201229314 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種鎂合金表面防腐處理方法及其鎂製品。 【先前技術】 [0002] 鎂合金具有品質輕、散熱性能好等優點,在通訊、電子 、交通運輸、建築及航太航空等領域應用廣泛。然,由 於鎂合金的化學活性較高’在空氣中很容易氧化,生成 疏鬆、保護能力差的氧化膜,導致錢合金在潮濕的大氣 、土壌和海水中容易發生嚴重腐蝕,導致使用鎂合金的 〇 哥命縮短,阻礙了鎂合金的廣.泛應用 [_為了提高錢合金的耐腐贿能,通f需要義合金表面 蹄表面成膜處理,常見的處理夺段有陽,極氧化處理、 烤漆等,然:該等工藝都存在較大的環境污染問題。而真 空鑛膜(PVD)技術雖係—種非常環保的錄膜工藝,且可錄 製的膜層種類豐富、耐磨性能優異,純合金表面通常 具有較多的細小凹陷或孔隙,而PVD工藝沉積的膜層通常 Ο *有基體表面的㈣結構’且沉積於該等凹陷或空隙内 的膜層往往其他輯的㈣,故在使㈣程巾,所述凹 陷或二隙區域往往更容易發生點#,使膜層無法有效地 防止錤合金基體被防腐。 【發明内容】 _4]有#於此’有必要提供—種可效提高_合金防腐性能的 防腐處理方法。 [0005] 另外,還有必要接供— 杈供種由上述方法製得的錢製品。 100100107 表單編號A0101 第3頁/共13頁 1002000189-0 201229314 [0006] 一種鎂合金表面防腐處理方法,包括以下步驟: [0007] 提供鎂合金基體; [0008] 對鎂合金基體進行化學除油; [0009] 採用以硝酸鈽和高錳酸鉀為主要成膜劑的成膜溶液對鎂 合金基體進行化學轉化處理,以於鎂合金基體上形成一 層鈽鹽轉化膜; [0010] 藉由真空鍍膜方法在該鈽鹽轉化膜上形成由難熔化合物 組成的陶兗塗層。 [0011] 由上述鎂合金表面防腐處理方法所獲得的鎂製品,包括 鎂合金基體、形成於鎂合金基體表面的鈽鹽轉化膜及形 成於該鈽鹽轉化膜上的由難熔化合物組成的陶瓷塗層。 [0012] 其中,該鈽鹽轉化膜經用硝酸鈽和高錳酸鉀為主要成膜 劑的成膜溶液對鎂合金基體進行化學轉化處理而形成。 [0013] 本發明的鎂合金表面防腐處理方法先藉由化學轉化處理 於鎂合金基體上製備一層鈽鹽轉化膜,然後於該鈽鹽轉 化膜上鍍覆耐磨陶瓷塗層。其中該鈽鹽轉化膜一方面將 鎂合金基體表面平整化,另一方面鈽鹽轉化膜自身結構 緻密,阻檔性好,化學穩定性高,與錯合金基體結合力 強,具有良好的防腐功能。而外層耐磨的陶瓷塗層,可 保護鈽鹽轉化膜不易受到機械損傷。故,經該方法處理 的鎂製品具有良好的抗腐蝕性能。 【實施方式】 [0014] 本發明較佳實施例鎂合金表面防腐處理方法包括如下步 100100107 表單編號A0101 第4頁/共13頁 1002000189-0 201229314 驟: [0015] [0016] 請參閱圖1,提供鎂合金基體2〇。 對鎂合金基體20進行化學除油《化學除油係將鎂合金基 體2〇次潰於6〇-80。(:的除油溶液中3〇-6〇5。所用除油溶 液為含25-30g/L碳酸鈉(Na2C〇3)、20-25g/L磷酸三 鈉(Na3P〇4.l2H2〇)及l-3g/L乳化劑的水溶液,其中所 述礼化劑可用OP—10乳化劑,其主要組分為烷基酚與環氧 乙燒的縮合物。 Ο [0017] 對鎂合金基體20進行鹼蝕處理。該驗蝕處理步驟係將鎂 合金基體20浸漬於40-50。(:的驗性蝕刻液中3-5s。所用 驗性钱刻液為含40-70g/L氫氧化鈉CNaOH)、201229314 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a method for preserving a surface of a magnesium alloy and a magnesium product thereof. [Prior Art] [0002] Magnesium alloys have advantages such as light weight and good heat dissipation performance, and are widely used in communications, electronics, transportation, construction, and aerospace. However, due to the high chemical activity of magnesium alloys, it is easily oxidized in the air to form an oxide film with poor porosity and poor protection, which causes the carbon alloy to be easily corroded in humid atmospheres, soils and seawater, resulting in the use of magnesium alloys. The shortening of the scorpion's life has hindered the wide application of magnesium alloys. [_ In order to improve the corrosion resistance of the carbon alloy, the surface of the surface of the alloy should be treated with a film. Baking paint, etc.: However, these processes have large environmental pollution problems. The vacuum mineral film (PVD) technology is a very environmentally friendly film recording process, and the recordable film layer is rich in variety and wear resistance. The surface of pure alloy usually has more small depressions or pores, and the PVD process is deposited. The film layer is usually Ο * has a (four) structure of the surface of the substrate and the film layer deposited in the holes or voids is often other than (4), so in the (four) process towel, the depression or the two-gap area tends to occur more easily. #, The film layer cannot effectively prevent the bismuth alloy matrix from being preserved. SUMMARY OF THE INVENTION _4] There is a need for this to provide an anti-corrosion treatment method for improving the corrosion resistance of the alloy. [0005] In addition, it is also necessary to provide a supply of money products prepared by the above method. 100100107 Form No. A0101 Page 3 of 13 1002000189-0 201229314 [0006] A magnesium alloy surface anti-corrosion treatment method comprising the following steps: [0007] providing a magnesium alloy substrate; [0008] chemically degreasing a magnesium alloy substrate; [0009] a magnesium alloy substrate is chemically converted by using a film forming solution containing cerium nitrate and potassium permanganate as a main film forming agent to form a cerium salt conversion film on the magnesium alloy substrate; [0010] by vacuum coating The method forms a ceramic enamel coating composed of a refractory compound on the cerium salt conversion film. [0011] The magnesium product obtained by the above-mentioned magnesium alloy surface anti-corrosion treatment method comprises a magnesium alloy substrate, a cerium salt conversion film formed on a surface of the magnesium alloy substrate, and a ceramic composed of a refractory compound formed on the cerium salt conversion film. coating. [0012] wherein the cerium salt conversion film is formed by chemical conversion treatment of a magnesium alloy substrate by a film forming solution using cerium nitrate and potassium permanganate as a main film-forming agent. [0013] The magnesium alloy surface anti-corrosion treatment method of the present invention first prepares a layer of cerium salt conversion film by chemical conversion treatment on a magnesium alloy substrate, and then coats the yttrium salt conversion film with a wear-resistant ceramic coating layer. On the one hand, the strontium salt conversion film planarizes the surface of the magnesium alloy substrate, on the other hand, the strontium salt conversion film has a compact structure, good barrier property, high chemical stability, strong binding force with the wrong alloy matrix, and good anticorrosion function. . The outer layer of wear-resistant ceramic coating protects the strontium salt conversion film from mechanical damage. Therefore, the magnesium product treated by this method has good corrosion resistance. [Embodiment] [0014] The method for preserving the surface of a magnesium alloy according to a preferred embodiment of the present invention includes the following steps: 100100107 Form No. A0101 Page 4 of 13 Page 1002000189-0 201229314 Step: [0015] [0016] Please refer to FIG. A magnesium alloy substrate is provided. The magnesium alloy substrate 20 is chemically degreased. The chemical degreasing system breaks the magnesium alloy matrix 2 at 6 〇-80. (:3除-6〇5 in the degreasing solution. The deoiling solution used is 25-30g/L sodium carbonate (Na2C〇3), 20-25g/L trisodium phosphate (Na3P〇4.l2H2〇) and An aqueous solution of l-3 g/L emulsifier, wherein the ceraming agent is an OP-10 emulsifier, the main component of which is an condensate of an alkyl phenol and an ethylene epoxide. Ο [0017] The magnesium alloy substrate 20 is subjected to Alkaline etching treatment. The etching treatment step is to immerse the magnesium alloy substrate 20 in 40-50. (: 3-5 s in the etchant solution. The test money used is 40-70 g/L sodium hydroxide CNaOH. ),
l〇-20g/LNa3P〇4.12H2〇 、 25-30g/LNa2C〇3A 40 50g/L氟化鈉(NaF)的水溶液。該餘餘處理一方面 用於溶解消低鎂合金基體2〇上突出的部位,使鎂合金基 體20表面趨於平整,另—方面可進一步去除鎂合金基體 2 0表面的油污。 t * °剛 採用以硝酸鈽(Ce(N〇3)3)和高锰酸卸(ΚΜη〇ρ為主要成 膜劑的成膜溶液對鎂合金基體2〇進行化學轉化處理,以 於鎂合金基體20上形成鈽鹽轉化膜3〇。該鈽鹽轉化膜3〇 的主要成分為三價鈽、四價鈽及二價錳離子的氫氧化物 或氧化物。 該成膜溶液可為含5_20g/L硝酸铈及2-l〇g/L高錳酸鉀的 水溶液’該成犋溶液的pH值為1-5。較佳地,該成膜溶液 為含llg/L硝酸鈽及4g/L高錳酸鉀的水溶液,其pH值為2 100100107 表單編號A0101 第5頁/共13頁 1002000189-0 [0019] 201229314 。處理方法可將經上述鹼蝕處理的鎂合金基體2 0浸泡於 20-50°C的該成膜溶液中15-50分鐘,浸泡過程中可攪拌 成膜溶液。較佳地,浸泡過程中該成膜溶液的溫度保持 為35°C,浸泡時間為20分鐘。 [0020] 然後,對形成有所述鈽鹽轉化膜30的鎂合金基體20進行 真空鍍膜處理,以在鈽鹽轉化膜30上形成由難熔化合物 組成的陶莞塗層40。該陶究塗層40包括一層或多層金屬 難溶化合物層,該金屬難溶化合物可選自鈦、铭、鉻、 錯及钻的氮化物、氧化物、氮碳化物及氮氧化物中的一 種或幾種的組合。本實施例中,該陶瓷塗層40包括一層 氧化鋁(A190Q)層42及一層氮氧化鉻(CrON)層43, 該氧化鋁層42直接形成於該鈽鹽轉化膜30上,該氮氧化 鉻層43形成於該氧化鋁層42上。 [0021] 該真空鍍膜處理可採用磁控濺射或電弧離子鍍,下面以 磁控濺射製備該氧化鋁層42及該氮氧化鉻層43為例對該 真空鍍膜處理進行說明。 [0022] 請參閱圖2,提供一磁控濺射設備1,磁控濺射設備1包括 一真空室2、用以對真空室2抽真空的真空泵3以及與真空 室2相通的氣源通道7。該真空室2内設有轉架4及相對設 置的鋁靶5和鉻靶6。轉架4帶動鎂合金基體20做圓周運行 ,且鎂合金基體20在隨轉架4運行的同時也進行自轉。鍍 膜時,濺射氣體與反應氣體經由氣源通道7進入真空室2 〇 [0023] 在該鈽鹽轉化膜3 0上濺射該氧化鋁層4 2。將形成有該鈽 100100107 表單編號A0101 第6頁/共13頁 1002000189-0 201229314 鹽轉化膜30的鎂合金基體20放置於磁控賤射設備1的轉架 4上,對真空室2抽真空至6· 0x10-3〜8· 0x1 0_3pa後通入 濺射氣體氬氣,氬氣流量為150〜3〇〇SCCm (標準狀態毫 升/分鐘)’同時通入反應氣體氧氣’氧氣流量為 50〜9〇SCCm,鎂合金基體20施加偏壓至_100一300V,開 啟鋁靶5,鋁靶5的功率為8~10kw,調節真空室2内溫度 為 100~150。(:,轉架4的轉速為(revolu一 tion per minute ’轉/分鐘)’濺射0· 5~1小時’以於 鈽鹽轉化膜30表面形成該氧化鋁層42。 [0024] 在氧化鋁層42上濺射該氮氧化鉻層43。關閉鋁靶5,開啟 絡乾6,鉻把6的功率為’調節氧氣流量為 40〜lOOsccm,氮氣流量為〜6〇sccm,其他參數保持不 變,濺射0. 5〜2小時,以在該氧化鋁層42上沉積一層氮氧 化鉻層43。 [0025] 鍍膜結束後,關閉負偏壓及鉻靶6電源,停止通入氬氣和 反應氣體,待所述氮氧化鉻層43冷卻後,向真空室2内通 Q 入空氣,打開真空室鬥,取出鍍覆好的鎂製品10。 [0026] 請參閱圖1 ’由上述鎮合金表面防腐處理方法所辉得的鎮 製品10 ’包括鎂合金基體20、形成於鎂合金基體2〇表面 的鈽鹽轉化膜30及形成於該鈽鹽轉化膜3〇上的由難炼化 合物組成的陶瓷塗層40。該鈽鹽轉化膜30經用硝酸錦和 高猛酸舒為主要成膜劑的成膜溶液對鎂合金基體2〇進行 化學轉化處理而形成。該飾鹽轉化膜30的主要成分為三 價鈽、四價鈽及二價錳離子的氫氧化物或氧化物。該陶 瓷塗層40包括一層或多層金屬難熔化合物層,該金屬難 100100107 表單編號A0101 第7頁/共13頁 1(Μ 201229314 熔化合物可選自鈦、is、絡、錯及钻的氣化物、氧化物 、氮碳化物及氮氧化物中的一種或幾種的組合。本實施 例中,該陶究塗層40包括一層氧化銘(Al9〇q)層42及一 層氮氧化鉻(CrON),該氧化鋁層42直接形成於該鈽鹽 轉化膜30上,該氮氧化鉻層43形成於該氧化鋁層42上。 [0027] 對由本發明的防腐處理方法所製備的鎂製品1 0試樣進行 35°C中性鹽霧(NaCl濃度為5%)測試。結果發現,鎂製 品10試樣在72小時後才出現有腐蝕現象,具有良好的防 腐性能。 [0028] 本發明的鎂合金表面防腐處理方法先藉由化學轉化處理 於鎂合金基體20上製備一層鈽鹽轉化膜30,然後於該鈽 鹽轉化膜30上鍍覆耐磨陶瓷塗層40。其中該鈽鹽轉化膜 30—方面將鎂合金基體20表面平整化,另一方面鈽鹽轉 化膜30自身結構緻密,阻擋性好,化學穩定性高,與鎂 合金基體20結合力強,具有良好的防腐功能。而外層耐 磨的陶瓷塗層40,可保護鈽鹽轉化膜30不易受到機械損 傷。故,經該方法處理的鎂製品10具有良好的抗腐蝕性 能。 【圖式簡單說明】 [0029] 圖1為由本發明較佳實施例的鎂合金表面防腐處理方法所 製得的鎂製品的剖視示意圖。 [0030] 圖2為本發明較佳實施例的鎂合金表面防腐處理方法中所 用鍍膜設備示意圖。 【主要元件符號說明】 100100107 表單編號A0101 第8頁/共13頁 1002000189-0 201229314 [0031] [0032] [0033] [0034] [0035] [0036] [0037] 〇 [0038] [0039] [0040] [0041] [0042] [0043] Ο 鎂製品:ίο 鎂合金基體:20 鈽鹽轉化膜:30 陶瓷塗層:4 0 氧化鋁層:42 氮氧化鉻層:43 磁控濺射設備: 真空室:2 真空泵:3 轉架:4 鋁靶:5 鉻靶:6 氣源通道:7 100100107 表單編號Α0101 第9頁/共13頁 1002000189-0L〇-20g/LNa3P〇4.12H2〇, 25-30g/L Na2C〇3A 40 50g/L aqueous solution of sodium fluoride (NaF). On the one hand, the remainder treatment is used to dissolve the portion of the magnesium alloy substrate 2 which is protruded, so that the surface of the magnesium alloy substrate 20 tends to be flat, and the oil stain on the surface of the magnesium alloy substrate 20 can be further removed. t * ° Chemical conversion treatment of magnesium alloy matrix 2〇 with magnesium ruthenium nitrate (Ce(N〇3)3) and permanganic acid (the main film-forming agent is used as a main film-forming agent) The ruthenium salt conversion film 3 钸 is formed on the substrate 20. The main component of the ruthenium salt conversion film 3 为 is a hydroxide or oxide of trivalent ruthenium, tetravalent ruthenium and divalent manganese ions. The film formation solution may be 5-20 g. /L aqueous solution of cerium nitrate and 2-l〇g/L potassium permanganate' The pH of the cerium solution is 1-5. Preferably, the film forming solution is llg/L cerium nitrate and 4g/L An aqueous solution of potassium permanganate having a pH of 2 100100107 Form No. A0101 Page 5 of 13 1002000189-0 [0019] 201229314. The treatment method can be used to soak the magnesium alloy substrate 20 which has been subjected to the above alkali etching to 20- The film forming solution may be stirred for 15 to 50 minutes at 50 ° C. The film forming solution may be stirred during the soaking process. Preferably, the temperature of the film forming solution is maintained at 35 ° C during the soaking process, and the soaking time is 20 minutes. Then, the magnesium alloy substrate 20 on which the onium salt conversion film 30 is formed is subjected to a vacuum coating treatment to form a hard-melting on the onium salt conversion film 30. The composition of the ceramic coating 40. The ceramic coating 40 comprises one or more layers of a metal poorly soluble compound, which may be selected from the group consisting of titanium, indium, chromium, and nitrides, oxides, and nitrogen. A combination of one or more of a carbide and an oxynitride. In this embodiment, the ceramic coating 40 includes a layer of alumina (A190Q) 42 and a layer of chromium oxynitride (CrON) 43 which is 42 Directly formed on the cerium salt conversion film 30, the oxynitride layer 43 is formed on the aluminum oxide layer 42. [0021] The vacuum coating process may be performed by magnetron sputtering or arc ion plating, followed by magnetron sputtering. The vacuum coating process is described by taking the aluminum oxide layer 42 and the chromium oxynitride layer 43 as an example. [0022] Referring to FIG. 2, a magnetron sputtering apparatus 1 is provided, and the magnetron sputtering apparatus 1 includes a vacuum chamber. 2. A vacuum pump 3 for evacuating the vacuum chamber 2 and a gas source passage 7 communicating with the vacuum chamber 2. The vacuum chamber 2 is provided with a turret 4 and an oppositely disposed aluminum target 5 and a chrome target 6. The turret 4 The magnesium alloy substrate 20 is driven to perform circumferential operation, and the magnesium alloy substrate 20 is operated along with the turret 4 During the coating, the sputtering gas and the reaction gas enter the vacuum chamber 2 via the gas source passage 7 [0023] The aluminum oxide layer 42 is sputtered on the strontium salt conversion film 30. The 钸100100107 form will be formed. No. A0101 Page 6 / Total 13 pages 1002000189-0 201229314 The magnesium alloy substrate 20 of the salt conversion film 30 is placed on the turret 4 of the magnetron sputtering apparatus 1, and the vacuum chamber 2 is evacuated to 6·0x10-3~8 · After 0x1 0_3pa, argon gas is sputtered into the gas. The flow rate of argon gas is 150~3〇〇SCCm (standard state cc/min). At the same time, the reaction gas oxygen is introduced. The oxygen flow rate is 50~9〇SCCm. The magnesium alloy matrix 20 Applying a bias voltage to _100 to 300V, the aluminum target 5 is turned on, the power of the aluminum target 5 is 8 to 10 kW, and the temperature in the vacuum chamber 2 is adjusted to be 100 to 150. (: The rotation speed of the turret 4 is (revolu- tion per minute 'rpm/min) 'sputtering 0·5 to 1 hour' to form the aluminum oxide layer 42 on the surface of the cerium salt conversion film 30. [0024] Oxidation The oxynitride layer 43 is sputtered on the aluminum layer 42. The aluminum target 5 is turned off, and the lyophilization 6 is turned on. The power of the chrome 6 is 'adjusted oxygen flow rate is 40 to 100 sccm, and the nitrogen flow rate is 〜6 〇sccm. Other parameters remain unchanged. Change, sputtering 0. 5~2 hours to deposit a layer of chromium oxynitride 43 on the aluminum oxide layer 42. [0025] After the coating is completed, the negative bias voltage and the power supply of the chromium target 6 are turned off, and the argon gas is stopped. After the reaction gas is cooled, the chromium oxynitride layer 43 is cooled, the air is introduced into the vacuum chamber 2, the vacuum chamber is opened, and the plated magnesium product 10 is taken out. [0026] Please refer to FIG. The surface product 10' obtained by the surface anti-corrosion treatment method comprises a magnesium alloy substrate 20, a cerium salt conversion film 30 formed on the surface of the magnesium alloy substrate 2, and a hard-to-refined compound formed on the yttrium salt conversion film 3〇. Ceramic coating 40. The cerium salt conversion film 30 is formed by using a nitrite nitrate and a high sulphuric acid as a main film former. The liquid is formed by chemically converting the magnesium alloy substrate 2〇. The main component of the decorative salt conversion film 30 is a hydroxide or an oxide of trivalent europium, tetravalent europium and divalent manganese ions. One or more layers of metal refractory compound, the metal is difficult 100100107 Form No. A0101 Page 7 / Total 13 Page 1 (Μ 201229314 The molten compound can be selected from titanium, is, complex, fault and drill gasification, oxide, nitrogen carbonization And a combination of one or more of the oxynitrides. In the present embodiment, the ceramic coating 40 comprises a layer of oxidized (Al9〇q) 42 and a layer of chromium oxynitride (CrON), the aluminum oxide layer 42 Directly formed on the cerium salt conversion film 30, the oxynitride layer 43 is formed on the aluminum oxide layer 42. [0027] The magnesium product 10 sample prepared by the anticorrosive treatment method of the present invention is subjected to 35 ° C The salt spray (with a NaCl concentration of 5%) was tested. It was found that the magnesium product 10 sample showed corrosion after 72 hours and had good corrosion resistance. [0028] The magnesium alloy surface anti-corrosion treatment method of the present invention was first borrowed. Treated on the magnesium alloy substrate 20 by chemical conversion A layer of strontium salt conversion film 30 is prepared, and then the strontium salt conversion film 30 is plated with a wear-resistant ceramic coating 40. The strontium salt conversion film 30 - planarizes the surface of the magnesium alloy substrate 20, and on the other hand, strontium salt conversion The membrane 30 has a compact structure, good barrier property, high chemical stability, strong binding force with the magnesium alloy matrix 20, and good anti-corrosion function, and the outer wear-resistant ceramic coating 40 can protect the strontium salt conversion film 30 from mechanical damage. Damage, therefore, the magnesium article 10 treated by this method has good corrosion resistance. BRIEF DESCRIPTION OF THE DRAWINGS [0029] Fig. 1 is a schematic cross-sectional view showing a magnesium article obtained by a method for preserving a surface of a magnesium alloy according to a preferred embodiment of the present invention. 2 is a schematic view of a coating apparatus used in a method for preserving a surface of a magnesium alloy according to a preferred embodiment of the present invention. [Description of main component symbols] 100100107 Form No. A0101 Page 8 / Total 13 pages 1002000189-0 201229314 [0031] [0033] [0036] [0036] [0037] [0038] [0039] [ [0043] [0043] [0043] 镁 Magnesium product: ίο Magnesium alloy substrate: 20 钸 salt conversion film: 30 Ceramic coating: 4 0 Alumina layer: 42 CVD layer: 43 Magnetron sputtering equipment: Vacuum chamber: 2 Vacuum pump: 3 Rack: 4 Aluminum target: 5 Chromium target: 6 Air source channel: 7 100100107 Form number Α 0101 Page 9 / Total 13 pages 1002000189-0