TWI606143B - Chemical conversion coating and method of fabricating the same - Google Patents
Chemical conversion coating and method of fabricating the same Download PDFInfo
- Publication number
- TWI606143B TWI606143B TW106121870A TW106121870A TWI606143B TW I606143 B TWI606143 B TW I606143B TW 106121870 A TW106121870 A TW 106121870A TW 106121870 A TW106121870 A TW 106121870A TW I606143 B TWI606143 B TW I606143B
- Authority
- TW
- Taiwan
- Prior art keywords
- chemical conversion
- conversion film
- magnesium
- film according
- producing
- Prior art date
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
Description
本發明是有關於一種鎂合金表面處理,且特別是有關於一種化成皮膜及其製造方法。The present invention relates to a surface treatment of a magnesium alloy, and more particularly to a chemical conversion film and a method of manufacturing the same.
鎂合金具有許多優點,例如是重量輕、易於加工、高強度、可防電磁波干擾及回收再利用性。近年來,在例如是3C產品的工業設計中,由於對重量輕型化以及質感設計的要求,鎂合金已廣泛地被使用做為例如是筆記型電腦、手機等電子產品的外殼。Magnesium alloys have many advantages, such as light weight, ease of processing, high strength, protection against electromagnetic interference, and recycling. In recent years, in industrial designs such as 3C products, magnesium alloys have been widely used as outer casings of electronic products such as notebook computers and mobile phones due to demands for light weight and texture design.
然而,因為鎂合金對於來自外界的腐蝕劑的抗腐蝕能力並不佳,因此使得其在發展和應用上受到相當大的限制。因此,如何提高鎂合金基材的抗腐蝕性是現今技術中的一個重要課題。However, since magnesium alloys have poor corrosion resistance to corrosive agents from the outside, they are considerably limited in development and application. Therefore, how to improve the corrosion resistance of a magnesium alloy substrate is an important issue in the current technology.
本發明提供一種具有良好抗腐蝕性的化成皮膜及其製造方法。The present invention provides a chemical conversion film having good corrosion resistance and a method for producing the same.
本發明一實施例提供一種化成皮膜,其配置於鎂合金基材的表面上。化成皮膜含有錳、鎂、氧及鈰,其中化成皮膜中的錳的含量介於10原子%至20原子%之間,且化成皮膜中的鈰的含量介於5原子%至10原子%之間。An embodiment of the present invention provides a chemical conversion film disposed on a surface of a magnesium alloy substrate. The chemical conversion film contains manganese, magnesium, oxygen and strontium, wherein the content of manganese in the chemical conversion film is between 10 atom% and 20 atom%, and the content of bismuth in the chemical conversion film is between 5 atom% and 10 atom%. .
在本發明一實施例中,化成皮膜的厚度介於600 nm至800 nm之間。In an embodiment of the invention, the thickness of the chemical conversion film is between 600 nm and 800 nm.
在本發明一實施例中,化成皮膜中鎂的含量介於15原子%至25原子%之間。In an embodiment of the invention, the content of magnesium in the chemical conversion film is between 15 atomic % and 25 atomic %.
在本發明一實施例中,化成皮膜中氧的含量介於50原子%至70原子%之間。In an embodiment of the invention, the oxygen content of the chemical conversion film is between 50 atomic % and 70 atomic %.
在本發明一實施例中,化成皮膜的材料包括MnO 2、MgO及氧化鈰。 In an embodiment of the invention, the material for forming the film comprises MnO 2 , MgO and cerium oxide.
在本發明一實施例中,鎂合金基材的材料包括鎂鋰鋅合金、鎂鋁錳合金或鎂鋁鋅合金。In an embodiment of the invention, the material of the magnesium alloy substrate comprises a magnesium lithium zinc alloy, a magnesium aluminum manganese alloy or a magnesium aluminum zinc alloy.
本發明另一實施例提供一種化成皮膜的製造方法,其包括以下步驟。提供無機酸化成液,無機酸化成液包括過錳酸鹽、pH值調整劑及鈰鹽,其中無機酸化成液的pH值介於1至2.5之間。以無機酸化成液對鎂合金基材進行化成處理,以在鎂合金基材的表面上形成化成皮膜,其中無機酸化成液中的過錳酸鹽的濃度介於0.05 M至0.15 M之間,且無機酸化成液中的鈰鹽的濃度介於0.005 M至0.05 M之間。Another embodiment of the present invention provides a method of manufacturing a chemical film comprising the following steps. The inorganic acidification liquid is provided, and the inorganic acidification liquid comprises a permanganate, a pH adjusting agent and a cerium salt, wherein the pH of the inorganic acidifying liquid is between 1 and 2.5. Forming a magnesium alloy substrate by inorganic acidification to form a film on the surface of the magnesium alloy substrate, wherein the concentration of permanganate in the inorganic acidification liquid is between 0.05 M and 0.15 M, And the concentration of the cerium salt in the inorganic acidification liquid is between 0.005 M and 0.05 M.
在本發明一實施例中,過錳酸鹽包括KMnO 4。 In an embodiment of the invention, the permanganate comprises KMnO 4 .
在本發明一實施例中,含鈰的硝酸鹽包括Ce(NO 3) 3。 In an embodiment of the invention, the cerium-containing nitrate comprises Ce(NO 3 ) 3 .
在本發明一實施例中,pH值調整劑包括H 2SO 4,且所述無機酸化成液中的H 2SO 4的濃度範圍介於0.005 M至0.1 M之間。 In an embodiment of the invention, the pH adjusting agent comprises H 2 SO 4 and the concentration of H 2 SO 4 in the inorganic acidifying solution ranges from 0.005 M to 0.1 M.
在本發明一實施例中,無機酸化成液的pH值介於1至2之間。In an embodiment of the invention, the pH of the inorganic acidification liquid is between 1 and 2.
在本發明一實施例中,化成處理的操作時間介於10秒至90秒之間。In an embodiment of the invention, the processing time of the chemical conversion process is between 10 seconds and 90 seconds.
在本發明一實施例中,化成處理的操作溫度介於20 ℃至40 ℃之間。In an embodiment of the invention, the processing temperature of the chemical conversion process is between 20 ° C and 40 ° C.
在本發明一實施例中,化成皮膜的厚度介於600 nm至800 nm之間。In an embodiment of the invention, the thickness of the chemical conversion film is between 600 nm and 800 nm.
在本發明一實施例中,鎂合金基材的材料包括鎂鋰鋅合金、鎂鋁錳合金或鎂鋁鋅合金。In an embodiment of the invention, the material of the magnesium alloy substrate comprises a magnesium lithium zinc alloy, a magnesium aluminum manganese alloy or a magnesium aluminum zinc alloy.
在本發明一實施例中,無機酸化成液更包括穩定劑。In an embodiment of the invention, the inorganic acidifying liquid further comprises a stabilizer.
在本發明一實施例中,無機酸化成液中的穩定劑濃度範圍介於0.01 M至0.05 M之間。In an embodiment of the invention, the concentration of the stabilizer in the inorganic acidifying liquid ranges from 0.01 M to 0.05 M.
在本發明一實施例中,穩定劑包括焦磷酸鉀(K 4P 2O 7)。 In an embodiment of the invention, the stabilizer comprises potassium pyrophosphate (K 4 P 2 O 7 ).
基於上述,在本發明一實施例所提出的化成皮膜的製造方法中,由於pH值介於1至2.5之間的無機酸化成液包括過錳酸鹽及鈰鹽,且無機酸化成液中的過錳酸鹽濃度介於0.05 M至0.15 M之間,無機酸化成液中的鈰鹽濃度介於0.005 M至0.05 M之間,因此,在對鎂合金基材進行化成處理時,可快速地在鎂合金基材的表面上形成具良好抗腐蝕性、自我修復能力及符合輕量化需求的化成皮膜。Based on the above, in the method for producing a chemical film according to an embodiment of the present invention, since the inorganic acidification liquid having a pH between 1 and 2.5 includes permanganate and strontium salt, and inorganic acidification into a liquid The permanganate concentration is between 0.05 M and 0.15 M, and the concentration of the cerium salt in the inorganic acidification liquid is between 0.005 M and 0.05 M. Therefore, when the magnesium alloy substrate is chemically processed, it can be quickly A chemical film having good corrosion resistance, self-repairing ability, and light weight demand is formed on the surface of the magnesium alloy substrate.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1是依照本發明一實施例的化成皮膜的製造方法的流程圖。圖2是依照本發明一實施例的化成皮膜的截面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing a method of manufacturing a film into a film according to an embodiment of the present invention. 2 is a schematic cross-sectional view of a chemical conversion film in accordance with an embodiment of the present invention.
請同時參照圖1及圖2,化成皮膜110的製造方法包括依序進行的前處理步驟200、化成處理步驟210以及後處理步驟220。Referring to FIG. 1 and FIG. 2 simultaneously, the manufacturing method of the chemical conversion film 110 includes a pre-processing step 200, a chemical conversion processing step 210, and a post-processing step 220 which are sequentially performed.
首先,在前處理步驟200中,去除鎂合金基材100表面上的髒污及原生氧化物。上述去除鎂合金基材100表面上的髒污及原生氧化物的方法例如是使用鹼洗處理、酸洗處理、去離子水清洗處理、研磨處理或其組合。在一些實施例中,鎂合金基材100可以是鎂鋰鋅合金、鎂鋁錳合金或鎂鋁鋅合金。舉例來說,鎂鋰鋅合金是具有雙相合金結構的LZ91,其可以是由89%的鎂、9%的鋰、1%的Zn以及1%的其他金屬添加物所構成。鎂鋁錳合金可以是具有單相合金結構的AM30。鎂鋁鋅合金可以是具有單相合金結構的AZ31。特別一提的是,上述的LZ91由於具有良好的加工成型性,因此可廣泛地應用於要求高質感的工業設計的產品中,例如手機機殼。First, in the pre-treatment step 200, the dirt and native oxide on the surface of the magnesium alloy substrate 100 are removed. The above method of removing the dirt and the native oxide on the surface of the magnesium alloy substrate 100 is, for example, an alkali washing treatment, a pickling treatment, a deionized water cleaning treatment, a grinding treatment, or a combination thereof. In some embodiments, the magnesium alloy substrate 100 can be a magnesium lithium zinc alloy, a magnesium aluminum manganese alloy, or a magnesium aluminum zinc alloy. For example, a magnesium lithium zinc alloy is LZ91 having a duplex alloy structure, which may be composed of 89% magnesium, 9% lithium, 1% Zn, and 1% other metal additives. The magnesium aluminum manganese alloy may be AM30 having a single phase alloy structure. The magnesium aluminum zinc alloy may be AZ31 having a single phase alloy structure. In particular, the LZ91 described above can be widely used in industrial design products requiring high texture, such as a mobile phone casing, because of its good formability.
在一些實施例中,由於後續進行化成處理步驟210中所使用的無機酸化成液的pH值介於1至2.5之間,因此,鎂合金基材100表面上的原生氧化物或髒污可以被無機酸化成液清除,故可選擇性地省略上述前處理步驟200。在另一些實施例中,由於後續進行化成處理步驟210中所使用的無機酸化成液的pH值介於1至2.5之間,因此,也可選擇性地省略上述前處理步驟200中的酸洗過程,例如鎂合金基材100在研磨處理(採用400~1200號的砂紙研磨)後,以去離子水清洗沖淨即完成前處理步驟200。In some embodiments, since the pH of the inorganic acidification liquid used in the subsequent chemical conversion treatment step 210 is between 1 and 2.5, the native oxide or dirt on the surface of the magnesium alloy substrate 100 can be The inorganic acidification liquid is removed, so that the above pretreatment step 200 can be selectively omitted. In other embodiments, since the pH of the inorganic acidification liquid used in the subsequent chemical conversion treatment step 210 is between 1 and 2.5, the pickling in the pretreatment step 200 described above may also be selectively omitted. The process, for example, the magnesium alloy substrate 100 is subjected to a grinding treatment (grinding with a sandpaper of 400 to 1200), and then rinsed with deionized water to complete the pretreatment step 200.
接著,在化成處理步驟210中,以無機酸化成液對鎂合金基材100進行化成處理,以在鎂合金基材100的表面上形成化成皮膜110。化成處理步驟210的操作時間介於10秒至90秒之間。在一些實施例中,化成處理步驟210的操作時間介於40秒至60秒之間。化成處理步驟210的操作溫度介於20℃至40℃之間。在一些實施例中,化成處理步驟210的操作溫度為25℃。值得一提的是,化成皮膜110與鎂合金基材100之間存在一不可避免的表面膜102,其為氫氧化鎂(Mg(OH) 2)含量較多的膜層。若化成皮膜110形成於鎂合金基材100表面上的速率太慢,則會導致表面膜102的厚度太厚,而導致化成皮膜110與鎂合金基材100之間的附著力降低。 Next, in the chemical conversion processing step 210, the magnesium alloy substrate 100 is subjected to a chemical conversion treatment with an inorganic acidification liquid to form a chemical conversion film 110 on the surface of the magnesium alloy substrate 100. The operation time of the formation processing step 210 is between 10 seconds and 90 seconds. In some embodiments, the operational time of the chemical processing step 210 is between 40 seconds and 60 seconds. The operating temperature of the chemical conversion process step 210 is between 20 ° C and 40 ° C. In some embodiments, the processing temperature of the chemical processing step 210 is 25 °C. It is worth mentioning that there is an unavoidable surface film 102 between the chemical conversion film 110 and the magnesium alloy substrate 100, which is a film layer having a large content of magnesium hydroxide (Mg(OH) 2 ). If the rate at which the chemical conversion film 110 is formed on the surface of the magnesium alloy substrate 100 is too slow, the thickness of the surface film 102 is too thick, resulting in a decrease in adhesion between the chemical conversion film 110 and the magnesium alloy substrate 100.
無機酸化成液包括過錳酸鹽、pH值調整劑及鈰鹽。在一些實施例中,過錳酸鹽例如是KMnO 4。鈰鹽例如是Ce(NO 3) 3。在本實施例中,pH值調整劑例如是濃度介於0.005 M至0.1 M之間的H 2SO 4,然本發明不以此為限。無機酸化成液的pH值介於1至2.5之間。無機酸化成液中的過錳酸鹽的濃度介於0.05 M至0.15 M之間,且無機酸化成液中選自鈰鹽的濃度介於0.005 M至0.05 M之間。如此一來,藉由上述無機酸化成液所形成之化成皮膜110不僅具有足夠的緻密度以及厚度(例如是介於600 nm至800 nm之間)來保護鎂合金基材100的表面不受到外界的腐蝕劑(例如是各種酸液或空氣)的腐蝕,且可藉由Guyard反應(Guyard reaction)的作用來促進整體化學反應速率,以加速化成皮膜110形成於鎂合金基材100表面上的速率,不僅縮短了化成處理步驟210的操作時間(例如從10分鐘至20分鐘縮短至不到2分鐘),且降低了表面膜102的厚度,進而提升化成皮膜110與鎂合金基材100之間的附著力。另外,由於化成皮膜110形成於鎂合金基材100表面上的速率極快(操作時間例如在40秒至60秒之間),因此可降低鎂合金基材100(例如LZ91鎂鋰合金)因還原電位低而受到兩相效應之影響,避免化成皮膜110的厚度均勻性及披覆完整性不佳的問題。除此之外,化成皮膜110因含有鈰,故當其受到外力的破壞而受損時,可自我修復受損處,以避免外界腐蝕劑從破損處腐蝕鎂合金基材100。更具體地說,當腐蝕因子(腐蝕劑)從其受損處腐蝕裸露的鎂合金基材100時,化成皮膜110中的4價鈰離子(Ce 4+)會還原成鈰氧化物,形成新的鈍化膜,以避免外界腐蝕劑從破損處腐蝕鎂合金基材100。也就是說,含有鈰的化成皮膜110具有自我修復的能力。 The inorganic acidification liquid includes permanganate, a pH adjuster, and a phosphonium salt. In some embodiments, the permanganate is, for example, KMnO 4 . The onium salt is, for example, Ce(NO 3 ) 3 . In the present embodiment, the pH adjusting agent is, for example, H 2 SO 4 having a concentration of between 0.005 M and 0.1 M, but the invention is not limited thereto. The pH of the inorganic acidification solution is between 1 and 2.5. The concentration of permanganate in the inorganic acidification liquid is between 0.05 M and 0.15 M, and the concentration of the bismuth salt selected from the inorganic acidification liquid is between 0.005 M and 0.05 M. In this way, the chemical conversion film 110 formed by the above inorganic acidification liquid formation not only has sufficient density and thickness (for example, between 600 nm and 800 nm) to protect the surface of the magnesium alloy substrate 100 from the outside. The corrosive agent (for example, various acid liquids or air) is corroded, and the overall chemical reaction rate can be promoted by the action of the Guyard reaction to accelerate the rate at which the film 110 is formed on the surface of the magnesium alloy substrate 100. Not only the operation time of the chemical conversion processing step 210 is shortened (for example, from 10 minutes to 20 minutes to less than 2 minutes), but the thickness of the surface film 102 is lowered, thereby improving the adhesion between the chemical conversion film 110 and the magnesium alloy substrate 100. force. In addition, since the rate at which the chemical conversion film 110 is formed on the surface of the magnesium alloy substrate 100 is extremely fast (the operation time is, for example, between 40 seconds and 60 seconds), the reduction of the magnesium alloy substrate 100 (for example, LZ91 magnesium lithium alloy) can be reduced. The low potential is affected by the two-phase effect, and the problem of uniformity of thickness of the film 110 and poor integrity of the coating is avoided. In addition, since the chemical conversion film 110 contains bismuth, when it is damaged by external force damage, the damaged portion can be self-repaired to prevent the external etchant from corroding the magnesium alloy substrate 100 from the damaged portion. More specifically, when the corrosion factor (corrosive agent) corrodes the bare magnesium alloy substrate 100 from the damaged portion thereof, the tetravalent cerium ion (Ce 4+ ) in the chemical conversion film 110 is reduced to the cerium oxide to form a new one. The passivation film is removed to prevent the external etchant from corroding the magnesium alloy substrate 100 from the breakage. That is to say, the chemical conversion film 110 containing ruthenium has the ability to repair itself.
在一些實施例中,還可調整無機酸化成液的pH值,使其pH值介於1至2之間,以進一步提升化成皮膜110的厚度均勻性及披覆完整性。In some embodiments, the pH of the inorganic acidified liquid can also be adjusted to a pH between 1 and 2 to further enhance the thickness uniformity and coating integrity of the chemical film 110.
另外,在一些實施例中,為了提升無機酸化成液的穩定性,也可於無機酸化成液中添加穩定劑,以延長無機酸化成液的保存期限。穩定劑例如是焦磷酸鉀(K 4P 2O 7)。無機酸化成液中的穩定劑濃度範圍例如是介於0.01 M至0.05 M之間。在一些實施例中,於無機酸化成液中添加焦磷酸鉀,並以相同操作時間對鎂合金基材100進行化成處理,其形成於鎂合金基材100之化成皮膜110的厚度為300 nm至500 nm。 In addition, in some embodiments, in order to enhance the stability of the inorganic acidification liquid, a stabilizer may be added to the inorganic acidification liquid to prolong the shelf life of the inorganic acidification liquid. The stabilizer is, for example, potassium pyrophosphate (K 4 P 2 O 7 ). The concentration of the stabilizer in the inorganic acidification liquid is, for example, between 0.01 M and 0.05 M. In some embodiments, potassium pyrophosphate is added to the inorganic acidification liquid, and the magnesium alloy substrate 100 is chemically treated in the same operation time, and the thickness of the chemical conversion film 110 formed on the magnesium alloy substrate 100 is 300 nm to 500 nm.
之後,在後處理步驟220中,可使用去離子水清洗鎂合金基材表面以及進行乾燥處理。Thereafter, in a post-treatment step 220, the surface of the magnesium alloy substrate can be washed with deionized water and subjected to a drying treatment.
請繼續參照圖1,化成皮膜110配置在鎂合金基材100表面上,以做為鎂合金基材100的保護層。在本實施例中,化成皮膜110為單層結構,但本發明不以此為限。在一些實施例中,化成皮膜110含有錳、鎂、氧以及鈰,其中化成皮膜110中的錳的含量介於10原子%至20原子%之間。化成皮膜110中的鈰的含量介於5原子%至10原子%之間。化成皮膜110中鎂的含量例如是介於15原子%至25原子%之間。化成皮膜110中氧的含量例如是介於50原子%至70原子%之間。舉例來說,化成皮膜110的材料可以是MnO 2、MgO及氧化鈰,且其厚度介於600 nm至800 nm之間。如此一來,化成皮膜110不僅具有足夠的緻密度以及厚度來保護鎂合金基材100的表面不受到外界的腐蝕劑(例如是各種酸液或空氣)的腐蝕,亦可具有良好的導電性以及附著性,使其配置於鎂合金基材100上符合輕量化的需求。 Referring to FIG. 1 again, the chemical conversion film 110 is disposed on the surface of the magnesium alloy substrate 100 as a protective layer of the magnesium alloy substrate 100. In the present embodiment, the chemical conversion film 110 has a single layer structure, but the invention is not limited thereto. In some embodiments, the chemical conversion film 110 contains manganese, magnesium, oxygen, and antimony, wherein the content of manganese in the film 110 is between 10 atom% and 20 atom%. The content of ruthenium in the chemical conversion film 110 is between 5 atom% and 10 atom%. The content of magnesium in the chemical conversion film 110 is, for example, between 15 atom% and 25 atom%. The content of oxygen in the chemical conversion film 110 is, for example, between 50 atom% and 70 atom%. For example, the material of the formation film 110 may be MnO 2 , MgO, and cerium oxide, and the thickness thereof is between 600 nm and 800 nm. In this way, the chemical conversion film 110 not only has sufficient density and thickness to protect the surface of the magnesium alloy substrate 100 from corrosion by external corrosive agents (for example, various acid liquids or air), but also has good electrical conductivity and adhesion. It is placed on the magnesium alloy substrate 100 to meet the demand for weight reduction.
以下將藉由各個實驗例和比較例,更進一步地說明本發明的化成皮膜的製造方法及化成皮膜的性質評估。雖然描述了以下實驗例,但是在不逾越本發明範疇之情況下,可適當地改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應由下文所述之實施例對本發明作出限制性地解釋。Hereinafter, the production method of the chemical conversion film of the present invention and the evaluation of the properties of the chemical conversion film will be further explained by the respective experimental examples and comparative examples. Although the following experimental examples are described, the materials used, the amounts and ratios thereof, the processing details, the processing flow, and the like can be appropriately changed without departing from the scope of the invention. Therefore, the invention should not be construed restrictively by the examples described below.
實驗1 Experiment 1
實驗例A1至實驗例A5和比較例B1所採用的鎂合金基材、化成處理操作溫度、化成處理的操作時間、無機酸化成液的配方以及無機酸化成液的pH值如下所示。The magnesium alloy substrate used in Experimental Example A1 to Experimental Example A5 and Comparative Example B1, the chemical conversion treatment operation temperature, the operation time of the chemical conversion treatment, the formulation of the inorganic acidification liquid, and the pH of the inorganic acidification liquid were as follows.
鎂合金基材:LZ91Magnesium alloy substrate: LZ91
化成處理的操作溫度:25 ℃Processing temperature for chemical processing: 25 °C
化成處理的操作時間:如表1所示The processing time of the chemical processing: as shown in Table 1.
無機酸化成液的配方:如表1所示Formulation of inorganic acidification liquid: as shown in Table 1.
無機酸化成液的pH值:如表1所示pH value of inorganic acidification liquid: as shown in Table 1.
比較例B1的化成液:型號為DOW 1的商用六價鉻化成液(K 2Cr 2O 7) <附著性評估> Chemical solution of Comparative Example B1: commercial hexavalent chromium forming solution (K 2 Cr 2 O 7 ) of model DOW 1 <Adhesion evaluation>
根據ASTM D3359-02訂定的項目,對表1中的各化成皮膜(實驗例A1至A5和比較例B1)進行百格試驗。百格驗試後,依照ASTM D3359-02的規範評估化成皮膜的附著性等級,並將結果記載於下表1中。依照ASTM D3359-02的規範,附著性等級區分為為0B至5B,且數字越高代表附著性越好,最高等級為5B。詳細來說,等級0B表示脫落面積大於65%。等級1B表示脫落面積為35%~65%。等級2B表示脫落面積為15%~35%。等級3B表示脫落面積為5%至15%。等級4B表示脫落面積小於5%。等級5B表示完全沒有脫落。 <抗腐性評估>Each of the chemical conversion films (Experimental Examples A1 to A5 and Comparative Example B1) in Table 1 was subjected to a hundred-square test according to the item specified in ASTM D3359-02. After the test, the adhesion grade of the film was evaluated in accordance with the specifications of ASTM D3359-02, and the results are shown in Table 1 below. According to the specification of ASTM D3359-02, the adhesion grade is divided into 0B to 5B, and the higher the number, the better the adhesion, and the highest level is 5B. In detail, level 0B indicates that the shedding area is greater than 65%. Level 1B indicates that the shedding area is 35% to 65%. Level 2B indicates a shedding area of 15% to 35%. Grade 3B indicates a shedding area of 5% to 15%. Grade 4B indicates that the shedding area is less than 5%. Level 5B means that there is no shedding at all. <Anti-corrosion evaluation>
根據ASTM B117訂定的項目,使用濃度為5重量%的氯化鈉水溶液對對表1中的各化成皮膜(實驗例A1至A5和比較例B1)進行鹽霧試驗持續72小時。鹽霧試驗後,各化成皮膜依照ASTM D610-08的規範評估化成皮膜的抗腐蝕性等級,其實驗結果記載於下表1中。依照ASTM D610-08的規範,抗腐蝕性等級區分為0至10,且數字越高代表抗腐蝕性越好。Each of the chemical conversion films (Experimental Examples A1 to A5 and Comparative Example B1) in Table 1 was subjected to a salt spray test for 72 hours using an aqueous solution of sodium chloride having a concentration of 5% by weight according to the item specified in ASTM B117. After the salt spray test, each of the chemical conversion films was evaluated for corrosion resistance of the film according to the specifications of ASTM D610-08, and the experimental results are shown in Table 1 below. According to the specification of ASTM D610-08, the corrosion resistance grade is divided into 0 to 10, and the higher the number, the better the corrosion resistance.
表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 編號 </td><td> 無機酸化成液的組成 </td><td> 鎂合金基材 </td><td> pH值 </td><td> 操作 時間 </td><td> 操作 溫度 </td><td> 厚度 (nm) </td><td> 附著性 等級 </td><td> 鹽霧 時間 </td><td> 抗腐蝕性 等級 </td></tr><tr><td> 實驗例 </td><td> A1 </td><td> 1. KMnO<sub>4</sub>:0.05 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.005 M 3. H<sub>2</sub>SO<sub>4</sub>(96%):0.75 ml/L </td><td> LZ91 </td><td> 1.43 </td><td> 30秒 </td><td> 25℃ </td><td> 700 </td><td> 5B </td><td> 72 小時 </td><td> 3 </td></tr><tr><td> A2 </td><td> 1. KMnO<sub>4</sub>:0.075 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.01 M 3. H<sub>2</sub>SO<sub>4</sub>(96%):0.25 ml/L </td><td> 1.25 </td><td> 45秒 </td><td> 700 </td><td> 5B </td><td> 4 </td></tr><tr><td> A3 </td><td> 1. KMnO<sub>4</sub>:0.15 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.03 M 3. H<sub>2</sub>SO<sub>4</sub>(96%):0.5 ml/L </td><td> 1.02 </td><td> 30秒 </td><td> 600 </td><td> 5B </td><td> 4 </td></tr><tr><td> A4 </td><td> 1. KMnO<sub>4</sub>:0.01 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.02 M 3. H<sub>2</sub>SO<sub>4</sub>(96%):0.5 ml/L </td><td> 1.60 </td><td> 60秒 </td><td> 650 </td><td> 5B </td><td> 4 </td></tr><tr><td> A5 </td><td> 1. KMnO<sub>4</sub>:0.125 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.02 M 3. H<sub>2</sub>SO<sub>4</sub>(96%):1.0 ml/L 4. K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>:0.02 M </td><td> 1.4 </td><td> 30秒 </td><td> 400 </td><td> 5B </td><td> 3 </td></tr><tr><td> 比較例 </td><td> B1 </td><td> 1. K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>:0.687 M 2. HNO<sub>3</sub>:5.88 M </td><td> -0.48 </td><td> 60 </td><td> 120 </td><td> 5B </td><td> 1 </td></tr></TBODY></TABLE>Table 1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> No.</td><td> Composition of inorganic acidification liquid</td><td> Magnesium alloy substrate </td><td> pH value </td><td> operation time </td><td> operation temperature </td><td> thickness (nm) </td><td> adhesion Sex level </td><td> salt spray time </td><td> corrosion resistance grade </td></tr><tr><td> experimental example </td><td> A1 </td ><td> 1. KMnO<sub>4</sub>:0.05 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.005 M 3. H<sub>2 </sub>SO<sub>4</sub>(96%): 0.75 ml/L </td><td> LZ91 </td><td> 1.43 </td><td> 30 seconds</td ><td> 25°C </td><td> 700 </td><td> 5B </td><td> 72 hours</td><td> 3 </td></tr><tr> <td> A2 </td><td> 1. KMnO<sub>4</sub>:0.075 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.01 M 3. H<sub>2</sub>SO<sub>4</96> (96%): 0.25 ml/L </td><td> 1.25 </td><td> 45 seconds</td> <td> 700 </td><td> 5B </td><td> 4 </td></tr><tr><td> A3 </td><td> 1. KMnO<sub>4< /sub>:0.15 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>:0.03 M 3. H<sub>2</sub>SO<sub>4</sub> >(96%): 0.5 ml/L </td><td> 1.02 </td><td> 3 0 seconds</td><td> 600 </td><td> 5B </td><td> 4 </td></tr><tr><td> A4 </td><td> 1. KMnO<sub>4</sub>: 0.01 M 2. Ce(NO<sub>3</sub>)<sub>3</sub>: 0.02 M 3. H<sub>2</sub>SO< Sub>4</sub>(96%):0.5 ml/L </td><td> 1.60 </td><td> 60 seconds</td><td> 650 </td><td> 5B < /td><td> 4 </td></tr><tr><td> A5 </td><td> 1. KMnO<sub>4</sub>: 0.125 M 2. Ce(NO<sub >3</sub>)<sub>3</sub>: 0.02 M 3. H<sub>2</sub>SO<sub>4</sub>(96%): 1.0 ml/L 4. K <sub>4</sub>P<sub>2</sub>O<sub>7</sub>: 0.02 M </td><td> 1.4 </td><td> 30 seconds</td> <td> 400 </td><td> 5B </td><td> 3 </td></tr><tr><td> Comparative Example </td><td> B1 </td><td > 1. K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>:0.687 M 2. HNO<sub>3</sub>: 5.88 M </td ><td> -0.48 </td><td> 60 </td><td> 120 </td><td> 5B </td><td> 1 </td></tr></TBODY> </TABLE>
由表1可得知,實驗例A1、A5的化成皮膜抗腐蝕性等級為3(亦即,腐蝕面積大於10%且小於16%)。實驗例A2至A4的化成皮膜抗腐蝕性等級皆在4以上(亦即,腐蝕面積大於3%且至小於10%)。比較例B1的抗腐蝕性等級為1(亦即,腐蝕面積大於33%且至小於50%)。此結果顯示,實驗例A1至A5的抗腐蝕性優於比較例B1的抗腐蝕性,且符合一般工業使用上的需求。As can be seen from Table 1, the chemical conversion film of the experimental examples A1 and A5 had a corrosion resistance rating of 3 (i.e., the corrosion area was more than 10% and less than 16%). The chemical conversion films of Experimental Examples A2 to A4 all had a corrosion resistance level of 4 or more (that is, a corrosion area of more than 3% and less than 10%). Comparative Example B1 had a corrosion resistance rating of 1 (i.e., the corrosion area was greater than 33% and to less than 50%). This result shows that the corrosion resistance of Experimental Examples A1 to A5 is superior to that of Comparative Example B1, and is in line with the demand for general industrial use.
此外,由表1可得知,實驗例A1至A5及比較例B1的化成皮膜的附著性等級為5B(亦即,完全沒有脫落的情形),符合一般工業使用上的需求。Further, as is clear from Table 1, the adhesion levels of the chemical conversion films of Experimental Examples A1 to A5 and Comparative Example B1 were 5B (that is, the case where no peeling occurred at all), which was in line with the demand for general industrial use.
實驗 2<抗腐性評估> Experiment 2 <Anti-corrosion evaluation>
圖3A至圖3C為鎂合金基材經不同時間之鹽霧試驗後的表面外觀圖。3A to 3C are surface appearance views of a magnesium alloy substrate after a salt spray test at different times.
根據ASTM B117訂定的項目,使用濃度為5重量%的氯化鈉水溶液對鎂合金基材進行不同時間的鹽霧試驗,其中鹽霧試驗的持續時間以0小時、2小時以及12小時為例進行說明,但本發明不以此為限。圖3A、圖3B及圖3C依序為鎂合金基材經0小時、2小時以及12小時之鹽霧試驗後的表面外觀圖。由圖3A至圖3C可知,經2小時的鹽霧試驗後,部分鎂合金基材表面即出現明顯的腐蝕現象,且隨著鹽霧試驗的持續時間增加至12小時後,此腐蝕現象更為明顯,幾乎所有鎂合金基材的表面佈滿腐蝕產物,顯見鎂合金基材100(例如LZ91)抗蝕性差。由此可知,在鎂合金基材的表面未形成任何保護膜的情況下,其表面即易受到外界腐蝕劑的腐蝕。According to the project specified in ASTM B117, the magnesium alloy substrate was subjected to a salt spray test at different times using a sodium chloride aqueous solution having a concentration of 5% by weight, wherein the duration of the salt spray test was exemplified by 0 hours, 2 hours, and 12 hours. The description is made, but the invention is not limited thereto. 3A, 3B, and 3C are surface appearance views of the magnesium alloy substrate after a salt spray test for 0 hours, 2 hours, and 12 hours, respectively. It can be seen from Fig. 3A to Fig. 3C that after 2 hours of salt spray test, some magnesium alloy substrate surface has obvious corrosion phenomenon, and the corrosion phenomenon is further increased after the duration of the salt spray test is increased to 12 hours. Obviously, the surface of almost all magnesium alloy substrates is covered with corrosion products, and it is apparent that the magnesium alloy substrate 100 (for example, LZ91) has poor corrosion resistance. From this, it can be seen that in the case where no protective film is formed on the surface of the magnesium alloy substrate, the surface thereof is easily corroded by the external corrosive agent.
圖4A至圖4D為本發明一實施例的化成皮膜經不同時間之鹽霧試驗後的表面外觀圖。4A to 4D are surface appearance views of a chemical film formed by a salt spray test at different times according to an embodiment of the present invention.
根據ASTM B117訂定的項目,使用濃度為5重量%的氯化鈉水溶液對實驗例A4進行不同時間的鹽霧試驗,其中鹽霧試驗的持續時間以0小時、24小時、48小時以及72小時為例進行說明,但本發明不以此為限。圖4A、圖4B、圖4C及圖4D依序為實驗例A4經0小時、24小時、48小時以及72小時之鹽霧試驗後的表面外觀圖。由圖4A至圖4D可知,實驗例A4經72小時的鹽霧試驗後(如圖4D所示),鎂合金基材的表面外觀仍大致與鹽霧試驗前的表面外觀(如圖4A所示)相同。由此可知,實驗例A4的化成皮膜可有效地保護位於其下的鎂合金基材,使得鎂合金基材的表面不易受到外界腐蝕劑的腐蝕。According to the item specified in ASTM B117, the salt spray test of Experimental Example A4 was carried out at different times using a 5 wt% aqueous solution of sodium chloride, wherein the duration of the salt spray test was 0 hours, 24 hours, 48 hours, and 72 hours. The description is made by way of example, but the invention is not limited thereto. 4A, 4B, 4C, and 4D are surface appearance views of Experimental Example A4 after a salt spray test at 0 hours, 24 hours, 48 hours, and 72 hours. 4A to 4D, after the 72 hour salt spray test of Experimental Example A4 (as shown in FIG. 4D), the surface appearance of the magnesium alloy substrate was substantially the same as that before the salt spray test (as shown in FIG. 4A). )the same. From this, it is understood that the chemical conversion film of Experimental Example A4 can effectively protect the magnesium alloy substrate located thereunder, so that the surface of the magnesium alloy substrate is less susceptible to corrosion by external corrosive agents.
圖5A至圖5D為形成於鎂合金基材表面之比較例B1的化成皮膜經不同時間之鹽霧試驗後的表面外觀圖。5A to 5D are surface appearance views of the chemical conversion film of Comparative Example B1 formed on the surface of the magnesium alloy substrate after salt spray test at different times.
根據ASTM B117訂定的項目,使用濃度為5重量%的氯化鈉水溶液對比較例B1進行不同時間的鹽霧試驗,其中鹽霧試驗的持續時間以0小時、24小時、48小時以及72小時為例進行說明,但本發明不以此為限。圖5A、圖5B、圖5C及圖5D依序為比較例B1經0小時、24小時、48小時以及72小時之鹽霧試驗後的表面外觀圖。由圖5A至圖5D可知,經24小時的鹽霧試驗後(如圖5B所示),部分鎂合金基材表面即出現明顯的腐蝕現象,且隨著鹽霧試驗的持續時間增加至48小時(如圖5C所示)或72小時(如圖5D所示)後,此腐蝕現象更為明顯,幾乎所有鎂合金基材的表面佈滿腐蝕產物,顯見比較例B1的抗腐性差,使得鎂合金基材表面易受到外界腐蝕劑的腐蝕。According to the item specified in ASTM B117, Comparative Example B1 was subjected to a salt spray test at different times using a 5% strength by weight aqueous solution of sodium chloride, wherein the duration of the salt spray test was 0 hours, 24 hours, 48 hours, and 72 hours. The description is made by way of example, but the invention is not limited thereto. 5A, 5B, 5C, and 5D are surface appearance views of Comparative Example B1 after a salt spray test of 0 hours, 24 hours, 48 hours, and 72 hours, respectively. 5A to 5D, after 24 hours of salt spray test (as shown in Fig. 5B), some magnesium alloy substrate surface showed obvious corrosion phenomenon, and increased to 48 hours with the duration of the salt spray test. (as shown in Fig. 5C) or 72 hours (as shown in Fig. 5D), the corrosion phenomenon is more pronounced, and the surface of almost all the magnesium alloy substrates is covered with corrosion products, and it is apparent that the corrosion resistance of Comparative Example B1 is poor, so that magnesium The surface of the alloy substrate is susceptible to corrosion by external corrosive agents.
實驗experiment 33
<厚度分析><thickness analysis>
圖6為本發明一實施例的化成皮膜於穿透式電子顯微鏡(TEM)下之橫截面圖。藉由TEM對實驗例A4進行厚度分析,由圖6可知,化成皮膜110為單層結構且其厚度大約為650 nm。Figure 6 is a cross-sectional view of a chemical conversion film under a transmission electron microscope (TEM) according to an embodiment of the present invention. The thickness analysis of Experimental Example A4 was carried out by TEM. As is apparent from Fig. 6, the chemical conversion film 110 has a single layer structure and its thickness is about 650 nm.
實驗experiment 44
<表面經橫切的抗腐性評估><Evaluation of surface cross-section corrosion resistance>
圖7A至圖7D為本發明一實施例的化成皮膜經橫切表面後進行不同時間之鹽霧試驗後的表面外觀圖。7A to 7D are surface appearance views of a film obtained by transversely cutting a surface of a film after performing a salt spray test at different times according to an embodiment of the present invention.
首先,以鋒利的器具橫切實驗例A4的表面,藉此破壞實驗例A4的化成皮膜,使得實驗例A4的表面出現明顯的十字割痕(如圖5A至圖5D所示)。接著,根據ASTM B117訂定的項目,使用濃度為5重量%的氯化鈉水溶液對經橫切後的實驗例A4進行不同時間的鹽霧試驗,其中鹽霧試驗的持續時間以0小時、24小時、48小時以及72小時為例進行說明,但本發明不以此為限。圖7A、圖7B、圖7C及圖7D依序為實驗例A4經0小時、24小時、48小時以及72小時之鹽霧試驗後的表面外觀圖。由圖7A至圖7D可知,實驗例A4經72小時的鹽霧試驗後(如圖7D所示),鎂合金基材的表面外觀仍大致與鹽霧試驗前的表面外觀(如圖7A所示)相同。由此可知,實驗例A4的化成皮膜不僅可保護位於其下的鎂合金基材的表面不受到外界的腐蝕劑的腐蝕,且實驗例A4的化成皮膜亦具有自我修復的能力,因此,當其受到外力的破壞而受損時,可避免外界腐蝕劑從破損處(如十字割痕處)腐蝕鎂合金基材。First, the surface of Experimental Example A4 was cross-cut with a sharp instrument, thereby destroying the chemical conversion film of Experimental Example A4, so that a significant cross cut was observed on the surface of Experimental Example A4 (as shown in Figs. 5A to 5D). Next, according to the item specified in ASTM B117, the cross-cut Experimental Example A4 was subjected to a salt spray test at different times using a sodium chloride aqueous solution having a concentration of 5% by weight, wherein the duration of the salt spray test was 0 hours, 24 hours. Hour, 48 hours, and 72 hours are described as examples, but the invention is not limited thereto. 7A, 7B, 7C, and 7D are surface appearance views of the experimental example A4 after a salt spray test at 0 hours, 24 hours, 48 hours, and 72 hours. 7A to 7D, after the 72 hour salt spray test of Experimental Example A4 (as shown in FIG. 7D), the surface appearance of the magnesium alloy substrate was substantially the same as that before the salt spray test (as shown in FIG. 7A). )the same. From this, it is understood that the chemical conversion film of Experimental Example A4 can not only protect the surface of the magnesium alloy substrate located thereunder from the corrosion of the external corrosive agent, and the chemical conversion film of Experimental Example A4 also has the ability to self-repair, and therefore, when it is subjected to When the damage of external force is damaged, the external corrosive agent can be prevented from corroding the magnesium alloy substrate from the damaged portion (such as the cross cut).
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧鎂合金基材 102‧‧‧表面膜 110‧‧‧化成皮膜 200‧‧‧前處理步驟 210‧‧‧化成處理步驟 220‧‧‧後處理步驟100‧‧‧Magnesium alloy substrate 102‧‧‧Surface film 110‧‧‧Chemical film 200‧‧‧Pre-processing steps 210‧‧‧Chemical processing steps 220‧‧‧post processing steps
圖1是依照本發明一實施例的化成皮膜的製造方法的流程圖。 圖2是依照本發明一實施例的化成皮膜的截面示意圖。 圖3A至圖3C為鎂合金基材經不同時間之鹽霧試驗後的表面外觀圖。 圖4A至圖4D為本發明一實施例形成於鎂合金基材表面的化成皮膜經不同時間之鹽霧試驗後的表面外觀圖。 圖5A至圖5D為形成於鎂合金基材表面之比較例的化成皮膜經不同時間之鹽霧試驗後的表面外觀圖。 圖6為本發明一實施例的化成皮膜於穿透式電子顯微鏡(TEM)下之橫截面圖。 圖7A至圖7D為本發明一實施例的化成皮膜經橫切(cross cut)表面後進行不同時間之鹽霧試驗後的表面外觀圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing a method of manufacturing a film into a film according to an embodiment of the present invention. 2 is a schematic cross-sectional view of a chemical conversion film in accordance with an embodiment of the present invention. 3A to 3C are surface appearance views of a magnesium alloy substrate after a salt spray test at different times. 4A to 4D are surface appearance views of a chemical conversion film formed on the surface of a magnesium alloy substrate after a salt spray test at different times according to an embodiment of the present invention. 5A to 5D are surface appearance views of the chemical conversion film of the comparative example formed on the surface of the magnesium alloy substrate after salt spray test at different times. Figure 6 is a cross-sectional view of a chemical conversion film under a transmission electron microscope (TEM) according to an embodiment of the present invention. 7A to 7D are surface appearance views of a chemical film formed by cross-cutting a surface after performing a salt spray test at different times according to an embodiment of the present invention.
100‧‧‧鎂合金基材 100‧‧‧Magnesium alloy substrate
102‧‧‧表面膜 102‧‧‧Surface film
110‧‧‧化成皮膜 110‧‧‧Chemical film
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106121870A TWI606143B (en) | 2017-06-30 | 2017-06-30 | Chemical conversion coating and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106121870A TWI606143B (en) | 2017-06-30 | 2017-06-30 | Chemical conversion coating and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI606143B true TWI606143B (en) | 2017-11-21 |
TW201905237A TW201905237A (en) | 2019-02-01 |
Family
ID=61023215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106121870A TWI606143B (en) | 2017-06-30 | 2017-06-30 | Chemical conversion coating and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI606143B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326894A (en) * | 1979-05-13 | 1982-04-27 | Gerhard Collardin Gmbh | Process for the production of conversion layers on metal surfaces by the spray method |
US4610732A (en) * | 1984-03-23 | 1986-09-09 | Hitachi, Ltd. | Method of inhibiting corrosion of zirconium or its alloy |
US5427632A (en) * | 1993-07-30 | 1995-06-27 | Henkel Corporation | Composition and process for treating metals |
US5449415A (en) * | 1993-07-30 | 1995-09-12 | Henkel Corporation | Composition and process for treating metals |
US6485580B1 (en) * | 1998-05-20 | 2002-11-26 | Henkel Corporation | Composition and process for treating surfaces or light metals and their alloys |
TW201229314A (en) * | 2011-01-04 | 2012-07-16 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatmet for Mg-alloy and articles treated by same |
TW201229310A (en) * | 2011-01-04 | 2012-07-16 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatmet for Mg-alloy and articles treated by same |
TW201305386A (en) * | 2011-07-29 | 2013-02-01 | Hon Hai Prec Ind Co Ltd | Housing and method for making the same |
TW201527594A (en) * | 2014-01-06 | 2015-07-16 | Univ Nat Taiwan | Chemical conversion coating and method of fabricating the same |
-
2017
- 2017-06-30 TW TW106121870A patent/TWI606143B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326894A (en) * | 1979-05-13 | 1982-04-27 | Gerhard Collardin Gmbh | Process for the production of conversion layers on metal surfaces by the spray method |
US4610732A (en) * | 1984-03-23 | 1986-09-09 | Hitachi, Ltd. | Method of inhibiting corrosion of zirconium or its alloy |
US5427632A (en) * | 1993-07-30 | 1995-06-27 | Henkel Corporation | Composition and process for treating metals |
US5449415A (en) * | 1993-07-30 | 1995-09-12 | Henkel Corporation | Composition and process for treating metals |
US6485580B1 (en) * | 1998-05-20 | 2002-11-26 | Henkel Corporation | Composition and process for treating surfaces or light metals and their alloys |
TW201229314A (en) * | 2011-01-04 | 2012-07-16 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatmet for Mg-alloy and articles treated by same |
TW201229310A (en) * | 2011-01-04 | 2012-07-16 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatmet for Mg-alloy and articles treated by same |
TW201305386A (en) * | 2011-07-29 | 2013-02-01 | Hon Hai Prec Ind Co Ltd | Housing and method for making the same |
TW201527594A (en) * | 2014-01-06 | 2015-07-16 | Univ Nat Taiwan | Chemical conversion coating and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
TW201905237A (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4757893B2 (en) | Metal oxide and / or metal hydroxide-coated metal material and method for producing the same | |
US20190037721A1 (en) | Anodized aluminum alloys having alloying elements to eliminate filiform corrosion | |
US20200318252A1 (en) | Metal sheet with zinc hydroxysulfate/zinc sulfate-based protection layer | |
Lee et al. | Corrosion resistance studies of cerium conversion coating with a fluoride-free pretreatment on AZ91D magnesium alloy | |
Liu et al. | Construction of Al-BTA passivation film on the surface of electrolytic copper foil and study of corrosion resistance mechanism | |
TWI606143B (en) | Chemical conversion coating and method of fabricating the same | |
TWI487809B (en) | Chemical conversion coating and method of fabricating the same | |
CN102877043A (en) | Surface treatment method for aluminum alloy | |
JP2008277146A (en) | Stainless steel-made conductive member and its manufacturing method | |
JP4080381B2 (en) | Surface treatment composition of aluminum and aluminum alloy | |
TW201231625A (en) | Etchant composition | |
JP5827792B2 (en) | Chemically treated iron-based materials | |
Hughes et al. | Desmutting of aluminium alloy 2024-T3 using rare earth electrolyte | |
JP4054287B2 (en) | Surface treatment method for aluminum and aluminum alloy | |
KR100872479B1 (en) | Trivalent chromate solution, trivalent chromate-treated metal body and preparation method thereof | |
Joshi et al. | Electrochemical characterization of Al 7075-T6 surface oxide after alkaline treatments | |
JP2000355790A (en) | Electrogalvanized steel sheet having excellent white rust resistance and its production | |
WO2002042519A1 (en) | Zinc-plated article free from occurrence of whisker and having rust-resistant, multi-layered film, composition for forming rust-resistant multi-layered film and method for preparing zinc-plated article free from occurrence of whisker and having rust-resistant, multi-layered film | |
TWI461575B (en) | Method of manufacturing electrogalvanized steel sheets | |
JP2005146411A (en) | Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method | |
CN104894547A (en) | Fluotitanate conversion fluid applied to surface of 6061 aluminum alloy and use method of fluotitanate conversion fluid | |
JP5994960B1 (en) | Steel plate for container and method for producing steel plate for container | |
CN114318315B (en) | Zinc-rich trivalent chromium conversion film preparation solution and preparation method of conversion film | |
JP4864670B2 (en) | Surface-treated metal plate and method for producing surface-treated metal plate | |
JP2023184437A (en) | Etching treatment liquid and method for surface treatment of aluminum or aluminum alloy |