TWI605683B - Signal reading circuit and control method thereof - Google Patents

Signal reading circuit and control method thereof Download PDF

Info

Publication number
TWI605683B
TWI605683B TW105122518A TW105122518A TWI605683B TW I605683 B TWI605683 B TW I605683B TW 105122518 A TW105122518 A TW 105122518A TW 105122518 A TW105122518 A TW 105122518A TW I605683 B TWI605683 B TW I605683B
Authority
TW
Taiwan
Prior art keywords
transistor
sampling
reference voltage
electrically coupled
voltage
Prior art date
Application number
TW105122518A
Other languages
Chinese (zh)
Other versions
TW201803264A (en
Inventor
盧文哲
劉育榮
黃明益
詹仁宏
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105122518A priority Critical patent/TWI605683B/en
Priority to CN201610929628.9A priority patent/CN106419862B/en
Application granted granted Critical
Publication of TWI605683B publication Critical patent/TWI605683B/en
Publication of TW201803264A publication Critical patent/TW201803264A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Amplifiers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

訊號讀取電路及其控制方法 Signal reading circuit and control method thereof

本發明係關於一種訊號讀取電路及其控制方法,特別是關於感測元件的訊號讀取電路及其控制方法。 The present invention relates to a signal reading circuit and a control method thereof, and more particularly to a signal reading circuit of a sensing element and a control method thereof.

藉由訊號讀取電路,舉凡光訊號、熱訊號或生醫訊號等類比訊號都可以經過適當的增益或補償,以供使用者進行後續的分析處理。甚至還可以對所述的類比訊號進行適當的取樣,形成離散訊號或數位訊號,以方便使用者進行數位訊號處理。 By means of the signal reading circuit, analog signals such as optical signals, thermal signals or biomedical signals can be appropriately gained or compensated for subsequent analysis by the user. It is even possible to appropriately sample the analog signal to form a discrete signal or a digital signal for the user to perform digital signal processing.

在系統上,往往會將各區塊電路的效能視為與標準規範一致。但是在實際電路上而言,各部分電路的元件在極端環境下或在經過長時間的運作之後,往往會依據其物理特性產生程度不一的劣化現象,致使電路參數飄移,影響到電路效能。以訊號讀取電路來說,電路中的電晶體的導通電阻值或門檻電壓值常常會因此偏離原先所設計的預設值,造成訊號讀取電路的輸出失準,而令後續處理分析出錯。 On the system, the performance of each block circuit is often considered to be consistent with the standard specification. However, in actual circuits, the components of each part of the circuit often have different degrees of degradation depending on their physical characteristics in an extreme environment or after a long period of operation, causing circuit parameters to drift and affecting circuit performance. In the case of the signal reading circuit, the on-resistance value or the threshold voltage value of the transistor in the circuit often deviates from the preset value originally designed, causing the output of the signal reading circuit to be out of alignment, and the subsequent processing analysis is in error. .

本發明在於提供一種訊號讀取電路及其控制方法,以克服電晶體劣化導致參數飄移而令訊號讀取電路輸出失準的問題。 The present invention provides a signal reading circuit and a control method thereof for overcoming the problem that the output of the signal reading circuit is out of alignment due to the drift of the parameters caused by the deterioration of the transistor.

本發明揭露了一種訊號讀取電路,所述的訊號讀取電路包括第一電晶體、第二電晶體、放大器與電阻。第一電晶體的第一端用以接收第一基準電壓。第一電晶體的第二端電性耦接第一節點。第一電晶體的控制端用以接收第一參考電壓。第二電晶體的第一端電性耦接第一節點。第二電晶體的第二端用以接收第二基準電壓。第二電晶體的控制端用以接收 輸入電壓。放大器具有第一輸入端、第二輸入端與輸出端。第一輸入端電性耦接第一節點。第二輸入端用以接收第二參考電壓。電阻的一端電性耦接放大器的第一輸入端。電阻的另一端電性耦接放大器的輸出端。 The invention discloses a signal reading circuit. The signal reading circuit comprises a first transistor, a second transistor, an amplifier and a resistor. The first end of the first transistor is configured to receive the first reference voltage. The second end of the first transistor is electrically coupled to the first node. The control end of the first transistor is configured to receive the first reference voltage. The first end of the second transistor is electrically coupled to the first node. The second end of the second transistor is configured to receive a second reference voltage. The control end of the second transistor is for receiving Input voltage. The amplifier has a first input, a second input, and an output. The first input is electrically coupled to the first node. The second input is configured to receive the second reference voltage. One end of the resistor is electrically coupled to the first input of the amplifier. The other end of the resistor is electrically coupled to the output of the amplifier.

本發明揭露了一種訊號讀取電路的控制方法,所述的訊號讀取電路的控制方法適用於訊號讀取電路。訊號讀取電路具有第一電晶體、第二電晶體、電阻與放大器。放大器具有第一輸入端、第二輸入端與輸出端。第一電晶體的一端電性耦接第一輸入端,另一端用以接收第一基準電壓。第二電晶體的一端電性耦接第一輸入端,另一端用以接收第二基準電壓。電阻的兩端分別電性耦接第一輸入端與輸出端。所述的控制方法包括操作第一電晶體與第二電晶體於線性區。且令流經電阻的電流的電流值為第一電晶體的導通電流與第二電晶體的導通電流的差值。並且,令第一電晶體的兩端的跨壓值等於第二電晶體的兩端的跨壓值。其中,放大器的輸出端的電壓準位關聯於電阻的阻值與流經電阻的電流。 The invention discloses a control method of a signal reading circuit, and the control method of the signal reading circuit is applicable to a signal reading circuit. The signal reading circuit has a first transistor, a second transistor, a resistor and an amplifier. The amplifier has a first input, a second input, and an output. One end of the first transistor is electrically coupled to the first input end, and the other end is configured to receive the first reference voltage. One end of the second transistor is electrically coupled to the first input end, and the other end is configured to receive the second reference voltage. The two ends of the resistor are electrically coupled to the first input end and the output end, respectively. The control method includes operating a first transistor and a second transistor in a linear region. And the current value of the current flowing through the resistor is the difference between the on current of the first transistor and the on current of the second transistor. And, the voltage across the two ends of the first transistor is equal to the voltage across the two ends of the second transistor. The voltage level at the output of the amplifier is related to the resistance of the resistor and the current flowing through the resistor.

綜合以上所述,本發明提供了一種訊號讀取電路及其控制方法,利用電流相減的方式,降低元件電性變異對於感測元件訊號讀出值的影響。藉此,即使訊號讀取電路中的元件的參數失準,訊號讀取電路仍可以避免受到失準參數的影響,而仍能輸出精準的讀值,成功地克服了元件參數失準影響訊號讀取電路精準度的問題。 In summary, the present invention provides a signal reading circuit and a control method thereof, which use a current subtraction method to reduce the influence of the electrical variation of the component on the signal reading value of the sensing component. Therefore, even if the parameters of the components in the signal reading circuit are out of alignment, the signal reading circuit can avoid the influence of the misalignment parameter, and can still output an accurate reading value, successfully overcoming the component parameter misalignment and affecting the signal reading. Take the problem of circuit accuracy.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.

1~8‧‧‧訊號讀取電路 1~8‧‧‧Signal reading circuit

72、82‧‧‧第一取樣模組 72, 82‧‧‧ first sampling module

74、84‧‧‧第二取樣模組 74, 84‧‧‧Second sampling module

96‧‧‧減法模組 96‧‧‧Subtraction module

962‧‧‧緩衝單元 962‧‧‧buffer unit

964‧‧‧減法單元 964‧‧‧Subtraction unit

C1、C2‧‧‧電容 C1, C2‧‧‧ capacitor

CK‧‧‧第一時脈訊號 CK‧‧‧ first clock signal

IR、IR’、IT1、IT2、IT1’、IT2’‧‧‧電流 IR, IR', IT1, IT2, IT1', IT2'‧‧‧ current

N1‧‧‧第一節點 N1‧‧‧ first node

Nin1‧‧‧第一輸入端 Nin1‧‧‧ first input

Nin2‧‧‧第二輸入端 Nin2‧‧‧ second input

Nout‧‧‧輸出端 Nout‧‧‧ output

OP、OPS1、OPS2‧‧‧放大器 OP, OPS1, OPS2‧‧‧ amplifier

R、RS1~RS4‧‧‧電阻 R, RS1~RS4‧‧‧ resistance

SW1、SW2‧‧‧取樣開關 SW1, SW2‧‧‧ sampling switch

T1、T1’‧‧‧第一電晶體 T1, T1'‧‧‧ first transistor

T2、T2’‧‧‧第二電晶體 T2, T2'‧‧‧second transistor

T3、T3’‧‧‧第三電晶體 T3, T3'‧‧‧ third transistor

T4、T4’‧‧‧第四電晶體 T4, T4'‧‧‧ fourth transistor

TS1‧‧‧第一取樣電晶體 TS1‧‧‧ first sampling transistor

TS2‧‧‧第二取樣電晶體 TS2‧‧‧Second sampling transistor

TS3‧‧‧第三取樣電晶體 TS3‧‧‧ third sampling transistor

TS4‧‧‧第四取樣電晶體 TS4‧‧‧ fourth sampling transistor

V1‧‧‧第一基準電壓 V1‧‧‧ first reference voltage

V2‧‧‧第二基準電壓 V2‧‧‧second reference voltage

Vref1‧‧‧第一參考電壓 Vref1‧‧‧ first reference voltage

Vref2‧‧‧第二參考電壓 Vref2‧‧‧second reference voltage

Vref3‧‧‧第三參考電壓 Vref3‧‧‧ third reference voltage

Vref4‧‧‧第四參考電壓 Vref4‧‧‧ fourth reference voltage

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Vout、Vout’‧‧‧輸出電壓 Vout, Vout’‧‧‧ output voltage

XCK‧‧‧第二時脈訊號 XCK‧‧‧ second clock signal

圖1係為根據本發明第一實施例所繪示之訊號讀取電路的電路示意圖。 1 is a circuit diagram of a signal reading circuit according to a first embodiment of the present invention.

圖2係為根據本發明第二實施例所繪示之訊號讀取電路的電路示意圖。 2 is a circuit diagram of a signal reading circuit according to a second embodiment of the present invention.

圖3係為根據本發明第三實施例所繪示之訊號讀取電路的電路示意圖。 3 is a circuit diagram of a signal reading circuit according to a third embodiment of the present invention.

圖4係為根據本發明第四實施例所繪示之訊號讀取電路的電路示意圖。 4 is a circuit diagram of a signal reading circuit according to a fourth embodiment of the present invention.

圖5係為根據本發明第五實施例所繪示之訊號讀取電路的電路示意圖。 FIG. 5 is a schematic circuit diagram of a signal reading circuit according to a fifth embodiment of the present invention.

圖6係為根據本發明第六實施例所繪示之訊號讀取電路的電路示意圖。 FIG. 6 is a circuit diagram of a signal reading circuit according to a sixth embodiment of the present invention.

圖7係為根據本發明第七實施例所繪示之訊號讀取電路的電路示意圖。 FIG. 7 is a circuit diagram of a signal reading circuit according to a seventh embodiment of the present invention.

圖8係為根據本發明第八實施例所繪示之訊號讀取電路的電路示意圖。 FIG. 8 is a schematic circuit diagram of a signal reading circuit according to an eighth embodiment of the present invention.

圖9係為根據本發明一實施例所繪示之減法模組的電路示意圖。 FIG. 9 is a schematic circuit diagram of a subtraction module according to an embodiment of the invention.

圖10係為根據本發明一實施例所繪示之訊號讀取電路的控制方法的流程示意圖。 FIG. 10 is a schematic flow chart of a method for controlling a signal reading circuit according to an embodiment of the invention.

圖11係為根據本發明一實施例所繪示之脈搏偵測器的示意圖。 FIG. 11 is a schematic diagram of a pulse detector according to an embodiment of the invention.

圖12係為根據本發明一實施例所繪示之脈搏偵測器的其中一個偵測單元的功能方塊示意圖。 FIG. 12 is a functional block diagram of one of the detecting units of the pulse detector according to an embodiment of the invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請參照圖1,圖1係為根據本發明第一實施例所繪示之訊號讀取電路的電路示意圖。如圖1所示,訊號讀取電路1包括第一電晶體T1、第二電晶體T2、放大器OP與電阻R。第一電晶體T1的第一端用以接收第一基準電壓V1。第一電晶體T1的第二端電性耦接第一節點N1。第一電晶體T1的控制端用以接收第一參考電壓Vref1。第二電晶體T2的第一端電性耦接第一節點N1。第二電晶體T2的第二端用以接收第二基準電壓V2。第二電晶體T2的控制端用以接收輸入電壓Vin。放大器OP具有第一輸入端Nin1、第二輸入端Nin2與輸出端Nout。第一輸入端Nin1電性耦接第一節點N1。第二輸入端Nin2用以接收第二參考電壓Vref2。電阻R的一端電性耦接放大器OP的第一輸入端Nin1。電阻R的另一端電性耦接放大器OP的輸出端Nout。其中,第一基準電壓V1例如為一相對的高電壓準位,第二基準電壓V2例如為一相對的低電壓準位。在一實施例中,第一基準電壓V1係為系統中的電壓VDD,第二基準電壓V2係為系統中的電壓VSS,電壓VDD為高準位參考電壓,電壓VSS為低準位參考電壓,但並不以此為限。在此實施例中,第一電晶體T1與第二電晶體T2係為N型的金屬氧化物半導體電晶體(Metal Oxide Semiconductor Field-Effect Transistor,MOSFET),但並不以此為限。 Please refer to FIG. 1. FIG. 1 is a schematic circuit diagram of a signal reading circuit according to a first embodiment of the present invention. As shown in FIG. 1, the signal reading circuit 1 includes a first transistor T1, a second transistor T2, an amplifier OP, and a resistor R. The first end of the first transistor T1 is configured to receive the first reference voltage V1. The second end of the first transistor T1 is electrically coupled to the first node N1. The control end of the first transistor T1 is configured to receive the first reference voltage Vref1. The first end of the second transistor T2 is electrically coupled to the first node N1. The second end of the second transistor T2 is for receiving the second reference voltage V2. The control terminal of the second transistor T2 is for receiving the input voltage Vin. The amplifier OP has a first input terminal Nin1, a second input terminal Nin2 and an output terminal Nout. The first input terminal Nin1 is electrically coupled to the first node N1. The second input terminal Nin2 is configured to receive the second reference voltage Vref2. One end of the resistor R is electrically coupled to the first input terminal Nin1 of the amplifier OP. The other end of the resistor R is electrically coupled to the output terminal Nout of the amplifier OP. The first reference voltage V1 is, for example, a relative high voltage level, and the second reference voltage V2 is, for example, a relatively low voltage level. In one embodiment, the first reference voltage V1 is the voltage VDD in the system, the second reference voltage V2 is the voltage VSS in the system, the voltage VDD is the high level reference voltage, and the voltage VSS is the low level reference voltage. But it is not limited to this. In this embodiment, the first transistor T1 and the second transistor T2 are N-type Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs), but are not limited thereto.

第一電晶體T1受控於第一參考電壓Vref1而選擇性地導通。第二電晶體T2受控於輸入電壓Vin而選擇性地導通。依據放大器OP的虛短路(virtual short)特性,放大器OP的第一輸入端Nin1的電壓準位實質上等於第二輸入端Nin2的電壓準位,使得第一節點N1的電壓準位相等於第二參考電壓Vref2。此外,輸出節點Nout的電壓準位係為第一輸入端Nin1的電壓準位與第二輸入端Nin2的電壓準位經放大器OP放大之差值,且輸出節點Nout的電壓準位係關聯於放大器OP的增益值。放大器OP的相關特性係為所屬技術領域具有通常知識者所知悉,於此不再贅述。而當放大器OP具有高開迴路增益時,流經電阻R1的電流IR的電流值大 致上會是流經第一電晶體T1的電流IT1與流經第二電晶體T2的電流IT2兩者的差值。 The first transistor T1 is selectively turned on by being controlled by the first reference voltage Vref1. The second transistor T2 is selectively turned on by the input voltage Vin. According to the virtual short characteristic of the amplifier OP, the voltage level of the first input terminal Nin1 of the amplifier OP is substantially equal to the voltage level of the second input terminal Nin2, so that the voltage level of the first node N1 is equal to the second reference. Voltage Vref2. In addition, the voltage level of the output node Nout is the difference between the voltage level of the first input terminal Nin1 and the voltage level of the second input terminal Nin2 through the amplifier OP, and the voltage level of the output node Nout is associated with the amplifier. The gain value of the OP. The relevant characteristics of the amplifier OP are known to those of ordinary skill in the art and will not be described again. When the amplifier OP has a high open loop gain, the current value of the current IR flowing through the resistor R1 is large. The result is the difference between the current IT1 flowing through the first transistor T1 and the current IT2 flowing through the second transistor T2.

於一實施例中,第一電晶體T1與第二電晶體T2被操作於線性區(Triode Mode),因此電流IT1與電流IT2係如下式: In one embodiment, the first transistor T1 and the second transistor T2 are operated in a Triode Mode, so the current IT1 and the current IT2 are as follows:

式(1)中的VDS1為第一電晶體T1的汲極端與源極端的跨壓。式(2)中的VDS2為第二電晶體T2的汲極端與源極端的跨壓。而式(1)與式(2)中的Vth代表的是第一電晶體T1與第二電晶體T2的門檻電壓值,μn代表的是第一電晶體T1與第二電晶體T2的載子移動率,Cox代表的是 第一電晶體T1與第二電晶體T2的閘極氧化層的單位電容大小,代表的 是第一電晶體T1與第二電晶體T2的通道寬長比。在此實施例中,第一電晶體T1與第二電晶體T2係具有實質相同的門檻電壓值Vth、實質相同的載子移動率μn、實質相同的閘極氧化層的單位電容Cox與實質相同的通道 寬長比。於實務上,上述參數值係為所屬技術領域具有通常知識者在詳 閱本說明書後,得以在不脫離本發明之精神的前提下自由調校,並不以上述為限。 V DS1 in the formula (1) is the cross-pressure of the 汲 terminal and the source terminal of the first transistor T1. V DS2 in the formula (2) is the cross-pressure of the 汲 terminal and the source terminal of the second transistor T2. The Vth in the formulas (1) and (2) represents the threshold voltage values of the first transistor T1 and the second transistor T2, and μ n represents the loading of the first transistor T1 and the second transistor T2. Sub-movement rate, C ox represents the unit capacitance of the gate oxide layer of the first transistor T1 and the second transistor T2, Representative of the channel width to length ratio of the first transistor T1 and the second transistor T2. In this embodiment, the first transistor T1 and the second transistor T2 have substantially the same threshold voltage value Vth, substantially the same carrier mobility μ n , and substantially the same unit capacitance C ox of the gate oxide layer. Substantially the same channel width to length ratio . In practice, the above-mentioned parameter values are those of ordinary skill in the art, and can be freely adjusted without departing from the spirit of the present invention, and are not limited to the above.

另一方面,第二參考電壓Vref2的電壓準位被設定為第一基準電壓V1與第二基準電壓V2的平均值,使得式(1)中的VDS1相等於式(2)中的VDS2。在此係用VDS取代VDS1與VDS2,以便於後續說明。如前述地,由於放大器OP的高輸入阻抗特性,電流IR為電流IT1與電流IT2的差值。基於上述的條件下,電流IR如下式: On the other hand, the voltage level of the second reference voltage Vref2 is set to an average value of the first reference voltage V1 and the second reference voltage V2 such that V DS1 in the equation (1) is equal to V DS2 in the equation (2) . Here, V DS1 and V DS2 are replaced with V DS for subsequent explanation. As previously mentioned, due to the high input impedance characteristic of the amplifier OP, the current IR is the difference between the current IT1 and the current IT2. Based on the above conditions, the current IR is as follows:

依據式(3),電流IR已然與第一電晶體T1與第二電晶體T2的門檻電壓值無關。 According to equation (3), the current IR is already independent of the threshold voltage values of the first transistor T1 and the second transistor T2.

進一步地,訊號讀取電路1的輸出電壓Vout係表達如下式:Vout=Vref2-R×IR (4) Further, the output voltage Vout of the signal reading circuit 1 is expressed as follows: Vout = Vref 2- R × IR (4)

因此,訊號讀取電路1的輸出電壓Vout也與第一電晶體T1與第二電晶體T2的門檻電壓值無關。換句話說,即使第一電晶體T1與第二電晶體T2劣化而使第一電晶體T1與第二電晶體T2的門檻電壓值飄移,訊號讀取電路1也能依據輸入電壓Vin產生更準確的輸出電壓Vout,且輸出電壓Vout,在理想上能夠不受偏移的門檻電壓值影響。在此實施例中,輸出電壓Vout係關聯於電阻R1的阻值、流經電阻R1的電流IR與第二參考電壓Vref2。 Therefore, the output voltage Vout of the signal reading circuit 1 is also independent of the threshold voltage values of the first transistor T1 and the second transistor T2. In other words, even if the first transistor T1 and the second transistor T2 are degraded to cause the threshold voltage values of the first transistor T1 and the second transistor T2 to drift, the signal reading circuit 1 can generate more accurate according to the input voltage Vin. The output voltage Vout, and the output voltage Vout, is ideally unaffected by the offset threshold voltage value. In this embodiment, the output voltage Vout is associated with the resistance of the resistor R1, the current IR flowing through the resistor R1, and the second reference voltage Vref2.

請參照圖2,圖2係為根據本發明第二實施例所繪示之訊號讀取電路的電路示意圖。與圖1所示的實施例不同的是,訊號讀取電路2更具有取樣開關SW1與取樣開關SW2。取樣開關SW1的兩端分別電性耦接放大器OP的第一輸入端Nin1與輸出端Nout。取樣開關SW2的一端電性耦接第一電晶體T1與第二電晶體T2相電性耦接的一端,取樣開關SW2的另一端電性耦接放大器OP的第一輸入端Nin1。取樣開關SW1受控於第二時脈訊號XCK,取樣開關SW2受控於第一時脈訊號CK。 Please refer to FIG. 2. FIG. 2 is a schematic circuit diagram of a signal reading circuit according to a second embodiment of the present invention. Different from the embodiment shown in FIG. 1, the signal reading circuit 2 further has a sampling switch SW1 and a sampling switch SW2. The two ends of the sampling switch SW1 are electrically coupled to the first input terminal Nin1 and the output terminal Nout of the amplifier OP, respectively. One end of the sampling switch SW2 is electrically coupled to one end of the first transistor T1 and the second transistor T2. The other end of the sampling switch SW2 is electrically coupled to the first input terminal Nin1 of the amplifier OP. The sampling switch SW1 is controlled by the second clock signal XCK, and the sampling switch SW2 is controlled by the first clock signal CK.

在這樣的電路架構與訊號時序下,當第一時脈訊號CK為低電壓準位時,取樣開關SW1導通而取樣開關SW2不導通,訊號讀取電路2的輸出電壓Vout相同於第二參考電壓Vref2。當第一時脈訊號CK為低電壓準位時,取樣開關SW1不導通而取樣開關SW2導通,訊號讀取電路2的輸出電壓Vout相同於前述的式(4)。藉此,得以依據經調整後的輸入電壓Vin進行取樣。其中,取樣開關SW1與取樣開關SW2例如為雙極性電晶體(bi-polar iunction transistor,BJT)、薄膜電晶體、金屬氧化物半導 體電晶體或者是以多個元件組成的開關電路,在此並不加以限制。 In such a circuit architecture and signal timing, when the first clock signal CK is at a low voltage level, the sampling switch SW1 is turned on and the sampling switch SW2 is not turned on, and the output voltage Vout of the signal reading circuit 2 is the same as the second reference voltage. Vref2. When the first clock signal CK is at a low voltage level, the sampling switch SW1 is not turned on and the sampling switch SW2 is turned on, and the output voltage Vout of the signal reading circuit 2 is the same as the above equation (4). Thereby, sampling can be performed based on the adjusted input voltage Vin. The sampling switch SW1 and the sampling switch SW2 are, for example, bi-polar iunction transistors (BJT), thin film transistors, metal oxide semiconductors. The body transistor or a switching circuit composed of a plurality of elements is not limited herein.

請接著參照圖3,圖3係為根據本發明第三實施例所繪示之訊號讀取電路的電路示意圖。相較於圖2所示的實施例,訊號讀取電路3更具有第三電晶體T3與第四電晶體T4。第三電晶體T3的第一端用以接收第一基準電壓V1。第三電晶體T3的第二端電性耦接第一電晶體T1的第一端。第三電晶體T3的控制端用以接收第三參考電壓Vref3。第四電晶體T4的第一端電性耦接第二電晶體T2的第二端。第四電晶體T4的第二端電性耦接第二基準電壓V2。第四電晶體T4的控制端用以接收第四參考電壓Vref4。藉由類似於串聯第一電晶體T1與第三電晶體T3,以及串聯第二電晶體T2與第四電晶體T4。所屬技術領域具有通常知識者當可理解,訊號讀取電路當可設置有更多的互相串聯的電晶體,且電晶體的數目並不以所舉之例為限。 Please refer to FIG. 3. FIG. 3 is a schematic circuit diagram of a signal reading circuit according to a third embodiment of the present invention. Compared with the embodiment shown in FIG. 2, the signal reading circuit 3 further has a third transistor T3 and a fourth transistor T4. The first end of the third transistor T3 is for receiving the first reference voltage V1. The second end of the third transistor T3 is electrically coupled to the first end of the first transistor T1. The control terminal of the third transistor T3 is configured to receive the third reference voltage Vref3. The first end of the fourth transistor T4 is electrically coupled to the second end of the second transistor T2. The second end of the fourth transistor T4 is electrically coupled to the second reference voltage V2. The control terminal of the fourth transistor T4 is configured to receive the fourth reference voltage Vref4. By similarly connecting the first transistor T1 and the third transistor T3 in series, and the second transistor T2 and the fourth transistor T4 in series. It will be understood by those skilled in the art that the signal reading circuit can be provided with more transistors in series with each other, and the number of transistors is not limited to the examples.

請參照圖4、圖5與圖6,圖4係為根據本發明第四實施例所繪示之訊號讀取電路的電路示意圖,圖5係為根據本發明第五實施例所繪示之訊號讀取電路的電路示意圖,圖6係為根據本發明第六實施例所繪示之訊號讀取電路的電路示意圖。圖4所對應的實施例係相仿於圖2所對應的實施例,圖5與圖6所對應的實施例則相仿於圖3所對應的實施例。不同的是,在圖4所對應的實施例中,第一電晶體T1’係為P型的金屬氧化物半導體電晶體。在圖5所對應的實施例中,第一電晶體T1’與第三電晶體T3’係為P型的金屬氧化物半導體電晶體。在圖6所對應的實施例中,第一電晶體T1’以至於第四電晶體T4’係為P型的金屬氧化物半導體電晶體。藉著圖1至圖6所示的實施例,本案的訊號讀取電路得以在保有核心精神的情況下適用於不同的製程,增加了實務上的泛用性。上述僅為舉例示範,實際上並不以此為限。 Referring to FIG. 4, FIG. 5 and FIG. 6, FIG. 4 is a circuit diagram of a signal reading circuit according to a fourth embodiment of the present invention, and FIG. 5 is a signal diagram according to a fifth embodiment of the present invention. FIG. 6 is a circuit diagram of a signal reading circuit according to a sixth embodiment of the present invention. The embodiment corresponding to FIG. 4 is similar to the embodiment corresponding to FIG. 2, and the embodiment corresponding to FIG. 5 and FIG. 6 is similar to the embodiment corresponding to FIG. The difference is that in the embodiment corresponding to Fig. 4, the first transistor T1' is a P-type metal oxide semiconductor transistor. In the embodiment corresponding to Fig. 5, the first transistor T1' and the third transistor T3' are P-type metal oxide semiconductor transistors. In the embodiment corresponding to Fig. 6, the first transistor T1' is such that the fourth transistor T4' is a P-type metal oxide semiconductor transistor. By the embodiment shown in FIG. 1 to FIG. 6, the signal reading circuit of the present invention can be applied to different processes while maintaining the core spirit, which increases the versatility in practice. The above is merely an example and is not limited to this.

請參照圖7,圖7係為根據本發明第七實施例所繪示之訊號讀取電路的電路示意圖。於圖7所對應的實施例中,相較於圖1所示的實 施例,訊號讀取電路7更具有取樣開關SW1、第一取樣模組72與第二取樣模組74。取樣開關SW1的兩端分別電性耦接放大器OP的第一輸入端Nin1與放大器OP的輸出端Nout。取樣開關SW1依據第二時脈訊號XCK選擇性地將第一輸入端Nin1導通至輸出端Nout。 Please refer to FIG. 7. FIG. 7 is a schematic circuit diagram of a signal reading circuit according to a seventh embodiment of the present invention. In the embodiment corresponding to FIG. 7, compared to the actual one shown in FIG. For example, the signal reading circuit 7 further has a sampling switch SW1, a first sampling module 72 and a second sampling module 74. The two ends of the sampling switch SW1 are electrically coupled to the first input terminal Nin1 of the amplifier OP and the output terminal Nout of the amplifier OP, respectively. The sampling switch SW1 selectively turns on the first input terminal Nin1 to the output terminal Nout according to the second clock signal XCK.

第一取樣模組72具有第一取樣電晶體TS1與第二取樣電晶體TS2。第二取樣模組74具有第三取樣電晶體TS3與第四取樣電晶體TS4。第一取樣電晶體TS1的第一端用以接收第一參考電壓Vref1。第一取樣電晶體TS1的第二端電性耦接第一電晶體T1的控制端。第一取樣電晶體TS1的控制端用以接收第一時脈訊號CK。第二取樣電晶體TS2的第一端電性耦接第一電晶體T1的控制端。第二取樣電晶體TS2的第二端用以接收第二參考電壓Vref2。第二取樣電晶體TS2的控制端用以接收第二時脈訊號XCK。 The first sampling module 72 has a first sampling transistor TS1 and a second sampling transistor TS2. The second sampling module 74 has a third sampling transistor TS3 and a fourth sampling transistor TS4. The first end of the first sampling transistor TS1 is configured to receive the first reference voltage Vref1. The second end of the first sampling transistor TS1 is electrically coupled to the control end of the first transistor T1. The control end of the first sampling transistor TS1 is configured to receive the first clock signal CK. The first end of the second sampling transistor TS2 is electrically coupled to the control end of the first transistor T1. The second end of the second sampling transistor TS2 is configured to receive the second reference voltage Vref2. The control end of the second sampling transistor TS2 is configured to receive the second clock signal XCK.

第二取樣模組74具有第三取樣電晶體TS3與第四取樣電晶體TS4。第三取樣電晶體TS3的第一端用以接收輸入電壓Vin。第三取樣電晶體TS3的第二端電性耦接第二電晶體T2的控制端。第三取樣電晶體TS3的控制端用以接收第一時脈訊號CK。第四取樣電晶體TS4的第一端電性耦接第一電晶體T1的控制端。第四取樣電晶體TS4的第二端用以接收第二基準電壓V2。第四取樣電晶體TS4的控制端用以接收第二時脈訊號XCK。 The second sampling module 74 has a third sampling transistor TS3 and a fourth sampling transistor TS4. The first end of the third sampling transistor TS3 is for receiving the input voltage Vin. The second end of the third sampling transistor TS3 is electrically coupled to the control end of the second transistor T2. The control end of the third sampling transistor TS3 is configured to receive the first clock signal CK. The first end of the fourth sampling transistor TS4 is electrically coupled to the control end of the first transistor T1. The second end of the fourth sampling transistor TS4 is for receiving the second reference voltage V2. The control end of the fourth sampling transistor TS4 is configured to receive the second clock signal XCK.

在這樣的電路架構與訊號時序下,當第一時脈訊號CK為低電壓準位時,第一取樣電晶體TS1與第三取樣電晶體TS3不導通,第二取樣電晶體TS2、第四取樣電晶體TS4與取樣開關SW1導通。此時,第二參考電壓Vref2被提供至第一電晶體T1的控制端,第二基準電壓V2被提供至第二電晶體T2的控制端。第一電晶體T1的控制端的電壓準位相仿於第一節點N1的電壓準位,第一電晶體T1不導通。第二電晶體T2的控制端的電壓準位相仿於第二電晶體T2的第二端的電壓準位,第二電晶體T2 不導通。藉由第二取樣電晶體T2與第四取樣電晶體T4,得以穩定第一電晶體T1的控制端的電壓準位與第二電晶體T2的控制端的電壓準位,並確保第一電晶體T1與第二電晶體T2在第一時脈訊號CK為低電壓準位時不導通。 In the circuit architecture and the signal timing, when the first clock signal CK is at a low voltage level, the first sampling transistor TS1 and the third sampling transistor TS3 are not turned on, and the second sampling transistor TS2 and the fourth sampling are performed. The transistor TS4 is turned on with the sampling switch SW1. At this time, the second reference voltage Vref2 is supplied to the control terminal of the first transistor T1, and the second reference voltage V2 is supplied to the control terminal of the second transistor T2. The voltage level of the control terminal of the first transistor T1 is similar to the voltage level of the first node N1, and the first transistor T1 is not turned on. The voltage level of the control terminal of the second transistor T2 is similar to the voltage level of the second terminal of the second transistor T2, and the second transistor T2 Not conductive. By the second sampling transistor T2 and the fourth sampling transistor T4, the voltage level of the control terminal of the first transistor T1 and the voltage level of the control terminal of the second transistor T2 are stabilized, and the first transistor T1 is ensured. The second transistor T2 is not turned on when the first clock signal CK is at a low voltage level.

當第一時脈訊號CK為高電壓準位時,第一取樣電晶體TS1與第三取樣電晶體TS3導通,第二取樣電晶體TS2、第四取樣電晶體TS4與取樣開關SW1不導通。此時,第一參考電壓Vref1被提供至第一電晶體T1的控制端,輸入電壓Vin被提供至第二電晶體T2的控制端。對應地,流經第一電晶體T1的電流IT1’與流經第二電晶體T2的電流IT2’可分別表達如下二式: When the first clock signal CK is at a high voltage level, the first sampling transistor TS1 and the third sampling transistor TS3 are turned on, and the second sampling transistor TS2, the fourth sampling transistor TS4 and the sampling switch SW1 are not turned on. At this time, the first reference voltage Vref1 is supplied to the control terminal of the first transistor T1, and the input voltage Vin is supplied to the control terminal of the second transistor T2. Correspondingly, the current IT1' flowing through the first transistor T1 and the current IT2' flowing through the second transistor T2 can be expressed as follows:

式(5)與式(6)中的參數係如前述,於此不再贅述。惟ΔV是用以指第一取樣電晶體TS1的導通電阻與第三取樣電晶體TS3的導通電阻所導致的電壓差。相仿地,在此實施例中,第一取樣電晶體TS1的導通電阻所導致的電壓差與第三取樣電晶體TS3的導通電阻所導致的電壓差大致上相同,但並不以此為限。此時,電流IR’同樣表達如式(7): The parameters in the formulas (5) and (6) are as described above, and are not described herein again. ΔV is used to refer to the voltage difference caused by the on-resistance of the first sampling transistor TS1 and the on-resistance of the third sampling transistor TS3. Similarly, in this embodiment, the voltage difference caused by the on-resistance of the first sampling transistor TS1 is substantially the same as the voltage difference caused by the on-resistance of the third sampling transistor TS3, but is not limited thereto. At this time, the current IR' is also expressed as in equation (7):

換句話說,電流IR’無關於第一取樣電晶體TS1及第三取樣電晶體TS3的導通電阻,且電流IR’無關於第一電晶體T1及第二電晶體T2的門檻電壓。如前述地,此時輸出電壓Vout係關聯於電阻R1的阻值、流經電阻R1的電流IR與第二參考電壓Vref2,因此輸出電壓Vout也無關於第一取樣電晶體TS1與第三取樣電晶體TS3的導通電阻以及第一電晶體 T1與第二電晶體T2的門檻電壓。 In other words, the current IR' is independent of the on-resistance of the first sampling transistor TS1 and the third sampling transistor TS3, and the current IR' is independent of the threshold voltages of the first transistor T1 and the second transistor T2. As described above, the output voltage Vout is associated with the resistance of the resistor R1, the current IR flowing through the resistor R1, and the second reference voltage Vref2. Therefore, the output voltage Vout is also independent of the first sampling transistor TS1 and the third sampling battery. On-resistance of crystal TS3 and first transistor The threshold voltage of T1 and the second transistor T2.

而於圖7所對應的實施例中,訊號讀取電路7更具有電容C1與電容C2。電容C1電性耦接第一取樣電晶體TS1的第二端與第二取樣電晶體TS2的第一端。電容C2電性耦接第三取樣電晶體TS3的第二端與第四取樣電晶體TS4的第一端。電容C1、C2係用以穩壓濾波,以防止第一電晶體T1的控制端的電壓準位與第二電晶體T2的控制端的電壓準位被雜訊所干擾。在一實施例中,電容C1與電容C2的電容值相同,但並不以此為限。 In the embodiment corresponding to FIG. 7, the signal reading circuit 7 further has a capacitor C1 and a capacitor C2. The capacitor C1 is electrically coupled to the second end of the first sampling transistor TS1 and the first end of the second sampling transistor TS2. The capacitor C2 is electrically coupled to the second end of the third sampling transistor TS3 and the first end of the fourth sampling transistor TS4. The capacitors C1 and C2 are used for voltage stabilization filtering to prevent the voltage level of the control terminal of the first transistor T1 from being disturbed by the noise level of the control terminal of the second transistor T2. In an embodiment, the capacitance values of the capacitor C1 and the capacitor C2 are the same, but are not limited thereto.

請參照圖8,圖8係為根據本發明第八實施例所繪示之訊號讀取電路的電路示意圖。圖8所示的實施例係相仿於圖7所對應的實施例,不同之處在於,圖8中的各電晶體係為P型的金屬氧化物半導體電晶體,且各電壓也被相應地調整。相關細節係為所屬技術領域具有通常知識者經詳閱本說明書後所能類推而得,在此並不加以贅述。圖8所示的實施例係具有與圖7所對應的實施例相仿的功效,並提供製程上另外一種實作的方式。 Please refer to FIG. 8. FIG. 8 is a schematic circuit diagram of a signal reading circuit according to an eighth embodiment of the present invention. The embodiment shown in FIG. 8 is similar to the embodiment corresponding to FIG. 7, except that each of the electromorphic systems in FIG. 8 is a P-type metal oxide semiconductor transistor, and the voltages are also adjusted accordingly. . The relevant details are generally obtained by those skilled in the art after reading this specification, and are not described herein. The embodiment shown in Figure 8 has similar efficiencies to the embodiment corresponding to Figure 7, and provides another way of implementing the process.

另一方面,如式(4)所示,輸出電壓Vout實際上具有一個相等於第二參考電壓Vref2的偏移量,而使得輸出電壓Vout不能直接是經過增益的輸入電壓Vin。於實務上,本發明所提供的訊號讀取電路可更具有減法模組以消除輸出電壓Vout的偏移量。請一併參照圖9,圖9係為根據本發明一實施例所繪示之減法模組的電路示意圖。減法模組96具有緩衝單元962與減法單元964。緩衝單元962的輸入端用以接收如前述的輸出電壓Vout,緩衝單元962的輸出端電性耦接減法單元964的輸入端。緩衝單元962具有放大器OPS1。減法單元964具有電阻RS1~RS4與放大器OPS2。其中,放大器OPS1的非反相輸入端電性耦接放大器OPS2的輸出端而形成電壓隨耦器,放大器OPS2則與電阻RS1~RS4電性耦接成電壓減法器。電壓減法器的一端即為減法單元964的輸入端,電壓減法器的另一 端則用以接收第二參考電壓Vref2。在此實施例中,電阻RS1~RS4的電阻值彼此相同。因此,由式(4)與圖9所示的減法模組96,減法模組96係依據輸出電壓Vout與第二參考電壓Vref2產生輸出電壓Vout’。其中,輸出電壓Vout’係表達如下式:Vout'=R×IR (8) On the other hand, as shown in the equation (4), the output voltage Vout actually has an offset equal to the second reference voltage Vref2, so that the output voltage Vout cannot be directly the gain input voltage Vin. In practice, the signal reading circuit provided by the present invention may further have a subtraction module to eliminate the offset of the output voltage Vout. Please refer to FIG. 9. FIG. 9 is a schematic circuit diagram of a subtraction module according to an embodiment of the invention. The subtraction module 96 has a buffer unit 962 and a subtraction unit 964. The input end of the buffer unit 962 is configured to receive the output voltage Vout as described above, and the output end of the buffer unit 962 is electrically coupled to the input end of the subtraction unit 964. The buffer unit 962 has an amplifier OPS1. The subtraction unit 964 has resistors RS1 to RS4 and an amplifier OPS2. The non-inverting input terminal of the amplifier OPS1 is electrically coupled to the output end of the amplifier OPS2 to form a voltage follower, and the amplifier OPS2 is electrically coupled to the resistors RS1~RS4 to form a voltage subtractor. One end of the voltage subtractor is the input end of the subtraction unit 964, and the other end of the voltage subtractor is used to receive the second reference voltage Vref2. In this embodiment, the resistance values of the resistors RS1 to RS4 are identical to each other. Therefore, from the subtraction module 96 shown in the formula (4) and FIG. 9, the subtraction module 96 generates the output voltage Vout' according to the output voltage Vout and the second reference voltage Vref2. Among them, the output voltage Vout' is expressed as follows: Vout ' = R × IR (8)

亦即,藉由減法模組96,輸出電壓Vout’不再具有如輸出電壓Vout所具有的偏移量。而在另一種實施例中,減法模組的另一端例如用以接收時變訊號。此時變訊號的頻率與波形相同於如前述的第一時脈訊號CK,其振幅可依實際所需被放大或被降低。藉此,除了可以使輸出電壓Vout’不再具有如關聯於第二參考電壓Vref2的偏移量,更得以提升後端處理的動態範圍(dynamic range)。 That is, with the subtraction module 96, the output voltage Vout' no longer has an offset as the output voltage Vout has. In another embodiment, the other end of the subtraction module is used to receive a time-varying signal, for example. At this time, the frequency and waveform of the variable signal are the same as the first clock signal CK as described above, and the amplitude thereof can be amplified or reduced as needed. Thereby, in addition to making the output voltage Vout' no longer have an offset as associated with the second reference voltage Vref2, the dynamic range of the back end processing can be improved.

依據上述,本發明更提供了一種脈搏感測器。請參照圖11,圖11係為根據本發明一實施例所繪示之脈搏偵測器的示意圖。脈搏偵測器20具有多個偵測模組。在此實施例中係舉排列成陣列的偵測模組202a~202p為例進行說明,然實際上脈搏偵測器中的各偵測模組的數量與排列方式應不以所舉之例為限。 In accordance with the above, the present invention further provides a pulse sensor. Please refer to FIG. 11. FIG. 11 is a schematic diagram of a pulse detector according to an embodiment of the invention. The pulse detector 20 has a plurality of detection modules. In this embodiment, the detection modules 202a-202p arranged in an array are taken as an example for description. However, the number and arrangement of the detection modules in the pulse detector should not be based on the example. limit.

請接著參照圖12以對脈搏偵測器進行進一步地敘述,圖12係為根據本發明一實施例所繪示之脈搏偵測器的其中一個偵測單元的功能方塊示意圖。圖12係依據圖11中的偵測模組202a繪示而成。如圖12所示,偵測模組202a具有感測單元2022a與訊號讀取電路2024a。 Referring to FIG. 12, the pulse detector is further described. FIG. 12 is a functional block diagram of one of the detecting units of the pulse detector according to an embodiment of the invention. FIG. 12 is illustrated in accordance with the detection module 202a of FIG. As shown in FIG. 12, the detection module 202a has a sensing unit 2022a and a signal reading circuit 2024a.

感測單元2022a電性耦接訊號讀取電路2024a。在一實施例中,感測單元2022a例如為壓電感測器,感測單元2022a用以依據生物體脈搏產生對應的壓電訊號以作為如前述的輸入信號。壓電感測器30例如具有以聚偏氟乙烯(Polyvinylidene,PVDF)材料製成的壓電薄膜,但並不以此為限。 The sensing unit 2022a is electrically coupled to the signal reading circuit 2024a. In one embodiment, the sensing unit 2022a is, for example, a piezoelectric sensor, and the sensing unit 2022a is configured to generate a corresponding piezoelectric signal according to the pulse of the living body as an input signal as described above. The piezoelectric detector 30 has, for example, a piezoelectric film made of a polyvinylidene fluoride (PVDF) material, but is not limited thereto.

訊號讀取電路2024a例如為圖1至圖9中任一所述之訊號讀 取電路。相關作動細節係如前述,於此不再贅述。於此實施例中,偵測模組202a更具有調變單元2026a。調變單元2026a電性耦接訊號讀取電路2024a。調變單元2026a用以依據訊號讀取電路2024a的輸出訊號產生對應於後續電路規格的調變信號,以供後續電路使用。然調變單元為一種選擇性的設計,各偵測模組並不必然具有調變單元。 The signal reading circuit 2024a is, for example, a signal reading as described in any of FIGS. 1 to 9. Take the circuit. The relevant actuation details are as described above and will not be described here. In this embodiment, the detection module 202a further has a modulation unit 2026a. The modulation unit 2026a is electrically coupled to the signal reading circuit 2024a. The modulation unit 2026a is configured to generate a modulation signal corresponding to the subsequent circuit specification according to the output signal of the signal reading circuit 2024a for use by the subsequent circuit. However, the modulation unit is an optional design, and each detection module does not necessarily have a modulation unit.

如上述概念,本發明更提供了一種訊號讀取電路的控制方法,請參照圖10以進行說明,圖10係為根據本發明一實施例所繪示之訊號讀取電路的控制方法的流程示意圖。如圖10所述的訊號讀取電路的控制方法,適用於訊號讀取電路。所述的訊號讀取電路具有第一電晶體、第二電晶體、電阻與放大器。放大器具有第一輸入端、第二輸入端與輸出端。第一電晶體的一端電性耦接第一輸入端,另一端用以接收第一基準電壓。第二電晶體的一端電性耦接第一輸入端,另一端用以接收第二基準電壓。電阻的兩端分別電性耦接第一輸入端與輸出端。所述的控制方法於步驟S101中,操作第一電晶體與第二電晶體於線性區。於步驟S103中,令流經電阻的電流的電流值為第一電晶體的導通電流與第二電晶體的導通電流的差值。而於步驟S105中,令第一電晶體的兩端的跨壓值等於第二電晶體的兩端的跨壓值。其中,放大器的輸出端的電壓準位關聯於電阻的阻值與流經電阻的電流。需注意的是,上述的步驟S103與步驟S105並無必然的先後順序之分。 The present invention further provides a method for controlling the signal reading circuit. Referring to FIG. 10, FIG. 10 is a schematic flowchart of a method for controlling a signal reading circuit according to an embodiment of the invention. . The control method of the signal reading circuit as shown in FIG. 10 is applicable to the signal reading circuit. The signal reading circuit has a first transistor, a second transistor, a resistor and an amplifier. The amplifier has a first input, a second input, and an output. One end of the first transistor is electrically coupled to the first input end, and the other end is configured to receive the first reference voltage. One end of the second transistor is electrically coupled to the first input end, and the other end is configured to receive the second reference voltage. The two ends of the resistor are electrically coupled to the first input end and the output end, respectively. The control method is to operate the first transistor and the second transistor in the linear region in step S101. In step S103, the current value of the current flowing through the resistor is a difference between the on current of the first transistor and the on current of the second transistor. In step S105, the voltage across the two ends of the first transistor is equal to the voltage across the second transistor. The voltage level at the output of the amplifier is related to the resistance of the resistor and the current flowing through the resistor. It should be noted that the above steps S103 and S105 have no necessary sequence.

於一實施例中,在令第一電晶體的兩端的跨壓值等於第二電晶體的兩端的跨壓值的步驟中,係提供第二參考電壓至第二輸入端,第二參考電壓係為第一基準電壓與第二基準電壓的平均值。 In an embodiment, in the step of making the voltage across the first transistor equal to the voltage across the second transistor, providing the second reference voltage to the second input terminal, the second reference voltage system It is an average value of the first reference voltage and the second reference voltage.

綜合以上所述,本發明提供了一種訊號讀取電路及其控制方法,利用電流相減的方式,降低元件電性變異對於感測元件訊號讀出值的影響。藉此,即使訊號讀取電路中的元件參數因為實務上的情況失準,訊號讀取電路仍能避免受到參數失準的影響,而仍可輸出精準的讀值,成功 地克服了元件參數失準影響訊號讀取電路精準度的問題。 In summary, the present invention provides a signal reading circuit and a control method thereof, which use a current subtraction method to reduce the influence of the electrical variation of the component on the signal reading value of the sensing component. Therefore, even if the component parameters in the signal reading circuit are out of alignment due to the actual situation, the signal reading circuit can avoid the influence of the parameter misalignment, and can still output an accurate reading value, and succeeds. The ground overcomes the problem that the component parameter misalignment affects the accuracy of the signal reading circuit.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

1‧‧‧訊號讀取電路 1‧‧‧Signal reading circuit

IR‧‧‧電流 IR‧‧‧current

N1‧‧‧第一節點 N1‧‧‧ first node

Nin1‧‧‧第一輸入端 Nin1‧‧‧ first input

Nin2‧‧‧第二輸入端 Nin2‧‧‧ second input

Nout‧‧‧輸出端 Nout‧‧‧ output

OP‧‧‧放大器 OP‧‧Amplifier

R‧‧‧電阻 R‧‧‧resistance

T1‧‧‧第一電晶體 T1‧‧‧first transistor

T2‧‧‧第二電晶體 T2‧‧‧second transistor

V1‧‧‧第一基準電壓 V1‧‧‧ first reference voltage

V2‧‧‧第二基準電壓 V2‧‧‧second reference voltage

Vref1‧‧‧第一參考電壓 Vref1‧‧‧ first reference voltage

Vref2‧‧‧第二參考電壓 Vref2‧‧‧second reference voltage

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage

Claims (10)

一種訊號讀取電路,包括:一第一電晶體,該第一電晶體的一第一端用以接收一第一基準電壓,該第一電晶體的一第二端電性耦接一第一節點,該第一電晶體的一控制端用以接收一第一參考電壓;一第二電晶體,該第二電晶體的一第一端電性耦接該第一節點,該第二電晶體的一第二端用以接收一第二基準電壓,該第二電晶體的一控制端用以接收一輸入電壓;一放大器,具有一第一輸入端、一第二輸入端與一輸出端,該第一輸入端電性耦接該第一節點,該第二輸入端用以接收一第二參考電壓;以及一電阻,一端電性耦接該放大器的該第一輸入端,另一端電性耦接該放大器的該輸出端;其中,流經該電阻的電流的電流值為該第一電晶體的導通電流與該第二電晶體的導通電流的差值。 A signal reading circuit includes: a first transistor, a first end of the first transistor is configured to receive a first reference voltage, and a second end of the first transistor is electrically coupled to a first a node, a control end of the first transistor is configured to receive a first reference voltage; a second transistor, a first end of the second transistor is electrically coupled to the first node, the second transistor a second end is configured to receive a second reference voltage, a control end of the second transistor is configured to receive an input voltage, and an amplifier has a first input end, a second input end, and an output end. The first input end is electrically coupled to the first node, the second input end is configured to receive a second reference voltage, and a resistor is electrically coupled to the first input end of the amplifier, and the other end is electrically The output terminal of the amplifier is coupled to the amplifier; wherein a current value of a current flowing through the resistor is a difference between an on current of the first transistor and an on current of the second transistor. 如請求項1所述之訊號讀取電路,其中該第一電晶體與該第二電晶體操作於線性區,該放大器的該輸出端的電壓準位關聯於該電阻的阻值、流經該電阻的電流與該第二參考電壓。 The signal reading circuit of claim 1, wherein the first transistor and the second transistor operate in a linear region, and a voltage level of the output of the amplifier is associated with a resistance of the resistor and flows through the resistor. The current is related to the second reference voltage. 如請求項1所述之訊號讀取電路,其中該第二參考電壓的電壓值為該第一基準電壓與該第二基準電壓的平均值。 The signal reading circuit of claim 1, wherein the voltage value of the second reference voltage is an average of the first reference voltage and the second reference voltage. 如請求項1所述之訊號讀取電路,其中該第一電晶體的通道寬長比與該第二電晶體的通道寬長比相同。 The signal reading circuit of claim 1, wherein a channel width to length ratio of the first transistor is the same as a channel width to length ratio of the second transistor. 如請求項1所述之訊號讀取電路,更包括:一第三電晶體,該第三電晶體的一第一端用以接收該第一基準電壓,該第三電晶體的一第二端電性耦接該第一電晶體的第一端,該第三電晶體的一控制端用以接收一第三參考電壓;以及一第四電晶體,該第四電晶體的一第一端電性耦接該第二電晶體的第二端,該第四電晶體的一第二端電性耦接該第二基準電壓,該第四電晶體的一控制端用以接收一第四參考電壓。 The signal reading circuit of claim 1, further comprising: a third transistor, a first end of the third transistor for receiving the first reference voltage, and a second end of the third transistor Electrically coupling a first end of the first transistor, a control end of the third transistor for receiving a third reference voltage, and a fourth transistor, a first end of the fourth transistor The second end of the fourth transistor is electrically coupled to the second reference voltage, and a control end of the fourth transistor is configured to receive a fourth reference voltage. . 如請求項1至5任一項的訊號讀取電路,更包括:一第一取樣模組,包括:一第一取樣電晶體,該第一取樣電晶體的一第一端用以接收該第一參考電壓,該第一取樣電晶體的一第二端電性耦接該第一電晶體的該控制端,該第一取樣電晶體的一控制端用以接收一第一時脈訊號;以及一第二取樣電晶體,該第二取樣電晶體的一第一端電性耦接該第一電晶體的該控制端,該第二取樣電晶體的一第二端用以接收該第二參考電壓,該第二取樣電晶體的一控制端用以接收一第二時脈訊號,該第二時脈訊號反相於該第一時脈訊號;以及一第二取樣模組,包括:一第三取樣電晶體,該第三取樣電晶體的一第一端用以接收該輸入電壓,該第三取樣電晶體的一第二端電性耦接該第二電晶體的該控制端,該第三取樣電晶體的一控制端用以接收該第一時脈訊號;以及 一第四取樣電晶體,該第四取樣電晶體的一第一端電性耦接該第一電晶體的該控制端,該第四取樣電晶體的一第二端用以接收該第二基準電壓,該第四取樣電晶體的一控制端用以該第二時脈訊號;一取樣開關,該取樣開關的兩端分別電性耦接該放大器的該第一輸入端與該放大器的該輸出端,該取樣開關依據該第二時脈訊號選擇性地將該第一輸入端導通至該輸出端。 The signal reading circuit of any one of claims 1 to 5, further comprising: a first sampling module, comprising: a first sampling transistor, a first end of the first sampling transistor is configured to receive the first a reference voltage, a second end of the first sampling transistor is electrically coupled to the control end of the first transistor, and a control end of the first sampling transistor is configured to receive a first clock signal; a second sampling transistor, a first end of the second sampling transistor is electrically coupled to the control end of the first transistor, and a second end of the second sampling transistor is configured to receive the second reference a second sampling signal of the second sampling transistor for receiving a second clock signal, wherein the second clock signal is inverted to the first clock signal; and a second sampling module comprising: a first a third sampling transistor, a first end of the third sampling transistor is configured to receive the input voltage, and a second end of the third sampling transistor is electrically coupled to the control end of the second transistor a control terminal of the three sampling transistor is configured to receive the first clock signal; a fourth sampling transistor, a first end of the fourth sampling transistor is electrically coupled to the control end of the first transistor, and a second end of the fourth sampling transistor is configured to receive the second reference a voltage, a control terminal of the fourth sampling transistor is used for the second clock signal; a sampling switch, the two ends of the sampling switch are electrically coupled to the first input end of the amplifier and the output of the amplifier And the sampling switch selectively turns the first input end to the output end according to the second clock signal. 如請求項1所述之訊號讀取電路,更包括一減法模組,該減法模組的輸入端電性耦接該放大器的該輸出端,該減法模組的輸出訊號係關聯於該電阻的阻值與流經該電阻的電流。 The signal reading circuit of claim 1, further comprising a subtraction module, wherein the input end of the subtraction module is electrically coupled to the output end of the amplifier, and the output signal of the subtraction module is associated with the resistor Resistance and current flowing through the resistor. 一種訊號讀取電路的控制方法,適用於一訊號讀取電路,該訊號讀取電路具有一第一電晶體、一第二電晶體、一電阻與一放大器,該放大器具有一第一輸入端、一第二輸入端與一輸出端,該第一電晶體的一端電性耦接該第一輸入端,另一端用以接收一第一基準電壓,該第二電晶體的一端電性耦接該第一輸入端,另一端用以接收一第二基準電壓,該電阻的兩端分別電性耦接該第一輸入端與該輸出端,該控制方法包括:操作該第一電晶體與該第二電晶體於線性區;令流經該電阻的電流的電流值為該第一電晶體的導通電流與該第二電晶體的導通電流的差值;以及令該第一電晶體的兩端的跨壓值等於該第二電晶體的兩端的跨壓值; 其中,該放大器的該輸出端的電壓準位關聯於該電阻的阻值與流經該電阻的電流。 A signal reading circuit control method is applicable to a signal reading circuit having a first transistor, a second transistor, a resistor and an amplifier, the amplifier having a first input terminal, a second input end and an output end, the first transistor is electrically coupled to the first input end, the other end is configured to receive a first reference voltage, and one end of the second transistor is electrically coupled to the first input end a first input end, the other end is configured to receive a second reference voltage, and the two ends of the resistor are electrically coupled to the first input end and the output end respectively, the control method includes: operating the first transistor and the first a diode is in the linear region; a current value of the current flowing through the resistor is a difference between an on current of the first transistor and an on current of the second transistor; and a cross between the ends of the first transistor The pressure value is equal to the voltage across the two ends of the second transistor; Wherein, the voltage level of the output of the amplifier is related to the resistance of the resistor and the current flowing through the resistor. 如請求項8所述的控制方法,其中於令該第一電晶體的兩端的跨壓值等於該第二電晶體的兩端的跨壓值的步驟中,係包括提供一第二參考電壓至該第二輸入端,該第二參考電壓係為該第一基準電壓與該第二基準電壓的平均值。 The control method of claim 8, wherein the step of making the voltage across the first transistor equal to the voltage across the second transistor includes providing a second reference voltage to the The second input terminal is the average of the first reference voltage and the second reference voltage. 一種脈搏偵測器,包括:多個偵測模組,每一該偵測模組包括:如請求項1至請求項7中任一項所述之一訊號讀取電路;以及一感測單元,電性耦接該訊號讀取電路,該感測單元用以依據一生物體脈搏產生該輸入電壓。 A pulse detector includes: a plurality of detection modules, each of the detection modules comprising: one of the signal reading circuits according to any one of claim 1 to claim 7; and a sensing unit The signal reading circuit is electrically coupled to the sensing unit, and the sensing unit is configured to generate the input voltage according to a pulse of a living body.
TW105122518A 2016-07-15 2016-07-15 Signal reading circuit and control method thereof TWI605683B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105122518A TWI605683B (en) 2016-07-15 2016-07-15 Signal reading circuit and control method thereof
CN201610929628.9A CN106419862B (en) 2016-07-15 2016-10-31 Signal reading circuit, control method thereof and pulse detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105122518A TWI605683B (en) 2016-07-15 2016-07-15 Signal reading circuit and control method thereof

Publications (2)

Publication Number Publication Date
TWI605683B true TWI605683B (en) 2017-11-11
TW201803264A TW201803264A (en) 2018-01-16

Family

ID=58177303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122518A TWI605683B (en) 2016-07-15 2016-07-15 Signal reading circuit and control method thereof

Country Status (2)

Country Link
CN (1) CN106419862B (en)
TW (1) TWI605683B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651929B (en) * 2018-05-02 2019-02-21 友達光電股份有限公司 Sense circuit
CN109965854B (en) 2018-08-29 2022-03-01 友达光电股份有限公司 Sensing component and pulse condition measuring method
TWI709895B (en) * 2020-01-14 2020-11-11 大陸商北京集創北方科技股份有限公司 Analog front-end circuit, biological feature acquisition circuit, touch detection circuit and information processing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405701A (en) * 2003-09-03 2005-03-09 Seiko Epson Corp Differential current sensing circuit
TWI470394B (en) * 2012-12-13 2015-01-21 Issc Technologies Corp Voltage generator
US9319013B2 (en) * 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
TWI546794B (en) * 2014-09-03 2016-08-21 友達光電股份有限公司 Circuitry of organic light emitting diode

Also Published As

Publication number Publication date
CN106419862B (en) 2019-08-09
TW201803264A (en) 2018-01-16
CN106419862A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6396730B2 (en) Semiconductor device
TWI605683B (en) Signal reading circuit and control method thereof
US10163521B2 (en) High voltage bootstrap sampling circuit
US10078016B2 (en) On-die temperature sensor for integrated circuit
KR20150054214A (en) Sensor read out integrated circuit of capacitor type
CN110581689A (en) Method and apparatus for driver calibration
US20110095813A1 (en) Mos transistor resistor, filter, and integrated circuit
KR101809542B1 (en) Switching circuit, charge sense amplifier and photon detecting device using the same
CN112332791B (en) Variable gain amplifier
JP6666999B2 (en) Detection circuit
US20100289936A1 (en) Buffer circuit, image sensor chip comprising the same, and image pickup device
CN109933117B (en) Reference voltage generator
US9590577B2 (en) Linearized high-ohmic resistor
US8446183B2 (en) High current emitter drive unit cell
KR102153872B1 (en) Comparison circuit
TWI545890B (en) Electronic device and comparator thereof
US9500501B2 (en) Startup circuit, capacitive sensor amplification device having startup circuit, and startup method for amplification device
JP6246482B2 (en) Bias circuit, amplifier
US11165424B2 (en) Field-effect transistor arrangement and method for setting a drain current of a field-effect transistor
US20190277800A1 (en) Conductance measurement circuit
US10715114B1 (en) Filter and operating method thereof
TWI763688B (en) Input device
CN108352181B (en) Charge injection noise reduction in sample and hold circuits
US9772354B2 (en) Output circuit with limited output voltage range and reduced power consumption and current sensor having the same
KR20160025826A (en) Voice Coil Motor driving circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees