TWI606009B - 二硫化鉬奈米片感測器及其製造方法 - Google Patents

二硫化鉬奈米片感測器及其製造方法 Download PDF

Info

Publication number
TWI606009B
TWI606009B TW104144708A TW104144708A TWI606009B TW I606009 B TWI606009 B TW I606009B TW 104144708 A TW104144708 A TW 104144708A TW 104144708 A TW104144708 A TW 104144708A TW I606009 B TWI606009 B TW I606009B
Authority
TW
Taiwan
Prior art keywords
molybdenum disulfide
electrode
disulfide nanosheet
nanosheet
sensor
Prior art date
Application number
TW104144708A
Other languages
English (en)
Other versions
TW201722846A (zh
Inventor
洪健中
吳忠軒
王世邦
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW104144708A priority Critical patent/TWI606009B/zh
Priority to US15/147,917 priority patent/US10161922B2/en
Publication of TW201722846A publication Critical patent/TW201722846A/zh
Application granted granted Critical
Publication of TWI606009B publication Critical patent/TWI606009B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/4763Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers
    • H01L21/47635After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

二硫化鉬奈米片感測器及其製造方法
本發明是有關於一種氣體感測器及其製造方法,且特別是有關於一種二硫化鉬奈米片感測器及其製造方法。
現今具有成熟技術的氣體感測器,幾乎都是以半導體製程中的物理氣相沉積方法(PVD)以及化學氣相沉積方法(CVD)來製作,因此薄膜型的氣體感測器成為市場主流。
然而隨著技術成熟,氣體感測器的尺寸逐漸由微米等級往奈米等級發展,再加上一維的半導體奈米結構相較薄膜結構更具有發展潛力,其所製成的氣體感測器不僅尺寸小、成本低、高相容性、高表面積體積比以及結構穩定的結晶性,且具有更高的靈敏度。
此外,具有奈米結構的氣體感測器後續發展優勢在於感測元件所消耗的功率大幅減少,且提高各種不同半導體材料的應用整合,藉此不僅選擇更多樣性也可增加感測靈敏性。最重要的仍在於其微小化後的尺寸,可與微加工技術及微機電系統整合,批量製造以降低成本。
氣體不僅已經成為工業中日益重要的原物料,更是環境的檢測標準之一,如何以更方便且更經濟的方式來生產氣體感測器,以及將感測器元件縮小至微奈米尺寸已經是未來科技首要研究課程。
本發明之目的是在於提供一種二硫化鉬奈米片感測器及其製造方法,其可適用於微型呼吸感測系統。
根據本發明一實施方式是在提供一種二硫化鉬奈米片感測器,其包含一可撓性基板、一圖案化電路層及至少一二硫化鉬奈米片。可撓性基板上形成供一待測氣體流通的一氣體流道。圖案化電路層設於可撓性基板上,圖案化電路層包含一第一電極及一第二電極。第二電極朝向第一電極,且第一電極與第二電極之間具有一間隙。二硫化鉬奈米片位於間隙且連接第一電極及第二電極。
根據前述二硫化鉬奈米片感測器之一實施例,其中第一電極與第二電極之間隙可為100奈米。可撓性基板可由二氧化矽(玻璃)所組成,圖案化電路層可由鈦所組成,第一電極及第二電極可由金所組成。二硫化鉬奈米片的長度可為100到200奈米,二硫化鉬奈米片的寬度可為100到200奈米,二硫化鉬奈米片的厚度可為5到20奈米。
根據本發明又一實施方式是在提供一種二硫化鉬奈米片感測器之製造方法,其步驟包含一光微影步驟、一選擇性蝕刻步驟、一滴液步驟以及一介電泳步驟。光微影步驟 係形成一第一電極及一第二電極於一可撓性基板上。選擇性蝕刻步驟係蝕刻一間隙於第一電極及第二電極之間。滴液步驟係滴落一二硫化鉬溶液於間隙。介電泳步驟係施加一交流電壓於第一電極及第二電極,使至少一二硫化鉬奈米片成形於間隙且分別連接第一電極及第二電極。
根據前述二硫化鉬奈米片感測器之製造方法之一實施例,其中選擇性蝕刻步驟係可採一聚焦離子束(Focused Ion Beam,FIB)技術。間隙可為100奈米。二硫化鉬溶液之溶劑可為乙醇。二硫化鉬溶液之濃度可為18毫克/公升。二硫化鉬奈米片的長度為100到200奈米,二硫化鉬奈米片的寬度為100到200奈米,二硫化鉬奈米片的厚度為5到20奈米。交流電壓之大小及頻率分別可為1到2伏特及106到108赫茲。介電泳步驟需耗時1到6分鐘。
因此,本發明所提出二硫化鉬奈米片感測器及其製造方法,其可適用於氣體感測,由於二硫化鉬奈米片感測器可在室溫下進行製作,不僅製作容易且更方便整合其他奈米製程,也解決習知技術中感測及分析氣體系統成本高昂、系統複雜且攜帶不便的缺點。
100‧‧‧二硫化鉬奈米片感測器
110‧‧‧可撓性基板
120‧‧‧圖案化電路層
121‧‧‧第一電極
122‧‧‧第二電極
123‧‧‧電性輸出端
130‧‧‧二硫化鉬奈米片
140‧‧‧氣體流道
S01‧‧‧光微影步驟
S02‧‧‧選擇性蝕刻步驟
S03‧‧‧滴液步驟
S04‧‧‧介電泳步驟
S‧‧‧二硫化鉬溶液
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一實施方式的一種二硫化鉬奈米片感測器的平面示意圖。
第2圖係繪示二硫化鉬奈米片感測器的立體示意圖。
第3圖係繪示二硫化鉬奈米片感測器中第一電極、第二電極及二硫化鉬奈米片的示意圖。
第4圖係繪示依照本發明一實施方式的一種二硫化鉬奈米片感測器製造方法的流程圖。
第5圖係繪示二硫化鉬奈米片感測器製造方法的示意圖。
第6圖係繪示二硫化鉬奈米片感測器中第一電極、第二電極及二硫化鉬奈米片的顯微鏡放大圖。
第7圖係繪示二硫化鉬奈米片感測器的實施示意圖。
請參照第1圖、第2圖及第3圖,其中第1圖係繪示依照本發明一實施方式的一種二硫化鉬奈米片感測器的平面示意圖,第2圖係繪示二硫化鉬奈米片感測器的立體示意圖,第3圖係繪示二硫化鉬奈米片感測器中第一電極、第二電極及二硫化鉬奈米片的示意圖。二硫化鉬奈米片感測器100包含一可撓性基板110、一圖案化電路層120及至少一二硫化鉬奈米片130。
可撓性基板110上形成供一待測氣體流通的一氣體流道140。可撓性基板110係利用絕緣及具有可撓性的材料所製成,例如高分子材料或玻璃。
圖案化電路層120設於可撓性基板110上,圖案化電路層120包含一第一電極121及一第二電極122。第二電極122朝向第一電極121,且第一電極121與第二電極122之間 具有一間隙。此外,圖案化電路層120更可包含一電性輸出端123,電性輸出端123可將待測氣體的感測電訊號往外輸出。
二硫化鉬奈米片130位於第一電極121與第二電極122之間隙上,且二硫化鉬奈米片130連接第一電極121及第二電極122。由於第一電極121與第二電極122之間隙約為100奈米。二硫化鉬奈米片130的長度可為100到200奈米,二硫化鉬奈米片130的寬度可為100到200奈米,二硫化鉬奈米片130的厚度可為5到20奈米。
當待測氣體通過氣體流道140而經二硫化鉬奈米片130後,電性輸出端123將可根據二硫化鉬奈米片130之阻抗變化而使第一電極121及第二電極122間所產生的感測電訊號輸出。
更具體而言,可撓性基板110可由二氧化矽所組成,圖案化電路層120可由鈦所組成,第一電極121及第二電極122可由金所組成。且第一電極121與第二電極122間之二硫化鉬奈米片130的數量可為複數。
請參照第4圖及第5圖,其中第4圖係繪示二硫化鉬奈米片感測器100製造方法的流程圖,第5圖係繪示二硫化鉬奈米片感測器100製造方法的示意圖。前述二硫化鉬奈米片感測器100製造方法的步驟包含一光微影步驟S01、一選擇性蝕刻步驟S02、一滴液步驟S03以及一介電泳步驟S04。
光微影步驟S01係形成一第一電極121及一第二電極122於一可撓性基板110上。
選擇性蝕刻步驟S02係蝕刻一間隙於第一電極121及第二電極122之間。選擇性蝕刻步驟S02係可採一聚焦離子束(Focused Ion Beam,FIB)技術。
滴液步驟S03係滴落一二硫化鉬溶液S於間隙。其中,二硫化鉬溶液S之溶劑可為乙醇,且二硫化鉬溶液S之濃度可為18毫克/公升。
介電泳步驟S04係施加一交流電壓於第一電極121及第二電極122,使至少一二硫化鉬奈米片130成形於間隙且分別連接第一電極121及第二電極122。所施加交流電壓之電壓大小可為1到2伏特,且其頻率可為106到108赫茲,且介電泳步驟S04需耗時1到6分鐘,方可成形二硫化鉬奈米片130。介電泳步驟S04之原理是由於二硫化鉬粒子和溶劑間具有不同的電特性,故利用交流電壓產生之電場使二硫化鉬粒子受電場作用力而累積分離出二硫化鉬奈米片130。
此外,在介電泳步驟S04後,可再對二硫化鉬奈米片感測器100進行熱退火(annealing)步驟,藉此去除表面的雜質並降低殘餘的應力而降低其阻抗。熱退火步驟是對二硫化鉬奈米片感測器100加熱200℃達3小時。
第4圖中之光微影步驟S01、選擇性蝕刻步驟S02、滴液步驟S03以及介電泳步驟S04的實施分別由第5圖中之(a)、(b)、(c)及(d)圖標來依序示意。
請再一併參照第6圖,其係繪示第1圖的二硫化鉬奈米片感測器100中第一電極121、第二電極122及二硫化鉬奈米片130的顯微鏡放大圖。可以看到經過介電泳步驟S04 後,利用掃描式電子顯微鏡(SEM)進行放大,其圖像顯示二硫化鉬奈米片130連接第一電極121及第二電極122。
請參照第7圖,其係繪示前述二硫化鉬奈米片感測器100的實施示意圖。當待測器體通過二硫化鉬奈米片感測器100內之可撓性基板110,可再利用紫外光照射二硫化鉬奈米片130,使其增加感測電訊號的反應。由於二硫化鉬奈米片130具有對紫外光的特殊催化性質,二硫化鉬奈米片130所誘導的光催反應主要是來自其價電帶和傳導帶之間的電子轉移,當二硫化鉬奈米片130受到紫外光照射,如果光子的能量等於或大於二硫化鉬奈米片130的能隙,則光子可被吸收並將價電帶的電子提升到傳導帶上,而降低二硫化鉬奈米片130整體的阻抗值。因此,紫外光照射二硫化鉬奈米片130後會明顯提升其阻抗值的變化。本實施方式在待測氣體的濃度約10ppm的情況下,採用波長360奈米的紫外光並實際照射二硫化鉬奈米片130後,測得其阻抗值的變化比起未照射紫外光時提升50%。
藉由前述實施方式及實施例可得知,本發明所提出之二硫化鉬奈米片感測器,其具有高靈敏度以及高訊噪比的優點,而在相應的製作方法上具有製程簡單以及常溫製作的優點,不僅可在常溫下進行製作,且可整合其他奈米製程,解決習知技術中感測及分析氣體系統成本高昂、系統複雜且攜帶不便的缺點。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧二硫化鉬奈米片感測器
110‧‧‧可撓性基板
120‧‧‧圖案化電路層
121‧‧‧第一電極
122‧‧‧第二電極
123‧‧‧電性輸出端
130‧‧‧二硫化鉬奈米片
140‧‧‧氣體流道

Claims (8)

  1. 一種二硫化鉬奈米片感測器,其包含:一可撓性基板,該可撓性基板上形成供一待測氣體流通的一氣體流道;一圖案化電路層,其設於該可撓性基板上,該圖案化電路層包含:一第一電極;及一第二電極,其朝向該第一電極,且該第一電極與該第二電極之間具有一間隙,其中該間隙為100奈米;以及至少一二硫化鉬奈米片,其位於該間隙且連接該第一電極及該第二電極,其中該二硫化鉬奈米片的長度為100到200奈米,該二硫化鉬奈米片的寬度為100到200奈米,該二硫化鉬奈米片的厚度為5到20奈米。
  2. 如申請專利範圍第1項所述之二硫化鉬奈米片感測器,其中該可撓性基板由二氧化矽(玻璃)所組成,該圖案化電路層由鈦所組成,該第一電極及該第二電極由金所組成。
  3. 一種二硫化鉬奈米片感測器之製造方法,其步驟包含:一光微影步驟,形成一第一電極及一第二電極於一可撓性基板上; 一選擇性蝕刻步驟,蝕刻一間隙於該第一電極及該第二電極之間,其中該間隙為100奈米;一滴液步驟,滴落一二硫化鉬溶液於該間隙;以及一介電泳步驟,施加一交流電壓於該第一電極及該第二電極,使至少一二硫化鉬奈米片成形於該間隙且分別連接該第一電極及該第二電極,其中該二硫化鉬奈米片的長度為100到200奈米,該二硫化鉬奈米片的寬度為100到200奈米,該二硫化鉬奈米片的厚度為5到20奈米。
  4. 如申請專利範圍第3項所述之二硫化鉬奈米片感測器之製造方法,其中該選擇性蝕刻步驟係採一聚焦離子束(Focused Ion Beam,FIB)技術。
  5. 如申請專利範圍第3項所述之二硫化鉬奈米片感測器之製造方法,其中該二硫化鉬溶液之溶劑為乙醇。
  6. 如申請專利範圍第3項所述之二硫化鉬奈米片感測器之製造方法,其中該二硫化鉬溶液之濃度為18毫克/公升。
  7. 如申請專利範圍第3項所述之二硫化鉬奈米片感測器之製造方法,其中該交流電壓之大小及頻率分別為1到2伏特及106到108赫茲。
  8. 如申請專利範圍第4項所述之二硫化鉬奈米片感測器之製造方法,其中該介電泳步驟需耗時1到6分鐘。
TW104144708A 2015-12-31 2015-12-31 二硫化鉬奈米片感測器及其製造方法 TWI606009B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104144708A TWI606009B (zh) 2015-12-31 2015-12-31 二硫化鉬奈米片感測器及其製造方法
US15/147,917 US10161922B2 (en) 2015-12-31 2016-05-06 Molybdenum disulfide sensor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104144708A TWI606009B (zh) 2015-12-31 2015-12-31 二硫化鉬奈米片感測器及其製造方法

Publications (2)

Publication Number Publication Date
TW201722846A TW201722846A (zh) 2017-07-01
TWI606009B true TWI606009B (zh) 2017-11-21

Family

ID=59235505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104144708A TWI606009B (zh) 2015-12-31 2015-12-31 二硫化鉬奈米片感測器及其製造方法

Country Status (2)

Country Link
US (1) US10161922B2 (zh)
TW (1) TWI606009B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039255B1 (ko) * 2018-04-24 2019-10-31 인천대학교 산학협력단 용매 열합성법을 이용한 금속형 1t 상 이황화 몰리브덴의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084163A1 (en) * 2005-08-23 2009-04-02 Junhong Chen Ambient-temperature gas sensor
TW201425922A (zh) * 2012-12-24 2014-07-01 Nat Univ Tsing Hua 奈米材料混成電極及其製作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996108A (en) * 1989-01-17 1991-02-26 Simon Fraser University Sheets of transition metal dichalcogenides
TW484709U (en) 2000-02-16 2002-04-21 Speada Ind Co Ltd Composite type alcohol testing pen
TWI303310B (en) 2006-05-24 2008-11-21 Univ Feng Chia Gas sensor
US8193430B2 (en) 2008-01-03 2012-06-05 The University Of Connecticut Methods for separating carbon nanotubes
US8158538B2 (en) * 2008-02-16 2012-04-17 Nanochips, Inc. Single electron transistor operating at room temperature and manufacturing method for same
JP2011074221A (ja) * 2009-09-30 2011-04-14 Sharp Corp 半導体ナノ粒子蛍光体
CN101857273A (zh) 2010-05-26 2010-10-13 上海大学 纳米级片状二硫化钼的制备方法
CN103480856A (zh) 2013-09-09 2014-01-01 南京邮电大学 一种使用二维过渡金属硫族化合物纳米片和金属制备纳米复合材料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084163A1 (en) * 2005-08-23 2009-04-02 Junhong Chen Ambient-temperature gas sensor
TW201425922A (zh) * 2012-12-24 2014-07-01 Nat Univ Tsing Hua 奈米材料混成電極及其製作方法

Also Published As

Publication number Publication date
TW201722846A (zh) 2017-07-01
US10161922B2 (en) 2018-12-25
US20170191971A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
Chen et al. Wrinkling of two-dimensional materials: methods, properties and applications
Chao et al. Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor
Kaniukov et al. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology
Deng et al. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method
Cheng et al. High-quality ZnO nanowire arrays directly fabricated from photoresists
Taghinejad et al. Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires
US20180275328A1 (en) Composite Filter for Visible Light Transmission and Long Wave Reflection
KR101198301B1 (ko) 금속 나노입자를 이용하고 환원된 그래핀 산화물에 기반한 양쪽극 기억소자 및 이의 제조방법
Şennik et al. Pd loaded spider-web TiO2 nanowires: fabrication, characterization and gas sensing properties
CN105405965A (zh) 一种高灵敏度石墨烯磁场传感器及其制备方法
CN108226236B (zh) 一种集成化湿度传感器及其制作工艺
Li et al. Humidity sensing properties of morphology-controlled ordered silicon nanopillar
US20140193585A1 (en) Method for Modifying Probe Tip
CN104409561B (zh) 一种基于微球光学谐振增强的硅薄膜光探测器及其制备方法
TWI606009B (zh) 二硫化鉬奈米片感測器及其製造方法
KR102125278B1 (ko) 가스센서 및 그 제조방법
Tian et al. Optimal Pt mesoporous layer modified nanocomposite film with highly sensitive detection of ethanol at low temperature
Moon et al. Mechanism of the sensitivity enhancement in TiO 2 hollow-hemisphere gas sensors
JP2008185495A (ja) ガスセンサー
KR20170114963A (ko) 수소가스센서 및 이의 제조방법
KR101548681B1 (ko) 광 검출 소자 및 제조 방법
Saurdi et al. Electrical and structural properties of ZnO/TiO2 nanocomposite thin films by RF magnetron co-sputtering
Niu et al. H 2 S Sensor Based on MEMS Hotplate and on-Chip Growth of CuO-SnO 2 Nanosheets for High Response, Fast Recovery and Low Power Consumption
Cai et al. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode
KR101191522B1 (ko) 수소센서의 제조방법 및 그 제조방법에 의한 수소센서

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees