WO2021024914A1 - Fluorescent particle-dispersed glass and light-emitting device - Google Patents

Fluorescent particle-dispersed glass and light-emitting device Download PDF

Info

Publication number
WO2021024914A1
WO2021024914A1 PCT/JP2020/029297 JP2020029297W WO2021024914A1 WO 2021024914 A1 WO2021024914 A1 WO 2021024914A1 JP 2020029297 W JP2020029297 W JP 2020029297W WO 2021024914 A1 WO2021024914 A1 WO 2021024914A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
phosphor
light
particle
dispersed
Prior art date
Application number
PCT/JP2020/029297
Other languages
French (fr)
Japanese (ja)
Inventor
多々見 純一
なつみ 虎瀬
拓実 高橋
Original Assignee
地方独立行政法人神奈川県立産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人神奈川県立産業技術総合研究所 filed Critical 地方独立行政法人神奈川県立産業技術総合研究所
Publication of WO2021024914A1 publication Critical patent/WO2021024914A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to fluorescent particle dispersed glass.
  • the present invention also relates to a light emitting device provided with the phosphor particle dispersion glass.
  • Light emitting devices equipped with semiconductor light emitting elements such as light emitting diodes (LEDs: Light Emission Diodes) and laser diodes (LDs: Laser Diodes) are excellent in terms of low power consumption and long life, and are excellent for lighting devices and liquid crystal displays. It is used as a backlight for devices and a light source for laser devices. Among them, white LEDs are becoming widely used as alternative lighting for fluorescent lamps.
  • LEDs Light Emission Diodes
  • LDs Laser Diodes
  • a white LED is known to emit white light by combining a light emitting diode, which is a primary light source, and a fluorescent member.
  • a fluorescent member a molded product in which phosphor particles are dispersed in a resin has been developed.
  • the molding processability becomes excellent.
  • the temperature tends to be high due to the heat generated from the light emitting diode which is the primary light source and the heat generated by the energy conversion loss during the excitation-light emission process in the fluorescent member, the thermal conductivity is low and the heat resistance is low.
  • the resin (matrix) deteriorates. This problem is particularly serious when using high power LEDs and lasers.
  • Patent Document 1 As an alternative matrix to the resin, ceramics (Patent Document 1) in which phosphor particles are dispersed in a matrix composed of a sialone compound have been proposed. Further, a phosphor-dispersed inorganic glass plate having a 50% particle diameter D50 of highly thermally conductive substance particles equal to or larger than the plate thickness has been proposed (Patent Document 2).
  • the above-mentioned Sialon is used as a matrix, for example, a high-temperature firing process at 1000 to 1500 ° C. is required for densification of the matrix, so that the dispersed phosphor particles are liable to deteriorate.
  • the fluorescent member using glass as a matrix can be plated at a relatively low temperature.
  • Patent Document 2 discloses a phosphor-dispersed inorganic glass plate using aluminum nitride, but it is necessary to set the size of the highly thermally conductive substance particles and the thickness of the plate within a specific range, and the degree of freedom in design is high. However, improvement in thermal conductivity is also desired.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a phosphor particle-dispersed glass having excellent thermal conductivity and a light emitting device.
  • [4] The phosphor particle-dispersed glass according to any one of [1] to [3], wherein the boron nitride content is 5% by mass or more.
  • [5] The phosphor particle-dispersed glass according to any one of [1] to [4], wherein the phosphor particles are nitride phosphor particles.
  • [6] The phosphor particle-dispersed glass according to any one of [1] to [5], wherein the glass is a phosphate-based glass.
  • the schematic cross-sectional view which shows an example of the light emitting device which concerns on this embodiment.
  • the phosphor particle-dispersed glass comprises a glass sintered body in which glass is used as a matrix and at least phosphor particles and boron nitride are dispersed in the matrix.
  • the shape of the phosphor particle-dispersed glass is, for example, a disk shape, a flat plate shape, a convex lens shape, a concave lens shape, a spherical shape, a hemispherical shape, a cube shape, a rectangular parallelepiped shape, a columnar shape such as a prism or a cylinder, or a tubular shape such as a prism or a cylinder.
  • a white LED for example, it is used by arranging it on the emission light side of a blue LED serving as an excitation light source.
  • the phosphor particles in the present specification include not only so-called fluorescence-emitting particles but also phosphorescent particles.
  • the first light refers to light having a specific wavelength or light in a specific band, and the first light may be of one type or a plurality of types. As an example of the case where there are a plurality of types, there is a case where a semiconductor light emitting device that emits the first light of blue light and a semiconductor light emitting element that emits the first light of ultraviolet light are provided.
  • the second light refers to light emitted from the phosphor particles in which at least a part of the first light becomes excitation light of the phosphor particles.
  • an embodiment in which phosphor particles having different emission bands are dispersed in different phosphor particle-dispersed glasses can also be exemplified.
  • phosphor particle dispersion glass When phosphor particle dispersion glass is used to obtain white light, for example, a phosphor particle that emits red light by blue light that is excitation light and a phosphor particle that emits green light by blue light that is excitation light are used. It is contained in the phosphor particle-dispersed glass. Further, the phosphor particle-dispersed glass is assumed to have a transmittance of transmitting blue light which is excitation light and which does not contribute to excitation. As a result, the blue light transmitted through the phosphor particle-dispersed glass and the red light and green light emitted from the phosphor particle-dispersed glass are mixed to obtain white light.
  • phosphor particles that use ultraviolet light or purple light as excitation light and emit blue light on the phosphor particle dispersion glass and phosphor particles that emit red light by the excitation light of ultraviolet light or purple light.
  • phosphor particles that emit green light by excitation light of ultraviolet light or purple light are mixed.
  • white light can be obtained from the phosphor particle-dispersed glass of the present embodiment.
  • the design may be such that the entire excitation light is absorbed by the phosphor particle-dispersed glass.
  • the phosphor particles are uniformly present throughout the glass from the viewpoint that the fluorescence emission is uniform and the total transmittance of the excitation light is uniform. ..
  • the excitation light transmitted through the phosphor particle-dispersed glass and the fluorescence emitted from the phosphor particle-dispersed glass are mixed, and it is easy to adjust the color of the emitted light of the phosphor particle-dispersed glass. It becomes.
  • a concentration gradient may be provided in the distribution of the phosphor particles, or a phosphor particle-dispersed glass containing different phosphor particles depending on the region may be used. Such a phosphor particle-dispersed glass can be easily obtained by changing the process during the manufacturing process. It is also possible to bond different types of phosphor particle dispersed glass.
  • a suitable example of the thickness of the phosphor particle-dispersed glass may vary depending on the application, but is, for example, 0.01 to 10 mm.
  • the refractive index (nd) of the phosphor particle-dispersed glass can be appropriately designed depending on the medium.
  • the refractive index of the phosphor particle-dispersed glass is, for example, in the range of 1.40 to 1.90.
  • An optical film may be provided on at least one of the entrance surface side and the exit surface side of the phosphor particle dispersion glass. For example, an antireflection film can be provided.
  • the glass to be used as a matrix is not particularly limited as long as it can disperse phosphor particles and boron nitride.
  • Examples include phosphate-based glass, tellurite-based glass, borosilicate-based glass, and bismuthate-based glass.
  • Examples of the phosphate-based glass include tin phosphate-based glass.
  • the borosilicate based glass containing, by mass%, a SiO 2 30 ⁇ 85%, the Al 2 O 3 0 ⁇ 30% , B 2 O 3 0 ⁇ 50%, Li 2 O + Na 2 O + K 2 O 0 to 10 % And those containing 0 to 50% of MgO + CaO + SrO + BaO.
  • the Suzurin salt-based glass in mol%, a SnO 30 ⁇ 90%, include those containing from 1 to 70% P 2 O 5.
  • TeO 2 is 50% or more
  • ZnO is 0 to 45%
  • RO R is at least one selected from Ca, Sr and Ba
  • La 2 Examples thereof include those containing 0 to 50% of O 3 + Gd 2 O 3 + Y 2 O 3 .
  • the transition point of the glass matrix is preferably as low as possible, preferably 1000 ° C. or lower, and 750 ° C.
  • the temperature is more preferably 600 ° C. or lower, and particularly preferably 550 ° C. or lower.
  • the lower limit of the transition point of the glass is not particularly limited, but considering the mechanical strength and heat resistance of the phosphor particle-dispersed glass, it is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and 400 ° C. or higher. Is more preferable.
  • the glass used as the matrix is particularly preferably phosphate-based glass, bismuth-based glass, or tellurite-based glass.
  • phosphor particles for example, by using phosphate-based glass, it is possible to sinter at a relatively low temperature, so that a wide variety of phosphor particles can be used.
  • nitride phosphor particles are preferable.
  • the nitride phosphor particles are ⁇ . Examples thereof include a sialon fluorescent substance, a ⁇ sialon fluorescent substance, CASN, and S-CASN.
  • nitride phosphor particles containing nitrogen in the phosphor composition are suitable.
  • the nitride phosphor comprising strontium and silicon crystal phase e.g., SCASN, Sr 2 Si 5 N 8
  • a nitride phosphor containing calcium and silicon in the crystalline phase e.g.
  • nitride phosphors containing strontium, silicon and aluminum in the crystal phase eg SCASN, Sr 2 Si 5 N 8
  • barium, nitride phosphors containing silicon in the crystal phase eg BSON
  • calcium, silicon and aluminum Nitride phosphors included in the phase eg, SCASN, CASN, CASON
  • Other classifications of nitride phosphors include lanthanum nitrid silicates (eg LSN), alkaline earth metal nitrid silicates (eg Sr 2 Si 5 N 8 ), alkaline earth metal nitrid silicates (CASN,).
  • SCASSN SCASSN, ⁇ -sialon, (Ca, Sr) AlSi 4 N 7 ) and the like can be mentioned. More specifically, ⁇ -sialon which can be expressed by the following general formula; Si 6-z Al z Oz N 8-z : Eu (0 ⁇ z ⁇ 4.2 in the formula), ⁇ -sialon, LSN expressed by the following general formula; Ln x Si 6 N y M z [1] (In the formula [1], Ln represents one or more elements selected from rare earth elements excluding the element used as the activating element, M represents one or more elements selected from the activating elements, and x, y. , Z are values that independently satisfy the following equations.
  • CASN expressed by the following general formula
  • CaAlSiN 3 Eu, SCASN; (Ca, Sr, Ba, Mg) AlSiN 3 : Eu and / or (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, which can be expressed by the following general formula:
  • CASON which can be expressed by the following general formula; (CaAlSiN 3 ) 1-x (Si 2 N 2 O) x : Eu (0 ⁇ x ⁇ 0.5 in the formula), CaAlSi 4 N 7 ; Euy (Sr, Ca, Ba) 1-y: Al 1 + x Si 4-x O x N 7-x (in the formula, 0 ⁇ x ⁇ 4, 0 ⁇ ) can be expressed by the following general formula.
  • BSON can be represented by the following general formula; M x Ba y (Sr, Ca, Mg, Zn) z L 6 O 12 N 2 ( where, M is Cr, Mn, Fe, lanthanide (La, Pm, Gd , Lu is excluded), L represents a metal element belonging to Group 4 or Group 14 of the periodic table containing Si, and x, y, and z have the following formulas independently. It is a value to be satisfied.
  • a nitride phosphor that does not contain oxygen as a constituent element (including oxygen that is inevitably mixed), that is, LSN, CaAlSiN 3 It is preferable to use a nitride phosphor such as SCASN, Sr 2 Si 5 N 8 , ⁇ -sialon, and BSON.
  • the type of phosphor particles to be added is not particularly limited, and a plurality of types may be added depending on the purpose.
  • the content of the phosphor particles in the phosphor particle-dispersed glass includes the shape (thickness, etc.) of the phosphor particle-dispersed glass, the required transparency (total transmittance of excitation light), the fluorescence (fluorescence intensity, emission wavelength), and the like. It can be adjusted appropriately according to the quantum efficiency. If the content of the phosphor particles is too small, it is necessary to increase the thickness of the phosphor particle-dispersed glass in order to obtain a desired emission color, and the internal scattering of the phosphor particle-dispersed glass increases and the light extraction efficiency decreases. May be invited.
  • the content of the phosphor particles is too large, it is necessary to reduce the thickness of the phosphor particle-dispersed glass in order to obtain a desired emission color, and the mechanical strength of the phosphor particle-dispersed glass may decrease. ..
  • the average particle size of the phosphor particles in the matrix is not particularly limited, but is preferably 500 nm to 30 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m, from the viewpoint of obtaining a good balance of excitation light transmission, good fluorescence characteristics, and dispersibility. Is more preferable.
  • the average particle size of the phosphor particles in the matrix is determined by the maximum ferret diameter in the image analysis method based on ISO13383-1: 2012.
  • the total transmittance of the phosphor particle-dispersed glass of the excitation light is preferably, for example, 10% or more in the optical path direction.
  • the phosphor particle-dispersed glass of the present embodiment contains boron nitride as a thermally conductive filler.
  • boron nitride as the thermally conductive filler, a phosphor particle-dispersed glass exhibiting excellent thermal conductivity can be obtained. This is considered to be due to the high corrosion resistance of boron nitride.
  • boron nitride include cubic boron nitride and hexagonal boron nitride (h-BN).
  • h-BN hexagonal boron nitride
  • h-BN has a plate-like particle shape and is known to exhibit high thermal conductivity in the plate surface direction (in-plane of ab or (002)) (usually, the thermal conductivity is 400 W / (usually, in-plane). m ⁇ K) degree). Therefore, from the viewpoint of efficiently increasing the thermal conductivity, it is preferable to use the h-BN oriented in the direction in which the thermal conductivity is desired to be increased. As will be described later, the orientation of h-BN can be imparted by uniaxial pressing in the manufacturing process.
  • aligned includes an aspect in which the phosphor particle-dispersed glass is oriented to such an extent that anisotropy can be imparted to the thermal conductivity.
  • h-BN secondary particles in addition to being used as the primary particles, h-BN secondary particles in which h-BN is aggregated may be used. Further, boron nitride secondary particles sintered by heating may be used. It is also possible to increase the thermal conductivity isotropically by using h-BN secondary particles.
  • the content of boron nitride in the phosphor particle-dispersed glass is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 30% by mass or more from the viewpoint of effectively imparting thermal conductivity. Further, from the viewpoint of increasing the density of the phosphor particle-dispersed glass, 80% by mass or less is preferable, 70% by mass or less is more preferable, and 50% by mass or less is further preferable.
  • the average particle size of boron nitride in the phosphor particle-dispersed glass obtained from the maximum ferret diameter in the ISO13383-1: 2012 image analysis method is preferably 0.5 to 200 ⁇ m from the viewpoint of high thermal conductivity. It is more preferably 1 to 150 ⁇ m, and even more preferably 3 to 100 ⁇ m.
  • the average particle size of the phosphor particles in the phosphor particle-dispersed glass is determined as the maximum ferret diameter in the image analysis method based on ISO13383-1: 2012. The specific measurement method is the same as that for the phosphor particles.
  • metal oxides such as aluminum oxide, zinc oxide, titanium dioxide, beryllium oxide, magnesium oxide, nickel oxide, vanadium oxide, copper oxide, iron oxide, and silver oxide; quartz powder as thermal conductive fillers. , Silicon Carbide, Silicon Carbide, Mica, and other silicon compounds, and these can be used in combination with boron nitride.
  • the thermal conductivity is about 0.1 W / (m ⁇ K), and when glass is used, the thermal conductivity is about 1 W / (m ⁇ K) or less.
  • the thermal conductivity can be increased by adding boron nitride.
  • the thermal conductivity of the phosphor particle-dispersed glass of the present embodiment is preferably at least 1.2 W / (m ⁇ K) or more, more preferably, from the viewpoint of making the thermal conductivity more excellent. It is preferably 2 W / (m ⁇ K) or more, and more preferably 2.3 W / (m ⁇ K) or more.
  • the thermal conductivity in the direction of the highest thermal conductivity is preferably 10 W / (m ⁇ K) or more, more preferably 20 W / K. It is (m ⁇ K) or more, and more preferably 30 W / (m ⁇ K) or more.
  • the thermal conductivity referred to in the present specification means the thermal conductivity of the fluorophore particle dispersed glass measured by the xenon flash method, and specifically, the value measured by the method described in the examples. ..
  • the method for producing phosphor particle-dispersed glass of the present embodiment includes a step of mixing at least phosphor particles, boron nitride, and a raw material powder of a matrix to obtain a mixture, and sintering this mixture.
  • the sintering temperature at the time of production may be a temperature lower than the softening point of the glass powder as long as a glass sintered body can be obtained, but sintering is performed at a temperature equal to or higher than the softening point of the raw material powder of the matrix. Is preferable.
  • Each raw material may be crushed / crushed as necessary before mixing.
  • the method for obtaining the mixture is not particularly limited, and can be obtained, for example, through a dry or / and wet step.
  • the dry method for example, there is a method in which at least phosphor particles, boron nitride and matrix raw material powder are placed in a mortar and mixed. At this time, a dispersant may be added. From the viewpoint of homogenizing the powder size of the mixture, two or more sieves having different mesh sizes may be used stepwise to obtain a mixture having a predetermined particle size.
  • the slurry is prepared by mixing with a solvent (ethanol, etc.) using a ball mill or the like, and then the solvent is distilled off to obtain a primary molded body, and the primary molded body is fired.
  • a solvent ethanol, etc.
  • An example is a method for obtaining a sintered body.
  • the sintering process and the solvent distilling process may be performed at the same time without forming the primary molded body. Further pressure may be applied if necessary.
  • the pressurization may be isotropic or anisotropic (eg, uniaxial). When imparting anisotropy, a method of uniaxial pressing is convenient.
  • the firing temperature can be arbitrarily set from the viewpoint of densifying while suppressing the reaction between the phosphor and the glass.
  • the temperature is preferably in the range of 400 ° C to 550 ° C.
  • a pressure of about 0.5 to 100 MPa can be applied.
  • pressure is applied, it is more preferably 1 to 50 MPa, further preferably 5 to 30 MPa.
  • a known method can be applied as a means for applying pressure.
  • uniaxial pressurization is preferable from the viewpoint of convenience of the apparatus and imparting orientation to boron nitride.
  • a hot press method can be used.
  • By imparting the orientation of boron nitride it is possible to impart anisotropy to the thermal conductivity. Therefore, it is particularly suitable for applications that require anisotropic thermal conductivity.
  • pressurizing isotropically pressurization by hydrostatic pressure is preferable.
  • the pressurization time varies depending on the mechanism of the chemical reaction contributing to densification and the pressure, but is preferably 1 to 60 min. When pressurization and heating are used together, they may be simultaneous or separate, and the process procedures can be arbitrarily combined.
  • the density of the phosphor particle-dispersed glass is preferably 2.3 g / cm 3 or more.
  • the density is obtained by dividing the bulk density obtained by the Archimedes method based on JIS Z 2501: 2000 by the average true density (total mass of raw material powder / total volume of raw material powder (theoretical value)). Calculated.
  • the raw material powder referred to here refers to the entire raw material such as a matrix, phosphor particles, and a heat conductive filler.
  • the density is increased by adjusting the particle size of the raw material powder, the mixing treatment step, the sintering step, and the like.
  • the measurement can be performed as follows, for example, by using an image analysis method or the like based on ISO13383-1: 2012. That is, the test piece is broken and the surface thereof is observed with a scanning electron microscope to obtain a microstructure photograph. The portion of the obtained microstructure photograph corresponding to boron nitride is clarified and the shape is read. The particle diameter is obtained by measuring the longest distance (maximum ferret diameter) at this time. This particle size measurement is repeated, and the obtained values are averaged to obtain an average particle size.
  • the manufacturing method of the present embodiment by using glass as a matrix, it is possible to bake at a lower temperature as compared with the case where Sialon is used as a matrix.
  • Phosphate-based glass is preferable in that it can be fired at a lower temperature. When phosphate-based glass is used, it can be fired at 600 ° C. or lower, and can be fired at 500 ° C. or lower.
  • the phosphor particle-dispersed glass of the present embodiment by using boron nitride having excellent corrosion resistance as a heat conductive filler, it is possible to provide a fluorescent particle-dispersed glass having both fluorescence and heat conductivity. Further, it is possible to provide a fluorescent particle dispersion glass having excellent heat resistance, processability and mechanical strength. Further, it is possible to provide a fluorescent particle-dispersed glass having excellent translucency by reducing pores by densifying the fluorescent particle-dispersed glass. Moreover, high thermal conductivity can be realized by containing boron nitride.
  • phosphor particle-dispersed glass can be obtained by, for example, a sintering process at about 400 to 550 ° C., so that various phosphor particles can be used.
  • conventional problems such as deterioration and alteration of phosphor particles due to high-temperature firing and unwilling reaction with the matrix portion can be fundamentally solved, and material design with a higher degree of freedom becomes possible.
  • a phosphor particle-dispersed glass having both high thermal conductivity and fluorescence.
  • the phosphor particle dispersion glass of the present embodiment can be expected to be applied not only to high-power LEDs and the like but also to various members requiring heat dissipation.
  • the light emitting device of the present embodiment is a semiconductor light emitting device that emits the first light, and a phosphor of the present embodiment that is installed on the emission light side of the semiconductor light emitting element and the first light becomes excitation light and emits the second light.
  • a particle dispersion glass is provided.
  • the light emitting device at least one or a plurality of semiconductor light emitting elements and phosphor particle-dispersed glass are independently contained.
  • FIG. 1 shows a schematic diagram of a white LED which is an example of the light emitting device according to the present embodiment.
  • a blue LED 2 is provided as a primary light source on the substrate 1
  • a phosphor particle dispersion glass 6 is installed in at least a part of the emission light path of the blue LED 2.
  • the phosphor particle dispersion glass 6 may be formed in an arbitrary shape according to the shape of the blue LED 2.
  • a part of the emitted light of the blue LED 2 excites the phosphor particles 4, for example, the yellow phosphor particles dispersed in the matrix 3 of the phosphor particle dispersion glass 6, and emits yellow light.
  • the light that does not contribute to the excitation of the phosphor particles in the phosphor particle-dispersed glass passes through the phosphor particle-dispersed glass 6 and is emitted from the white LED 10 as blue light.
  • a plurality of emitted lights are mixed to produce white light from the white LED 10.
  • the heat conductive filler 5 is dispersed in the phosphor particle dispersed glass 6, the heat conductivity is high. Therefore, the heat generated by the blue LED 2 and the heat generated by the phosphor particles 4 can be effectively dissipated.
  • FIG. 1 is an example, in which a red LED and / or a green LED is used in place of or in combination with a blue LED, and a phosphor particle-dispersed glass is used to improve the color tint quality of white light. May be good.
  • the yellow phosphor particles are an example, and red fluorescent particles and / and green fluorescent particles can be used in place of or in combination with the yellow fluorescent particles.
  • phosphor particles of other colors may be used.
  • a semiconductor light emitting element such as a laser diode may be used instead of the LED.
  • the thickness of the phosphor particle-dispersed glass 6 and the concentration of the phosphor particles in the phosphor particle-dispersed glass 6 are appropriately designed.
  • the excitation light from the blue LED is, for example, light having a wavelength of 300 nm to 500 nm (light in the ultraviolet region to light in the blue region).
  • a phosphor particle-dispersed glass 20 composed of a first phosphor particle-dispersed glass 21 and a second phosphor particle-dispersed glass 22 is used instead of the phosphor particle-dispersed glass 6 of the white LED 10 of FIG. White LED 10a may be used.
  • the first phosphor particle-dispersed glass 21 contains the first phosphor particles 12 that absorb the first light from the blue LED 2 and emit light, and the thermally conductive filler 15 in the first matrix 11.
  • the second phosphor particle dispersion glass 22 absorbs the light emitted from the first phosphor particle dispersion glass 21 in the second matrix 13 and further emits long wavelength light, and the second phosphor particles 14 and The heat conductive filler 16 is contained.
  • the phosphor particle dispersion glass 20 in which the first phosphor particle dispersion glass 21 and the second phosphor particle dispersion glass 22 are bonded, a part of the emitted light of the phosphor particle dispersion glass 20 is a second excitation light. As a result, it is possible to emit light having a longer wavelength. With such a configuration, it is also possible to adjust the tint of white.
  • Example 1 As a raw material powder for glass, a phosphate-based low melting point glass frit (Nippon Amber Glazed Co., Ltd., FRA-119, softening point> 380 ° C., average particle size: 40 ⁇ m) was used. Further, 5 wt% Eu-activated Ca- ⁇ Sialon (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 1) as a phosphor particle is used, and h-BN (HGP, Co., Ltd.) which is boron nitride as a heat conductive filler is used. Made by Denka, average particle size: 5 ⁇ m) was used.
  • h-BN HGP, Co., Ltd.
  • h-BN was added to the glass raw material powder so that the h-BN content was 10% by mass when the total of the glass raw material powder and h-BN was 100% by mass.
  • 5% by mass of the phosphor was added externally to 100% by mass of the total of the raw material powder of glass and h-BN.
  • Example 2 Fluorescent particle dispersed glass by the same raw material / manufacturing method as in Example 1 except that the h-BN content was changed to 20% by mass when the total of the glass raw material powder and h-BN was 100% by mass.
  • Example 3 Fluorescent particle dispersed glass by the same raw material / manufacturing method as in Example 1 except that the h-BN content was changed to 30% by mass when the total of the glass raw material powder and h-BN was 100% by mass.
  • Example 4 The same as in Example 1 except that 5 wt% Eu-activated ⁇ -sialon (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 2) was used as the fluorescent particle instead of the fluorescent particle of Example 1. Fluorescent particle-dispersed glass was obtained by the raw material and manufacturing method.
  • Example 5 The same as in Example 1 except that 5 wt% Eu-activated CaAlSiN 3 (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 3) was used as the fluorescent particle instead of the fluorescent particle of Example 1. Fluorescent particle-dispersed glass was obtained by the raw material and manufacturing method.
  • Example 6 As the heat conductive filler, h-BN particles having different particle diameters (SGP, manufactured by Denka Co., Ltd., 18 ⁇ m) were changed to be added in an amount of 10% by mass instead of the heat conductive filler of Example 1, except that A phosphor particle-dispersed glass was obtained by the same production method as in Example 1.
  • SGP manufactured by Denka Co., Ltd., 18 ⁇ m
  • the density was calculated by dividing the bulk density obtained by the Archimedes method based on JIS Z 2501: 2000 by the average true density (total mass of raw material powder / total volume of raw material powder (theoretical value)).
  • the raw material powder referred to here refers to the entire raw material such as the matrix, the phosphor particles, and the heat conductive filler as described above.
  • the fluorescent particle dispersion glass of each Example and Comparative Example was processed into about 7 mm ⁇ 7 mm ⁇ 1 mm. Then, the emission / excitation spectrum was measured using a fluorescence spectrophotometer (Jasco, FP8500). The emission spectrum was measured in the range of 500 to 750 nm using an excitation wavelength of 450 nm.
  • the excitation spectrum uses an emission wavelength of 582 nm for Ca- ⁇ -sialon (yellow) of particle 1, 534 nm for Eu-activated ⁇ -sialon (green) of particle 2, and 650 nm for Eu-activated CaAlSiN 3 (red) of particle 3. It was measured in the range of 250 to 500 nm.
  • the fluorescent particle dispersion glass of each Example and Comparative Example 1 was processed to 20 ⁇ 20 ⁇ 1 mm. Then, using LFA467 manufactured by Netch Japan Co., Ltd., the phosphor particle-dispersed glass was measured by the xenon flash method In-plane_Slit method (Slit width 2.5 mm). Then, the value of thermal diffusivity was obtained by Baba model analysis. The thermal conductivity was calculated by multiplying this value by the density and heat capacity (0.8 J / (g ⁇ K)) obtained by the above-mentioned measuring method of the fluorescent particle dispersion glass of each Example and Comparative Example.
  • FIG. 3 shows an SEM image of the phosphor particle-dispersed glass of Example 1. As shown in the figure, it was confirmed that the fluorescent particles and the thermally conductive filler were dispersed in the glass.
  • FIG. 4 shows the XRD profiles of the phosphor particle-dispersed glasses of Example 1, Comparative Examples 2 and 3.
  • boron nitride was used as the heat conductive filler, boron nitride remained even after firing, but when silicon nitride and aluminum nitride were added, these peaks did not appear and almost disappeared. In addition, the density remained low due to the release of nitrogen during the reaction. As shown in these results, it was confirmed that by using boron nitride as a thermally conductive filler, a phosphor particle-dispersed glass having excellent thermal conductivity can be obtained.
  • FIG. 5 shows the emission / excitation spectrum of the phosphor particle-dispersed glass of Example 1.
  • the solid line in the figure is the spectrum of the phosphor particles of the raw material
  • the dotted line is the spectrum of the phosphor particle-dispersed glass of Example 1.
  • Table 1 shows the density and thermal conductivity of the fluorophore particle-dispersed glass of Examples 1 to 5 and Comparative Example 1.
  • the thermal conductivity of Comparative Example 1 containing no thermally conductive filler is 0.5 W / (m ⁇ K), whereas the phosphors of Examples 1 to 6 containing boron nitride It was confirmed that the thermal conductivity of the particle-dispersed glass can be significantly increased.
  • the phosphor particle-dispersed glass according to the present embodiment can be used as a member of a light emitting device such as a white LED or a high-power LED, and also has high thermal conductivity and fluorescence. Therefore, a fluorescent display tube (VFD), PDP, etc. It can be applied and developed for various purposes in combination with members such as the display of the above. It can also be applied to applications other than phosphor particle-dispersed glass for wavelength conversion, such as stress-stimulated luminescent elements, electron beam-irradiated luminescent elements, and thermoluminescence. It can also be applied to glass that requires heat dissipation to convert ultraviolet light into visible light.
  • a light source capable of emitting the first light having at least the first wavelength spectrum and a phosphor particle-dispersed glass that absorbs the first light at least partially and emits the second light having the second wavelength spectrum. It can be used for all light emitting systems including and.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

In a fluorescent particle-dispersed glass (6) according to the present invention, glass is used as a matrix (3), and at least fluorescent particles (4) and a heat conductive filler (5) that includes boron nitride are dispersed in the matrix (3). The thermal conductivity of the fluorescent particle-dispersed glass (6) is preferably at least 2 W/(m·K) or higher. The boron nitride content is preferably 5 mass% or higher. Provided are a fluorescent particle-dispersed glass having both thermal conductivity and fluorescence, a method for producing the same, a light-emitting device, and a light-emitting system.

Description

蛍光体粒子分散ガラスおよび発光装置Fluorescent particle dispersion glass and light emitting device
 本発明は、蛍光体粒子分散ガラスに関する。また、前記蛍光体粒子分散ガラスを備えてなる発光装置に関する。 The present invention relates to fluorescent particle dispersed glass. The present invention also relates to a light emitting device provided with the phosphor particle dispersion glass.
 発光ダイオード(LED:Light Emission Diode)、レーザーダイオード(LD:Laser Diode)等の半導体発光素子を搭載した発光装置は、低消費電力化および高寿命化の点で優れており、照明装置、液晶表示装置用バックライト、レーザー装置の光源などに利用されている。中でも、白色LEDは蛍光灯の代替照明として広く普及されつつある。 Light emitting devices equipped with semiconductor light emitting elements such as light emitting diodes (LEDs: Light Emission Diodes) and laser diodes (LDs: Laser Diodes) are excellent in terms of low power consumption and long life, and are excellent for lighting devices and liquid crystal displays. It is used as a backlight for devices and a light source for laser devices. Among them, white LEDs are becoming widely used as alternative lighting for fluorescent lamps.
 白色LEDは、一次光源である発光ダイオードと蛍光部材とを組み合わせて白色発光させる方式が知られている。この蛍光部材として、樹脂中に蛍光体粒子を分散させてなる成形物が開発されている。蛍光部材のマトリックスとして樹脂を用いることで成形加工性が優れたものとなる。しかし、一次光源である発光ダイオードから発生する熱、および蛍光部材における励起-発光プロセスの際のエネルギー変換ロスにより発生する熱などによって高温になりやすいので、熱伝導率が低く、且つ耐熱性の低い樹脂(マトリックス)が劣化してしまうという問題がある。この問題は、特に、高出力のLEDやレーザーを用いる場合に深刻である。 A white LED is known to emit white light by combining a light emitting diode, which is a primary light source, and a fluorescent member. As this fluorescent member, a molded product in which phosphor particles are dispersed in a resin has been developed. By using a resin as the matrix of the fluorescent member, the molding processability becomes excellent. However, since the temperature tends to be high due to the heat generated from the light emitting diode which is the primary light source and the heat generated by the energy conversion loss during the excitation-light emission process in the fluorescent member, the thermal conductivity is low and the heat resistance is low. There is a problem that the resin (matrix) deteriorates. This problem is particularly serious when using high power LEDs and lasers.
 そこで、樹脂に代わるマトリックスとして、サイアロン系化合物からなるマトリックスに蛍光体粒子を分散したセラミックス(特許文献1)が提案されている。また、高熱伝導性物質粒子の50%粒子径D50がプレート厚さ以上である蛍光体分散無機ガラスプレートが提案されている(特許文献2)。 Therefore, as an alternative matrix to the resin, ceramics (Patent Document 1) in which phosphor particles are dispersed in a matrix composed of a sialone compound have been proposed. Further, a phosphor-dispersed inorganic glass plate having a 50% particle diameter D50 of highly thermally conductive substance particles equal to or larger than the plate thickness has been proposed (Patent Document 2).
 前述のサイアロンをマトリックスとする場合、マトリックスの緻密化のために例えば1000~1500℃の高温焼成プロセスが必要となるため、分散した蛍光体粒子が劣化しやすい。また、高温時にマトリックスと蛍光体粒子が反応する組み合わせを除外する必要があり、適用可能な蛍光体粒子が限定されてしまう。一方、ガラスをマトリックスとした蛍光部材は、比較的低温でプレート化することが可能である。 When the above-mentioned Sialon is used as a matrix, for example, a high-temperature firing process at 1000 to 1500 ° C. is required for densification of the matrix, so that the dispersed phosphor particles are liable to deteriorate. In addition, it is necessary to exclude the combination in which the matrix and the phosphor particles react at a high temperature, which limits the applicable phosphor particles. On the other hand, the fluorescent member using glass as a matrix can be plated at a relatively low temperature.
国際公開2018/38259号International release 2018/38259 特開2014-22412号公報Japanese Unexamined Patent Publication No. 2014-22412
 ガラスは前述したように比較的低温でプレート化できる利点の他、機械的強度が強く、透明性に優れるという優位点もある。その一方で、ガラスは熱伝導性が低いという欠点がある。上記特許文献2では窒化アルミニウムを用いた蛍光体分散無機ガラスプレートが開示されているが、高熱伝導性物質粒子のサイズとプレートの厚さを特定の範囲とする必要があり、設計自由度が高いとはいえず、熱伝導性についても改善が望まれる。 As mentioned above, glass has the advantage of being able to be plated at a relatively low temperature, as well as having strong mechanical strength and excellent transparency. On the other hand, glass has a drawback of low thermal conductivity. The above-mentioned Patent Document 2 discloses a phosphor-dispersed inorganic glass plate using aluminum nitride, but it is necessary to set the size of the highly thermally conductive substance particles and the thickness of the plate within a specific range, and the degree of freedom in design is high. However, improvement in thermal conductivity is also desired.
 特に、高出力化用途の発光装置については、前述したように、発光ダイオードやレーザーダイオード自身の温度上昇、励起-発光プロセスの際のエネルギー変換ロスにより発生する熱などを効率的に放熱可能な、熱伝導性に優れた蛍光体粒子分散ガラスの開発が切望されている。 In particular, for light emitting devices for high output applications, as described above, it is possible to efficiently dissipate heat generated by the temperature rise of the light emitting diode and the laser diode itself and the energy conversion loss during the excitation-light emitting process. The development of phosphor particle dispersion glass having excellent thermal conductivity is eagerly desired.
 なお、上記においては白色LED等に用いる場合の課題について述べたが、蛍光体粒子分散ガラス全般に対して同様の課題が生じ得る。 Although the problems when used for white LEDs and the like have been described above, the same problems may occur for fluorescent particle dispersed glass in general.
 本発明は、上記事情に鑑みてなされたものであって、熱伝導性に優れた蛍光体粒子分散ガラスおよび発光装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a phosphor particle-dispersed glass having excellent thermal conductivity and a light emitting device.
[1]:  ガラスをマトリックスとし、
 少なくとも蛍光体粒子および熱伝導性フィラーが前記マトリックスに分散されてなり、
 前記熱伝導性フィラーが窒化ホウ素を含む蛍光体粒子分散ガラス。
[2]: 熱伝導率が少なくとも2W/(m・K)以上であることを特徴とする[1]に記載の蛍光体粒子分散ガラス。
[3]: 前記マトリックス中の前記窒化ホウ素のISO13383-1:2012画像解析法における最大フェレ径から求めた平均粒子径が0.5~200μmであることを特徴とする[1]又は[2]に記載の蛍光体粒子分散ガラス。
[4]: 前記窒化ホウ素の含有量が5質量%以上であることを特徴とする[1]~[3]のいずれかに記載の蛍光体粒子分散ガラス。
[5]: 前記蛍光体粒子が窒化物蛍光体粒子であることを特徴とする[1]~[4]のいずれかに記載の蛍光体粒子分散ガラス。
[6]: 前記ガラスがリン酸塩系ガラスであることを特徴とする[1]~[5]のいずれかに記載の蛍光体粒子分散ガラス。
[7]: 第一光を発光する半導体発光素子と、
 前記半導体発光素子の出射光側に設置され、前記第一光が励起光となり第二光を発光する、[1]~[6]のいずれかに記載の蛍光体粒子分散ガラスとを備える発光装置。
[1]: Using glass as a matrix
At least the fluorescent particles and the thermally conductive filler are dispersed in the matrix.
Fluorescent particle-dispersed glass in which the thermally conductive filler contains boron nitride.
[2]: The phosphor particle-dispersed glass according to [1], which has a thermal conductivity of at least 2 W / (m · K) or more.
[3]: The average particle size of the boron nitride in the matrix determined from the maximum ferret diameter in the ISO 133831: 2012 image analysis method is 0.5 to 200 μm [1] or [2]. The phosphor particle dispersion glass according to.
[4]: The phosphor particle-dispersed glass according to any one of [1] to [3], wherein the boron nitride content is 5% by mass or more.
[5]: The phosphor particle-dispersed glass according to any one of [1] to [4], wherein the phosphor particles are nitride phosphor particles.
[6]: The phosphor particle-dispersed glass according to any one of [1] to [5], wherein the glass is a phosphate-based glass.
[7]: A semiconductor light emitting device that emits the first light,
A light emitting device provided with the phosphor particle dispersion glass according to any one of [1] to [6], which is installed on the emission light side of the semiconductor light emitting element and uses the first light as excitation light to emit the second light. ..
 本発明によれば、熱伝導性に優れた蛍光体粒子分散ガラスおよび発光装置を提供できるという優れた効果を奏する。 According to the present invention, it is possible to provide a phosphor particle-dispersed glass having excellent thermal conductivity and a light emitting device, which is an excellent effect.
本実施形態に係る発光装置の一例を示す模式的断面図。The schematic cross-sectional view which shows an example of the light emitting device which concerns on this embodiment. 変形例に係る発光装置の一例を示す模式的断面図。A schematic cross-sectional view showing an example of a light emitting device according to a modified example. 実施例1の蛍光体粒子分散ガラスのSEM像。SEM image of the fluorescent particle dispersion glass of Example 1. 実施例1および比較例2,3の蛍光体粒子分散ガラスのXRDプロファイル。XRD profiles of the fluorophore particle dispersed glasses of Example 1 and Comparative Examples 2 and 3. 実施例1の蛍光体粒子分散ガラスの発光・励起スペクトル。The emission / excitation spectrum of the phosphor particle-dispersed glass of Example 1.
 以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれる。また、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。また、本明細書において特に言及していない本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。 Hereinafter, an example of an embodiment to which the present invention is applied will be described. Other embodiments are also included in the scope of the present invention as long as they are consistent with the gist of the present invention. In addition, the numerical value specified in the present specification is a value obtained by the method disclosed in the embodiment or the embodiment. The following description and drawings have been simplified as appropriate to clarify the description. In addition, matters necessary for the practice of the present invention not particularly mentioned in the present specification can be grasped as design matters of those skilled in the art based on the prior art in the art.
[蛍光体粒子分散ガラス]
 本実施形態に係る蛍光体粒子分散ガラスは、ガラスをマトリックスとし、少なくとも蛍光体粒子および窒化ホウ素がマトリックスに分散されてなる、ガラス焼結体からなる。蛍光体粒子分散ガラスの形状は、例えば、円盤状、平板状、凸レンズ状、凹レンズ状、球状、半球状、立方体状、直方体状、角柱や円柱などの柱状、角筒や円筒などの筒状が挙げられる。白色LEDに適用する場合、例えば、励起光源となる青色LEDの出射光側に配置して用いられる。
[Fluorescent particle dispersed glass]
The phosphor particle-dispersed glass according to the present embodiment comprises a glass sintered body in which glass is used as a matrix and at least phosphor particles and boron nitride are dispersed in the matrix. The shape of the phosphor particle-dispersed glass is, for example, a disk shape, a flat plate shape, a convex lens shape, a concave lens shape, a spherical shape, a hemispherical shape, a cube shape, a rectangular parallelepiped shape, a columnar shape such as a prism or a cylinder, or a tubular shape such as a prism or a cylinder. Can be mentioned. When applied to a white LED, for example, it is used by arranging it on the emission light side of a blue LED serving as an excitation light source.
 蛍光体粒子分散ガラスにおいて、半導体発光素子等から発光される第一光の少なくとも一部を励起光として蛍光体粒子が吸収し、第二光を発光する。なお、本明細書における蛍光体粒子には所謂蛍光を発光する粒子の他、燐光を発光する粒子も含む。なお、第一光とは、特定の波長の光または特定の帯域の光をいい、第一光は一種類でも複数種あってもよい。複数種ある場合の一例として、青色光の第一光を発光する半導体発光素子と、紫外光の第一光を発光する半導体発光素子を有する場合が挙げられる。第二光は、第一光の少なくとも一部が蛍光体粒子の励起光となり、蛍光体粒子から発光される光をいう。第二光も一種類でも複数種あってもよい。複数種ある場合の一例として、同一の蛍光体粒子分散ガラスに複数種の発光帯域の異なる蛍光体粒子が分散されている場合がある。また、異なる蛍光体粒子分散ガラスに、それぞれ発光帯域の異なる蛍光体粒子が分散されている態様も例示できる。 In the phosphor particle dispersion glass, at least a part of the first light emitted from the semiconductor light emitting element or the like is absorbed by the phosphor particles as excitation light, and the second light is emitted. The phosphor particles in the present specification include not only so-called fluorescence-emitting particles but also phosphorescent particles. The first light refers to light having a specific wavelength or light in a specific band, and the first light may be of one type or a plurality of types. As an example of the case where there are a plurality of types, there is a case where a semiconductor light emitting device that emits the first light of blue light and a semiconductor light emitting element that emits the first light of ultraviolet light are provided. The second light refers to light emitted from the phosphor particles in which at least a part of the first light becomes excitation light of the phosphor particles. There may be one type or multiple types of second light. As an example of the case where there are a plurality of types, there is a case where a plurality of types of phosphor particles having different emission bands are dispersed in the same phosphor particle dispersion glass. In addition, an embodiment in which phosphor particles having different emission bands are dispersed in different phosphor particle-dispersed glasses can also be exemplified.
 白色光を得るために蛍光体粒子分散ガラスを用いる場合、例えば励起光である青色光によって赤色光を発光する蛍光体粒子と、励起光である青色光によって緑色光を発光する蛍光体粒子とを蛍光体粒子分散ガラスに含有させる。さらに、蛍光体粒子分散ガラスは、励起光である青色光のうち励起に寄与しなかった光を透過する透過性を有するものとする。これにより、蛍光体粒子分散ガラスを透過した青色光と、蛍光体粒子分散ガラスから発光した赤色光および緑色光とが混ざり合い、白色光が得られる。
 また、別の例では、紫外光または紫色光を励起光とし、蛍光体粒子分散ガラスに青色光を発光する蛍光体粒子と、紫外光または紫色光の励起光によって赤色光を発光する蛍光体粒子と、紫外光または紫色光の励起光によって緑色光を発光する蛍光体粒子とを含有させる。これにより、蛍光体粒子分散ガラスから発光した青色光、赤色光および緑色光が混ざり合う。その結果、本実施形態の蛍光体粒子分散ガラスにより白色光を得ることができる。この場合、励起光の一部が蛍光体粒子分散ガラスを透過する設計とする態様の他、励起光の全部が蛍光体粒子分散ガラスに吸収される設計としてもよい。
When phosphor particle dispersion glass is used to obtain white light, for example, a phosphor particle that emits red light by blue light that is excitation light and a phosphor particle that emits green light by blue light that is excitation light are used. It is contained in the phosphor particle-dispersed glass. Further, the phosphor particle-dispersed glass is assumed to have a transmittance of transmitting blue light which is excitation light and which does not contribute to excitation. As a result, the blue light transmitted through the phosphor particle-dispersed glass and the red light and green light emitted from the phosphor particle-dispersed glass are mixed to obtain white light.
In another example, phosphor particles that use ultraviolet light or purple light as excitation light and emit blue light on the phosphor particle dispersion glass, and phosphor particles that emit red light by the excitation light of ultraviolet light or purple light. And phosphor particles that emit green light by excitation light of ultraviolet light or purple light. As a result, the blue light, red light, and green light emitted from the phosphor particle-dispersed glass are mixed. As a result, white light can be obtained from the phosphor particle-dispersed glass of the present embodiment. In this case, in addition to the design in which a part of the excitation light passes through the phosphor particle-dispersed glass, the design may be such that the entire excitation light is absorbed by the phosphor particle-dispersed glass.
 本実施形態の蛍光体粒子分散ガラスは、蛍光の発光が偏りなく均一であるとともに、励起光の全透過率を偏りなく均一とする観点から、全体にわたって蛍光体粒子が均一に存在する態様が好ましい。このようにすることにより蛍光体粒子分散ガラスを透過した励起光と、蛍光体粒子分散ガラスから発光した蛍光とが混ざり合って、蛍光体粒子分散ガラスの出射光の色味を調整することが容易となる。前記態様に代えて、蛍光体粒子の分布に濃度勾配を設けたり、領域により異なる蛍光体粒子を含む蛍光体粒子分散ガラスを用いたりしてもよい。このような蛍光体粒子分散ガラスは、製造工程時のプロセス変更により容易に得られる。種類の異なる蛍光体粒子分散ガラスを接合することも可能である。 In the phosphor particle-dispersed glass of the present embodiment, it is preferable that the phosphor particles are uniformly present throughout the glass from the viewpoint that the fluorescence emission is uniform and the total transmittance of the excitation light is uniform. .. By doing so, the excitation light transmitted through the phosphor particle-dispersed glass and the fluorescence emitted from the phosphor particle-dispersed glass are mixed, and it is easy to adjust the color of the emitted light of the phosphor particle-dispersed glass. It becomes. Instead of the above aspect, a concentration gradient may be provided in the distribution of the phosphor particles, or a phosphor particle-dispersed glass containing different phosphor particles depending on the region may be used. Such a phosphor particle-dispersed glass can be easily obtained by changing the process during the manufacturing process. It is also possible to bond different types of phosphor particle dispersed glass.
 蛍光体粒子分散ガラスの厚みの好適な例は用途により変動し得るが、例えば、0.01~10mmである。蛍光体粒子分散ガラスの屈折率(nd)は媒質により適宜設計できる。蛍光体粒子分散ガラスの屈折率は、例えば1.40~1.90の範囲である。蛍光体粒子分散ガラスの入射面側および出射面側の少なくとも一方に光学フィルムを設けてもよい。例えば、反射防止フィルムを設けることができる。 A suitable example of the thickness of the phosphor particle-dispersed glass may vary depending on the application, but is, for example, 0.01 to 10 mm. The refractive index (nd) of the phosphor particle-dispersed glass can be appropriately designed depending on the medium. The refractive index of the phosphor particle-dispersed glass is, for example, in the range of 1.40 to 1.90. An optical film may be provided on at least one of the entrance surface side and the exit surface side of the phosphor particle dispersion glass. For example, an antireflection film can be provided.
(マトリックス)
 マトリックスとするガラスは、蛍光体粒子および窒化ホウ素を分散できるものであればよく特に限定されない。一例として、リン酸塩系ガラス、テルライト系ガラス、ホウ珪酸塩系ガラス、ビスマス酸塩系ガラスが挙げられる。リン酸塩系ガラスとして、スズリン酸塩系ガラスが例示できる。ホウ珪酸塩系ガラスとしては、質量%で、SiOを30~85%、Alを0~30%、B0~50%、LiO+NaO+KOを0~10%、及び、MgO+CaO+SrO+BaOを0~50%を含有するものが挙げられる。スズリン酸塩系ガラスとしては、モル%で、SnOを30~90%、Pを1~70%を含有するものが挙げられる。テルライト系ガラスとしては、モル%で、TeOを50%以上、ZnOを0~45%、RO(RはCa、Sr及びBaから選択される少なくとも1種)0~50%、及び、La+Gd+Yを0~50%を含有するものが挙げられる。
(matrix)
The glass to be used as a matrix is not particularly limited as long as it can disperse phosphor particles and boron nitride. Examples include phosphate-based glass, tellurite-based glass, borosilicate-based glass, and bismuthate-based glass. Examples of the phosphate-based glass include tin phosphate-based glass. The borosilicate based glass containing, by mass%, a SiO 2 30 ~ 85%, the Al 2 O 3 0 ~ 30% , B 2 O 3 0 ~ 50%, Li 2 O + Na 2 O + K 2 O 0 to 10 % And those containing 0 to 50% of MgO + CaO + SrO + BaO. The Suzurin salt-based glass, in mol%, a SnO 30 ~ 90%, include those containing from 1 to 70% P 2 O 5. As the tellurite glass, in mol%, TeO 2 is 50% or more, ZnO is 0 to 45%, RO (R is at least one selected from Ca, Sr and Ba) 0 to 50%, and La 2 Examples thereof include those containing 0 to 50% of O 3 + Gd 2 O 3 + Y 2 O 3 .
 蛍光体粒子の劣化およびマトリックス成分と蛍光体粒子および/または窒化ホウ素との反応を防止する観点からは、ガラスマトリックスの転移点はできるだけ低いことが好ましく、1000℃以下であることが好ましく、750℃以下であることがより好ましく、600℃以下であることが更に好ましく、550℃以下であることが特に好ましい。ガラスの転移点の下限値は特に限定されないが、蛍光体粒子分散ガラスの機械的強度、耐熱性を考慮すると250℃以上であることが好ましく、300℃以上であることがより好ましく、400℃以上であることが更に好ましい。低温での焼成(例えば400~600℃)が可能であるという観点からは、マトリックスとするガラスは、リン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが特に好ましい。 From the viewpoint of preventing deterioration of the phosphor particles and the reaction of the matrix component with the phosphor particles and / or boron nitride, the transition point of the glass matrix is preferably as low as possible, preferably 1000 ° C. or lower, and 750 ° C. The temperature is more preferably 600 ° C. or lower, and particularly preferably 550 ° C. or lower. The lower limit of the transition point of the glass is not particularly limited, but considering the mechanical strength and heat resistance of the phosphor particle-dispersed glass, it is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and 400 ° C. or higher. Is more preferable. From the viewpoint that firing at a low temperature (for example, 400 to 600 ° C.) is possible, the glass used as the matrix is particularly preferably phosphate-based glass, bismuth-based glass, or tellurite-based glass.
(蛍光体粒子)
 本実施形態によれば、例えば、リン酸塩系のガラスを用いることにより、比較的低温で焼結することも可能であることから、多種多様な蛍光体粒子を用いることが可能である。例えば、βサイアロン蛍光体、KSF系蛍光体(KSiF:Mn)、CASN、S-CASN、セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで付活されたルテチウム・アルミニウム・ガーネット(LAG系蛍光体、ユウロピウムおよび/またはクロムで付活された窒素含有アルミノ珪酸カルシウム(CaO-Al-SiO)系蛍光体、ユウロピウムで付活されたシリケート((Sr,Ba)SiO)系蛍光体が挙げられる。レーザー励起等による温度上昇に伴う発光強度の低下を抑制させる観点から、窒化物蛍光体粒子が好ましい。窒化物蛍光体粒子としては、αサイアロン蛍光体、βサイアロン蛍光体、CASN、S-CASN等が例示できる。
(Fluorescent particle)
According to the present embodiment, for example, by using phosphate-based glass, it is possible to sinter at a relatively low temperature, so that a wide variety of phosphor particles can be used. For example, beta sialon phosphor, KSF phosphor (K 2 SiF 6: Mn) , CASN, S-CASN, activated yttrium aluminum garnet (YAG) phosphor with cerium, it was activated with cerium Yttrium aluminum garnet (LAG-based phosphor, europium and / or chromium-activated nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2 ) -based phosphor, europium-activated silicate ((() Examples thereof include Sr, Ba) 2 SiO 4 ) -based phosphors. From the viewpoint of suppressing a decrease in emission intensity due to a temperature rise due to laser excitation or the like, nitride phosphor particles are preferable. The nitride phosphor particles are α. Examples thereof include a sialon fluorescent substance, a β sialon fluorescent substance, CASN, and S-CASN.
 蛍光体粒子は、窒素を蛍光体組成に含む窒化物蛍光体粒子が好適である。具体例として、ストロンチウムおよびケイ素を結晶相に含む窒化物蛍光体(例えば、SCASN、SrSi)、カルシウムおよびケイ素を結晶相に含む窒化物蛍光体(例えばSCASN、CASN、CASON)、ストロンチウム、ケイ素およびアルミニウムを結晶相に含む窒化物蛍光体(例えばSCASN、SrSi)、バリウム、ケイ素を結晶相に含む窒化物蛍光体(例えばBSON)、カルシウム、ケイ素およびアルミニウムを結晶相に含む窒化物蛍光体(例えば、SCASN、CASN、CASON)が挙げられる。
 窒化物蛍光体の別の側面からの分類としては、ランタンニトリドシリケート(例えばLSN)、アルカリ土類金属ニトリドシリケート(例えばSrSi)、アルカリ土類金属ニトリドシリケート(CASN、SCASN、αサイアロン、(Ca,Sr)AlSi)などが挙げられる。
 さらに、具体的には、
 次の一般式で表すことができるβサイアロン;
Si6-zAl8-z:Eu(式中0<z<4.2)、αサイアロン、
 次の一般式で表されるLSN;LnSi  [1]
 (式[1]中、Lnは付活元素として用いる元素を除いた希土類元素から選ばれる1種以上の元素を表し、Mは付活元素から選ばれる1種以上の元素を表し、x、y、zは、各々独立に下記式を満たす値である。
  2.7≦x≦3.3、10≦y≦12、0<z≦1.0)
 次の一般式で表されるCASN;CaAlSiN:Eu、
 次の一般式で表すことができるSCASN;(Ca,Sr,Ba,Mg)AlSiN:Euおよび/又は(Ca,Sr,Ba)AlSi(N,O):Eu、
 次の一般式で表すことができるCASON;(CaAlSiN1-x(SiO):Eu(式中0<x<0.5)、
 次の一般式で表すことができるCaAlSi;Euy(Sr,Ca,Ba)1-y:Al1+xSi4-x7-x(式中、0≦x<4、0≦y<0.2)、
 次の一般式で表すことができるSrSi;(Sr,Ca,Ba)AlSi5-x8-x:Eu(式中0≦x≦2)、
 次の一般式で表すことができるBSON;MBa(Sr,Ca,Mg,Zn)12(式中、MはCr、Mn、Fe、ランタノイド(La、Pm、Gd、Luは除く)から選ばれる付活元素を表し、LはSiを含有する周期律表第4族又は第14族に属する金属元素を表し、x、y、zは、各々独立に下記式を満たす値である。
 0.03≦x≦0.9、0.9≦y≦2.95、x+y+z=3)等の蛍光体が挙げられる。
 これらの蛍光体の中でも、焼結したときの輝度が低下しないという観点からは、構成元素として酸素を含まない窒化物蛍光体(不可避的に混入する酸素は含む)、即ち、LSN、CaAlSiN、SCASN、SrSi、βサイアロン、BSON等の窒化物蛍光体を用いることが好ましい。
As the phosphor particles, nitride phosphor particles containing nitrogen in the phosphor composition are suitable. As a specific example, the nitride phosphor comprising strontium and silicon crystal phase (e.g., SCASN, Sr 2 Si 5 N 8), a nitride phosphor containing calcium and silicon in the crystalline phase (e.g. SCASN, CASN, Cason), Crystallized nitride phosphors containing strontium, silicon and aluminum in the crystal phase (eg SCASN, Sr 2 Si 5 N 8 ), barium, nitride phosphors containing silicon in the crystal phase (eg BSON), calcium, silicon and aluminum Nitride phosphors included in the phase (eg, SCASN, CASN, CASON) can be mentioned.
Other classifications of nitride phosphors include lanthanum nitrid silicates (eg LSN), alkaline earth metal nitrid silicates (eg Sr 2 Si 5 N 8 ), alkaline earth metal nitrid silicates (CASN,). SCASSN, α-sialon, (Ca, Sr) AlSi 4 N 7 ) and the like can be mentioned.
More specifically,
Β-sialon which can be expressed by the following general formula;
Si 6-z Al z Oz N 8-z : Eu (0 <z <4.2 in the formula), α-sialon,
LSN expressed by the following general formula; Ln x Si 6 N y M z [1]
(In the formula [1], Ln represents one or more elements selected from rare earth elements excluding the element used as the activating element, M represents one or more elements selected from the activating elements, and x, y. , Z are values that independently satisfy the following equations.
2.7 ≦ x ≦ 3.3, 10 ≦ y ≦ 12, 0 <z ≦ 1.0)
CASN expressed by the following general formula; CaAlSiN 3 : Eu,
SCASN; (Ca, Sr, Ba, Mg) AlSiN 3 : Eu and / or (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, which can be expressed by the following general formula:
CASON which can be expressed by the following general formula; (CaAlSiN 3 ) 1-x (Si 2 N 2 O) x : Eu (0 <x <0.5 in the formula),
CaAlSi 4 N 7 ; Euy (Sr, Ca, Ba) 1-y: Al 1 + x Si 4-x O x N 7-x (in the formula, 0 ≦ x <4, 0 ≦) can be expressed by the following general formula. y <0.2),
Sr 2 Si 5 N 8 ; (Sr, Ca, Ba) 2 Al x Si 5-x O x N 8-x : Eu (0 ≦ x ≦ 2 in the formula), which can be expressed by the following general formula.
BSON can be represented by the following general formula; M x Ba y (Sr, Ca, Mg, Zn) z L 6 O 12 N 2 ( where, M is Cr, Mn, Fe, lanthanide (La, Pm, Gd , Lu is excluded), L represents a metal element belonging to Group 4 or Group 14 of the periodic table containing Si, and x, y, and z have the following formulas independently. It is a value to be satisfied.
Examples thereof include phosphors such as 0.03 ≦ x ≦ 0.9, 0.9 ≦ y ≦ 2.95, and x + y + z = 3).
Among these phosphors, from the viewpoint that the brightness when sintered does not decrease, a nitride phosphor that does not contain oxygen as a constituent element (including oxygen that is inevitably mixed), that is, LSN, CaAlSiN 3 , It is preferable to use a nitride phosphor such as SCASN, Sr 2 Si 5 N 8 , β-sialon, and BSON.
 添加する蛍光体粒子の種類は、特に限定されず、目的に応じて複数種類を添加してもよい。 The type of phosphor particles to be added is not particularly limited, and a plurality of types may be added depending on the purpose.
 蛍光体粒子分散ガラス中の蛍光体粒子の含有量は、蛍光体粒子分散ガラスの形状(厚み等)、求められる透明性(励起光の全透過率)、蛍光性(蛍光強度、発光波長)、量子効率に応じて適宜調整できる。蛍光体粒子の含有量が少なすぎると、所望の発光色を得るために蛍光体粒子分散ガラスの厚みを厚くする必要があり、蛍光体粒子分散ガラスの内部散乱が増加して光取り出し効率の低下を招来する場合がある。一方、蛍光体粒子の含有量が多すぎると、所望の発光色を得るために蛍光体粒子分散ガラスの厚みを薄くする必要があり、蛍光体粒子分散ガラスの機械的強度が低下する場合がある。 The content of the phosphor particles in the phosphor particle-dispersed glass includes the shape (thickness, etc.) of the phosphor particle-dispersed glass, the required transparency (total transmittance of excitation light), the fluorescence (fluorescence intensity, emission wavelength), and the like. It can be adjusted appropriately according to the quantum efficiency. If the content of the phosphor particles is too small, it is necessary to increase the thickness of the phosphor particle-dispersed glass in order to obtain a desired emission color, and the internal scattering of the phosphor particle-dispersed glass increases and the light extraction efficiency decreases. May be invited. On the other hand, if the content of the phosphor particles is too large, it is necessary to reduce the thickness of the phosphor particle-dispersed glass in order to obtain a desired emission color, and the mechanical strength of the phosphor particle-dispersed glass may decrease. ..
 マトリックス中の蛍光体粒子の平均粒子径は特に限定されないが、励起光の透過性、良好な蛍光特性および分散性をバランスよく得る観点からは500nm~30μmであることが好ましく、1μm~10μmであることがより好ましい。マトリックス中の蛍光体粒子の平均粒子径は、ISO13383-1:2012に準拠した画像解析法における最大フェレ径により求められる。励起光の蛍光体粒子分散ガラスの全透過率は、光路方向において例えば10%以上とすることが好ましい。 The average particle size of the phosphor particles in the matrix is not particularly limited, but is preferably 500 nm to 30 μm, preferably 1 μm to 10 μm, from the viewpoint of obtaining a good balance of excitation light transmission, good fluorescence characteristics, and dispersibility. Is more preferable. The average particle size of the phosphor particles in the matrix is determined by the maximum ferret diameter in the image analysis method based on ISO13383-1: 2012. The total transmittance of the phosphor particle-dispersed glass of the excitation light is preferably, for example, 10% or more in the optical path direction.
(熱伝導性フィラー)
 本実施形態の蛍光体粒子分散ガラスは、熱伝導性フィラーとして窒化ホウ素を含む。熱伝導性フィラーとして窒化ホウ素を用いることにより、優れた熱伝導性を示す蛍光体粒子分散ガラスが得られる。これは、窒化ホウ素の耐食性の高さによるものと考えられる。窒化ホウ素は、立方晶窒化ホウ素、六方晶窒化ホウ素(h-BN)が例示できる。窒化ホウ素を蛍光体粒子分散ガラスに無配向に分散させる態様の他、配向性を持たせて分散させることができる。h-BNは板状の粒子形状であり、その板面方向(ab面内又は(002)面内)に高い熱伝導性を示すことが知られている(通常、熱伝導率として400W/(m・K)程度)。このため、熱伝導性を効率的に高める観点から、熱伝導率を高めたい方向にh-BNを配向させて用いる態様が好適である。後述するように、製造工程において一軸プレスすることによりh-BNの配向性を付与することができる。なお、ここで「配向している」とは、蛍光体粒子分散ガラスの熱伝導性に異方性を付与できる程度に配向している態様を含むものとする。
(Thermal conductive filler)
The phosphor particle-dispersed glass of the present embodiment contains boron nitride as a thermally conductive filler. By using boron nitride as the thermally conductive filler, a phosphor particle-dispersed glass exhibiting excellent thermal conductivity can be obtained. This is considered to be due to the high corrosion resistance of boron nitride. Examples of boron nitride include cubic boron nitride and hexagonal boron nitride (h-BN). In addition to the embodiment in which boron nitride is dispersed in the phosphor particle-dispersed glass in a non-oriented manner, it can be dispersed with orientation. h-BN has a plate-like particle shape and is known to exhibit high thermal conductivity in the plate surface direction (in-plane of ab or (002)) (usually, the thermal conductivity is 400 W / (usually, in-plane). m ・ K) degree). Therefore, from the viewpoint of efficiently increasing the thermal conductivity, it is preferable to use the h-BN oriented in the direction in which the thermal conductivity is desired to be increased. As will be described later, the orientation of h-BN can be imparted by uniaxial pressing in the manufacturing process. In addition, here, "aligned" includes an aspect in which the phosphor particle-dispersed glass is oriented to such an extent that anisotropy can be imparted to the thermal conductivity.
 h-BNは、一次粒子として用いる他、h-BNが凝集したh-BN二次粒子を用いてもよい。また、加熱により焼結した窒化ホウ素二次粒子を用いてもよい。h-BN二次粒子を用いることにより等方的に熱伝導性を高めることも可能である。 As the h-BN, in addition to being used as the primary particles, h-BN secondary particles in which h-BN is aggregated may be used. Further, boron nitride secondary particles sintered by heating may be used. It is also possible to increase the thermal conductivity isotropically by using h-BN secondary particles.
 窒化ホウ素の蛍光体粒子分散ガラス中の含有量は、熱伝導性を効果的に付与する観点から5質量%以上が好ましく、10質量%以上がより好ましく、30質量%以上が特に好ましい。また、蛍光体粒子分散ガラスの緻密性を高める観点からは80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。 The content of boron nitride in the phosphor particle-dispersed glass is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 30% by mass or more from the viewpoint of effectively imparting thermal conductivity. Further, from the viewpoint of increasing the density of the phosphor particle-dispersed glass, 80% by mass or less is preferable, 70% by mass or less is more preferable, and 50% by mass or less is further preferable.
 蛍光体粒子分散ガラス中の窒化ホウ素のISO13383-1:2012画像解析法における最大フェレ径から求めた平均粒子径は、高熱伝導率化の観点からは0.5~200μmであることが好ましい。より好ましくは1~150μmであり、更に好ましくは3~100μmである。蛍光体粒子分散ガラス中の蛍光体粒子の平均粒子径は、ISO13383-1:2012に準拠した画像解析法における最大フェレ径として求められる。具体的な測定方法は蛍光体粒子と同様である。 The average particle size of boron nitride in the phosphor particle-dispersed glass obtained from the maximum ferret diameter in the ISO13383-1: 2012 image analysis method is preferably 0.5 to 200 μm from the viewpoint of high thermal conductivity. It is more preferably 1 to 150 μm, and even more preferably 3 to 100 μm. The average particle size of the phosphor particles in the phosphor particle-dispersed glass is determined as the maximum ferret diameter in the image analysis method based on ISO13383-1: 2012. The specific measurement method is the same as that for the phosphor particles.
 なお、熱伝導性フィラーとして、窒化ホウ素以外にも酸化アルミニウム、酸化亜鉛、二酸化チタン、酸化ベリリウム、酸化マグネシウム、酸化ニッケル、酸化バナジウム、酸化銅、酸化鉄、酸化銀等の金属酸化物;石英粉、炭化シリコン、炭化ケイ素、雲母等のケイ素化合物が挙げられ、これらを窒化ホウ素と併用することも可能である。 In addition to boron nitride, metal oxides such as aluminum oxide, zinc oxide, titanium dioxide, beryllium oxide, magnesium oxide, nickel oxide, vanadium oxide, copper oxide, iron oxide, and silver oxide; quartz powder as thermal conductive fillers. , Silicon Carbide, Silicon Carbide, Mica, and other silicon compounds, and these can be used in combination with boron nitride.
 蛍光部材のマトリックスとして樹脂を用いた場合の熱伝導率は0.1W/(m・K)程度であり、ガラスを用いた場合の熱伝導率は概ね1W/(m・K)以下となる。本実施形態においては、窒化ホウ素を添加することにより熱伝導率を高めることができる。本実施形態の蛍光体粒子分散ガラスの熱伝導率は、熱伝導性をより優れたものとする観点から、少なくとも熱伝導率が1.2W/(m・K)以上であることが好ましく、より好ましくは2W/(m・K)以上であり、更に好ましくは2.3W/(m・K)以上である。蛍光体粒子分散ガラスの熱伝導性に異方性が有る場合の、熱伝導性が最も高い方向での熱伝導率は10W/(m・K)以上であることが好ましく、より好ましくは20W/(m・K)以上であり、更に好ましくは30W/(m・K)以上である。
 熱伝導率は高いほど好ましいが、蛍光体粒子分散ガラスの透明性および緻密性を考慮すると、その上限は通常100W/(m・K)以下である。なお、本明細書でいう熱伝導率とは、キセノンフラッシュ法で測定される蛍光体粒子分散ガラスの熱伝導率をいい、具体的には、実施例に記載した方法により測定される値をいう。
When a resin is used as the matrix of the fluorescent member, the thermal conductivity is about 0.1 W / (m · K), and when glass is used, the thermal conductivity is about 1 W / (m · K) or less. In the present embodiment, the thermal conductivity can be increased by adding boron nitride. The thermal conductivity of the phosphor particle-dispersed glass of the present embodiment is preferably at least 1.2 W / (m · K) or more, more preferably, from the viewpoint of making the thermal conductivity more excellent. It is preferably 2 W / (m · K) or more, and more preferably 2.3 W / (m · K) or more. When the thermal conductivity of the phosphor particle-dispersed glass has anisotropy, the thermal conductivity in the direction of the highest thermal conductivity is preferably 10 W / (m · K) or more, more preferably 20 W / K. It is (m · K) or more, and more preferably 30 W / (m · K) or more.
The higher the thermal conductivity, the more preferable, but considering the transparency and denseness of the phosphor particle-dispersed glass, the upper limit thereof is usually 100 W / (m · K) or less. The thermal conductivity referred to in the present specification means the thermal conductivity of the fluorophore particle dispersed glass measured by the xenon flash method, and specifically, the value measured by the method described in the examples. ..
[蛍光体粒子分散ガラスの製造方法]
 次に、本実施形態に係る蛍光体粒子分散ガラスの製造方法の一例を説明するが、本発明の蛍光体粒子分散ガラスの製造方法は以下に限定されない。
[Manufacturing method of phosphor particle dispersed glass]
Next, an example of the method for producing the fluorescent particle-dispersed glass according to the present embodiment will be described, but the method for producing the fluorescent particle-dispersed glass of the present invention is not limited to the following.
 本実施形態の蛍光体粒子分散ガラスの製造方法は、少なくとも蛍光体粒子、窒化ホウ素およびマトリックスの原料粉体を混合して混合物を得、この混合物を焼結する工程を有する。製造時の焼結温度は、ガラス焼結体が得られればよく、ガラス粉末の軟化点未満の温度で焼結してもよいが、マトリックスの原料粉体の軟化点以上の温度で焼結することが好ましい。本実施形態の製造方法によれば、ガラスの機械的強度、透明性等の優れた特性と熱伝導性を両立できる蛍光体粒子分散ガラスを製造することができる。以下、詳細に説明する。 The method for producing phosphor particle-dispersed glass of the present embodiment includes a step of mixing at least phosphor particles, boron nitride, and a raw material powder of a matrix to obtain a mixture, and sintering this mixture. The sintering temperature at the time of production may be a temperature lower than the softening point of the glass powder as long as a glass sintered body can be obtained, but sintering is performed at a temperature equal to or higher than the softening point of the raw material powder of the matrix. Is preferable. According to the manufacturing method of the present embodiment, it is possible to manufacture a phosphor particle-dispersed glass capable of achieving both excellent properties such as mechanical strength and transparency of the glass and thermal conductivity. The details will be described below.
 各原料は、混合前に必要に応じて解砕/粉砕工程を行ってもよい。混合物を得る方法は特に限定されず、例えば乾式または/および湿式工程を経て得られる。乾式の場合、例えば、少なくとも蛍光体粒子、窒化ホウ素およびマトリックスの原料粉体を乳鉢に入れ混合する方法がある。このとき分散剤を添加してもよい。混合物の粉体のサイズを均質化する観点から、目開きの大きさが異なる2つ以上のふるいを段階的に用い、所定の粒径を有する混合物としてもよい。湿式により混合する場合には、ボールミル等により溶剤(エタノール等)を用いて混合してスラリーを調製し、その後、溶剤を留去して一次成形体を得、この一次成形体を焼成することにより焼結体を得る方法が例示できる。また、一次成形体を形成せずに、焼結プロセスと溶剤留去プロセスを同時に行ってもよい。必要に応じて、圧力を更に加えてもよい。加圧は、等方的であっても異方的(例えば一軸方向)であってもよい。異方性を付与する場合には一軸プレスする方法が簡便である。 Each raw material may be crushed / crushed as necessary before mixing. The method for obtaining the mixture is not particularly limited, and can be obtained, for example, through a dry or / and wet step. In the case of the dry method, for example, there is a method in which at least phosphor particles, boron nitride and matrix raw material powder are placed in a mortar and mixed. At this time, a dispersant may be added. From the viewpoint of homogenizing the powder size of the mixture, two or more sieves having different mesh sizes may be used stepwise to obtain a mixture having a predetermined particle size. In the case of wet mixing, the slurry is prepared by mixing with a solvent (ethanol, etc.) using a ball mill or the like, and then the solvent is distilled off to obtain a primary molded body, and the primary molded body is fired. An example is a method for obtaining a sintered body. Further, the sintering process and the solvent distilling process may be performed at the same time without forming the primary molded body. Further pressure may be applied if necessary. The pressurization may be isotropic or anisotropic (eg, uniaxial). When imparting anisotropy, a method of uniaxial pressing is convenient.
 焼成温度は、蛍光体とガラスの反応を抑制しつつ緻密化させるという観点から任意に設定できる。例えば、リン酸塩系ガラスの場合には、400℃~550℃の範囲とすることが好ましい。緻密化を充分に行う観点から、例えば0.5~100MPa程度の圧力を加えることができる。圧力を加える場合、1~50MPaとすることがより好ましく、5~30MPaとすることが更に好ましい。0.5~100MPaとすることにより、ガラスの粘性流動に起因する高密度化を促進できる。圧力を加える手段としては、公知の方法を適用できる。等方的加圧でも、異方的加圧でもよいが、装置の簡便性および窒化ホウ素に配向性を付与する観点からは、一軸方向の加圧が好適である。一方向的に加圧する場合には、例えばホットプレス法により行うことができる。窒化ホウ素の配向性付与により、熱伝導性に異方性を付与することができる。このため、異方的熱伝導性が求められる用途に特に好適である。等方的に加圧する場合には静水圧による加圧が好適である。加圧時間は、緻密化に寄与する化学反応のメカニズムや圧力によって異なるが、1~60minが好ましい。加圧と加熱を併用する場合、同時でも別々でもよく、工程手順は任意に組み合わせられる。 The firing temperature can be arbitrarily set from the viewpoint of densifying while suppressing the reaction between the phosphor and the glass. For example, in the case of phosphate-based glass, the temperature is preferably in the range of 400 ° C to 550 ° C. From the viewpoint of sufficient densification, for example, a pressure of about 0.5 to 100 MPa can be applied. When pressure is applied, it is more preferably 1 to 50 MPa, further preferably 5 to 30 MPa. By setting the value to 0.5 to 100 MPa, high density due to the viscous flow of glass can be promoted. A known method can be applied as a means for applying pressure. Although it may be isotropically pressurized or anisotropically pressurized, uniaxial pressurization is preferable from the viewpoint of convenience of the apparatus and imparting orientation to boron nitride. When pressurizing in one direction, for example, a hot press method can be used. By imparting the orientation of boron nitride, it is possible to impart anisotropy to the thermal conductivity. Therefore, it is particularly suitable for applications that require anisotropic thermal conductivity. When pressurizing isotropically, pressurization by hydrostatic pressure is preferable. The pressurization time varies depending on the mechanism of the chemical reaction contributing to densification and the pressure, but is preferably 1 to 60 min. When pressurization and heating are used together, they may be simultaneous or separate, and the process procedures can be arbitrarily combined.
 蛍光体粒子分散ガラスの透明性を高めるためには、光の散乱源となる気孔をできるだけ除去することが好ましい。透明性を高め、且つ発光効率を効果的に高める観点からは蛍光体粒子分散ガラスの密度は2.3g/cm以上とすることが好ましい。ここで、密度は、JIS Z 2501:2000に準拠のアルキメデス法により求められるかさ密度を、平均の真密度(原料粉体の総質量/原料粉体の総体積(理論値))で除して算出した。なお、ここでいう原料粉体とは、マトリックス、蛍光体粒子、熱伝導性フィラー等の原料全体をいう。密度は、原料粉体の粒径、混合処理工程、焼結工程等を調整することにより高められる。 In order to increase the transparency of the phosphor particle-dispersed glass, it is preferable to remove pores that are light scattering sources as much as possible. From the viewpoint of increasing the transparency and effectively increasing the luminous efficiency, the density of the phosphor particle-dispersed glass is preferably 2.3 g / cm 3 or more. Here, the density is obtained by dividing the bulk density obtained by the Archimedes method based on JIS Z 2501: 2000 by the average true density (total mass of raw material powder / total volume of raw material powder (theoretical value)). Calculated. The raw material powder referred to here refers to the entire raw material such as a matrix, phosphor particles, and a heat conductive filler. The density is increased by adjusting the particle size of the raw material powder, the mixing treatment step, the sintering step, and the like.
 蛍光体粒子分散ガラス中の蛍光体粒子および窒化ホウ素を測定する場合には、ISO13383-1:2012に準拠した画像解析法等を用いて、例えば、次のように測定することができる。即ち、試験片を破断し、その面を走査型電子顕微鏡で観察して組織写真を得る。得られた組織写真の窒化ホウ素に相当する箇所を明瞭化して、形状を読み取る。この時の最も長い距離(最大フェレ径)を測定することで粒子径とする。この粒子径の測定を繰り返し、得られた値を平均して、平均粒子径とする。 When measuring the fluorescent particles and boron nitride in the fluorescent particle dispersed glass, the measurement can be performed as follows, for example, by using an image analysis method or the like based on ISO13383-1: 2012. That is, the test piece is broken and the surface thereof is observed with a scanning electron microscope to obtain a microstructure photograph. The portion of the obtained microstructure photograph corresponding to boron nitride is clarified and the shape is read. The particle diameter is obtained by measuring the longest distance (maximum ferret diameter) at this time. This particle size measurement is repeated, and the obtained values are averaged to obtain an average particle size.
 本実施形態の製造方法によれば、ガラスをマトリックスにすることにより、サイアロンをマトリックスとする場合などに比べて低温で焼成することが可能となる。より低温で焼成できる点において、リン酸塩系ガラスが好適である。リン酸塩系ガラスを用いた場合、600℃以下で焼成することが可能であり、500℃以下とすることも可能である。 According to the manufacturing method of the present embodiment, by using glass as a matrix, it is possible to bake at a lower temperature as compared with the case where Sialon is used as a matrix. Phosphate-based glass is preferable in that it can be fired at a lower temperature. When phosphate-based glass is used, it can be fired at 600 ° C. or lower, and can be fired at 500 ° C. or lower.
 本実施形態の蛍光体粒子分散ガラスによれば、耐食性に優れる窒化ホウ素を熱伝導性フィラーとして用いることにより、蛍光性および熱伝導性を兼備した蛍光体粒子分散ガラスを提供できる。また、耐熱性に優れ、加工性、機械的強度にも優れる蛍光体粒子分散ガラスを提供できる。また、蛍光体粒子分散ガラスの緻密化により気孔を低減させ、透光性に優れた蛍光体粒子分散ガラスを提供できる。しかも、窒化ホウ素を含有することにより高熱伝導性を実現できる。更に、ガラスの種類により例えば400~550℃程度の焼結プロセスにより蛍光体粒子分散ガラスが得られるので、多様な蛍光体粒子を用いることが可能となる。その結果、高温焼成による蛍光体粒子の劣化や変質、マトリックス部との不本意な反応といった従来の課題を根本的に解決し、より自由度の高い材料設計が可能となる。その結果、高品質な蛍光体粒子分散ガラスを提供することができる。そして、高熱伝導性と蛍光性を兼備した蛍光体粒子分散ガラスを提供できる。本実施形態の蛍光体粒子分散ガラスは、高出力LED等のみならず、放熱性が必要とされる様々な部材への応用展開が期待できる。 According to the phosphor particle-dispersed glass of the present embodiment, by using boron nitride having excellent corrosion resistance as a heat conductive filler, it is possible to provide a fluorescent particle-dispersed glass having both fluorescence and heat conductivity. Further, it is possible to provide a fluorescent particle dispersion glass having excellent heat resistance, processability and mechanical strength. Further, it is possible to provide a fluorescent particle-dispersed glass having excellent translucency by reducing pores by densifying the fluorescent particle-dispersed glass. Moreover, high thermal conductivity can be realized by containing boron nitride. Further, depending on the type of glass, phosphor particle-dispersed glass can be obtained by, for example, a sintering process at about 400 to 550 ° C., so that various phosphor particles can be used. As a result, conventional problems such as deterioration and alteration of phosphor particles due to high-temperature firing and unwilling reaction with the matrix portion can be fundamentally solved, and material design with a higher degree of freedom becomes possible. As a result, it is possible to provide high-quality phosphor particle-dispersed glass. Then, it is possible to provide a phosphor particle-dispersed glass having both high thermal conductivity and fluorescence. The phosphor particle dispersion glass of the present embodiment can be expected to be applied not only to high-power LEDs and the like but also to various members requiring heat dissipation.
[発光装置]
 本実施形態の発光装置は、第一光を発光する半導体発光素子と、この半導体発光素子の出射光側に設置され、第一光が励起光となり第二光を発光する本実施形態の蛍光体粒子分散ガラスを具備する。発光装置において、半導体発光素子および蛍光体粒子分散ガラスは、それぞれ独立に少なくとも一つ又は複数含まれている。
[Light emitting device]
The light emitting device of the present embodiment is a semiconductor light emitting device that emits the first light, and a phosphor of the present embodiment that is installed on the emission light side of the semiconductor light emitting element and the first light becomes excitation light and emits the second light. A particle dispersion glass is provided. In the light emitting device, at least one or a plurality of semiconductor light emitting elements and phosphor particle-dispersed glass are independently contained.
 図1に、本実施形態に係る発光装置の一例である白色LEDの模式図を示す。白色LED10は、基板1上に一次光源として青色LED2が設けられ、この青色LED2の出射光路の少なくとも一部に蛍光体粒子分散ガラス6が設置されている。青色LED2の形状に応じて蛍光体粒子分散ガラス6を任意の形状に形成すればよい。青色LED2の出射光の一部は、蛍光体粒子分散ガラス6のマトリックス3に分散せしめられた蛍光体粒子4、例えば黄色蛍光体粒子を励起し、黄色の光を発光する。また、青色LED2のうち、蛍光体粒子分散ガラス中の蛍光体粒子の励起に寄与しなかった光は蛍光体粒子分散ガラス6を透過して、青色光として白色LED10から出射される。複数の出射光が混ざり合って、白色LED10から白色光が作り出される。 FIG. 1 shows a schematic diagram of a white LED which is an example of the light emitting device according to the present embodiment. In the white LED 10, a blue LED 2 is provided as a primary light source on the substrate 1, and a phosphor particle dispersion glass 6 is installed in at least a part of the emission light path of the blue LED 2. The phosphor particle dispersion glass 6 may be formed in an arbitrary shape according to the shape of the blue LED 2. A part of the emitted light of the blue LED 2 excites the phosphor particles 4, for example, the yellow phosphor particles dispersed in the matrix 3 of the phosphor particle dispersion glass 6, and emits yellow light. Further, among the blue LEDs 2, the light that does not contribute to the excitation of the phosphor particles in the phosphor particle-dispersed glass passes through the phosphor particle-dispersed glass 6 and is emitted from the white LED 10 as blue light. A plurality of emitted lights are mixed to produce white light from the white LED 10.
 また、蛍光体粒子分散ガラス6には、熱伝導性フィラー5が分散されているので熱伝導率が高い。このため、青色LED2からの発熱や蛍光体粒子4による発熱を効果的に放熱させることができる。 Further, since the heat conductive filler 5 is dispersed in the phosphor particle dispersed glass 6, the heat conductivity is high. Therefore, the heat generated by the blue LED 2 and the heat generated by the phosphor particles 4 can be effectively dissipated.
 なお、図1の例は一例であり、青色LEDに代えて、又は併用して赤色LEDまたは/および緑色LEDを用い、白色光の色味の品質を高めるために蛍光体粒子分散ガラスを用いてもよい。また、黄色蛍光体粒子は一例であり、黄色蛍光体粒子に代えて、又は併用して赤色蛍光体粒子または/および緑色蛍光体粒子を用いることができる。無論、その他の色の蛍光体粒子を用いてもよい。更に、LEDに代えてレーザーダイオード等の半導体発光素子を用いてもよいことは言うまでも無い。 The example of FIG. 1 is an example, in which a red LED and / or a green LED is used in place of or in combination with a blue LED, and a phosphor particle-dispersed glass is used to improve the color tint quality of white light. May be good. Further, the yellow phosphor particles are an example, and red fluorescent particles and / and green fluorescent particles can be used in place of or in combination with the yellow fluorescent particles. Of course, phosphor particles of other colors may be used. Further, it goes without saying that a semiconductor light emitting element such as a laser diode may be used instead of the LED.
 白色LED10の場合には、青色LED2の青色光が蛍光体粒子分散ガラス6を透過する光量、蛍光体粒子分散ガラス6の蛍光体粒子が青色光を吸収して別の波長の光(緑色光、赤色光等)を発光する光量を最適化するために、蛍光体粒子分散ガラス6の厚みおよび蛍光体粒子分散ガラス6中の蛍光体粒子の濃度を適宜設計する。青色LEDからの励起光は、例えば、波長300nm~500nmの光(紫外領域の光から青色領域の光)である。 In the case of the white LED 10, the amount of light that the blue light of the blue LED 2 passes through the phosphor particle dispersion glass 6 and the phosphor particles of the phosphor particle dispersion glass 6 absorb the blue light and light of another wavelength (green light, In order to optimize the amount of light emitted (red light, etc.), the thickness of the phosphor particle-dispersed glass 6 and the concentration of the phosphor particles in the phosphor particle-dispersed glass 6 are appropriately designed. The excitation light from the blue LED is, for example, light having a wavelength of 300 nm to 500 nm (light in the ultraviolet region to light in the blue region).
 図1の白色LED10の蛍光体粒子分散ガラス6に代えて、図2に示すように、第一蛍光体粒子分散ガラス21と第二蛍光体粒子分散ガラス22からなる蛍光体粒子分散ガラス20を用いてなる白色LED10aを用いてもよい。第一蛍光体粒子分散ガラス21は、第一マトリックス11中に、青色LED2からの第一光を吸収して発光する第一蛍光体粒子12および熱伝導性フィラー15が含有されている。一方、第二蛍光体粒子分散ガラス22は、第二マトリックス13中に第一蛍光体粒子分散ガラス21から発光された光を吸収して、更に長波長光を発光する第二蛍光体粒子14および熱伝導性フィラー16が含有されている。第一蛍光体粒子分散ガラス21と第二蛍光体粒子分散ガラス22が接合された蛍光体粒子分散ガラス20を用いることにより、蛍光体粒子分散ガラス20の発光光の一部を第二の励起光として、更に長波長の光を出射させることができる。このような構成により、白色の色味を調整することも可能である。 As shown in FIG. 2, a phosphor particle-dispersed glass 20 composed of a first phosphor particle-dispersed glass 21 and a second phosphor particle-dispersed glass 22 is used instead of the phosphor particle-dispersed glass 6 of the white LED 10 of FIG. White LED 10a may be used. The first phosphor particle-dispersed glass 21 contains the first phosphor particles 12 that absorb the first light from the blue LED 2 and emit light, and the thermally conductive filler 15 in the first matrix 11. On the other hand, the second phosphor particle dispersion glass 22 absorbs the light emitted from the first phosphor particle dispersion glass 21 in the second matrix 13 and further emits long wavelength light, and the second phosphor particles 14 and The heat conductive filler 16 is contained. By using the phosphor particle dispersion glass 20 in which the first phosphor particle dispersion glass 21 and the second phosphor particle dispersion glass 22 are bonded, a part of the emitted light of the phosphor particle dispersion glass 20 is a second excitation light. As a result, it is possible to emit light having a longer wavelength. With such a configuration, it is also possible to adjust the tint of white.
≪実施例≫
 以下、本発明を実施例によりさらに詳細に説明する。但し、本発明は、以下の実施例に限定されるものではない。
<< Example >>
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.
(実施例1)
 ガラスの原料粉末としてリン酸塩系低融点ガラスフリット(日本琺瑯釉薬(株),FRA-119,軟化点>380℃,平均粒径:40μm)を用いた。また、蛍光体粒子として5wt%Eu付活Ca-αサイアロン((株)サイアロン製)(以下、粒子1ともいう)を、熱伝導性フィラーとして窒化ホウ素であるh-BN(HGP、(株)デンカ社製、平均粒径:5μm)用いた。
 まず、ガラスの原料粉末とh-BNの合計を100質量%としたときのh-BNの含有量が10質量%となるように、h-BNをガラスの原料粉末に添加した。次いで、ガラスの原料粉末とh-BNの合計100質量%に対して外掛けで蛍光体を5質量%添加した。
 これらの混合物を棒びんに入れ、シェーカー・ミキサー((株)シンマルエンタープライゼス製,T2F)で10分間混合した。その後、カーボンモールドに入れて多目的高温焼結炉(富士電波工業(株)製,ハイマルチ5000)を用いて500℃で真空焼成するとともに10分間、10MPaの圧力でホットプレスすることにより、蛍光体粒子分散ガラスを得た。なお、真空焼成時の500℃までの昇温は、真空下(6.6×10-2Pa以下)、5℃/minの条件で行った。また、前記加圧は、500℃に保持しているタイミングに行った。
(Example 1)
As a raw material powder for glass, a phosphate-based low melting point glass frit (Nippon Amber Glazed Co., Ltd., FRA-119, softening point> 380 ° C., average particle size: 40 μm) was used. Further, 5 wt% Eu-activated Ca-α Sialon (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 1) as a phosphor particle is used, and h-BN (HGP, Co., Ltd.) which is boron nitride as a heat conductive filler is used. Made by Denka, average particle size: 5 μm) was used.
First, h-BN was added to the glass raw material powder so that the h-BN content was 10% by mass when the total of the glass raw material powder and h-BN was 100% by mass. Next, 5% by mass of the phosphor was added externally to 100% by mass of the total of the raw material powder of glass and h-BN.
These mixtures were placed in a bar bottle and mixed with a shaker mixer (manufactured by Simmal Enterprises Co., Ltd., T2F) for 10 minutes. After that, the phosphor is placed in a carbon mold and vacuum-baked at 500 ° C. using a multipurpose high-temperature sintering furnace (manufactured by Fuji Denpa Kogyo Co., Ltd., Hi-Multi 5000) and hot-pressed at a pressure of 10 MPa for 10 minutes. Particle-dispersed glass was obtained. The temperature rise to 500 ° C. during vacuum firing was performed under vacuum (6.6 × 10 −2 Pa or less) under the condition of 5 ° C./min. Further, the pressurization was performed at the timing of holding the temperature at 500 ° C.
(実施例2)
 ガラスの原料粉末とh-BNの合計を100質量%としたときのh-BNの含有量を20質量%に変更した以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(Example 2)
Fluorescent particle dispersed glass by the same raw material / manufacturing method as in Example 1 except that the h-BN content was changed to 20% by mass when the total of the glass raw material powder and h-BN was 100% by mass. Got
(実施例3)
 ガラスの原料粉末とh-BNの合計を100質量%としたときのh-BNの含有量を30質量%に変更した以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(Example 3)
Fluorescent particle dispersed glass by the same raw material / manufacturing method as in Example 1 except that the h-BN content was changed to 30% by mass when the total of the glass raw material powder and h-BN was 100% by mass. Got
(実施例4)
 蛍光体粒子として、実施例1の蛍光体粒子に代えて5wt%Eu付活βサイアロン((株)サイアロン社製)(以下、粒子2ともいう)を用いた以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(Example 4)
The same as in Example 1 except that 5 wt% Eu-activated β-sialon (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 2) was used as the fluorescent particle instead of the fluorescent particle of Example 1. Fluorescent particle-dispersed glass was obtained by the raw material and manufacturing method.
(実施例5)
 蛍光体粒子として、実施例1の蛍光体粒子に代えて5wt%Eu付活CaAlSiN((株)サイアロン社製)(以下、粒子3ともいう)を用いた以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(Example 5)
The same as in Example 1 except that 5 wt% Eu-activated CaAlSiN 3 (manufactured by Sialon Co., Ltd.) (hereinafter, also referred to as particle 3) was used as the fluorescent particle instead of the fluorescent particle of Example 1. Fluorescent particle-dispersed glass was obtained by the raw material and manufacturing method.
(実施例6)
 熱伝導性フィラーとして、実施例1の熱伝導性フィラーに代えて粒子径の異なるh-BN粒子(SGP、(株)デンカ社製、18μm)を10質量%添加することに変更した以外は、実施例1と同様の製造方法により蛍光体粒子分散ガラスを得た。
(Example 6)
As the heat conductive filler, h-BN particles having different particle diameters (SGP, manufactured by Denka Co., Ltd., 18 μm) were changed to be added in an amount of 10% by mass instead of the heat conductive filler of Example 1, except that A phosphor particle-dispersed glass was obtained by the same production method as in Example 1.
(比較例1)
 熱伝導性フィラーを添加しない以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(比較例2)
 熱伝導性フィラーとして、実施例1の熱伝導性フィラーに代えてAlN(グレードF、(株)トクヤマ製、0.6μm)を10質量%添加した以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(比較例3)
 熱伝導性フィラーとして実施例1の熱伝導性フィラーに代えてSi(SN-E10、宇部興産(株)製、0.2μm)を10質量%添加した以外は、実施例1と同様の原料・製造方法により蛍光体粒子分散ガラスを得た。
(Comparative Example 1)
Fluorescent particle-dispersed glass was obtained by the same raw material and manufacturing method as in Example 1 except that no heat conductive filler was added.
(Comparative Example 2)
As the heat conductive filler, the same raw materials and production as in Example 1 except that 10% by mass of AlN (grade F, manufactured by Tokuyama Co., Ltd., 0.6 μm) was added instead of the heat conductive filler of Example 1. Fluorescent particle dispersed glass was obtained by the method.
(Comparative Example 3)
Same as Example 1 except that 10% by mass of Si 3 N 4 (SN-E10, manufactured by Ube Kosan Co., Ltd., 0.2 μm) was added as the heat conductive filler in place of the heat conductive filler of Example 1. A phosphor-dispersed glass was obtained by the raw material and manufacturing method of.
(密度測定)
 密度は、JIS Z 2501:2000に準拠のアルキメデス法により求められるかさ密度を、平均の真密度(原料粉体の総質量/原料粉体の総体積(理論値))で除して算出した。なお、ここでいう原料粉体とは、前述したようにマトリックス、蛍光体粒子、熱伝導性フィラー等の原料全体をいう。
(Density measurement)
The density was calculated by dividing the bulk density obtained by the Archimedes method based on JIS Z 2501: 2000 by the average true density (total mass of raw material powder / total volume of raw material powder (theoretical value)). The raw material powder referred to here refers to the entire raw material such as the matrix, the phosphor particles, and the heat conductive filler as described above.
(発光励起スペクトル測定)
 各実施例、比較例の蛍光体粒子分散ガラスを約7mm×7mm×1mmに加工した。そして、蛍光分光光度計(Jasco,FP8500)を用いて発光・励起スペクトルの測定を行った。発光スペクトルは450nmの励起波長を用いて500~750nmの範囲を測定した。励起スペクトルは粒子1のCa-α-サイアロン(黄)では582nm,粒子2のEu付活βサイアロン(緑)では534nm,粒子3のEu付活CaAlSiN(赤)では650nmの発光波長を用いて250~500nmの範囲で測定した。
(Measurement of emission excitation spectrum)
The fluorescent particle dispersion glass of each Example and Comparative Example was processed into about 7 mm × 7 mm × 1 mm. Then, the emission / excitation spectrum was measured using a fluorescence spectrophotometer (Jasco, FP8500). The emission spectrum was measured in the range of 500 to 750 nm using an excitation wavelength of 450 nm. The excitation spectrum uses an emission wavelength of 582 nm for Ca-α-sialon (yellow) of particle 1, 534 nm for Eu-activated β-sialon (green) of particle 2, and 650 nm for Eu-activated CaAlSiN 3 (red) of particle 3. It was measured in the range of 250 to 500 nm.
(熱伝導率測定)
 各実施例、比較例1の蛍光体粒子分散ガラスを20×20×1mmに加工した。その後、ネッチェ社製LFA467を用い、キセノンフラッシュ法のIn-plane_Slit法(Slit幅2.5mm)で蛍光体粒子分散ガラスの測定を行った。そして、馬場モデル解析により熱拡散率の値を求めた。この値に各実施例、比較例の蛍光体粒子分散ガラスの上述の測定方法により求めた密度と熱容量(0.8J/(g・K))を掛けて熱伝導率を算出した。
(Measurement of thermal conductivity)
The fluorescent particle dispersion glass of each Example and Comparative Example 1 was processed to 20 × 20 × 1 mm. Then, using LFA467 manufactured by Netch Japan Co., Ltd., the phosphor particle-dispersed glass was measured by the xenon flash method In-plane_Slit method (Slit width 2.5 mm). Then, the value of thermal diffusivity was obtained by Baba model analysis. The thermal conductivity was calculated by multiplying this value by the density and heat capacity (0.8 J / (g · K)) obtained by the above-mentioned measuring method of the fluorescent particle dispersion glass of each Example and Comparative Example.
 図3に、実施例1の蛍光体粒子分散ガラスのSEM像を示す。同図に示すように、ガラス中に蛍光体粒子および熱伝導性フィラーが分散していることを確認した。 FIG. 3 shows an SEM image of the phosphor particle-dispersed glass of Example 1. As shown in the figure, it was confirmed that the fluorescent particles and the thermally conductive filler were dispersed in the glass.
 図4に、実施例1、比較例2および3の蛍光体粒子分散ガラスのXRDプロファイルを示す。熱伝導性フィラーとして窒化ホウ素を用いた場合には焼成後にも窒化ホウ素は残存していたが、窒化ケイ素および窒化アルミニウムを添加した場合にはこれらのピークはあらわれず、ほぼ消失していた。また、反応時に窒素が放出されたことにより密度も低い値にとどまった。これらの結果に示すように、窒化ホウ素を熱伝導性フィラーとして用いることにより、熱伝導性に優れる蛍光体粒子分散ガラスが得られることを確認した。 FIG. 4 shows the XRD profiles of the phosphor particle-dispersed glasses of Example 1, Comparative Examples 2 and 3. When boron nitride was used as the heat conductive filler, boron nitride remained even after firing, but when silicon nitride and aluminum nitride were added, these peaks did not appear and almost disappeared. In addition, the density remained low due to the release of nitrogen during the reaction. As shown in these results, it was confirmed that by using boron nitride as a thermally conductive filler, a phosphor particle-dispersed glass having excellent thermal conductivity can be obtained.
 図5に、実施例1の蛍光体粒子分散ガラスの発光・励起スペクトルを示す。図中の実線は、原料の蛍光体粒子のスペクトルであり、点線は実施例1の蛍光体粒子分散ガラスのスペクトルを示す。同図に示すように、蛍光体粒子を熱伝導性フィラー含有のガラス複合体である蛍光体粒子分散ガラス中に分散させても原料と同様の発光・励起スペクトルが得られることを確認した。 FIG. 5 shows the emission / excitation spectrum of the phosphor particle-dispersed glass of Example 1. The solid line in the figure is the spectrum of the phosphor particles of the raw material, and the dotted line is the spectrum of the phosphor particle-dispersed glass of Example 1. As shown in the figure, it was confirmed that even if the phosphor particles were dispersed in the phosphor particle-dispersed glass, which is a glass composite containing a heat conductive filler, the same emission / excitation spectrum as the raw material could be obtained.
 表1に、実施例1~5および比較例1の蛍光体粒子分散ガラスの密度および熱伝導率を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the density and thermal conductivity of the fluorophore particle-dispersed glass of Examples 1 to 5 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、熱伝導性フィラーを含有しない比較例1の熱伝導率は0.5W/(m・K)であるのに対し、窒化ホウ素を含有する実施例1~6の蛍光体粒子分散ガラスにおいては、熱伝導率を顕著に高められることを確認した。 As shown in Table 1, the thermal conductivity of Comparative Example 1 containing no thermally conductive filler is 0.5 W / (m · K), whereas the phosphors of Examples 1 to 6 containing boron nitride It was confirmed that the thermal conductivity of the particle-dispersed glass can be significantly increased.
 この出願は、2019年8月2日に出願された日本出願特願2019-143318を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-143318 filed on August 2, 2019, and incorporates all of its disclosures herein.
 本実施形態に係る蛍光体粒子分散ガラスは、白色LED、高出力LED等の発光装置の部材としての利用の他、高熱伝導性および蛍光性を兼ね備えることから、蛍光表示管(VFD)、PDP等のディスプレイをはじめとする部材と組み合わせて種々の用途に応用展開することができる。また、波長変換用の蛍光体粒子分散ガラス以外の用途、例えば、応力発光素子、電子線照射発光素子、熱ルミネッセンスに適用することも可能である。紫外線を可視光に変換する放熱性が必要とされるガラスに適用することも可能である。また、少なくとも第1波長スペクトルを有する第一光を放出することができる光源と、前記第一光を少なくとも部分的に吸収して第2波長スペクトルを有する第二光を放出する蛍光体粒子分散ガラスとを含む発光システム全般に利用できる。 The phosphor particle-dispersed glass according to the present embodiment can be used as a member of a light emitting device such as a white LED or a high-power LED, and also has high thermal conductivity and fluorescence. Therefore, a fluorescent display tube (VFD), PDP, etc. It can be applied and developed for various purposes in combination with members such as the display of the above. It can also be applied to applications other than phosphor particle-dispersed glass for wavelength conversion, such as stress-stimulated luminescent elements, electron beam-irradiated luminescent elements, and thermoluminescence. It can also be applied to glass that requires heat dissipation to convert ultraviolet light into visible light. Further, a light source capable of emitting the first light having at least the first wavelength spectrum and a phosphor particle-dispersed glass that absorbs the first light at least partially and emits the second light having the second wavelength spectrum. It can be used for all light emitting systems including and.
1  基板
2  青色LED
3  マトリックス
4  蛍光体粒子
5  熱伝導性フィラー
6  蛍光体粒子分散ガラス
10 白色LED
11 第一マトリックス
12 第一蛍光体粒子
13 第二マトリックス
14 第二蛍光体粒子
21 第一蛍光体粒子分散ガラス
22 第二蛍光体粒子分散ガラス
1 board 2 blue LED
3 Matrix 4 Fluorescent particles 5 Thermally conductive filler 6 Fluorescent particle dispersed glass 10 White LED
11 First Matrix 12 First Fluorescent Particle 13 Second Matrix 14 Second Fluorescent Particle 21 First Fluorescent Particle Distributed Glass 22 Second Fluorescent Particle Distributed Glass

Claims (7)

  1.  ガラスをマトリックスとし、
     少なくとも蛍光体粒子および熱伝導性フィラーが前記マトリックスに分散されてなり、
     前記熱伝導性フィラーが窒化ホウ素を含む蛍光体粒子分散ガラス。
    Using glass as a matrix
    At least the fluorescent particles and the thermally conductive filler are dispersed in the matrix.
    Fluorescent particle-dispersed glass in which the thermally conductive filler contains boron nitride.
  2.  熱伝導率が少なくとも2W/(m・K)以上であることを特徴とする請求項1に記載の蛍光体粒子分散ガラス。 The phosphor particle-dispersed glass according to claim 1, wherein the thermal conductivity is at least 2 W / (m · K) or more.
  3.  前記マトリックス中の前記窒化ホウ素のISO13383-1:2012画像解析法における最大フェレ径から求めた平均粒子径が0.5~200μmであることを特徴とする請求項1又は2に記載の蛍光体粒子分散ガラス。 The phosphor particles according to claim 1 or 2, wherein the average particle diameter of the boron nitride in the matrix determined from the maximum ferret diameter in the ISO 133831: 2012 image analysis method is 0.5 to 200 μm. Distributed glass.
  4.  前記窒化ホウ素の含有量が5質量%以上であることを特徴とする請求項1~3のいずれかに記載の蛍光体粒子分散ガラス。 The phosphor particle-dispersed glass according to any one of claims 1 to 3, wherein the boron nitride content is 5% by mass or more.
  5.  前記蛍光体粒子が窒化物蛍光体粒子であることを特徴とする請求項1~4のいずれかに記載の蛍光体粒子分散ガラス。 The phosphor particle-dispersed glass according to any one of claims 1 to 4, wherein the phosphor particles are nitride phosphor particles.
  6.  前記ガラスがリン酸塩系ガラスであることを特徴とする請求項1~5のいずれかに記載の蛍光体粒子分散ガラス。 The phosphor particle-dispersed glass according to any one of claims 1 to 5, wherein the glass is a phosphate-based glass.
  7.  第一光を発光する半導体発光素子と、
     前記半導体発光素子の出射光側に設置され、前記第一光が励起光となり第二光を発光する、請求項1~6のいずれかに記載の蛍光体粒子分散ガラスとを備える発光装置。
    A semiconductor light emitting device that emits the first light,
    The light emitting device provided with the phosphor particle-dispersed glass according to any one of claims 1 to 6, which is installed on the emission light side of the semiconductor light emitting element, and the first light becomes excitation light to emit second light.
PCT/JP2020/029297 2019-08-02 2020-07-30 Fluorescent particle-dispersed glass and light-emitting device WO2021024914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019143318A JP7376022B2 (en) 2019-08-02 2019-08-02 Phosphor particle dispersed glass and light emitting device
JP2019-143318 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024914A1 true WO2021024914A1 (en) 2021-02-11

Family

ID=74503800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029297 WO2021024914A1 (en) 2019-08-02 2020-07-30 Fluorescent particle-dispersed glass and light-emitting device

Country Status (2)

Country Link
JP (1) JP7376022B2 (en)
WO (1) WO2021024914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190866A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Phosphor plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576253B1 (en) * 2021-05-11 2023-09-11 대주전자재료 주식회사 Wavelength conversion member and light emitting device comprising same
WO2023120409A1 (en) * 2021-12-24 2023-06-29 京セラ株式会社 Wavelength conversion element and illumination system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225581A (en) * 2015-06-04 2016-12-28 日本電気硝子株式会社 Wavelength conversion member and light-emitting device including the same
JP2018035055A (en) * 2016-08-25 2018-03-08 セントラル硝子株式会社 Wavelength conversion member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078736A1 (en) 2006-10-31 2009-07-15 Techno Polymer Co., Ltd. Heat-dissipating resin composition, substrate for led mounting, reflector, and substrate for led mounting having reflector portion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225581A (en) * 2015-06-04 2016-12-28 日本電気硝子株式会社 Wavelength conversion member and light-emitting device including the same
JP2018035055A (en) * 2016-08-25 2018-03-08 セントラル硝子株式会社 Wavelength conversion member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190866A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Phosphor plate

Also Published As

Publication number Publication date
JP2021026105A (en) 2021-02-22
JP7376022B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
TWI726910B (en) Wavelength conversion member, light emitting device, and manufacturing method of wavelength conversion member
WO2021024914A1 (en) Fluorescent particle-dispersed glass and light-emitting device
CN101605866B (en) Illumination system comprising composite monolithic ceramic luminescence converter
US20170321866A1 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
KR101178054B1 (en) Preparing method of ß-SiAlON phosphor
CN110720060B (en) Wavelength converter, method for producing same, and light-emitting device using wavelength converter
WO2015133612A1 (en) Transparent fluorescent sialon ceramic and method for producing same
US11292963B2 (en) Wavelength converting member and method for producing the same
WO2018038259A1 (en) Nitride phosphor particle dispersion-type sialon ceramic, fluorescent member, and method for producing nitride phosphor particle dispersion-type sialon ceramic
WO2013105345A1 (en) Fluorescent body and light emission device
CN113979739A (en) Composite fluorescent ceramic, preparation method and luminescent device
Sun et al. Green emitting spinel/Ba2SiO4: Eu2+/spinel sandwich structure robust ceramic phosphor prepared by spark plasma sintering
WO2020213456A1 (en) Wavelength conversion member, production method therefor, and light-emitting device
CN104962286A (en) Garnet-structure multiphase fluorescent material and preparation method thereof
WO2021015261A1 (en) Fluorescent member, method for producing same, and light-emitting device
WO2012157998A2 (en) Fluorescent material, light-emitting device, planar light-source device, display device and lighting device
CN114497326A (en) Fluorescence conversion composite layer, preparation method thereof and white light emitting device
CN216818372U (en) Fluorescence conversion composite layer and white light emitting device
WO2023190866A1 (en) Phosphor plate
JP2013214718A (en) Oxynitride-based fluorescent material, and light-emitting device using the same
WO2022244523A1 (en) Phosphor, method for producing same, light emitting element and light emitting device
WO2022168879A1 (en) Fluorescent material, fluorescent member, and light-emitting module
JP2023026191A (en) Fluorescent member and method for producing the same, and light-emitting device
JP2022117394A (en) Phosphor, fluorescence member, and light-emitting module
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850413

Country of ref document: EP

Kind code of ref document: A1