TWI608325B - A low-voltage, high-accuracy current mirror circuit - Google Patents

A low-voltage, high-accuracy current mirror circuit Download PDF

Info

Publication number
TWI608325B
TWI608325B TW102147978A TW102147978A TWI608325B TW I608325 B TWI608325 B TW I608325B TW 102147978 A TW102147978 A TW 102147978A TW 102147978 A TW102147978 A TW 102147978A TW I608325 B TWI608325 B TW I608325B
Authority
TW
Taiwan
Prior art keywords
transistor
circuit
current
input
gate
Prior art date
Application number
TW102147978A
Other languages
Chinese (zh)
Other versions
TW201439710A (en
Inventor
西芳典
Original Assignee
輝達公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輝達公司 filed Critical 輝達公司
Publication of TW201439710A publication Critical patent/TW201439710A/en
Application granted granted Critical
Publication of TWI608325B publication Critical patent/TWI608325B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

低電壓高準確度電流鏡電路 Low voltage and high accuracy current mirror circuit

本發明一般係關於積體電路,更具體而言係關於一種低電壓高準確度電流鏡電路設計。 The present invention relates generally to integrated circuits, and more particularly to a low voltage, high accuracy current mirror circuit design.

積體電路通常包括依據帶隙電壓參考(bandgap voltage reference)操作之組件(例如:緩衝器、放大器、正反器等)。帶隙電壓參考係廣泛用於積體電路中的無關溫度電壓參考電路。由於帶隙電路需要大幅的矽面積,因此可能有數百個組件依據給定電路內的一個帶隙電壓參考進行操作。通常,每個組件皆長距離(例如2mm)接收帶隙電壓參考之資訊。若電壓用於長距離傳送這樣的資訊,則很難確保帶隙電壓所對照測量並轉換為電流的相同接地電位。又,這樣的電壓對電流轉換就矽面積而論很昂貴。若電流用於傳送該資訊,則電流需要點對點連接,由此需要許多電流連接以長距離運行。這樣的連接就矽面積而論亦很昂貴。 Integrated circuits typically include components that operate in accordance with a bandgap voltage reference (eg, buffers, amplifiers, flip-flops, etc.). Bandgap voltage reference systems are widely used in unrelated temperature and voltage reference circuits in integrated circuits. Since the bandgap circuit requires a large footprint, there may be hundreds of components operating in accordance with a bandgap voltage reference within a given circuit. Typically, each component receives information on the bandgap voltage reference over a long distance (eg, 2 mm). If the voltage is used for long-distance transmission of such information, it is difficult to ensure that the bandgap voltage is measured and converted to the same ground potential of the current. Moreover, such voltages are very expensive in terms of current conversion. If current is used to transmit this information, the current requires a point-to-point connection, thus requiring many current connections to operate over long distances. Such a connection is also expensive in terms of area.

據此,本技術亟需提供參考電流給積體電路內多個組件之更優化的方式。 Accordingly, there is a need in the art for a more optimized manner of providing a reference current to a plurality of components within an integrated circuit.

本發明方法之一個實作包括一低電壓高準確度電流鏡電路。該電流鏡電路包括一輸入電路,其配置成接收輸入參考電流,其中該輸入電路包括一反饋通道,其用於將該輸入參考電流與輸出電流相較並大體上匹配,且其中該反饋通道並非為了將輸入電壓與輸出電壓匹配而配置,且其中該輸入電路不包括一比較器,其具有將該輸入參考電流與該輸出電流相較的運算放大器;以及一輸出電路,其耦接於該輸入電路,其中該輸出電路配置成將該輸出電流發送到電路方塊之一或多個組件。 One implementation of the method of the present invention includes a low voltage, high accuracy current mirror circuit. The current mirror circuit includes an input circuit configured to receive an input reference current, wherein the input circuit includes a feedback channel for comparing and substantially matching the input reference current to the output current, and wherein the feedback channel is not Configuring to match an input voltage to an output voltage, and wherein the input circuit does not include a comparator having an operational amplifier that compares the input reference current to the output current; and an output circuit coupled to the input A circuit, wherein the output circuit is configured to transmit the output current to one or more components of the circuit block.

優點在於,所揭示的方法在積體電路晶片上占用少量面積。 舉例來說,反饋通道讓電流鏡電路能很容易穩定平衡(例如:很容易將輸入電流與輸出電流匹配而不引起振盪行為),並且以低成本做到(例如:沒有占用大量空間或在花費方面而言相當昂貴的大型組件,諸如運算放大器)。 The advantage is that the disclosed method takes up a small amount of area on the integrated circuit wafer. For example, the feedback channel allows the current mirror circuit to be easily balanced (eg, it is easy to match the input current to the output current without causing oscillatory behavior) and is done at low cost (eg, without taking up a lot of space or spending Large components that are quite expensive in terms of terms, such as operational amplifiers.

100‧‧‧電腦系統 100‧‧‧ computer system

102‧‧‧中央處理單元 102‧‧‧Central Processing Unit

103‧‧‧裝置驅動程式 103‧‧‧Device Driver

104‧‧‧系統記憶體 104‧‧‧System Memory

105‧‧‧記憶體橋 105‧‧‧Memory Bridge

106‧‧‧匯流排或其他通信路徑;路徑 106‧‧‧ bus or other communication path; path

107‧‧‧輸入/輸出(I/O)橋 107‧‧‧Input/Output (I/O) Bridge

108‧‧‧使用者輸入裝置 108‧‧‧User input device

110‧‧‧顯示裝置 110‧‧‧ display device

111‧‧‧顯示器螢幕 111‧‧‧Display screen

112‧‧‧並行處理子系統 112‧‧‧Parallel Processing Subsystem

113‧‧‧匯流排或其他通信路徑 113‧‧‧ Bus or other communication path

114‧‧‧系統磁碟 114‧‧‧System Disk

116‧‧‧開關 116‧‧‧Switch

118‧‧‧網路配接器 118‧‧‧Network adapter

120、121‧‧‧附加卡 120, 121‧‧‧Addition card

200‧‧‧慣用類比/混合信號實體層積體電路 200‧‧‧Common analog/mixed signal physical layered circuit

202‧‧‧帶隙電壓參考 202‧‧‧Band voltage reference

204‧‧‧運算轉導放大器 204‧‧‧Operational Transducer

205、205(1)、205(2)~205(N)‧‧‧電路方塊 205, 205 (1), 205 (2) ~ 205 (N) ‧ ‧ circuit blocks

206‧‧‧參考電壓 206‧‧‧reference voltage

208、208(1)、208(2)~208(N)‧‧‧電流鏡電路 208, 208 (1), 208 (2) ~ 208 (N) ‧ ‧ current mirror circuit

210、210(1)、210(2)~210(N)‧‧‧輸入參考電流 210, 210 (1), 210 (2) ~ 210 (N) ‧ ‧ input reference current

300A‧‧‧慣用類比/混合信號實體層積體電路 300A‧‧‧Common analog/mixed signal physical layered circuit

300B‧‧‧慣用類比/混合信號實體 層積體電路 300B‧‧‧Common Analog/Mixed Signal Entity Laminated circuit

302‧‧‧帶隙電壓參考 302‧‧‧Band Gap Voltage Reference

305(1)、305(2)~305(N)‧‧‧電路方塊 305(1), 305(2)~305(N)‧‧‧ circuit blocks

306‧‧‧電壓 306‧‧‧Voltage

308(1)‧‧‧電流鏡電路 308(1)‧‧‧current mirror circuit

310(1)‧‧‧輸入參考電流 310(1)‧‧‧ input reference current

312(1)‧‧‧重新產生的電流 312(1)‧‧‧Regenerated current

314(1)‧‧‧輸出電流 314(1)‧‧‧ Output current

322(1)‧‧‧NMOS電晶體;電晶體 322(1)‧‧‧ NMOS transistor; transistor

324(1)‧‧‧NMOS電晶體;電晶體 324(1)‧‧‧ NMOS transistor; transistor

326(1)‧‧‧PMOS電晶體 326(1)‧‧‧ PMOS transistor

334(1)‧‧‧PMOS電晶體;電晶體 334(1)‧‧‧ PMOS transistor; transistor

336(1)‧‧‧串接PMOS電晶體;PMOS電晶體 336(1)‧‧‧ series PMOS transistor; PMOS transistor

342(1)‧‧‧NMOS電晶體;電晶體;疊接電晶體 342(1)‧‧‧ NMOS transistor; transistor; stacked transistor

344(1)‧‧‧NMOS電晶體;電晶體;疊接電晶體 344(1)‧‧‧ NMOS transistor; transistor; stacked transistor

400‧‧‧類比/混合信號實體積體電路;實體層(PHY) 400‧‧‧ analog/mixed signal real volume circuits; physical layer (PHY)

402‧‧‧帶隙電壓參考 402‧‧‧Band Voltage Reference

405(1)、405(2)~405(N)‧‧‧電路方塊 405(1), 405(2)~405(N)‧‧‧ circuit blocks

406‧‧‧參考電壓;電壓 406‧‧‧reference voltage; voltage

408(1)‧‧‧電流鏡電路 408(1)‧‧‧current mirror circuit

410(1)‧‧‧輸入參考電流;電流 410(1)‧‧‧ input reference current; current

412(1)‧‧‧電流 412(1)‧‧‧ Current

414(1)‧‧‧輸出電流;電流 414(1)‧‧‧ Output current; current

422(1)‧‧‧NMOS電晶體 422(1)‧‧‧ NMOS transistor

424(1)‧‧‧輸入電路 424(1)‧‧‧ input circuit

424(1)‧‧‧NMOS電晶體 424(1)‧‧‧ NMOS transistor

426(1)‧‧‧PMOS電晶體 426(1)‧‧‧ PMOS transistor

430(1)‧‧‧NMOS電晶體 430(1)‧‧‧ NMOS transistor

432(1)‧‧‧反饋通道 432(1)‧‧‧ feedback channel

434(1)‧‧‧PMOS電晶體 434(1)‧‧‧ PMOS transistor

436(1)‧‧‧串接PMOS電晶體;PMOS電晶體 436(1)‧‧‧ series PMOS transistor; PMOS transistor

444(1)‧‧‧輸出電路 444(1)‧‧‧ Output Circuit

Vgs‧‧‧閘極到源極間電壓 V gs ‧‧ ‧ gate to source voltage

Vdd‧‧‧供電電壓;參考電壓 V dd ‧‧‧Power supply voltage; reference voltage

Vds‧‧‧汲極到源極間電壓 V ds ‧‧‧bend-to-source voltage

Vth‧‧‧臨界電壓 V th ‧‧‧ threshold voltage

因此藉由參照其中一些例示於所附圖式中的實作,可具有以上簡要總結於其中可詳細理解本發明之以上述特徵的方式、本發明之更具體的描述。然而,應注意所附圖式僅例示本發明之一般實作,因此不應被視為其範疇之限制,因為本發明可承認其他等效的實作。 The present invention, in its broader aspects, may be described in detail, by way of a It is to be understood, however, that the invention is not limited by the scope of the invention

第一圖係例示配置成實行本發明之一或多個態樣的電腦系統之區塊圖。 The first figure illustrates a block diagram of a computer system configured to perform one or more aspects of the present invention.

第二圖係慣用類比/混合信號實體層(PHY,“Physical layer”)積體電路之區塊圖。 The second picture is a block diagram of a conventional analog/mixed signal physical layer (PHY, "Physical Layer") integrated circuit.

第三A圖係慣用類比/混合信號實體層(PHY)積體電路之電路圖。 The third A diagram is a circuit diagram of a conventional analog/mixed signal physical layer (PHY) integrated circuit.

第三B圖係另一慣用類比/混合信號實體層(PHY)積體電路之電路圖。 The third B diagram is a circuit diagram of another conventional analog/mixed signal physical layer (PHY) integrated circuit.

第四圖係根據本發明一具體實施例之一類比/混合信號實體(PHY)積體電路之電路圖。 The fourth figure is a circuit diagram of an analog/mixed signal entity (PHY) integrated circuit in accordance with an embodiment of the present invention.

在以下描述中,闡述眾多具體細節以提供對本發明之更完全的理解。然而,熟習此項技術者應可得知,可在不具有一或多個這些具體細節的情形下實作本發明。在其他的實例中,並未說明眾所周知的特徵以避免模糊本發明。 Numerous specific details are set forth in the following description in order to provide a more complete understanding of the invention. It will be apparent to those skilled in the art, however, that the invention may be practiced without one or more of these specific details. In other instances, well-known features have not been described in order to avoid obscuring the invention.

系統概述System Overview

第一圖係例示配置成實行本發明之一或多個態樣的電腦系統100之區塊圖。電腦系統100包括一中央處理單元(CPU,“Central processing unit”)102和一系統記憶體104,其包括一裝置驅動程式103。CPU 102和系統記憶體104透過可包括一記憶體橋105的互連路徑通信。舉例來說,記憶體橋105可能係一北橋晶片,透過匯流排或其他通信路徑106〔例 如:超傳輸鏈結(HyperTransport link)等〕連接到輸入/輸出(I/O,“Input/output”)橋107。舉例來說,I/O橋107可能係一南橋晶片,接收來自一或多個使用者輸入裝置108(例如:鍵盤、滑鼠等)的使用者輸入,並透過路徑106和記憶體橋105將該輸入轉發到CPU 102。 The first figure illustrates a block diagram of a computer system 100 configured to perform one or more aspects of the present invention. The computer system 100 includes a central processing unit (CPU, "Central Processing Unit") 102 and a system memory 104 that includes a device driver 103. CPU 102 and system memory 104 communicate via an interconnect path that can include a memory bridge 105. For example, the memory bridge 105 may be a north bridge wafer, through a bus bar or other communication path 106 [eg For example, a HyperTransport link or the like is connected to an input/output (I/O, "Input/output") bridge 107. For example, I/O bridge 107 may be a south bridge wafer that receives user input from one or more user input devices 108 (eg, keyboard, mouse, etc.) and will pass through path 106 and memory bridge 105. This input is forwarded to the CPU 102.

亦如顯示,並行處理子系統112透過匯流排或其他通信路徑113〔例如:快速周邊組件互連(PCI express,“Peripheral component interconnect express”)、加速圖形埠(AGP,“Accelerated graphics port”)及/或超傳輸鏈結等〕耦接於記憶體橋105。在一實作中,並行處理子系統112係將像素傳送到顯示裝置110〔例如:慣用陰極射線管(CRT,“Cathode ray tube”)及/或液晶顯示(LCD,“Liquid crystal display”)型螢幕等〕的圖形子系統。系統磁碟114亦連接到I/O橋107。開關116提供I/O橋107與其他組件(諸如網路配接器118和各種附加卡120及121)之間的連接。其他組件(未明確顯示),包括通用串列匯流排(USB,“Universal serial bus”)及/或其他埠連接、光碟(CD,“Compact disc”)機、數位影碟(DVD,“Digital video disc”)機、底片錄製裝置等類似物,亦可連接到I/O橋107。互連第一圖中的各種組件的通信路徑,可使用任何適合的協定(諸如PCI、PCI Express(PCIe)、AGP、超傳輸及/或任何其他匯流排或點對點通信協定)實行,以及可使用如本技術中已習知不同協定的不同裝置間的連接實行。裝置係硬體或硬體與軟體之組合。組件亦係硬體或硬體與軟體之組合。 As also shown, the parallel processing subsystem 112 passes through a bus or other communication path 113 (eg, PCI Express, "Peripheral component interconnect express"), Accelerated Graphics Port (AGP), and / or super transfer chain, etc. coupled to the memory bridge 105. In one implementation, the parallel processing subsystem 112 transmits pixels to the display device 110 (eg, a conventional cathode ray tube (CRT), and/or a liquid crystal display (LCD) type). The graphics subsystem of the screen, etc. System disk 114 is also coupled to I/O bridge 107. Switch 116 provides a connection between I/O bridge 107 and other components, such as network adapter 118 and various add-on cards 120 and 121. Other components (not explicitly shown), including universal serial bus (USB, "Universal serial bus") and / or other 埠 connection, CD (CD, "Compact disc"), digital video disc (DVD, "Digital video disc" The machine, the film recording device, and the like can also be connected to the I/O bridge 107. The communication path interconnecting the various components in the first figure can be implemented using any suitable protocol, such as PCI, PCI Express (PCIe), AGP, HyperTransport, and/or any other bus or point-to-point communication protocol, and can be used Connections between different devices of different protocols are known in the art. The device is a combination of hardware or hardware and software. The components are also hardware or a combination of hardware and software.

在一實作中,並行處理子系統112併入用於圖形和視訊處理而優化的電路,包括例如視訊輸出電路,並構成圖形處理單元(GPU,“Graphics processing unit”)。在另一實作中,並行處理子系統112併入用於通用處理而優化的電路,同時保留文中更詳細所描述的下層運算架構。在又另一實作中,並行處理子系統112可與一或多個其他系統元件整合,諸如記憶體橋105、CPU 102和I/O橋107,以形成系統單晶片(SoC,“System on chip”)。 In one implementation, parallel processing subsystem 112 incorporates circuitry optimized for graphics and video processing, including, for example, video output circuitry, and constitutes a graphics processing unit (GPU, "Graphics processing unit"). In another implementation, parallel processing subsystem 112 incorporates circuitry optimized for general processing while retaining the underlying computing architecture described in more detail herein. In yet another implementation, parallel processing subsystem 112 may be integrated with one or more other system components, such as memory bridge 105, CPU 102, and I/O bridge 107 to form a system single chip (SoC, "System on Chip").

應可察知文中所顯示的系統係例示性,且變化例和修飾例皆可能存在。連接布局(topology)可依所需修改,包括橋之數量和設置、CPU 102之數量和並行處理子系統112之數量。舉例來說,在一些實作中,系統 記憶體104直接連接到CPU 102而非經由橋,且其他裝置透過記憶體橋105和CPU 102與系統記憶體104通信。在其他替代性布局中,並行處理子系統112連接到I/O橋107或直接連接到CPU 102,而非連接到記憶體橋105。在又其他實作中,I/O橋107和記憶體橋105可能整合於單一晶片中。大型實作可包括兩個或多個CPU 102和兩個或多個並行處理子系統112。文中所顯示的特定組件係視需要;舉例來說,任何數量之附加卡或周邊裝置皆可能支援。在一些實作中,排除開關116,且網路配接器118和附加卡120、121直接連接到I/O橋107。 It should be noted that the systems shown in the text are illustrative and that variations and modifications are possible. The connection topology can be modified as needed, including the number and settings of bridges, the number of CPUs 102, and the number of parallel processing subsystems 112. For example, in some implementations, the system The memory 104 is directly connected to the CPU 102 rather than via the bridge, and other devices communicate with the system memory 104 through the memory bridge 105 and the CPU 102. In other alternative arrangements, parallel processing subsystem 112 is coupled to I/O bridge 107 or directly to CPU 102, rather than to memory bridge 105. In still other implementations, I/O bridge 107 and memory bridge 105 may be integrated into a single wafer. A large implementation may include two or more CPUs 102 and two or more parallel processing subsystems 112. The particular components shown are as needed; for example, any number of additional cards or peripheral devices may be supported. In some implementations, switch 116 is eliminated and network adapter 118 and add-on cards 120, 121 are directly connected to I/O bridge 107.

類比/混合信號實體層(PHY)電路之概述Overview of analog/mixed-signal physical layer (PHY) circuits

第二圖係慣用類比/混合信號實體層積體電路200(PHY 200)之區塊圖。PHY 200包括一帶隙電壓參考,其耦接於電路方塊205,包括一電路方塊205(1)、電路方塊205(2)、……和電路方塊205(N),其中N1。該帶隙電壓參考包括一運算轉導放大器(OTA,“Operational transconductance amplifier”)204。電路方塊205之每一者皆包括同樣參考號碼之一電流鏡電路208。舉例來說,電路方塊205(1)包括一電流鏡電路208(1),依此類推。 The second figure is a block diagram of a conventional analog/mixed signal physical layered body circuit 200 (PHY 200). PHY 200 includes a bandgap voltage reference coupled to circuit block 205, including a circuit block 205(1), circuit blocks 205(2), ..., and circuit block 205(N), where N 1. The bandgap voltage reference includes an operational amplifier (OTA, "Operational Transconductance Amplifier" 204). Each of circuit blocks 205 includes a current mirror circuit 208 of the same reference number. For example, circuit block 205(1) includes a current mirror circuit 208(1), and so on.

帶隙電壓參考202係無關溫度的電壓參考電路。在標準類比/混合信號PHY 200中,通常僅一個帶隙電壓參考202在積體電路上,用以產生參考電壓206。僅一個帶隙電壓參考202的限制係由於帶隙電壓參考202在積體電路上占用很大面積的事實。通常,帶隙電壓參考202在面積上較電流鏡電路208大幾百倍。OTA 204係放大器,其差動輸入電壓產生輸入參考電流。OTA 204係電壓控制電流源(VCCS,“Voltage controlled current source”)。 The bandgap voltage reference 202 is a voltage reference circuit that is independent of temperature. In the standard analog/mixed signal PHY 200, typically only one bandgap voltage reference 202 is on the integrated circuit to generate the reference voltage 206. The limitation of only one bandgap voltage reference 202 is due to the fact that the bandgap voltage reference 202 occupies a large area on the integrated circuit. Typically, the bandgap voltage reference 202 is hundreds of times larger in area than the current mirror circuit 208. The OTA 204 series amplifier has a differential input voltage that produces an input reference current. OTA 204 is a voltage controlled current source (VCCS, "Voltage controlled current source").

據此,PHY 200配置成將參考電壓206轉換為輸入參考電流,包括輸入參考電流210(1)、輸入參考電流210(2)、……和輸入參考電流210(N),其中N1。該等輸入參考電流隨後長距離分散。每個輸入參考電流皆對應於同樣參考號碼之電路方塊205。舉例來說,輸入參考電流210(1)對應電路方塊205(1),依此類推。 Accordingly, PHY 200 is configured to convert reference voltage 206 to an input reference current, including input reference current 210(1), input reference current 210(2), ..., and input reference current 210(N), where N 1. The input reference currents are then dispersed over long distances. Each input reference current corresponds to circuit block 205 of the same reference number. For example, input reference current 210(1) corresponds to circuit block 205(1), and so on.

這樣的電流分散之目的係避免在積體電路為了目標電路方塊205而配置成將參考電壓206轉換為輸入參考電流210的每個實例中, 皆在PHY 200上具有大型OTA電路。或者,為了實現第一圖中所例示的一對多點分散之類型,積體電路可配置成將參考電壓206轉換為另一形式之電壓,諸如短路電晶體之閘極到源極間電壓Vgs。然而,由於長距離(例如2mm)晶片上變化,這樣的配置在電流鏡208導致顯著的不準確。再者,即使所分散的帶隙電壓長距離分散,且大型OTA用於將帶隙電壓轉換為電流,但該架構仍會因為基極電壓位準(對於大多數情況係接地電位)在遠距離目標可能不同,而受到不準確影響,且這樣的差異導致錯誤解譯的分散參考電壓。 The purpose of such current spreading is to avoid having a large OTA circuit on the PHY 200 in each instance where the integrated circuit is configured to convert the reference voltage 206 to the input reference current 210 for the target circuit block 205. Alternatively, to achieve the type of one-to-multipoint dispersion illustrated in the first figure, the integrated circuit can be configured to convert the reference voltage 206 to another form of voltage, such as a gate-to-source voltage V of the shorted transistor. Gs . However, such a configuration results in significant inaccuracies in the current mirror 208 due to variations over long distances (e.g., 2 mm) on the wafer. Furthermore, even if the dispersed bandgap voltage is dispersed over long distances and large OTAs are used to convert the bandgap voltage into current, the architecture will still be at a long distance due to the base voltage level (for most cases the ground potential) The targets may be different and subject to inaccuracies, and such differences lead to misinterpreted scattered reference voltages.

每個電路方塊205皆接收到輸入參考電流之後,每個電路方塊205皆配置成複製輸入參考電流,以為了偏壓方塊組件(例如:緩衝器、放大器、正反器等)而重新產生相同輸入參考電流之多個實例。然而,由於在許多配置中N×m可能超過100,因此從帶隙電壓參考202直接發送N×m個參考電流將會非常困難。 After each circuit block 205 receives the input reference current, each circuit block 205 is configured to replicate the input reference current to regenerate the same input for biasing the block components (eg, buffer, amplifier, flip-flop, etc.) Multiple examples of reference currents. However, since N x m may exceed 100 in many configurations, it would be very difficult to directly transmit N x m reference currents from the bandgap voltage reference 202.

如以上所解釋,電流鏡電路(例如:電流鏡電路208)在PHY使用許多電路方塊(例如:電路方塊205)的類比/混合信號PHY(例如:PHY 200)中非常重要。然而,電源電壓很低時,每個電流鏡電路皆會受到嚴重的缺陷影響,如以下參照第三A圖進一步解釋。 As explained above, the current mirror circuit (eg, current mirror circuit 208) is very important in analog/mixed signal PHYs (eg, PHY 200) where the PHY uses many circuit blocks (eg, circuit block 205). However, when the power supply voltage is low, each current mirror circuit is subject to severe defects, as explained further below with reference to Figure 3A.

第三A圖係慣用類比/混合信號實體層積體電路(PHY 300A)之電路圖。PHY 300A包括一帶隙電壓參考302,其耦接於一或多個電路方塊,包括電路方塊305(1)。其他電路方塊〔例如:從電路方塊305(2)到電路方塊305(N)〕為了簡化起見而未顯示。該等電路方塊之每一者皆包括同樣參考號碼之電流鏡電路。舉例來說,電路方塊305(1)包括電流鏡電路308(1),依此類推。PMOS電晶體係p型金氧半導體場效電晶體(p-type metal-oxide-semiconductor field-effect transistor),且NMOS電晶體係n型(n-type)金氧半導體場效電晶體。 The third A is a circuit diagram of a conventional analog/mixed signal physical layered circuit (PHY 300A). The PHY 300A includes a bandgap voltage reference 302 coupled to one or more circuit blocks, including circuit block 305(1). Other circuit blocks (e.g., from circuit block 305(2) to circuit block 305(N)) are not shown for simplicity. Each of the circuit blocks includes a current mirror circuit of the same reference number. For example, circuit block 305(1) includes current mirror circuit 308(1), and so on. PMOS electro-crystalline system p-type metal-oxide-semiconductor field-effect transistor, and NMOS electro-crystalline system n-type (n-type) MOS field effect transistor.

在第三A圖之這個範例中,帶隙電壓參考302饋送到包括一PMOS電晶體326(1)的OTA。PMOS電晶體326(1)具有與NMOS電晶體322(1)之汲極和NMOS電晶體324(1)之閘極共用節點的汲極。NMOS電晶體324(1)之汲極與PMOS電晶體334(1)之閘極和汲極以及一或多個串接 (cascaded)PMOS電晶體336(1)之閘極共用節點。PMOS電晶體334(1)的源極與PMOS電晶體336(1)之每個源極在配置成操作於供電電壓Vdd的電源共用節點。其他串接PMOS電晶體336(1)之每個汲極皆耦接於電路方塊305(1)之組件。NMOS電晶體324(1)之閘極與NMOS電晶體322(1)之閘極共用節點。NMOS電晶體324(1)之源極與NMOS電晶體322(1)之源極共用接地。 In this example of the third A diagram, the bandgap voltage reference 302 is fed to an OTA comprising a PMOS transistor 326(1). PMOS transistor 326(1) has a drain that is common to the gate of NMOS transistor 322(1) and the gate of NMOS transistor 324(1). The drain of NMOS transistor 324(1) is shared with the gate and drain of PMOS transistor 334(1) and the gate of one or more cascaded PMOS transistors 336(1). The source of PMOS transistor 334(1) and each source of PMOS transistor 336(1) are at a power sharing node configured to operate at supply voltage Vdd . Each of the other parallel PMOS transistors 336 (1) is coupled to a component of circuit block 305 (1). The gate of NMOS transistor 324(1) shares a node with the gate of NMOS transistor 322(1). The source of the NMOS transistor 324(1) is commonly connected to the source of the NMOS transistor 322(1).

互補金氧半導體(CMOS,“Complementary metal-oxide-semiconductor”)技術可能需要供電電壓Vdd降低到低電壓。在第三A圖中,低電壓例示為0.85V(伏特)。在另一範例中,低電壓可包括低於約2V的電壓,或者對於特定電路被視為低電壓的另一電壓值。再次參照第三A圖,組件(例如第三A圖中的一個組件)之臨界電壓舉例來說可能仍在400mV(毫伏)到500mV之範圍內。臨界電壓係反轉層形成於電晶體之絕緣層(例如:氧化層)與基板(例如:本體)之間介面的閘極電壓。反轉層之形成允許電子流通過閘極到源極接合處。 Complementary metal-oxide-semiconductor (CMOS) technology may require the supply voltage V dd to be reduced to a low voltage. In the third A diagram, the low voltage is exemplified as 0.85 V (volt). In another example, the low voltage can include a voltage below about 2V, or another voltage value that is considered a low voltage for a particular circuit. Referring again to Figure 3A, the threshold voltage of a component (e.g., a component in Figure AA) may, for example, still be in the range of 400 mV (millivolts) to 500 mV. The threshold voltage inversion layer is formed at a gate voltage of an interface between an insulating layer (eg, an oxide layer) of the transistor and a substrate (eg, a body). The formation of the inversion layer allows electron flow through the gate to source junction.

輸入參考電流310(1)通常藉由使用閘極和汲極短路的二極體所連接電晶體322(1)進行複製。藉由使用這種配置,由於NMOS電晶體322(1)之汲極到源極間Vds在複製之後總是較低,因此重新產生的電流312(1)總是小於輸入參考電流310(1)。舉例來說,NMOS電晶體322(1)和NMOS電晶體324(1)之每個閘極到源極間電壓皆係0.6V,但NMOS電晶體322(1)之汲極到源極間電壓Vds係0.6V,相對於NMOS電晶體324(1)之汲極到源極間電壓Vds係0.2V。這個電壓差可能導致舉例來說電流之5至10%降低,其中發生嚴重的通道長度調變。通道長度調變係在近來次微米CMOS技術中使用短閘極通道長度時較明顯的效應,會造成電晶體之輸出阻抗大幅下降。給予電晶體足夠的汲極到源極間電壓時,可預期其將表現得如同恆定電流源。然而,隨著通道長度調變,這樣的足夠汲極電壓無法確保恆定電流。舉例來說,臨界電壓Vth=0.5V、閘極到源極間電壓Vgs=0.6V、汲極到源極間電壓Vds=0.25V相對於0.6V,可能導致超過10%電流不匹配。又,如第三A圖中所顯示,在電路方塊305(1)之每個組件(例如:放大器、取樣器、多工器、混合器、電壓控制振盪器、輸入/輸出裝置等)中,輸出電流314(1) 由二極體所連接NMOS接收,在輸出PMOS導致0.6V相對於0.25V之相同的Vds不匹配。因此,輸出電流314(1)用於每個組件中時,輸出電流314(1)可低至輸入參考電流310(1)之-20%。如以下參照第三B圖所解釋,慣用解決方法係使用串接電流鏡。 The input reference current 310(1) is typically replicated by a transistor 322(1) connected by a diode that is shorted by a gate and a drain. By using this configuration, since the drain-to-source Vds of the NMOS transistor 322(1) is always low after copying, the regenerated current 312(1) is always smaller than the input reference current 310 (1). ). For example, each gate-to-source voltage of the NMOS transistor 322(1) and the NMOS transistor 324(1) is 0.6V, but the NMOS transistor 322(1) has a drain-to-source voltage. V ds is 0.6 V, and the drain-to-source voltage V ds is 0.2 V with respect to the NMOS transistor 324 (1). This voltage difference can cause, for example, a 5 to 10% reduction in current, where severe channel length modulation occurs. Channel length modulation is a significant effect when using short gate channel lengths in recent sub-micron CMOS technology, resulting in a significant drop in the output impedance of the transistor. When a sufficient drain-to-source voltage is applied to the transistor, it is expected to behave like a constant current source. However, as the channel length is modulated, such a sufficient threshold voltage cannot ensure a constant current. For example, the threshold voltage V th =0.5V, the gate-to-source voltage V gs =0.6V, and the drain-to-source voltage V ds =0.25V versus 0.6V may result in more than 10% current mismatch . Also, as shown in FIG. 3A, in each component of circuit block 305(1) (eg, amplifier, sampler, multiplexer, mixer, voltage controlled oscillator, input/output device, etc.), The output current 314(1) is received by the NMOS connected to the diode, and the output PMOS results in a mismatch of 0.6V with respect to the same Vds of 0.25V. Thus, when output current 314(1) is used in each component, output current 314(1) can be as low as -20% of input reference current 310(1). As explained below with reference to Figure 3B, the conventional solution uses a series current mirror.

第三B圖係另一慣用類比/混合信號實體層積體電路(PHY 300B)之電路圖。第三B圖類似於第三A圖,但增加了NMOS電晶體342(1)和NMOS電晶體344(1)。NMOS電晶體〔342(1)、322(1)、344(1)和324(1)〕設置於疊接電流鏡中,其可減輕所複製輸入參考電流之降低。字詞「疊接(cascode)」係詞組「串接到陰極(cascade to cathode)」之縮寫。疊接電流鏡係堆疊兩對電晶體並使用該等電晶體對其中之一來控制電流源之汲極電壓的慣用技術。舉例來說,在第三B圖中,電晶體342(1)插入電晶體322(1)之閘極與汲極之間,且另一電晶體344(1)插入電晶體324(1)之汲極與電晶體334(1)之汲極之間。該等兩個所插入的疊接電晶體〔342(1)和344(1)〕具有控制322(1)和324(1)之汲極電壓的共用閘極電壓。然而,很難以很高的汲極到源極間電壓操作疊接組件。舉例來說,上方有疊接裝置的電晶體324(1)在汲極係0.25V,且這個0.25V需要共用於324(1)與上方的串接裝置之間。在這樣的配置中,電晶體322(1)和電晶體324(1)之汲極到源極間電壓皆下推至線性區域(例如:「三極體模式(triode mode)」或「歐姆模式(ohmic mode)」)。(相較於第三A圖。)線性區域係閘極到源極間電壓高於臨界電壓且汲極到源極間電壓低於閘極到源極間電壓與臨界電壓之間差異的操作模式。在該線性區域中,電晶體用作電阻,且電流隨著汲極電壓顯著變化,由此使得電晶體不適合用作電流源。或者可能使用運算放大器(未顯示)準確匹配兩個電流源之汲極到源極間電壓Vds。然而,由於運算放大器會占用很大的面積,尤其具有穩定平衡反饋的補償電容,因此對每個電流鏡皆使用運算放大器會非常昂貴。 The third B diagram is a circuit diagram of another conventional analog/mixed signal physical layered circuit (PHY 300B). The third B diagram is similar to the third A diagram, but with the addition of the NMOS transistor 342(1) and the NMOS transistor 344(1). NMOS transistors [342(1), 322(1), 344(1), and 324(1)] are placed in the splicing current mirror to reduce the reduction in the copied input reference current. The word "cascode" is an abbreviation for "cascade to cathode". A stacked current mirror is a conventional technique in which two pairs of transistors are stacked and one of the transistors is used to control the drain voltage of the current source. For example, in the third B diagram, the transistor 342(1) is inserted between the gate and the drain of the transistor 322(1), and the other transistor 344(1) is inserted into the transistor 324(1). The drain is between the drain of the transistor 334(1). The two inserted stacked transistors [342(1) and 344(1)] have a common gate voltage that controls the drain voltages of 322(1) and 324(1). However, it is difficult to operate the splicing assembly with a very high buck-to-source voltage. For example, the transistor 324(1) with the splicing device above is 0.25V at the drain, and this 0.25V is required to be used between 324(1) and the upper splicing device. In such a configuration, the drain-to-source voltage across transistor 322(1) and transistor 324(1) is pushed down to a linear region (eg, "triode mode" or "ohm mode" (ohmic mode)"). (Compared to the third A picture.) The operating mode in which the voltage between the gate and the source of the linear region is higher than the threshold voltage and the voltage between the drain and the source is lower than the voltage between the gate and the source and the threshold voltage. . In this linear region, the transistor acts as a resistor and the current varies significantly with the drain voltage, thereby making the transistor unsuitable for use as a current source. Or an operational amplifier (not shown) may be used to accurately match the drain-to-source voltage Vds of the two current sources. However, since an op amp can take up a large area, especially a compensation capacitor with stable balanced feedback, it is very expensive to use an op amp for each current mirror.

據此,以下提供操作於低電壓並準確反映積體電路之參考電流的一種電路,且不會過於昂貴。 Accordingly, the following provides a circuit that operates at a low voltage and accurately reflects the reference current of the integrated circuit, and is not too expensive.

低電壓高準確度電流鏡電路Low voltage and high accuracy current mirror circuit

第四圖係根據本發明一具體實施例之一種類比/混合信號實 體積體電路(PHY 400)之電路圖。PHY 400包括一帶隙電壓參考402,其耦接於一或多個電路方塊,包括電路方塊405(1)。其他電路方塊〔例如:從電路方塊405(2)到電路方塊405(N)〕為了簡化起見而未顯示。該等電路方塊之每一者皆包括相同參考號碼之電流鏡電路。舉例來說,電路方塊405(1)包括電流鏡電路408(1),依此類推。 The fourth figure is a kind of ratio/mixed signal according to one embodiment of the present invention. Circuit diagram of the bulk circuit (PHY 400). PHY 400 includes a bandgap voltage reference 402 coupled to one or more circuit blocks, including circuit block 405(1). Other circuit blocks (e.g., from circuit block 405(2) to circuit block 405(N)) are not shown for simplicity. Each of the circuit blocks includes a current mirror circuit of the same reference number. For example, circuit block 405(1) includes current mirror circuit 408(1), and so on.

在第四圖之這個範例中,電流鏡電路408(1)包括一輸入電路424(1),其耦接於輸出電路444(1)。輸入電路424(1)包括一NMOS電晶體422(1)、一NMOS電晶體424(1)和一NMOS電晶體430(1)。帶隙電壓參考402耦接於PMOS電晶體426(1)。PMOS電晶體426(1)具有耦接於NMOS電晶體422(1)之汲極的汲極〔例如:輸入參考電流410(1)〕,並具有NMOS電晶體424(1)之閘極。 In this example of the fourth figure, current mirror circuit 408(1) includes an input circuit 424(1) coupled to output circuit 444(1). Input circuit 424(1) includes an NMOS transistor 422(1), an NMOS transistor 424(1), and an NMOS transistor 430(1). The bandgap voltage reference 402 is coupled to the PMOS transistor 426(1). The PMOS transistor 426(1) has a drain coupled to the drain of the NMOS transistor 422(1) (eg, input reference current 410(1)) and has a gate of the NMOS transistor 424(1).

輸出電路444(1)包括一PMOS電晶體434(1)和串接PMOS電晶體436(1)。NMOS電晶體424(1)之汲極耦接於PMOS電晶體434(1)之閘極和汲極,並具有串接PMOS電晶體436(1)之閘極。PMOS電晶體434(1)之源極和串接PMOS電晶體436(1)之每個源極在配置成操作於供電電壓Vdd的電源耦接。串接PMOS電晶體436(1)其中之一的汲極耦接於輸入電路424(1)之NMOS電晶體430(1)之汲極。另一串接PMOS電晶體436(1)之每個汲極皆耦接於電路方塊405(1)之組件。NMOS電晶體430(1)之閘極耦接於具有NMOS電晶體422(1)之閘極的節點。NMOS電晶體430(1)之源極、NMOS電晶體424(1)之源極和NMOS電晶體422(1)之源極耦接於接地。 Output circuit 444(1) includes a PMOS transistor 434(1) and a series PMOS transistor 436(1). The drain of the NMOS transistor 424(1) is coupled to the gate and the drain of the PMOS transistor 434(1) and has a gate connected in series with the PMOS transistor 436(1). The source of PMOS transistor 434(1) and each source of series PMOS transistor 436(1) are coupled at a power supply configured to operate at supply voltage Vdd . The drain of one of the series PMOS transistors 436 (1) is coupled to the drain of the NMOS transistor 430 (1) of the input circuit 424 (1). Each of the other PMOS transistors 436 (1) is coupled to a component of circuit block 405 (1). The gate of NMOS transistor 430(1) is coupled to a node having a gate of NMOS transistor 422(1). The source of the NMOS transistor 430(1), the source of the NMOS transistor 424(1), and the source of the NMOS transistor 422(1) are coupled to ground.

在第四圖之PHY 400中,電晶體標記為NMOS或PMOS任一者。然而,該方法不限於此。在替代性範例中,具有熟習此項技術者已知的適當電路連接,標記為NMOS的電晶體可反而係PMOS電晶體,且標記為PMOS的電晶體可反而係NMOS電晶體。 In the PHY 400 of the fourth figure, the transistor is labeled as either NMOS or PMOS. However, the method is not limited to this. In an alternative example, with suitable circuit connections known to those skilled in the art, a transistor labeled NMOS may instead be a PMOS transistor, and a transistor labeled PMOS may instead be an NMOS transistor.

電流鏡電路408(1)之目的係使得輸出電流414(1)與輸入參考電流410(1)匹配(例如:大體上相等)。據此,電流鏡電路408(1)配置成藉由加入包括NMOS電晶體430(1)的另一電流鏡,將輸出電流414(1)與輸入參考電流410(1)相較。藉由耦接NMOS電晶體430(1)與NMOS電晶體422(1)閘極,NMOS電晶體430(1)配置成提供反饋通道432(1)給輸入NMOS電晶體422(1)。 The purpose of current mirror circuit 408(1) is to match output current 414(1) to input reference current 410(1) (e.g., substantially equal). Accordingly, current mirror circuit 408(1) is configured to compare output current 414(1) with input reference current 410(1) by adding another current mirror that includes NMOS transistor 430(1). The NMOS transistor 430(1) is configured to provide a feedback channel 432(1) to the input NMOS transistor 422(1) by coupling the NMOS transistor 430(1) to the NMOS transistor 422(1) gate.

反饋通道432(1)自然讓輸入電路424(1)能操作為在NMOS電晶體424(1)之閘極僅有一個高阻抗節點的高增益跨阻抗放大器〔例如:電流410(1)入、Vgate(閘極)出〕。這樣的反饋通道432(1)之配置讓電流鏡電路408(1)能很容易將輸入參考電流410(1)與輸出電流414(1)穩定平衡。舉例來說,具有反饋通道432(1),則電流鏡電路408(1)配置成將輸入參考電流410(1)與具有高準確度並在低電壓(例如參考電壓406=Vdd=0.85V)的輸出電流414(1)匹配(例如:大體上使其相等)。具有反饋通道432(1),則來自PMOS電晶體434(1)之汲極的電流412(1)是否相當於輸入參考電流410(1)就無關緊要。同樣地,具有反饋通道432(1),則是否有來自串接PMOS電晶體436(1)之閘極的漏電流就無關緊要。 Feedback channel 432(1) naturally allows input circuit 424(1) to operate as a high gain transimpedance amplifier having only one high impedance node at the gate of NMOS transistor 424(1) (eg, current 410(1), V gate (gate) . The configuration of such feedback channel 432(1) allows current mirror circuit 408(1) to easily balance input reference current 410(1) with output current 414(1). For example, with feedback channel 432(1), current mirror circuit 408(1) is configured to have input reference current 410(1) with high accuracy and at low voltage (eg, reference voltage 406= Vdd = 0.85V) The output current 414(1) matches (eg, substantially equal). With feedback channel 432(1), it does not matter whether the current 412(1) from the drain of PMOS transistor 434(1) is equivalent to input reference current 410(1). Similarly, with feedback channel 432(1), it does not matter if there is leakage current from the gate of series PMOS transistor 436(1).

在PHY 400之一個範例模擬中,電流鏡電路408(1)可接收100μA(微安培)之輸入參考電流410(1),並隨後進行複製以產生100μA之輸出電流414(1)。相對而言,在大體上相同的情況下,標準疊接組件(未顯示)可接收100μA之輸入參考電流,並隨後例如由於前述將電晶體推入線性區域的低汲極電壓,而產生85μA之不匹配輸出電流。假設在電晶體之中沒有系統性偏差,雖然這種不匹配係確定性,但電流鏡電路408(1)之準確度大體上僅依隨機裝置不匹配(例如:由於製造缺陷及/或容差限制的不匹配)而定。 In one example simulation of PHY 400, current mirror circuit 408(1) can receive an input reference current 410(1) of 100 μA (microamperes) and then replicate to produce an output current 414(1) of 100 μA. In contrast, in substantially the same case, a standard splicing assembly (not shown) can receive an input reference current of 100 μA and then produce 85 μA, for example, due to the aforementioned pushing of the transistor into the low drain voltage of the linear region. Does not match the output current. Assuming that there is no systematic deviation in the transistor, although this mismatch is deterministic, the accuracy of the current mirror circuit 408(1) is generally only based on random device mismatch (eg, due to manufacturing defects and/or tolerances). The limit does not match).

優點在於,參照第四圖所描述的解決方法對於以上參照第二圖和第三圖所討論的問題係低成本的解決方法。舉例來說,第四圖之配置讓電流鏡電路能很容易穩定平衡(例如:很容易將輸入電流與輸出電流匹配而不引起振盪行為),並且以低成本做到(例如:沒有占用大量空間的大型組件,諸如額外的運算放大器)。 The advantage is that the solution described with reference to the fourth figure is a low-cost solution to the problems discussed above with reference to the second and third figures. For example, the configuration of the fourth figure allows the current mirror circuit to be easily balanced (for example, it is easy to match the input current with the output current without causing oscillatory behavior) and is done at low cost (eg, does not take up a lot of space) Large components such as additional operational amplifiers).

以上已參照具體實作描述本發明。然而,熟習此項技術者應理解可在不悖離如附申請專利範圍中所闡述的本發明之更廣泛的精神與範疇情形下,對其做出各種修飾和改變。據此,前述說明和圖式係視為例示性而非限制性意義。 The invention has been described above with reference to specific embodiments. It will be understood by those skilled in the art, however, that various modifications and changes can be made in the present invention without departing from the scope of the invention. Accordingly, the foregoing description and drawings are to be regarded as

400‧‧‧類比/混合信號實體層積體電路;實體層(PHY) 400‧‧‧ analog/mixed signal physical layered circuit; physical layer (PHY)

402‧‧‧帶隙電壓參考 402‧‧‧Band Voltage Reference

405(1)‧‧‧電路方塊 405(1)‧‧‧ Circuit Blocks

406‧‧‧參考電壓;電壓 406‧‧‧reference voltage; voltage

408(1)‧‧‧電流鏡電路 408(1)‧‧‧current mirror circuit

410(1)‧‧‧輸入參考電流;電流 410(1)‧‧‧ input reference current; current

412(1)‧‧‧電流 412(1)‧‧‧ Current

414(1)‧‧‧輸出電流;電流 414(1)‧‧‧ Output current; current

422(1)‧‧‧NMOS電晶體 422(1)‧‧‧ NMOS transistor

424(1)‧‧‧輸入電路 424(1)‧‧‧ input circuit

424(1)‧‧‧NMOS電晶體 424(1)‧‧‧ NMOS transistor

426(1)‧‧‧PMOS電晶體 426(1)‧‧‧ PMOS transistor

430(1)‧‧‧NMOS電晶體 430(1)‧‧‧ NMOS transistor

432(1)‧‧‧反饋通道 432(1)‧‧‧ feedback channel

434(1)‧‧‧PMOS電晶體 434(1)‧‧‧ PMOS transistor

436(1)‧‧‧串接PMOS電晶體;PMOS電晶體 436(1)‧‧‧ series PMOS transistor; PMOS transistor

444(1)‧‧‧輸出電路 444(1)‧‧‧ Output Circuit

Claims (9)

一種電流鏡電路,包括:一包含有一第一電晶體的輸入電路,其配置成接收一輸入參考電流,以及一第二電晶體,其配置成接收一輸出電流,其中該第二電晶體的閘極係連接於該第一電晶體的一汲極及一第三電晶體,其中該第三電晶體的一汲極係連接於該第三電晶體的一閘極,以及其中該第三電晶體的該閘極係連接於該第一電晶體的一閘極以形成從該第三電晶體至該第一電晶體的一反饋通道,其中該反饋通道係用於將該輸入參考電流與該輸出電流相較並實質上匹配;以及一輸出電路,其耦接於該輸入電路並設置成產生該輸出電流,其中該輸出電路包含二或多個串接的電晶體,其中一第一串接的電晶體的一汲極被耦接至包含在該輸入電路內該第三電晶體的一汲極,以及其中一第二串接的電晶體中之一汲極係耦接於電路方塊之獨立於該輸入電路的組件並設置於傳送輸出電流至該組件。 A current mirror circuit includes: an input circuit including a first transistor configured to receive an input reference current, and a second transistor configured to receive an output current, wherein the gate of the second transistor a pole is connected to a drain of the first transistor and a third transistor, wherein a drain of the third transistor is connected to a gate of the third transistor, and wherein the third transistor The gate is connected to a gate of the first transistor to form a feedback channel from the third transistor to the first transistor, wherein the feedback channel is used for the input reference current and the output The current is relatively and substantially matched; and an output circuit coupled to the input circuit and configured to generate the output current, wherein the output circuit includes two or more serially connected transistors, wherein the first series is connected A drain of the transistor is coupled to a drain of the third transistor included in the input circuit, and one of the second series of transistors is coupled to the circuit block independently of the circuit block The components of the input circuit It is provided to the output current to the conveying assembly. 如申請專利範圍第1項之電流鏡電路,其中該輸入參考電流在該第一電晶體之該汲極接收。 The current mirror circuit of claim 1, wherein the input reference current is received at the drain of the first transistor. 如申請專利範圍第2項之電流鏡電路,其中該第一電晶體、該第二電晶體和該第三電晶體之每一者皆包括一n型金氧半導體(NMOS)電晶體。 The current mirror circuit of claim 2, wherein each of the first transistor, the second transistor, and the third transistor comprises an n-type metal oxide semiconductor (NMOS) transistor. 如申請專利範圍第2項之電流鏡電路,其中該第一電晶體之一源極、該第二電晶體之一源極和該第三電晶體之一源極皆耦接於一接地。 The current mirror circuit of claim 2, wherein one source of the first transistor, one source of the second transistor, and one source of the third transistor are coupled to a ground. 如申請專利範圍第2項之電流鏡電路,其中該輸出電路包含一第四電晶體,其具有一閘極和一汲極,其皆耦接於被包含在該輸入電路內該第二電晶體之一汲極。 The current mirror circuit of claim 2, wherein the output circuit comprises a fourth transistor having a gate and a drain coupled to the second transistor included in the input circuit. One of the bungee jumping. 如申請專利範圍第2項之電流鏡電路,其中該反饋通道配置該輸入電路在該第三電晶體之該閘極具有僅一個高阻抗節點。 The current mirror circuit of claim 2, wherein the feedback channel is configured to have only one high impedance node at the gate of the third transistor. 如申請專利範圍第1項之電流鏡電路,其中該反饋通道配置該輸入電路將該輸入參考電流與該輸出電流匹配。 The current mirror circuit of claim 1, wherein the feedback channel configures the input circuit to match the input reference current to the output current. 一種積體電路,包括:一帶隙電壓參考;以及 至少一個電路方塊,其耦接於該帶隙電壓參考,其中每個電路方塊皆包含一或多個電路方塊組件和一電流鏡電路,該電流鏡電路耦接於該等一或多個電路方塊組件,其中每個電流鏡電路皆包含:一包含有一第一電晶體的輸入電路,其配置成接收一輸入參考電流,以及一第二電晶體,其配置成接收一輸出電流,其中該第二電晶體的閘極係連接於該第一電晶體的一汲極及一第三電晶體,其中該第三電晶體的一汲極係連接於該第三電晶體的一閘極,以及其中該第三電晶體的該閘極係連接於該第一電晶體的一閘極以形成從該第三電晶體至該第一電晶體的一反饋通道,其中該反饋通道係用於將該輸入參考電流與該輸出電流相較並實質上匹配;以及一耦接於該輸入電路的輸出電路,其被設置於產生該輸出電流,且其中該輸出電路包含二或多個串接的電晶體,其中一第一串接的電晶體的一汲極被耦接至包含在該輸入電路內的該第三電晶體的一汲極,以及其中一第二串接的電晶體中之一汲極係耦接於獨立於該輸入電路的電路方塊組件並設置於傳送輸出電流至該組件。 An integrated circuit comprising: a bandgap voltage reference; At least one circuit block coupled to the bandgap voltage reference, wherein each circuit block includes one or more circuit block components and a current mirror circuit coupled to the one or more circuit blocks An assembly, wherein each current mirror circuit comprises: an input circuit including a first transistor configured to receive an input reference current, and a second transistor configured to receive an output current, wherein the second a gate of the transistor is connected to a drain of the first transistor and a third transistor, wherein a drain of the third transistor is connected to a gate of the third transistor, and wherein the gate The gate of the third transistor is coupled to a gate of the first transistor to form a feedback channel from the third transistor to the first transistor, wherein the feedback channel is used to reference the input The current is compared to the output current and substantially matched; and an output circuit coupled to the input circuit is configured to generate the output current, and wherein the output circuit includes two or more serially connected transistors, a drain of a first series of transistors is coupled to a drain of the third transistor included in the input circuit, and one of the second series of transistors is coupled to the drain Connected to a circuit block component independent of the input circuit and disposed to deliver an output current to the component. 一種運算裝置,包括:至少一個積體電路,其包含一帶隙電壓參考;以及至少一個電路方塊,其耦接於該帶隙電壓參考,其中每個電路方塊皆包含一或多個電路方塊組件和一電流鏡電路,該電流鏡電路耦接於該等一個或多個電路方塊組件,其中每個電流鏡電路皆包含:一包含有一第一電晶體的輸入電路,其配置成接收一輸入參考電流,以及一第二電晶體,其配置成接收一輸出電流,其中該第二電晶體的閘極係連接於該第一電晶體的一汲極及一第三電晶體,其中該第三電晶體的一汲極係連接於該第三電晶體的一閘極,以及其中該第三電晶體的該閘極係連接於該第一電晶體的一閘極以形成從該第三電晶體至該第一電晶體的一反饋通道,其中該反饋通道係用於將該輸入參考電流與該輸出電流相較並實質上匹配;以及一耦接於該輸入電路的輸出電路,其被設置於產生該輸出電流,且 其中該輸出電路包含二或多個串接的電晶體,其中一第一串接的電晶體的一汲極被耦接至包含在該輸入電路內的該第三電晶體的一汲極,以及其中一第二串接的電晶體中之一汲極係耦接於獨立於該輸入電路的電路方塊組件並設置於傳送輸出電流至該組件。 An arithmetic device comprising: at least one integrated circuit including a bandgap voltage reference; and at least one circuit block coupled to the bandgap voltage reference, wherein each circuit block includes one or more circuit block components and a current mirror circuit coupled to the one or more circuit block assemblies, wherein each current mirror circuit includes: an input circuit including a first transistor configured to receive an input reference current And a second transistor configured to receive an output current, wherein a gate of the second transistor is coupled to a drain of the first transistor and a third transistor, wherein the third transistor a drain is connected to a gate of the third transistor, and wherein the gate of the third transistor is connected to a gate of the first transistor to form from the third transistor to the gate a feedback channel of the first transistor, wherein the feedback channel is for comparing and substantially matching the input reference current with the output current; and an output circuit coupled to the input circuit, which is Disposed generate the output current, and Wherein the output circuit comprises two or more serially connected transistors, wherein a drain of a first series connected transistor is coupled to a drain of the third transistor included in the input circuit, and One of the second series of transistors is coupled to a circuit block component independent of the input circuit and disposed to transmit an output current to the component.
TW102147978A 2013-02-11 2013-12-24 A low-voltage, high-accuracy current mirror circuit TWI608325B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/764,464 US20140225662A1 (en) 2013-02-11 2013-02-11 Low-voltage, high-accuracy current mirror circuit

Publications (2)

Publication Number Publication Date
TW201439710A TW201439710A (en) 2014-10-16
TWI608325B true TWI608325B (en) 2017-12-11

Family

ID=51226116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147978A TWI608325B (en) 2013-02-11 2013-12-24 A low-voltage, high-accuracy current mirror circuit

Country Status (4)

Country Link
US (1) US20140225662A1 (en)
CN (1) CN103984383B (en)
DE (1) DE102013021051A1 (en)
TW (1) TWI608325B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606292B1 (en) 2018-11-23 2020-03-31 Nanya Technology Corporation Current circuit for providing adjustable constant circuit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176511B1 (en) * 2014-04-16 2015-11-03 Qualcomm Incorporated Band-gap current repeater
US20180348805A1 (en) * 2017-05-31 2018-12-06 Silicon Laboratories Inc. Bias Current Generator
US10546647B2 (en) * 2017-06-26 2020-01-28 Sandisk Technologies Llc Wide range zero temperature coefficient oscillators and related devices and methods
US11519795B2 (en) * 2019-09-24 2022-12-06 Nxp Usa, Inc. Systems and methods for calibrating temperature sensors
US11537045B2 (en) * 2019-10-17 2022-12-27 Promerus, Llc Photosensitive compositions and applications thereof
CN111026230B (en) * 2019-12-16 2021-05-28 成都海光微电子技术有限公司 LDO device and storage equipment
CN113485512B (en) * 2021-07-26 2022-03-25 大连理工大学 Low-power-consumption improved band-gap reference temperature reading circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792750A (en) * 1987-04-13 1988-12-20 Teledyne Industries, Inc. Resistorless, precision current source
US6034518A (en) * 1997-02-13 2000-03-07 Fujitsu Limited Stabilized current mirror circuit
US7046077B2 (en) * 2003-02-14 2006-05-16 Matsushita Electric Industrial Co., Ltd. Current source circuit and amplifier using the same
US20060170490A1 (en) * 2002-09-19 2006-08-03 Atmel Corporation, A Delaware Corporation Fast dynamic low-voltage current mirror with compensated error
TW201140277A (en) * 2010-02-11 2011-11-16 Semiconductor Components Ind Circuits and methods of producing a reference current or voltage
TW201245923A (en) * 2007-06-15 2012-11-16 Mosaid Technologies Inc Bias generator providing for low power, self-biased delay element and delay line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939933A (en) * 1998-02-13 1999-08-17 Adaptec, Inc. Intentionally mismatched mirror process inverse current source
JP4070533B2 (en) * 2002-07-26 2008-04-02 富士通株式会社 Semiconductor integrated circuit device
TWI323871B (en) * 2006-02-17 2010-04-21 Himax Tech Inc Current mirror for oled
CN201035440Y (en) * 2007-03-31 2008-03-12 华为技术有限公司 Current mirror
CN202362694U (en) * 2011-10-21 2012-08-01 唐娅 Improved current mirror

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792750A (en) * 1987-04-13 1988-12-20 Teledyne Industries, Inc. Resistorless, precision current source
US6034518A (en) * 1997-02-13 2000-03-07 Fujitsu Limited Stabilized current mirror circuit
US20060170490A1 (en) * 2002-09-19 2006-08-03 Atmel Corporation, A Delaware Corporation Fast dynamic low-voltage current mirror with compensated error
US7046077B2 (en) * 2003-02-14 2006-05-16 Matsushita Electric Industrial Co., Ltd. Current source circuit and amplifier using the same
TW201245923A (en) * 2007-06-15 2012-11-16 Mosaid Technologies Inc Bias generator providing for low power, self-biased delay element and delay line
TW201140277A (en) * 2010-02-11 2011-11-16 Semiconductor Components Ind Circuits and methods of producing a reference current or voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606292B1 (en) 2018-11-23 2020-03-31 Nanya Technology Corporation Current circuit for providing adjustable constant circuit
TWI694321B (en) * 2018-11-23 2020-05-21 南亞科技股份有限公司 Current circuit for providing adjustable constant current

Also Published As

Publication number Publication date
DE102013021051A1 (en) 2014-08-14
US20140225662A1 (en) 2014-08-14
TW201439710A (en) 2014-10-16
CN103984383A (en) 2014-08-13
CN103984383B (en) 2017-08-08

Similar Documents

Publication Publication Date Title
TWI608325B (en) A low-voltage, high-accuracy current mirror circuit
Khateb et al. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits
US6194967B1 (en) Current mirror circuit
JP4850669B2 (en) Low voltage, low power class AB output stage
US8030972B2 (en) High-speed latched comparator circuit with variable positive feedback
JP2006295365A (en) Processing amplifier
US7498847B2 (en) Output driver that operates both in a differential mode and in a single mode
WO2016066075A1 (en) Ultra-low working voltage rail to rail operational amplifier and differential input amplification-stage circuit and output-stage circuit thereof
WO2012083781A1 (en) Voltage comparator
EP2825928B1 (en) A low-impedance reference voltage generator
US20150277470A1 (en) Current mirror circuit and receiver using the same
US20090302895A1 (en) Constant output common mode voltage of a pre-amplifier circuit
US20160226457A1 (en) Implementing enhanced bias configuration for cmos inverter based optical transimpedance amplifier
JP3888955B2 (en) Receiver circuit
JP3068146B2 (en) Semiconductor integrated circuit
US20160028378A1 (en) Receiving circuit
US8653829B2 (en) Method and system for high gain auto-zeroing arrangement for electronic circuits
CN105162423A (en) Low-voltage amplifier and method thereof
JP3876760B2 (en) Input buffer circuit and semiconductor integrated circuit device
JP2007097131A (en) Differential amplifier
US9563222B2 (en) Differential reference signal distribution method and system
US6876182B1 (en) MOSFET current mirror circuit with cascode output
US20110285466A1 (en) Power amplifier circuit
US11082045B2 (en) Bias circuitry and biasing method
US9294095B2 (en) Apparatuses and methods for input buffer having combined output