性氣體沖擊霧化後而快速凝固成合金粉末。 In order to achieve the above object, the method for producing an alloy powder of the present invention comprises the steps of: providing an alloy raw material rod; performing flow control of the columnar alloy melt to melt the tip of the alloy raw material rod into a columnar alloy melt; The over-temperature control of the columnar alloy melt is performed to control the temperature of the columnar alloy melt to reach a predetermined temperature; and the columnar alloy melt is rapidly solidified into an alloy powder by impact atomization by a high-speed inert gas.

本發明之特點在於,利用該第一級及第二級加熱單元的配置方式同時進行該柱狀合金熔湯的流量控制及超溫控制,可確保維持柱狀合金熔湯(熔柱)的型態,並使凝固後之合金粉末的粒徑更減小及真圓度(球狀)更佳。 The invention is characterized in that the flow control and the over-temperature control of the columnar alloy melt are simultaneously performed by the arrangement of the first-stage and second-stage heating units, thereby ensuring the maintenance of the columnar alloy melting (solder) type And the particle size of the alloy powder after solidification is further reduced and the roundness (spherical shape) is better.

另外,利用該第一級加熱單元之預熱線圈的配置方式先進行該合金原料棒的預熱,可增加柱狀合金熔湯(熔柱)的均勻性,並可降低該第一級加熱單元之主要線圈之使用功率。 In addition, the preheating of the alloy material rod is performed by using the preheating coil arrangement of the first stage heating unit, thereby increasing the uniformity of the columnar alloy melt (solus) and reducing the first stage heating unit. The power used by the main coil.

再者,利用電漿槍產生的高熱電漿炬,作為二次加熱源,將柱狀合金熔湯再次加熱,增加柱狀合金熔湯的溫度,同時具有預先碎化熔柱成微細熔滴,使得霧化後的合金粉末粒徑更小,增加球形度達成細化粉末的效果。 Furthermore, the high-temperature electric torch produced by the plasma gun is used as a secondary heating source to reheat the columnar alloy melt to increase the temperature of the columnar alloy melt, and at the same time, the pre-crushed melting column is formed into fine droplets. The particle size of the atomized alloy powder is made smaller, and the sphericity is increased to achieve the effect of refining the powder.

為了讓本發明之上述和其他目的、特徵和優點能更明顯,下文將配合所附圖示,作詳細說明如下。 The above and other objects, features, and advantages of the present invention will become more apparent from the accompanying drawings.

100‧‧‧合金粉末製造設備 100‧‧‧ alloy powder manufacturing equipment

110‧‧‧合金原料棒 110‧‧‧ alloy raw material rod

110a‧‧‧尖端 110a‧‧‧ cutting-edge

110b‧‧‧柱狀合金熔湯 110b‧‧‧Column alloy melting soup

110c‧‧‧合金粉末 110c‧‧‧ alloy powder

120‧‧‧第一級加熱單元 120‧‧‧First stage heating unit

121‧‧‧主要線圈 121‧‧‧main coil

122‧‧‧預熱線圈 122‧‧‧Preheating coil

130‧‧‧第二級加熱單元 130‧‧‧Second stage heating unit

140‧‧‧噴嘴 140‧‧‧Nozzles

S201~S204‧‧‧步驟 S201~S204‧‧‧Steps

圖1為本發明第一實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖;圖2為本發明第一實施例之鈦合金粉末的製造方法流程示意圖;圖3為本發明第二實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖;以及 圖4為本發明第三實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖。 1 is a schematic view showing an apparatus for manufacturing an alloy powder using an electrode induction melting gas atomization method (EIGA) according to a first embodiment of the present invention; FIG. 2 is a schematic flow chart showing a method for manufacturing a titanium alloy powder according to a first embodiment of the present invention; A schematic diagram of an alloy powder manufacturing apparatus using an electrode induction smelting gas atomization method (EIGA) according to a second embodiment of the present invention; 4 is a schematic view showing an apparatus for manufacturing an alloy powder by an electrode induction melting gas atomization method (EIGA) according to a third embodiment of the present invention.

圖1為本發明第一實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖,圖2為本發明第一實施例之鈦合金粉末的製造方法流程示意圖。 1 is a schematic view showing an apparatus for manufacturing an alloy powder by an electrode induction melting gas atomization method (EIGA) according to a first embodiment of the present invention, and FIG. 2 is a flow chart showing a method for manufacturing a titanium alloy powder according to a first embodiment of the present invention.

請參閱圖1,本實施例所述之合金粉末製造設備100,該合金粉末以鈦合金粉末為例說明如後。該合金粉末製造設備100包括:包括一合金原料棒110、一第一級加熱單元120、一第二級加熱單元130及一噴嘴140。 Please refer to FIG. 1 , which is an alloy powder manufacturing apparatus 100 according to the embodiment. The alloy powder is exemplified by a titanium alloy powder. The alloy powder manufacturing apparatus 100 includes an alloy material rod 110, a first stage heating unit 120, a second stage heating unit 130, and a nozzle 140.

其中該合金原料棒110在本實施例中以鈦合金原料棒為舉例說明。該第一級加熱單元120為一第一級感應線圈。第二級加熱單元130為一第二級感應線圈。在本實施例中,該第一級及第二級加熱單元120、130為分開的兩個加熱單元,且該第一級及第二級加熱單元120、130採用具有不同功率及頻率之高週波,能達到不同之加熱效率,而該第二級加熱單元130所採用頻率須大於該第一級加熱單元120之頻率。 The alloy raw material rod 110 is exemplified by a titanium alloy raw material rod in this embodiment. The first stage heating unit 120 is a first stage induction coil. The second stage heating unit 130 is a second stage induction coil. In this embodiment, the first and second stage heating units 120, 130 are separate heating units, and the first stage and second stage heating units 120, 130 adopt high frequency with different power and frequency. Different heating efficiencies can be achieved, and the frequency of the second-stage heating unit 130 must be greater than the frequency of the first-stage heating unit 120.

請參閱圖2,本實施例所述之合金粉末的製造方法,包括下列步驟: Referring to FIG. 2, a method for manufacturing an alloy powder according to the embodiment includes the following steps:

步驟S201:提供一合金原料棒。 Step S201: providing an alloy raw material rod.

步驟S202:進行該柱狀合金熔湯的流量控制,使該合金原料棒的尖端熔化成一柱狀合金熔湯。 Step S202: performing flow control of the columnar alloy melt to melt the tip of the alloy raw material rod into a columnar alloy melt.

詳言之,該合金原料棒110的尖端被旋轉並送入第一級加熱單元120中加熱,進行該柱狀合金熔湯的流量控制,使該合金原料棒110的尖端110a熔化成一柱狀合金熔湯。 In detail, the tip end of the alloy material rod 110 is rotated and sent to the first stage heating unit 120 for heating, and the flow rate control of the columnar alloy melt is performed to melt the tip end 110a of the alloy material rod 110 into a columnar alloy. Melt soup.

舉例,藉由一電力驅動(例如電動馬達)將該合金原料棒110(亦即電極棒)的錐形尖端110a緩緩旋轉並送入第一級加熱單元120中加熱,進行該柱狀鈦合金熔湯的流量控 制,使該合金原料棒110的錐形尖端110a熔化成一柱狀合金熔湯110b(即柱狀鈦合金熔湯)。 For example, the tapered tip end 110a of the alloy material rod 110 (ie, the electrode rod) is slowly rotated by an electric drive (for example, an electric motor) and sent to the first stage heating unit 120 for heating to perform the columnar titanium alloy. Flow control of molten soup The tapered tip end 110a of the alloy material rod 110 is melted into a columnar alloy melt 110b (i.e., a columnar titanium alloy melt).

該合金原料棒110之熔化流量的控制是由該第一級加熱單元120(第一級感應線圈)所採用高週波之功率及頻率(例如30KW、100KHz)及該合金原料棒110之進給及旋轉速度所控制,如此可以確保能維持柱狀合金熔湯110b(即熔柱)的型態。 The melting flow rate of the alloy material rod 110 is controlled by the high frequency power and frequency (for example, 30 KW, 100 kHz) used by the first stage heating unit 120 (first stage induction coil) and the feed of the alloy material rod 110. The rotation speed is controlled so as to ensure that the shape of the columnar alloy melt 110b (i.e., the molten column) can be maintained.

步驟S203:進行該柱狀合金熔湯的超溫控制,以控制該柱狀合金熔湯之溫度到達一預定溫度。 Step S203: performing over-temperature control of the columnar alloy melt to control the temperature of the columnar alloy melt to reach a predetermined temperature.

詳言之,當該柱狀合金熔湯110b通過該第二級加熱單元130,且被加熱時,會對該柱狀合金熔湯110b進行超溫控制,以控制該柱狀合金熔湯110b之溫度到達一預定溫度。 In detail, when the columnar alloy melt 110b passes through the second-stage heating unit 130 and is heated, the columnar alloy melt 110b is subjected to over-temperature control to control the columnar alloy melt 110b. The temperature reaches a predetermined temperature.

舉例,當該第二級加熱單元130(第二級感應線圈)所採用高週波之功率及頻率為10KW、400KHz,該柱狀合金熔湯110b之溫度可到達攝氏1800度。或當該第二級加熱單元(第二級感應線圈)所採用高週波之功率及頻率為30KW、400KHz時,該柱狀鈦合金熔湯110b之溫度可到達攝氏1900度。 For example, when the power and frequency of the high-frequency used in the second-stage heating unit 130 (second-stage induction coil) are 10 KW and 400 kHz, the temperature of the columnar alloy melt 110b can reach 1800 degrees Celsius. Or when the high-frequency power and frequency of the second-stage heating unit (second-stage induction coil) are 30 KW and 400 kHz, the temperature of the columnar titanium alloy melt 110b can reach 1900 degrees Celsius.

在本實施例中,該第一及第二級加熱單元120、130(該第一及第二級感應線圈)因其所採用之高週波的功率及頻率不同,而能達到不同之加熱效率。若被加熱的物件尺寸越大,則所需之頻率越低,由於該第二級加熱單元130(該第二級感應線圈)所加熱之該柱狀合金熔湯110b的尺寸較小,因此所需頻率較高;以及,由於該第一級加熱單元120(該第一級感應線圈)加熱該合金原料棒110的尺寸較大,因此所需頻率較低,如此才能達成較高的加熱效率。再者,該第二級加熱單元130(該第二級加熱單元)與該柱狀鈦合金熔湯110b之垂直距離小於該第一級加熱單元120(該第一級加熱單元)與該 鈦合金原料棒110之垂直距離。由於該第二級加熱單元130(該第二級感應線圈)所加熱之該柱狀合金熔湯110b的尺寸較小,因此該第二級加熱單元130(該第二級感應線圈)與該柱狀鈦合金熔湯110b之所需垂直距離較近。 In this embodiment, the first and second stage heating units 120, 130 (the first and second stage induction coils) can achieve different heating efficiencies due to the high frequency power and frequency of the high frequency. If the size of the object to be heated is larger, the frequency required is lower, and since the size of the columnar alloy melt 110b heated by the second-stage heating unit 130 (the second-stage induction coil) is small, The frequency is higher; and since the first-stage heating unit 120 (the first-stage induction coil) heats the alloy material rod 110 to a larger size, the frequency required is lower, so that a higher heating efficiency can be achieved. Furthermore, the vertical distance between the second-stage heating unit 130 (the second-stage heating unit) and the columnar titanium alloy melt 110b is smaller than the first-stage heating unit 120 (the first-stage heating unit) and the The vertical distance of the titanium alloy material rod 110. Since the size of the columnar alloy melt 110b heated by the second-stage heating unit 130 (the second-stage induction coil) is small, the second-stage heating unit 130 (the second-stage induction coil) and the column The required vertical distance of the titanium alloy melt 110b is relatively close.

在另一實施例中,該第一級及第二級加熱單元120、130(該第一及第二級感應線圈)可為相連的兩個加熱單元,該第一級及第二級加熱單元120、130(該第一及第二級感應線圈)是採用相同功率及及頻率之高週波。 In another embodiment, the first and second stage heating units 120, 130 (the first and second stage induction coils) may be two connected heating units, the first stage and the second stage heating unit 120, 130 (the first and second stage induction coils) are high frequency waves of the same power and frequency.

步驟S204:使該柱狀合金熔湯被高速惰性氣體沖擊霧化後而快速凝固成合金粉末。 Step S204: The columnar alloy melt is rapidly solidified into an alloy powder after being impact-sprayed by a high-speed inert gas.

詳言之,當該柱狀合金熔湯110b進入該噴嘴140後,使該柱狀合金熔湯110b被高速惰性氣體(例如氬氣)沖擊霧化後而快速凝固成合金粉末110c(即鈦合金粉末)。由於該柱狀合金熔湯110b經過超溫控制,因此該柱狀合金熔湯110b之溫度上升可造成該柱狀合金熔湯110b之黏滯性下降,使凝固後之合金粉末110c的粒徑更減小及真圓度(球狀)更佳。 In detail, when the columnar alloy melt 110b enters the nozzle 140, the columnar alloy melt 110b is rapidly solidified into an alloy powder 110c by impact atomization by a high-speed inert gas (for example, argon gas) (ie, titanium alloy). powder). Since the columnar alloy melt 110b is subjected to over-temperature control, the temperature rise of the columnar alloy melt 110b may cause the viscosity of the columnar alloy melt 110b to decrease, and the particle size of the solidified alloy powder 110c is further increased. It is better to reduce and roundness (spherical).

因此,本實施例係利用該第一級及第二級加熱單元的配置方式同時進行該柱狀合金熔湯的流量控制及超溫控制,可確保維持柱狀合金熔湯(熔柱)的型態,並使凝固後之合金粉末的粒徑更減小及真圓度(球狀)更佳。 Therefore, in this embodiment, the flow control and over-temperature control of the columnar alloy melt are simultaneously performed by using the arrangement of the first-stage and second-stage heating units, and the type of the columnar alloy melt (solder) can be ensured. And the particle size of the alloy powder after solidification is further reduced and the roundness (spherical shape) is better.

圖3為本發明第二實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖。 3 is a schematic view showing an apparatus for manufacturing an alloy powder using an electrode induction melting gas atomization method (EIGA) according to a second embodiment of the present invention.

請參閱圖3,並配合參閱圖2。本發明第二實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備大體上類似於第一實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備。該第二實施例與第一實施例之差異在於:該第一級加熱單元為一第一級感應線圈,且該第一級感應線圈包括一主要線圈121及一預熱線圈122,該預熱線圈122相連於該主要線圈121。在本實施例中,該主要線圈 121及預熱線圈122採用具有相同功率及及頻率之高週波,而該主要線圈121與該合金原料棒110之垂直距離須小於該預熱線圈122與該合金原料棒110之垂直距離。由於該主要線圈121所加熱之該錐形尖端110a的尺寸較小,因此該主要線圈121與該錐形尖端110a之所需垂直距離較近。 Please refer to Figure 3 and refer to Figure 2. The alloy powder producing apparatus using the electrode induction smelting gas atomization method (EIGA) of the second embodiment of the present invention is substantially similar to the alloy powder producing apparatus using the electrode induction smelting gas atomization method (EIGA) of the first embodiment. The difference between the second embodiment and the first embodiment is that the first-stage heating unit is a first-stage induction coil, and the first-stage induction coil includes a main coil 121 and a preheating coil 122. The coil 122 is connected to the main coil 121. In this embodiment, the main coil 121 and the preheating coil 122 adopt a high frequency having the same power and frequency, and the vertical distance between the main coil 121 and the alloy material rod 110 must be smaller than the vertical distance between the preheating coil 122 and the alloy material rod 110. Since the tapered tip 110a heated by the main coil 121 is small in size, the main coil 121 is closer to the required vertical distance from the tapered tip 110a.

因此,在圖2所示之合金粉末的製造方法中,更包括一步驟:先進行該合金原料棒的預熱。詳言之,利用預熱線圈122先行對該合金原料棒110加熱,可增加柱狀合金熔湯110b(熔柱)的均勻性。而該主要線圈121(等同於第一實施例之第一級加熱單元120)則係對該合金原料棒110的尖端加熱並熔化,以成為該柱狀合金熔湯110b,詳細加熱方式如前述,在此不另贅述。 Therefore, in the method for producing the alloy powder shown in Fig. 2, the method further comprises the step of preheating the alloy material rod. In detail, the preheating coil 122 is used to heat the alloy material rod 110 in advance, thereby increasing the uniformity of the columnar alloy melt 110b (solus column). The main coil 121 (equivalent to the first-stage heating unit 120 of the first embodiment) heats and melts the tip end of the alloy material rod 110 to become the columnar alloy melt 110b, and the detailed heating method is as described above. I will not repeat them here.

因此,本發明第二實施例所利用該第一級加熱單元120(第一級感應線圈)之預熱線圈的配置方式先進行該合金原料棒的預熱,可增加柱狀合金熔湯(熔柱)的均勻性,並可降低該第一級加熱單元120(第一級感應線圈)之主要線圈之使用功率。 Therefore, in the second embodiment of the present invention, the preheating coil of the first-stage heating unit 120 (first-stage induction coil) is configured to preheat the alloy material rod, thereby increasing the columnar alloy melting (melting) The uniformity of the column) and the power used by the main coil of the first stage heating unit 120 (first stage induction coil) can be reduced.

圖4為本發明第三實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備示意圖。 4 is a schematic view showing an apparatus for manufacturing an alloy powder by an electrode induction melting gas atomization method (EIGA) according to a third embodiment of the present invention.

請參閱圖4,本發明第三實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備大體上類似於第一實施例之利用電極感應熔煉氣體霧化法(EIGA)的合金粉末製造設備。該第三實施例與第一實施例之差異在於:該第二級加熱單元130為一電漿槍。 Referring to FIG. 4, an alloy powder manufacturing apparatus using an electrode induction smelting gas atomization method (EIGA) according to a third embodiment of the present invention is substantially similar to the alloy using the electrode induction smelting gas atomization method (EIGA) of the first embodiment. Powder manufacturing equipment. The third embodiment differs from the first embodiment in that the second stage heating unit 130 is a plasma gun.

利用電漿槍產生的高熱電漿炬(其電漿炬邊緣及中心的溫度介於攝氏2000~28000度),作為二次加熱源,將該合金原料棒110經過該第一級加熱單元120後得的柱狀合金熔湯110b再次加熱,除了增加柱狀合金熔湯110b的溫度(約可升溫攝氏100度)外,同時具有預先碎化熔柱成微細熔滴, 提高柱狀合金熔湯110b與下游霧化氣體的接觸面積,增加霧化效率,使得霧化後的合金粉末110c粒徑更小(相較於第一實施例之合金粉末),同時增加球形度達成細化粉末的效果。 The high-temperature electric torch produced by the plasma gun (the temperature of the edge and center of the plasma torch is between 2000 and 28000 degrees Celsius) is used as the secondary heating source, and the alloy material rod 110 is passed through the first-stage heating unit 120. The obtained columnar alloy melt 110b is heated again, except that the temperature of the columnar alloy melt 110b is increased (about 100 degrees Celsius), and the pre-crushed melting column is formed into fine droplets. Increasing the contact area of the columnar alloy melt 110b with the downstream atomizing gas, increasing the atomization efficiency, so that the atomized alloy powder 110c has a smaller particle diameter (compared to the alloy powder of the first embodiment), and simultaneously increases the sphericity. Achieve the effect of refining the powder.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In the above, it is merely described that the present invention is an embodiment or an embodiment of the technical means for solving the problem, and is not intended to limit the scope of implementation of the present invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

100‧‧‧合金粉末製造設備 100‧‧‧ alloy powder manufacturing equipment

110‧‧‧合金原料棒 110‧‧‧ alloy raw material rod

110a‧‧‧尖端 110a‧‧‧ cutting-edge

110b‧‧‧柱狀合金熔湯 110b‧‧‧Column alloy melting soup

110c‧‧‧合金粉末 110c‧‧‧ alloy powder

120‧‧‧第一級加熱單元 120‧‧‧First stage heating unit

130‧‧‧第二級加熱單元 130‧‧‧Second stage heating unit

140‧‧‧噴嘴 140‧‧‧Nozzles

Claims (11)

一種合金粉末製造設備,包括:一合金原料棒;一第一級加熱單元,其中該合金原料棒的尖端被旋轉並送入第一級加熱單元中加熱,進行一柱狀合金熔湯的流量控制,使該合金原料棒的尖端熔化成該柱狀合金熔湯;一第二級加熱單元,其中該柱狀合金熔湯被通過該第二級加熱單元加熱,進行該柱狀合金熔湯的超溫控制,以控制該柱狀合金熔湯之溫度到達一預定溫度;以及一噴嘴,其中該柱狀合金熔湯進入該噴嘴,使該柱狀合金熔湯被高速惰性氣體沖擊霧化後而快速凝固成合金粉末。 An alloy powder manufacturing apparatus comprises: an alloy raw material rod; a first-stage heating unit, wherein a tip end of the alloy raw material rod is rotated and sent to a first-stage heating unit for heating, and a flow control of a columnar alloy melting soup is performed , the tip of the alloy material rod is melted into the columnar alloy melt; a second-stage heating unit, wherein the columnar alloy melt is heated by the second-stage heating unit to perform the super-column alloy melting soup Temperature control to control the temperature of the columnar alloy melt to reach a predetermined temperature; and a nozzle, wherein the columnar alloy melt enters the nozzle, so that the columnar alloy melt is quickly atomized by high-speed inert gas and then rapidly Solidified into an alloy powder. 如請求項1所述之合金粉末製造設備,其中該第一級加熱單元為一第一級感應線圈。 The alloy powder manufacturing apparatus of claim 1, wherein the first stage heating unit is a first stage induction coil. 如請求項2所述之合金粉末製造設備,其中該第二級加熱單元為一第二級感應線圈或一電漿槍。 The alloy powder manufacturing apparatus according to claim 2, wherein the second-stage heating unit is a second-stage induction coil or a plasma gun. 如請求項1所述之合金粉末製造設備,其中該第一級加熱單元為一第一級感應線圈,該第二級加熱單元為一第二級感應線圈,該第一級及第二級加熱單元採用具有不同功率及頻率之高週波,而該第二級加熱單元所採用之頻率須大於該第一級加熱單元之頻率。 The alloy powder manufacturing apparatus according to claim 1, wherein the first-stage heating unit is a first-stage induction coil, and the second-stage heating unit is a second-stage induction coil, and the first-stage and second-stage heating are performed. The unit uses a high frequency with different power and frequency, and the frequency of the second stage heating unit must be greater than the frequency of the first stage heating unit. 如請求項4所述之合金粉末製造設備,其中該第二級加熱單元與該柱狀鈦合金熔湯之垂直距離小於該第一級加熱單元與該鈦合金原料棒之垂直距離。 The alloy powder manufacturing apparatus according to claim 4, wherein a vertical distance between the second-stage heating unit and the columnar titanium alloy melt is smaller than a vertical distance between the first-stage heating unit and the titanium alloy material rod. 如請求項1所述之合金粉末製造設備,其中該第一級加熱單元為一第一級感應線圈,該第二級加熱單元為一第二級感應線圈,該第一級及第二級加熱單元為相連的兩個加熱單元,該第一級及第二級加熱單元採用具有相同功率及頻率之高週波。 The alloy powder manufacturing apparatus according to claim 1, wherein the first-stage heating unit is a first-stage induction coil, and the second-stage heating unit is a second-stage induction coil, and the first-stage and second-stage heating are performed. The unit is a connected two heating unit, and the first stage and second stage heating units adopt a high frequency with the same power and frequency. 如請求項1所述之合金粉末製造設備,其中該第一級加熱單元為一第一級感應線圈,該第一級加熱單元包括一主要線圈及一預熱線圈,該預熱線圈相連於該主要線圈。 The alloy powder manufacturing apparatus of claim 1, wherein the first-stage heating unit is a first-stage induction coil, the first-stage heating unit includes a main coil and a preheating coil, and the preheating coil is connected to the Main coil. 如請求項7所述之合金粉末製造設備,其中該主要線圈及預熱線圈採用具有相同功率及及頻率之高週波,而該主要線圈與該鈦合金原料棒之垂直距離小於該預熱線圈與該鈦合金原料棒之垂直距離。 The alloy powder manufacturing apparatus according to claim 7, wherein the main coil and the preheating coil adopt a high frequency wave having the same power and frequency, and a vertical distance between the main coil and the titanium alloy material rod is smaller than the preheating coil and The vertical distance of the titanium alloy raw material rod. 如請求項7所述之合金粉末製造設備,其中該第二級加熱單元為一電漿槍,其電漿炬邊緣及中心的溫度介於攝氏2000~28000度。 The alloy powder manufacturing apparatus according to claim 7, wherein the second-stage heating unit is a plasma gun, and the temperature of the edge and center of the plasma torch is between 2,000 and 28,000 degrees Celsius. 一種合金粉末製造方法,包括下列步驟:提供一合金原料棒;進行一柱狀合金熔湯的流量控制,使該合金原料棒的尖端熔化成該柱狀合金熔湯;進行該柱狀合金熔湯的超溫控制,以控制該柱狀合金熔湯之溫度到達一預定溫度;以及使該柱狀合金熔湯被高速惰性氣體沖擊霧化後而快速凝固成合金粉末。 A method for manufacturing an alloy powder, comprising the steps of: providing an alloy raw material rod; performing flow control of a columnar alloy melt to melt a tip of the alloy raw material rod into the columnar alloy melt; and performing the columnar alloy melting The over temperature control is performed to control the temperature of the columnar alloy melt to reach a predetermined temperature; and the columnar alloy melt is rapidly solidified into an alloy powder after being impact atomized by a high velocity inert gas. 如請求項10所述之合金粉末製造方法,更包括一步驟,先進行該合金原料棒的預熱。 The method for producing an alloy powder according to claim 10, further comprising the step of preheating the rod of the alloy material.
TW104140737A 2015-12-04 2015-12-04 Alloy powder manufacturing equipment and methods TWI593484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104140737A TWI593484B (en) 2015-12-04 2015-12-04 Alloy powder manufacturing equipment and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140737A TWI593484B (en) 2015-12-04 2015-12-04 Alloy powder manufacturing equipment and methods

Publications (2)

Publication Number Publication Date
TW201720550A TW201720550A (en) 2017-06-16
TWI593484B true TWI593484B (en) 2017-08-01

Family

ID=59687774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140737A TWI593484B (en) 2015-12-04 2015-12-04 Alloy powder manufacturing equipment and methods

Country Status (1)

Country Link
TW (1) TWI593484B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016171A (en) * 2019-12-23 2020-04-17 河南速维电子科技有限公司 3D printer model cooling system
WO2022238317A1 (en) * 2021-05-10 2022-11-17 Ald Vacuum Technologies Gmbh Device and method for producing metal powder using an induction coil and an intermediate coil
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414081B (en) * 2017-06-19 2023-05-30 哈尔滨工业大学 Wire feed fuse system for metal increment manufacturing and application method thereof
CN109128681A (en) * 2018-09-26 2019-01-04 刘军发 A kind of electrode induction melting increasing material manufacturing apparatus and method for
CN113042740A (en) * 2021-02-07 2021-06-29 北京七弟科技有限公司 Method for preparing high-melting-point metal or alloy spherical powder by adopting gas atomization
TWI786578B (en) * 2021-03-26 2022-12-11 中佑精密材料股份有限公司 Alloy powder manufacturing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016610A (en) * 2005-12-21 2007-08-15 苏舍美特科(美国)公司 Hybrid plasma-cold spray method and apparatus
CN103747898A (en) * 2011-08-11 2014-04-23 Ati资产公司 Processes, systems, and apparatus for forming products from atomized metals and alloys
CN103752836A (en) * 2014-01-16 2014-04-30 北京科技大学 Method for manufacturing spherical niobium and titanium-based alloy powder with small particle size
TW201435099A (en) * 2013-03-04 2014-09-16 Sintokogio Ltd Powder made of iron-based metallic glass
CN104690280A (en) * 2013-12-06 2015-06-10 财团法人金属工业研究发展中心 Method and apparatus for producing metal powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016610A (en) * 2005-12-21 2007-08-15 苏舍美特科(美国)公司 Hybrid plasma-cold spray method and apparatus
CN103747898A (en) * 2011-08-11 2014-04-23 Ati资产公司 Processes, systems, and apparatus for forming products from atomized metals and alloys
TW201435099A (en) * 2013-03-04 2014-09-16 Sintokogio Ltd Powder made of iron-based metallic glass
CN104690280A (en) * 2013-12-06 2015-06-10 财团法人金属工业研究发展中心 Method and apparatus for producing metal powder
CN103752836A (en) * 2014-01-16 2014-04-30 北京科技大学 Method for manufacturing spherical niobium and titanium-based alloy powder with small particle size

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016171A (en) * 2019-12-23 2020-04-17 河南速维电子科技有限公司 3D printer model cooling system
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
WO2022238317A1 (en) * 2021-05-10 2022-11-17 Ald Vacuum Technologies Gmbh Device and method for producing metal powder using an induction coil and an intermediate coil

Also Published As

Publication number Publication date
TW201720550A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
TWI593484B (en) Alloy powder manufacturing equipment and methods
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
KR102533933B1 (en) Plasma atomized metal powder manufacturing process and system for plasma atomized metal powder manufacturing process
CN106378460B (en) Prepare the plasma atomization method and equipment of spherical pure titanium or titanium alloy powder
CN104475744B (en) A kind of aerosolization prepares the device and method of sized spherical titanium powder and titanium alloy powder
EP3294482B1 (en) Methods and apparatuses for producing metallic powder material
CN106166617B (en) A kind of preparation method of 3D printing titanium alloy powder
RU2693244C2 (en) Method and device for producing powder particles by atomisation of raw material in form of elongated element
JP2018522136A5 (en)
CN107900367B (en) Novel atomizer of titanium and titanium alloy powder for 3D printing
CN106670452A (en) Method for preparing spherical 3D printing powder through plasma shaping
CN105252009B (en) A kind of manufacture method of micro-fine spherical titanium powder
CN108165974A (en) The method that sensing heating enhances low pressure cold spray-on coating and hard substrate combinating strength
JP6178575B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
WO2019205508A1 (en) Three-dimensional printing method
CN109570521A (en) The method that plasma spheroidization prepares metal powder
CN103386492A (en) Preparation method for superfine spherical stainless steel powder
JP2020528106A (en) Cost-effective production of large quantities of ultrafine spherical powder using thruster-assisted plasma atomization
US20180147631A1 (en) Alloy powder manufacturing device and method with temperature control design
TW201714685A (en) Spherical metal powder and manufacturing method thereof and manufacturing apparatus thereof capable of allowing the fine metal particles to converge into a spherical shape in a relatively long time to achieve the purpose of improving the metal powder roundness
RU2751609C1 (en) Method and device for producing powders for additive technologies
CN109108301A (en) Based on laser molten metal atomising material milling method
CN114226742A (en) Preparation method of aluminum alloy powder
CN111069615B (en) Spherical high-chromium copper alloy powder for 3D printing and preparation method thereof
KR20200003302A (en) Manufacturing method of metal poswer for 3 dimentional printer