TWI608074B - Process of manufacturing phosphor composite - Google Patents

Process of manufacturing phosphor composite Download PDF

Info

Publication number
TWI608074B
TWI608074B TW106118591A TW106118591A TWI608074B TW I608074 B TWI608074 B TW I608074B TW 106118591 A TW106118591 A TW 106118591A TW 106118591 A TW106118591 A TW 106118591A TW I608074 B TWI608074 B TW I608074B
Authority
TW
Taiwan
Prior art keywords
composite
phosphor
fluorescent
alumina
glass
Prior art date
Application number
TW106118591A
Other languages
Chinese (zh)
Other versions
TW201903118A (en
Inventor
陳明進
Original Assignee
陳明進
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陳明進 filed Critical 陳明進
Priority to TW106118591A priority Critical patent/TWI608074B/en
Application granted granted Critical
Publication of TWI608074B publication Critical patent/TWI608074B/en
Publication of TW201903118A publication Critical patent/TW201903118A/en

Links

Description

複合螢光體製程Compound fluorescent system

本發明係關於一種複合螢光體製程。The present invention relates to a composite fluorescent process.

現今螢光體被廣泛的應用,例如應用於LED燈、投影設備、顯示器等光學裝置。Fluorescent bodies are widely used today, for example, in optical devices such as LED lamps, projection devices, and displays.

習知技術的螢光體為改善以矽膠混螢光材易造成熱累積而劣化,特別是高功率的光源更易使螢光體產生熱量累積。因此,現今多採用玻璃材料混合螢光粉材,以解決矽膠會劣化的問題;然而,習知技術的玻璃螢光體,在燒結過程中溫度常高達1000℃以上,如此一來會增加製造成本。Fluorescent bodies of the prior art are used to improve the heat accumulation caused by the silica gel mixed fluorescent material, and the high-power light source is more likely to cause heat accumulation of the phosphor. Therefore, glass materials are often used today to mix fluorescent powders to solve the problem of deterioration of tannins; however, glass phosphors of the prior art often have temperatures of up to 1000 ° C during sintering, which increases manufacturing costs. .

此外,習知技術之螢光體的玻璃轉移溫度(Tg)係小於500℃。故,習知技術的螢光體耐熱程度差,經高功率光源長時間照射下易變質,導致發光效率的降低。Further, the glass transition temperature (Tg) of the prior art phosphor is less than 500 °C. Therefore, the phosphor of the prior art has a poor heat resistance, and is easily deteriorated by irradiation with a high-power light source for a long period of time, resulting in a decrease in luminous efficiency.

因此,有必要提供一種新穎且具有進步性之複合螢光體製程,以解決上述之問題。Therefore, it is necessary to provide a novel and progressive composite fluorescent process to solve the above problems.

本發明之主要目的在於提供一種複合螢光體製程,其可提升發光效率。The main object of the present invention is to provide a composite fluorescent process which can improve luminous efficiency.

為達成上述目的,本發明提供一種複合螢光體製程,包括:備一氧化鋁基材料,該氧化鋁基材料包括X重量百分比(w%)之鹼金屬氧化物及(100-X)重量百分比之氧化鋁,X為1.00至20.00,該鹼金屬為鋰、鈉或鉀;備一玻璃螢光混合材;以750℃至850℃之溫度燒結該氧化鋁基材料及該玻璃螢光混合材,形成一複合螢光體。To achieve the above object, the present invention provides a composite fluorescent process comprising: preparing an alumina-based material comprising X weight percent (w%) of an alkali metal oxide and (100-X) weight percent Alumina, X is 1.00 to 20.00, the alkali metal is lithium, sodium or potassium; preparing a glass fluorescent mixture; sintering the alumina-based material and the glass fluorescent mixture at a temperature of 750 ° C to 850 ° C, A composite phosphor is formed.

以下僅以實施例說明本發明可能之實施態樣,然並非用以限制本發明所欲保護之範疇,合先敘明。The following is a description of the possible embodiments of the present invention, and is not intended to limit the scope of the invention as claimed.

請參考圖1至4,其顯示本發明之一第一較佳實施例,本發明之複合螢光體1製程包括以下步驟:Referring to Figures 1 to 4, there is shown a first preferred embodiment of the present invention. The composite phosphor 1 process of the present invention comprises the following steps:

步驟S1:備一氧化鋁基材料10,該氧化鋁基材料10包括X重量百分比(w%)之鹼金屬氧化物及(100-X)重量百分比之氧化鋁,X為1.00至20.00,該鹼金屬為鋰、鈉或鉀;步驟S2:備一玻璃螢光混合材20;步驟S3:以750℃至850℃之溫度燒結該氧化鋁基材料10及該玻璃螢光混合材20,形成一複合螢光體1。其中,不限定步驟S1至步驟S2的順序。藉此,可提升發光效率。其中,該複合螢光體1之玻璃轉移溫度(Tg)範圍為500℃至800℃,可提升耐熱度及發光效率;於本實施例中,該複合螢光體1之發光效率大於300 lm/W。Step S1: preparing an alumina-based material 10 comprising X weight percent (w%) of an alkali metal oxide and (100-X) weight percent of alumina, X being from 1.00 to 20.00, the base The metal is lithium, sodium or potassium; step S2: preparing a glass fluorescent mixture 20; step S3: sintering the alumina-based material 10 and the glass fluorescent mixture 20 at a temperature of 750 ° C to 850 ° C to form a composite Phosphor 1 However, the order of steps S1 to S2 is not limited. Thereby, the luminous efficiency can be improved. Wherein, the composite phosphor 1 has a glass transition temperature (Tg) ranging from 500 ° C to 800 ° C, which can improve heat resistance and luminous efficiency; in the embodiment, the luminous efficiency of the composite phosphor 1 is greater than 300 lm / W.

於本實施例中,在步驟S1中,該氧化鋁基材料10係以1600℃的溫度燒結成一基板;在步驟S2中,該玻璃螢光混合材20為粉體並覆設於該氧化鋁基材後進行燒結。In this embodiment, in step S1, the alumina-based material 10 is sintered into a substrate at a temperature of 1600 ° C; in step S2, the glass phosphor mixture 20 is powdered and coated on the alumina. The substrate is then sintered.

該玻璃螢光混合材20包括(100wt%-Y)之氧化鋁或氮化鋁及Y之螢光粉,Y為1.00wt%至80.00wt%,具有反射效果並提升導熱效果。其中,螢光粉包括選自由釔鋁石榴石(YAG)、氮化物(Nitride)、鎦鋁氧化物(LuAG)及矽酸鹽(Silicate)所組成的群組;較佳地,氮化物(Nitride)包括AlCaClN3Si:Eu 2+;鎦鋁氧化物(LuAG)含有三價鈰;釔鋁石榴石(YAG)含有三價鈰;其中三價鈰及二價銪係作為活化劑。於其他實施例,螢光粉亦可進一步選自為(Sr, Ba) 2SiO 4:Eu 2+、Si6-zAl zOzN8-z:Eu 2+(β-SiAlON)、Sr 2Si 5N 8:Eu 2+。於本實施例中,螢光粉包括紅色螢光粉、黃色螢光粉及綠色螢光粉之混合體,紅色螢光粉如AlCaClN3Si:Eu 2+;黃色螢光粉如釔鋁石榴石(YAG);綠色螢光粉如Lu 3Al 5O 12:Ce 3+The glass fluorescent hybrid material 20 comprises (100 wt%-Y) alumina or aluminum nitride and Y phosphor powder, and Y is 1.00 wt% to 80.00 wt%, which has a reflection effect and enhances the heat conduction effect. Wherein the phosphor powder comprises a group selected from the group consisting of yttrium aluminum garnet (YAG), nitride (Nitride), lanthanum aluminum oxide (LuAG) and silicate (Silicate); preferably, nitride (Nitride) ) includes AlCaClN3Si:Eu 2+ ; lanthanum aluminum oxide (LuAG) contains trivalent cerium; yttrium aluminum garnet (YAG) contains trivalent cerium; among them, trivalent cerium and divalent lanthanide act as activators. In other embodiments, the phosphor powder may be further selected from the group consisting of (Sr, Ba) 2 SiO 4 :Eu 2+ , Si6-zAl zOzN8-z:Eu 2+ (β-SiAlON), and Sr 2 Si 5 N 8 : Eu 2+ . In this embodiment, the phosphor powder comprises a mixture of red phosphor powder, yellow phosphor powder and green phosphor powder, red phosphor powder such as AlCaClN3Si:Eu 2+ ; yellow phosphor powder such as yttrium aluminum garnet (YAG) ); green fluorescent powder such as Lu 3 Al 5 O 12 :Ce 3+ .

該複合螢光體1製程可另包括一步驟S4,研磨該複合螢光體1至一厚度,該厚度範圍為0.15mm至0.75mm。The composite phosphor 1 process may further comprise a step S4 of grinding the composite phosphor 1 to a thickness ranging from 0.15 mm to 0.75 mm.

請參考圖5至7,其係本發明之一第二較佳實施例,其與該第一較佳實施例的差異在於,該玻璃螢光混合材20可為基板並層設於該氧化鋁基材後進行燒結。5 to 7, which is a second preferred embodiment of the present invention, which differs from the first preferred embodiment in that the glass phosphor mixture 20 can be a substrate and layered on the alumina. The substrate is then sintered.

請參考圖8,其係本發明之一第三實較佳施例,其與該第一較佳實施例差異處在於,該氧化鋁基材料10及該玻璃螢光混合材20為粉體且相混合,形成一複合螢光體2。Please refer to FIG. 8 , which is a third preferred embodiment of the present invention, which is different from the first preferred embodiment in that the alumina-based material 10 and the glass phosphor mixture 20 are powdered and The phases are mixed to form a composite phosphor 2.

綜上所述,本發明之複合螢光體1製程可提升發光效率,且提升玻璃轉移溫度(Tg)以提升該複合螢光體1, 2的耐熱度,此外該複合螢光體1, 2係一體成型,以提升結構強度、延長使用壽命。In summary, the composite phosphor 1 process of the present invention can improve the luminous efficiency and increase the glass transition temperature (Tg) to improve the heat resistance of the composite phosphor 1, 2, in addition to the composite phosphor 1, 2 It is integrally molded to enhance structural strength and extend service life.

S1~S4‧‧‧步驟S1~S4‧‧‧ steps

1, 2‧‧‧複合螢光體1, 2‧‧‧ composite phosphor

10‧‧‧氧化鋁基材料10‧‧‧Alumina-based materials

20‧‧‧玻璃螢光混合材20‧‧‧Glass Fluorescent Mixture

圖1為本發明一第一較佳實施例之流程圖。 圖2至4為本發明一第一較佳實施例之製作步驟示意圖。 圖5至7為本發明一第二較佳實施例之製作步驟示意圖。 圖8為本發明一第三較佳實施例之複合螢光體之立體圖。1 is a flow chart of a first preferred embodiment of the present invention. 2 to 4 are schematic views showing the manufacturing steps of a first preferred embodiment of the present invention. 5 to 7 are schematic views showing the manufacturing steps of a second preferred embodiment of the present invention. Figure 8 is a perspective view of a composite phosphor according to a third preferred embodiment of the present invention.

S1~S4‧‧‧步驟 S1~S4‧‧‧ steps

Claims (9)

一種複合螢光體製程,包括以下步驟:備一氧化鋁基材料,該氧化鋁基材料包括X重量百分比(w%)之鹼金屬氧化物及(100-X)重量百分比之氧化鋁,X為1.00至20.00,該鹼金屬為鋰、鈉或鉀;備一玻璃螢光混合材;以750℃至850℃之溫度燒結該氧化鋁基材料及該玻璃螢光混合材,形成一複合螢光體;其中,該玻璃螢光混合材包括(100wt%-Y)之氧化鋁或氮化鋁及Y之螢光粉,Y為1.00wt%至80.00wt%。 A composite fluorescent process comprising the steps of: preparing an alumina-based material comprising X weight percent (w%) alkali metal oxide and (100-X) weight percent alumina, X 1.00 to 20.00, the alkali metal is lithium, sodium or potassium; preparing a glass fluorescent mixture; sintering the alumina-based material and the glass fluorescent mixture at a temperature of 750 ° C to 850 ° C to form a composite phosphor Wherein, the glass fluorescent mixture comprises (100 wt%-Y) alumina or aluminum nitride and Y phosphor, and Y is 1.00 wt% to 80.00 wt%. 如請求項1所述的複合螢光體製程,其中該氧化鋁基材料係以1600℃的溫度燒結成一基板。 The composite fluorescent process of claim 1, wherein the alumina-based material is sintered to a substrate at a temperature of 1600 °C. 如請求項2所述的複合螢光體製程,其中該玻璃螢光混合材為粉體並覆設於該氧化鋁基材後進行燒結。 The composite fluorescent system according to claim 2, wherein the glass-fluorescent mixed material is powdered and coated on the alumina substrate, followed by sintering. 如請求項2所述的複合螢光體製程,其中該玻璃螢光混合材為基板並層設於該氧化鋁基材後進行燒結。 The composite fluorescent system according to claim 2, wherein the glass fluorescent mixed material is a substrate and is layered on the alumina substrate and then sintered. 如請求項1所述的複合螢光體製程,其中該氧化鋁基材料及該玻璃螢光混合材為粉體且相混合。 The composite fluorescent process of claim 1, wherein the alumina-based material and the glass-fluorescent mixture are powdered and mixed. 如請求項1所述的複合螢光體製程,其中該複合螢光體之玻璃轉移溫度(Tg)範圍為500℃至800℃。 The composite fluorescent process of claim 1, wherein the composite phosphor has a glass transition temperature (Tg) ranging from 500 ° C to 800 ° C. 如請求項1至6其中任一項所述的複合螢光體製程,另包括一步驟,研磨該複合螢光體至一厚度,該厚度範圍為0.15mm至0.75mm。 The composite phosphor process of any one of claims 1 to 6, further comprising the step of grinding the composite phosphor to a thickness ranging from 0.15 mm to 0.75 mm. 如請求項3所述的複合螢光體製程,其中該玻璃螢光混合材包括(100wt%-Y)之氧化鋁或氮化鋁及Y之螢光粉,Y為1.00wt%至80.00wt%;該複合螢光體製程另包括一步驟,研磨該複合螢光體至一厚度,該厚度範圍為0.15mm至 0.75mm,該複合螢光體之玻璃轉移溫度(Tg)之溫度範圍為500℃至800℃;該螢光粉包括選自由釔鋁石榴石(YAG)、氮化物(Nitride)、鎦鋁氧化物(LuAG)及矽酸鹽(Silicate)所組成的群組;氮化物(Nitride)包括AlCaClN3Si:Eu2 +;鎦鋁氧化物(LuAG)含有三價鈰;釔鋁石榴石(YAG)含有三價鈰。 The composite fluorescent process of claim 3, wherein the glass fluorescent mixture comprises (100 wt%-Y) alumina or aluminum nitride and Y phosphor, and Y is 1.00 wt% to 80.00 wt%. The composite phosphor process further includes a step of grinding the composite phosphor to a thickness ranging from 0.15 mm to 0.75 mm, and the glass transition temperature (Tg) of the composite phosphor is in a temperature range of 500 ° C. Up to 800 ° C; the phosphor comprises a group selected from the group consisting of YAG, Nitride, LuAG and Silicate; Including AlCaClN3Si:Eu 2 + ; lanthanum aluminum oxide (LuAG) contains trivalent ruthenium; yttrium aluminum garnet (YAG) contains trivalent ruthenium. 如請求項5所述的複合螢光體製程,其中該玻璃螢光混合材包括(100wt%-Y)之氧化鋁或氮化鋁及Y之螢光粉,Y為1.00wt%至80.00wt%;該複合螢光體製程另包括一步驟,研磨該複合螢光體至一厚度,該厚度範圍為0.15mm至0.75mm,該複合螢光體之玻璃轉移溫度(Tg)之溫度範圍為500℃至800℃;該螢光粉包括選自由釔鋁石榴石(YAG)、氮化物(Nitride)、鎦鋁氧化物(LuAG)及矽酸鹽(Silicate)所組成的群組;氮化物(Nitride)包括AlCaClN3Si:Eu2 +;鎦鋁氧化物(LuAG)含有三價鈰;釔鋁石榴石(YAG)含有三價鈰。 The composite fluorescent process of claim 5, wherein the glass fluorescent mixture comprises (100 wt%-Y) alumina or aluminum nitride and Y phosphor, and Y is 1.00 wt% to 80.00 wt%. The composite phosphor process further includes a step of grinding the composite phosphor to a thickness ranging from 0.15 mm to 0.75 mm, and the glass transition temperature (Tg) of the composite phosphor is in a temperature range of 500 ° C. Up to 800 ° C; the phosphor comprises a group selected from the group consisting of YAG, Nitride, LuAG and Silicate; Including AlCaClN3Si:Eu 2 + ; lanthanum aluminum oxide (LuAG) contains trivalent ruthenium; yttrium aluminum garnet (YAG) contains trivalent ruthenium.
TW106118591A 2017-06-06 2017-06-06 Process of manufacturing phosphor composite TWI608074B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106118591A TWI608074B (en) 2017-06-06 2017-06-06 Process of manufacturing phosphor composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106118591A TWI608074B (en) 2017-06-06 2017-06-06 Process of manufacturing phosphor composite

Publications (2)

Publication Number Publication Date
TWI608074B true TWI608074B (en) 2017-12-11
TW201903118A TW201903118A (en) 2019-01-16

Family

ID=61230789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118591A TWI608074B (en) 2017-06-06 2017-06-06 Process of manufacturing phosphor composite

Country Status (1)

Country Link
TW (1) TWI608074B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187746A1 (en) * 2005-03-14 2008-08-07 Koninklijke Philips Electronics, N.V. Phosphor in Polycrystalline Ceramic Structure and a Light-Emitting Element Comprising Same
TW201309613A (en) * 2011-08-31 2013-03-01 Univ Nat Sun Yat Sen Low temperature glass phosphor and the manufacturing method thereof
US20130065067A1 (en) * 2010-05-31 2013-03-14 Takeo Nishimura Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and led light-emitting module using said ceramic
CN103205254A (en) * 2013-04-10 2013-07-17 中国科学院福建物质结构研究所 White-light LED (light-emitting diode) containing novel solid-state transparent fluorescent materials and preparation method thereof
TWI585055B (en) * 2016-03-29 2017-06-01 中國製釉股份有限公司 Glass material, fluorescent composite material, and light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187746A1 (en) * 2005-03-14 2008-08-07 Koninklijke Philips Electronics, N.V. Phosphor in Polycrystalline Ceramic Structure and a Light-Emitting Element Comprising Same
US20130065067A1 (en) * 2010-05-31 2013-03-14 Takeo Nishimura Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and led light-emitting module using said ceramic
TW201309613A (en) * 2011-08-31 2013-03-01 Univ Nat Sun Yat Sen Low temperature glass phosphor and the manufacturing method thereof
CN103205254A (en) * 2013-04-10 2013-07-17 中国科学院福建物质结构研究所 White-light LED (light-emitting diode) containing novel solid-state transparent fluorescent materials and preparation method thereof
TWI585055B (en) * 2016-03-29 2017-06-01 中國製釉股份有限公司 Glass material, fluorescent composite material, and light emitting device

Also Published As

Publication number Publication date
TW201903118A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
TWI726910B (en) Wavelength conversion member, light emitting device, and manufacturing method of wavelength conversion member
JP4969119B2 (en) Light emitting diode device
CN108895314B (en) Nitride fluorescent powder/glass composite light conversion assembly for laser illumination and preparation thereof
JP2008169348A (en) Phosphor composite material
TWI585055B (en) Glass material, fluorescent composite material, and light emitting device
JP2015090887A (en) Light-emitting element and light-emitting device
KR102108210B1 (en) Rare earth ion added glass-phosphor composite and light emitting diode comprising the same
CN103881706A (en) Nitrogen oxide fluorescent powder, preparation method thereof and luminescent device containing the fluorescent powder
WO2021024914A1 (en) Fluorescent particle-dispersed glass and light-emitting device
JP2014172940A (en) Fluophor dispersion ceramic plate
WO2015047751A1 (en) Wavelength converter and light-emitting device having same
KR101964418B1 (en) Phosphor composition and lighting device the same
CN113979739A (en) Composite fluorescent ceramic, preparation method and luminescent device
KR20150055578A (en) Light emitting element, light emitting device and those manufacturing methods
WO2016209871A1 (en) Glass composite wavelength converter and light source having same
TWI608074B (en) Process of manufacturing phosphor composite
TWI782996B (en) Glass for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
CN113603462B (en) Ceramic-glass composite structure fluorescent color wheel, preparation method thereof and application thereof in laser display source
TWI609943B (en) Process of manufacturing phosphor composite
KR20150026929A (en) Light emitting element, light emitting device and those manufacturing methods
TWI430972B (en) Low temperature glass phosphor and the manufacturing method thereof
CN216818372U (en) Fluorescence conversion composite layer and white light emitting device
WO2022168879A1 (en) Fluorescent material, fluorescent member, and light-emitting module
KR20190062694A (en) Phosphor in glass composite, LED device and LCD display using the same
CN108527960A (en) A kind of fluorescence ceramics and sapphire composite ceramic material and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees