TWI605617B - Light emitting diode device and manufacturing method thereof - Google Patents

Light emitting diode device and manufacturing method thereof Download PDF

Info

Publication number
TWI605617B
TWI605617B TW105101001A TW105101001A TWI605617B TW I605617 B TWI605617 B TW I605617B TW 105101001 A TW105101001 A TW 105101001A TW 105101001 A TW105101001 A TW 105101001A TW I605617 B TWI605617 B TW I605617B
Authority
TW
Taiwan
Prior art keywords
electrode
protective layer
light emitting
layer
emitting diode
Prior art date
Application number
TW105101001A
Other languages
Chinese (zh)
Other versions
TW201725756A (en
Inventor
陳智柔
陳標達
詹國維
蘇志宗
黃國晃
蔡凱勛
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW105101001A priority Critical patent/TWI605617B/en
Publication of TW201725756A publication Critical patent/TW201725756A/en
Application granted granted Critical
Publication of TWI605617B publication Critical patent/TWI605617B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光二極體裝置及其製造方法Light-emitting diode device and method of manufacturing same

本發明係有關於一種發光裝置及其製造方法,特別有關於一種具有發光二極體的發光裝置及其製造方法。 The present invention relates to a light-emitting device and a method of fabricating the same, and more particularly to a light-emitting device having a light-emitting diode and a method of fabricating the same.

發光二極體(light emitting diode,LED)由於具有發光效率高、壽命長以及低耗電等優點,近年來已逐漸取代傳統鎢絲燈泡、鹵素燈泡或燈管而成為主流的光源,發光二極體也被廣泛應用於大螢幕彩色顯示、汽車照明、交通訊號、多媒體顯示和光通訊等領域。然而,發光二極體的電極會在製造過程或是運送過程中會與空氣接觸而容易遭到粒子或髒汙附著等汙染,在後續的電線連接電極的過程造成電阻上升或是黏著度不佳、易脫落等缺點。因此需要一個新的製程方法改善上述的現象。 Light emitting diodes (LEDs) have become the mainstream light source due to their high luminous efficiency, long life and low power consumption. In recent years, they have gradually replaced traditional tungsten light bulbs, halogen bulbs or tubes. The body is also widely used in large screen color display, automotive lighting, traffic signal, multimedia display and optical communication. However, the electrodes of the light-emitting diodes may be in contact with the air during the manufacturing process or during transportation, and may be easily contaminated by particles or dirt, and the resistance of the subsequent wires connecting the electrodes may increase or the adhesion may be poor. , easy to fall off and other shortcomings. Therefore, a new process method is needed to improve the above phenomenon.

本揭露包括一種發光二極體裝置,包括一基板;一半導體發光疊層,位於基板上;一電極,位於半導體發光疊層上,作為對外電性接合之用途;以及一保護層,覆蓋電極之上表面,其中保護層具有遇熱產生裂解之特性或/及於對外電性接合時可被擊穿之特性。 The present disclosure includes a light emitting diode device including a substrate; a semiconductor light emitting stack on the substrate; an electrode on the semiconductor light emitting stack for external electrical bonding; and a protective layer covering the electrode The upper surface, wherein the protective layer has the property of being cracked by heat or/and can be broken down upon external electrical bonding.

本揭露亦包括一種發光二極體裝置之製造方法,包括形成一半導體發光疊層於一基板上;形成一電極於半導體發光疊層上,作為對外電性接合之用途;以及形成一保護層並覆蓋電極的上表面,其中保護層具有遇熱產生裂解之特性或/及於對外電性接合時可被擊穿之特性。 The present disclosure also includes a method of fabricating a light emitting diode device comprising: forming a semiconductor light emitting layer on a substrate; forming an electrode on the semiconductor light emitting layer for use as an external electrical bonding; and forming a protective layer and The upper surface of the electrode is covered, wherein the protective layer has the property of being cracked by heat or/and can be broken down upon external electrical bonding.

100‧‧‧發光二極體裝置 100‧‧‧Lighting diode device

102‧‧‧基板 102‧‧‧Substrate

103、103’‧‧‧半導體發光疊層 103,103'‧‧‧Semiconductor light-emitting laminate

104‧‧‧第一半導體層 104‧‧‧First semiconductor layer

106、106’‧‧‧發光層 106, 106’‧‧‧Lighting layer

108、108’‧‧‧第二半導體層 108, 108'‧‧‧second semiconductor layer

110‧‧‧第二電極 110‧‧‧second electrode

112‧‧‧第一電極 112‧‧‧First electrode

114‧‧‧電流阻障層 114‧‧‧ Current Barrier

116、116’‧‧‧透明導電層 116, 116'‧‧‧ Transparent Conductive Layer

117‧‧‧圖案化光阻層 117‧‧‧ patterned photoresist layer

118‧‧‧保護層 118‧‧‧Protective layer

120‧‧‧二氧化矽保護層 120‧‧‧ cerium oxide protective layer

第1A圖繪示根據一實施例之發光二極體裝置之剖面示意圖。 FIG. 1A is a schematic cross-sectional view of a light emitting diode device according to an embodiment.

第1B圖繪示根據另一實施例之發光二極體裝置之剖面示意圖。 FIG. 1B is a schematic cross-sectional view of a light emitting diode device according to another embodiment.

第1C圖繪示根據另一實施例之發光二極體裝置之剖面示意圖。 FIG. 1C is a schematic cross-sectional view of a light emitting diode device according to another embodiment.

第1D圖繪示根據另一實施例之發光二極體裝置之剖面示意圖。 FIG. 1D is a schematic cross-sectional view showing a light emitting diode device according to another embodiment.

第2~4圖繪示根據一些實施例之發光二極體裝置之中間製程步驟的剖面示意圖。 2 to 4 are schematic cross-sectional views showing an intermediate process step of the light emitting diode device according to some embodiments.

以下針對本發明之半導體裝置作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本發明之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本發明。當然,這些僅用以舉例而非本發明之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The semiconductor device of the present invention will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the invention. The specific elements and arrangements described below are intended to provide a brief description of the invention. Of course, these are by way of example only and not as a limitation of the invention. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the invention and are not to be construed as a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first layer of material and the second layer of material.

此外,實施例中可能使用相對性的用語,例如「較低」或「底部」及「較高」或「頂部」,以描述圖示的一個元件對於另一元件的相對關係。能 理解的是,如果將圖示的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。 In addition, relative terms such as "lower" or "bottom" and "higher" or "top" may be used in the embodiments to describe the relative relationship of one element to another. can It will be understood that if the illustrated device is flipped upside down, the component described on the "lower" side will be the component on the "higher" side.

在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。 Here, the terms "about" and "about" are usually expressed within 20% of a given value or range, preferably within 10%, and more preferably within 5%. The quantity given here is an approximate quantity, meaning that the meaning of "about" or "about" may be implied without specific explanation.

請參照第1A圖,其繪示發光二極體裝置100之剖面示意圖。如第1A圖所示,發光二極體裝置100包括一半導體發光疊層103設置於一基板102上。其中該半導體發光疊層103包含一第一半導體層104、設置於第一半導體層104上的一發光層106,其暴露出部分的第一半導體層104,以及設置於發光層106上的一第二半導體層108。在一些實施例中,基板102可為藍寶石(sapphire)基板、磷化鎵(GaP)、砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、或碳化矽(SiC)。 Please refer to FIG. 1A , which illustrates a schematic cross-sectional view of the LED device 100 . As shown in FIG. 1A, the LED device 100 includes a semiconductor light emitting layer 103 disposed on a substrate 102. The semiconductor light emitting layer 103 includes a first semiconductor layer 104, a light emitting layer 106 disposed on the first semiconductor layer 104, a portion of the exposed first semiconductor layer 104, and a first layer disposed on the light emitting layer 106. Two semiconductor layers 108. In some embodiments, substrate 102 can be a sapphire substrate, gallium phosphide (GaP), gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), or tantalum carbide (SiC).

一般而言,第一半導體層104與第二半導體層108具有不同的導電型態,在一些實施例中,第一半導體層104係n型半導體材料,而第二半導體層108係p型半導體材料。在一些實施例中,半導體材料包括氮化鋁(AlN)、氮化鎵(GaN)、氮化銦(InN)、氮化鋁鎵(AlGaN)、氮化鋁銦(AlInN)、氮化銦鎵(InGaN)、氮化鋁銦鎵(AlInGaN),或上述之組合。 In general, the first semiconductor layer 104 and the second semiconductor layer 108 have different conductivity types. In some embodiments, the first semiconductor layer 104 is an n-type semiconductor material, and the second semiconductor layer 108 is a p-type semiconductor material. . In some embodiments, the semiconductor material includes aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride. (InGaN), aluminum indium gallium nitride (AlInGaN), or a combination thereof.

發光層106可包括一層或複數層量子阱層的量子阱結構(Quantum well)。發光層106可以藉由施加電壓電子與電洞複合發光。發光層106的材料可包括氮化銦鎵(InGaN)、氮化鋁銦鎵(AlGaInN)、砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)、磷化銦砷(InAsP)、砷化銦鎵(InGaAs),或上述之組合。 The luminescent layer 106 can include a quantum well structure of one or a plurality of quantum well layers. The light emitting layer 106 can be combined with the holes to emit light by applying voltage electrons. The material of the light emitting layer 106 may include inGaN, indium gallium nitride (AlGaInN), gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), indium phosphide. Arsenic (InAsP), indium gallium arsenide (InGaAs), or a combination thereof.

請繼續參照第1A圖,一第一電極112設置於半導體發光疊層103的第二半導體層108上,而一第二電極110設置於半導體發光疊層103的暴露的第一半導體層104上。在一些實施例中,第一電極112以及第二電極110的材料包括 鉻、鉑、鈦、鋁、銅、鎳、金或上述之組合。第一電極112以及第二電極110係作為與外部電源或電子元件電性連接之用途。電性連接的接合包含以打線方式形成導線或以覆晶接合方式與外部電性連接。由於在製程過程或是運送過程中,第一電極112以及第二電極110會與空氣接觸而容易遭到粒子或髒汙附著而汙染,進而影響發光二極體裝置100在後續封裝接合的品質與穩定度。因此,如第1A圖所示,本揭露的發光二極體裝置100包括一保護層118,設置於第二電極110以及第一電極112之上,並大體上覆蓋第二電極110以及第一電極112之上表面。在一些實施例中,保護層118在第二電極110與第一電極112上表面上的總面積覆蓋率至少約90%,例如約95%~100%。在一些實施例,如第1B圖所示,保護層118更延伸至第二電極110與第一電極112的側壁並順應性覆蓋半導體發光疊層103之其他部分包含第一半導體層104、發光層106以及第二半導體層108。在其他實施例中,使用蝕刻或掀離(lift-off)製程,使保護層118僅覆蓋第二電極110以及第一電極112之上表面,如第1A圖所示。 Referring to FIG. 1A, a first electrode 112 is disposed on the second semiconductor layer 108 of the semiconductor light emitting layer 103, and a second electrode 110 is disposed on the exposed first semiconductor layer 104 of the semiconductor light emitting layer 103. In some embodiments, the materials of the first electrode 112 and the second electrode 110 include Chromium, platinum, titanium, aluminum, copper, nickel, gold or a combination of the above. The first electrode 112 and the second electrode 110 are used for electrical connection with an external power source or an electronic component. The bonding of the electrical connections includes wire bonding in a wire bonding manner or electrical connection to the outside in a flip chip bonding manner. Since the first electrode 112 and the second electrode 110 are in contact with the air during the process or the transportation process, the first electrode 112 and the second electrode 110 are easily contaminated by particles or dirt, thereby affecting the quality of the subsequent package bonding of the LED device 100. stability. Therefore, as shown in FIG. 1A, the LED device 100 of the present disclosure includes a protective layer 118 disposed on the second electrode 110 and the first electrode 112 and substantially covering the second electrode 110 and the first electrode. 112 above the surface. In some embodiments, the total area coverage of the protective layer 118 on the upper surface of the second electrode 110 and the first electrode 112 is at least about 90%, such as about 95% to 100%. In some embodiments, as shown in FIG. 1B, the protective layer 118 extends further to the sidewalls of the second electrode 110 and the first electrode 112 and compliantly covers other portions of the semiconductor light emitting stack 103 including the first semiconductor layer 104 and the light emitting layer. 106 and a second semiconductor layer 108. In other embodiments, an etch or lift-off process is used to cause the protective layer 118 to cover only the second electrode 110 and the upper surface of the first electrode 112, as shown in FIG. 1A.

保護層118為一抗汙保護層,可保護其下的第二電極110與第一電極112不受粒子或髒汙汙染及防止電極金屬形成氧化。在本實施例中,保護層118的材料可包括可進行熱裂解的材料,例如氟基化合物(如,聚四氟乙烯)。在其他實施例中,保護層118也可以是奈米高分子塗層材料(例如,環氧樹脂或石墨烯氧化物)、奈米鐵基材料(例如,二氧化三鐵(Fe2O3))、奈米非鐵基材料(例如,奈米矽酸鹽材料)或光觸媒抗汙材料(例如,二氧化鈦(TiO2))。在一些實施例中,保護層118於可見光下的透明度高於60%。在一些實施例,保護層118具有撥水特性,其水接觸角大於90°,高於無保護層之水接觸角約為60°。其抗污之特性,在一置於具有機汙染氣體環境下進行外觀判定,無保護層之電極外觀在電極金屬表面呈黑色受汙染外觀,具保護層118之電極外觀在電極金屬表面仍維持金屬亮面,具有抗汙防氧化效果。在一實施例中,保護層118的厚度介於10至500埃(Å),此 較薄的厚度,因此不需在對外電性接合前,例如打線接合前進行額外程序將保護層118移除。在一實施例中,可於打線接合時被擊穿,使焊線與電極能緊密接合。在另一實施例中,保護層118包括熱裂解材料,可先對發光二極體裝置100進行熱處理,例如烘烤發光二極體裝置100,使保護層118裂解後再進行後續的對外電性接合製程,例如打線接合或覆晶接合,烘烤的溫度可為約100至400℃,例如約300℃,時間為約5至10分鐘。在另一實施例中,在保護層118於打線接合時被擊穿後可再進行熱裂解或利用接合後的退火溫度進行熱處理,可提升焊線與電極接合的黏著度。 The protective layer 118 is an anti-fouling protective layer, which can protect the second electrode 110 and the first electrode 112 underneath from contamination by particles or dirt and prevent oxidation of the electrode metal. In the present embodiment, the material of the protective layer 118 may include a material that can be thermally cracked, such as a fluorine-based compound (eg, polytetrafluoroethylene). In other embodiments, the protective layer 118 may also be a nano polymer coating material (for example, epoxy resin or graphene oxide), a nano iron-based material (for example, ferric oxide (Fe 2 O 3 )), Nai. A non-ferrous material (for example, a nano silicate material) or a photocatalytic antifouling material (for example, titanium dioxide (TiO 2 )). In some embodiments, the protective layer 118 has a transparency greater than 60% under visible light. In some embodiments, the protective layer 118 has a water-repellent property with a water contact angle greater than 90° and a water contact angle greater than 60° above the unprotected layer. Its anti-fouling property is judged by appearance in an environment with a machine-contaminated gas. The appearance of the electrode without the protective layer is black and contaminated on the surface of the electrode metal, and the appearance of the electrode with the protective layer 118 maintains the metal on the surface of the electrode metal. Bright surface, with anti-pollution and anti-oxidation effect. In an embodiment, the protective layer 118 has a thickness of 10 to 500 angstroms (Å). The thinner thickness does not require additional processing to remove the protective layer 118 prior to external electrical bonding, such as prior to wire bonding. In one embodiment, the wire can be broken during wire bonding to enable the wire to be intimately engaged with the electrode. In another embodiment, the protective layer 118 includes a thermal cracking material, and the light emitting diode device 100 may be first heat treated, for example, the light emitting diode device 100 is baked, and the protective layer 118 is cracked before subsequent electrical externalization. The bonding process, such as wire bonding or flip chip bonding, may be at a temperature of from about 100 to 400 ° C, such as about 300 ° C, for a period of from about 5 to 10 minutes. In another embodiment, after the protective layer 118 is broken down during wire bonding, thermal cracking may be performed or heat treatment may be performed by using the annealing temperature after bonding to increase the adhesion of the bonding wire to the electrode.

如第1A及1B圖所示,發光二極體裝置100更可包括一電流阻障層114位於第二半導體層108上,以及一透明導電層116位於第二半導體層108上且覆蓋電流阻障層114,其中透明導電層116位於第二半導體層108與第一電極112之間,且電流阻障層114的位置對應於第一電極112的位置。電流阻障層114可包括絕緣材料,例如氧化矽(SiOx)或氧化氮(SiNx),並且電流阻障層114的位置對應於第一電極112的位置(如第1A及1B圖所示),可以讓電流平均分布到第一電極112以外的區域,讓主要發光區域分布在第一電極112以外的區域,提高第一電極112以外區域的出光效率。透明導電層116設置於第二半導體層108與第一電極112之間,可均勻分散電流路徑。在一些實施例中,透明導電層116的材料可為氧化銦錫、氧化鋅鋁或氧化銦鋅(Indium Zinc Oxide,IZO)。 As shown in FIGS. 1A and 1B, the LED device 100 further includes a current blocking layer 114 on the second semiconductor layer 108, and a transparent conductive layer 116 on the second semiconductor layer 108 covering the current barrier. The layer 114, wherein the transparent conductive layer 116 is located between the second semiconductor layer 108 and the first electrode 112, and the position of the current blocking layer 114 corresponds to the position of the first electrode 112. The current blocking layer 114 may include an insulating material such as yttrium oxide (SiOx) or nitrogen oxide (SiNx), and the position of the current blocking layer 114 corresponds to the position of the first electrode 112 (as shown in FIGS. 1A and 1B), The current can be evenly distributed to a region other than the first electrode 112, and the main light-emitting region can be distributed in a region other than the first electrode 112, thereby improving the light-emitting efficiency of the region other than the first electrode 112. The transparent conductive layer 116 is disposed between the second semiconductor layer 108 and the first electrode 112 to uniformly distribute the current path. In some embodiments, the material of the transparent conductive layer 116 may be indium tin oxide, zinc aluminum oxide or indium zinc oxide (Indium Zinc Oxide, IZO).

請參照第1C圖,在一些實施例中,可形成材質為二氧化矽(SiO2)的保護層120於第1A圖所示的半導體發光疊層103及透明導電層116上,並暴露出第一電極112以及第二電極110。在一些實施例中,可藉由化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD),或其他合適的沉積製程,以及後續的圖案化製程形成上述二氧化矽保護層120。 Referring to FIG. 1C, in some embodiments, a protective layer 120 made of cerium oxide (SiO 2 ) may be formed on the semiconductor light emitting layer 103 and the transparent conductive layer 116 shown in FIG. 1A, and the first layer is exposed. The electrode 112 and the second electrode 110. In some embodiments, the above-described ceria protective layer 120 may be formed by chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), or other suitable deposition process, and subsequent patterning processes.

接著,請參照第1D圖,在另一些實施例中,可同樣形成二氧化矽保護層120於第1B圖所示的半導體發光疊層103及透明導電層116上,並暴露出第一電極112以及第二電極110,並且以保護層118順應性覆蓋二氧化矽保護層120、第一電極112以及第二電極110。二氧化矽保護層120可提供半導體發光疊層103與其他裝置的電性隔離,並且避免半導體發光疊層103受到來自外部環境的損害。二氧化矽保護層120之材料並不以二氧化矽為限,亦可為氧化鋁(AlxOy)或氮化矽(SiNx)等材料所替代。 Next, referring to FIG. 1D, in other embodiments, the ceria protective layer 120 may be formed on the semiconductor light emitting layer 103 and the transparent conductive layer 116 shown in FIG. 1B, and the first electrode 112 is exposed. And the second electrode 110, and the protective layer 118 is compliant to cover the ceria protective layer 120, the first electrode 112, and the second electrode 110. The cerium oxide protective layer 120 can provide electrical isolation of the semiconductor light emitting stack 103 from other devices and protect the semiconductor light emitting stack 103 from damage from the external environment. The material of the cerium oxide protective layer 120 is not limited to cerium oxide, and may be replaced by materials such as aluminum oxide (AlxOy) or tantalum nitride (SiNx).

第2~4圖繪示上述發光二極體裝置100之中間製程步驟的剖面示意圖。請參照第2圖,形成一半導體發光疊層103’於一基板102上,該半導體發光疊層103’包含一第一半導體層104、一發光層106’於第一半導體層104上,以及一第二半導體層108’於發光層106’上。在一些實施例中,利用有機金屬化學氣相沉積法(metal organic chemical-vapor deposition,MOCVD)、液相磊晶法(Liquid Phase Epitaxy,LPE)或分子束磊晶法(Molecular Beam epitaxy,MBE)來形成第一半導體層104、發光層106’以及第二半導體層108’。在一些實施例中,第一半導體層104係n型半導體材料,而第二半導體層108’係p型半導體材料。 2 to 4 are schematic cross-sectional views showing the intermediate process steps of the above-described light emitting diode device 100. Referring to FIG. 2, a semiconductor light emitting layer 103' is formed on a substrate 102. The semiconductor light emitting layer 103' includes a first semiconductor layer 104, a light emitting layer 106' on the first semiconductor layer 104, and a The second semiconductor layer 108' is on the light emitting layer 106'. In some embodiments, metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) is used. The first semiconductor layer 104, the light emitting layer 106', and the second semiconductor layer 108' are formed. In some embodiments, the first semiconductor layer 104 is an n-type semiconductor material and the second semiconductor layer 108' is a p-type semiconductor material.

接著,形成一電流阻障層114於第二半導體層108’上。在一些實施例中,可利用電子束蒸鍍(Electron Beam Evaporation)製程、濺鍍(Sputtering)製程形成電流阻障層114。接著形成一透明導電層116’於第二半導體層108’上,並且覆蓋電流阻障層114。在一些實施例中,可用濺鍍(Sputtering)製程形成透明導電層116’。接著,經由光微影(photolithography)製程,形成一圖案化光阻層117於透明導電層116’上,如第2圖所示。 Next, a current blocking layer 114 is formed on the second semiconductor layer 108'. In some embodiments, the current barrier layer 114 can be formed using an Electrobeam Evaporation process or a sputtering process. A transparent conductive layer 116' is then formed over the second semiconductor layer 108' and overlies the current barrier layer 114. In some embodiments, the transparent conductive layer 116' can be formed by a sputtering process. Next, a patterned photoresist layer 117 is formed on the transparent conductive layer 116' via a photolithography process, as shown in Fig. 2.

請參照第3圖-第4圖,將圖案化光阻層117作為一蝕刻遮罩層,並經由一蝕刻製程移除未被光阻覆蓋的部份透明導電層116’、第二半導體層108’以及發光層106’,而形成透明導電層116、第二半導體層108以及發光層 106,以暴露出部分的第一半導體層104,接著移除圖案化光阻層117。在一些實施例中,蝕刻製程可進一步蝕刻部分的第一半導體層104(未繪示)。 Referring to FIG. 3 to FIG. 4 , the patterned photoresist layer 117 is used as an etch mask layer, and a portion of the transparent conductive layer 116 ′ and the second semiconductor layer 108 that are not covered by the photoresist are removed through an etching process. 'and the light-emitting layer 106' to form the transparent conductive layer 116, the second semiconductor layer 108, and the light-emitting layer 106, to expose a portion of the first semiconductor layer 104, and then remove the patterned photoresist layer 117. In some embodiments, the etch process can further etch a portion of the first semiconductor layer 104 (not shown).

接著,請參照第4圖,形成一第二電極110於暴露出的第一半導體層104上,以及形成一第一電極112於透明導電層116上。在一些實施例中,可利用光微影製程、蝕刻製程以及沉積製程,形成第二電極110以及第一電極112。在此實施例中,透明導電層116位於第二半導體層108與第一電極112之間,且電流阻障層114的位置對應於第一電極112的位置。 Next, referring to FIG. 4, a second electrode 110 is formed on the exposed first semiconductor layer 104, and a first electrode 112 is formed on the transparent conductive layer 116. In some embodiments, the second electrode 110 and the first electrode 112 may be formed using a photolithography process, an etching process, and a deposition process. In this embodiment, the transparent conductive layer 116 is located between the second semiconductor layer 108 and the first electrode 112, and the position of the current blocking layer 114 corresponds to the position of the first electrode 112.

接著,進行保護層118的沉積製程。在一實施例中,可使用旋轉塗佈(Spin Coating)方式形成一保護層118,並覆蓋第二電極110以及第一電極112的上表面。首先,將第4圖所示之發光二極體裝置100貼附於一載體上,並將載體放置於一承座上,其中該承座具有一通孔,通孔可連接至一真空系統或抽氣系統。接著,將承座抽真空,使載體與承座緊密貼附。接著,旋轉承座,並同時以位於承座上噴頭噴灑一化學藥劑於發光二極體裝置100上,以持續旋轉塗佈方式將包含保護層118之材料的化學藥劑均勻塗佈在發光二極體裝置100上,使發光二極體裝置100上形成一層薄膜(未繪示),之後於室溫或加熱乾燥而形成前述的保護層118。在上述中,旋轉承座可控制在速度為1000至6000rpm,以形成厚度約為10至500埃的保護層118。經由旋塗方式所形成的保護層118將覆蓋第二電極110、第一電極112、以及第一半導體層104、發光層106以及第二半導體層108,如第1B圖所示。之後,可視需要進行光微影製程及蝕刻製程,將部分保護層移除,餘留下的保護層118僅覆蓋第二電極110或第一電極112之上表面,如第1A圖所示。 Next, a deposition process of the protective layer 118 is performed. In an embodiment, a protective layer 118 may be formed using a spin coating method and cover the second electrode 110 and the upper surface of the first electrode 112. First, the light-emitting diode device 100 shown in FIG. 4 is attached to a carrier, and the carrier is placed on a socket, wherein the socket has a through hole, and the through hole can be connected to a vacuum system or pumping Gas system. Next, the socket is evacuated to closely attach the carrier to the socket. Then, the bearing is rotated, and at the same time, a chemical is sprayed onto the light-emitting diode device 100 by the nozzle on the socket, and the chemical agent containing the material of the protective layer 118 is uniformly coated on the light-emitting diode in a continuous spin coating manner. On the body device 100, a thin film (not shown) is formed on the light-emitting diode device 100, and then dried at room temperature or by heating to form the protective layer 118 described above. In the above, the rotating shoe can be controlled at a speed of 1000 to 6000 rpm to form a protective layer 118 having a thickness of about 10 to 500 angstroms. The protective layer 118 formed by spin coating will cover the second electrode 110, the first electrode 112, and the first semiconductor layer 104, the light emitting layer 106, and the second semiconductor layer 108, as shown in FIG. 1B. Thereafter, the photolithography process and the etching process may be performed to remove a portion of the protective layer, and the remaining protective layer 118 covers only the upper surface of the second electrode 110 or the first electrode 112, as shown in FIG. 1A.

在另一實施例中,可使用浸泡方式進行保護層118的沉積製程,以形成保護層118並覆蓋第二電極110以及第一電極112的上表面。首先,將如第4圖所示的發光二極體裝置100貼附於一載體上,並將載體以固定速率浸泡入裝 有包含保護層118之材料的化學藥劑的容器中,靜置一時間後,再以同樣固定速率取出載體,使發光二極體100上的第二電極110以及第一電極112的上表面上形成一層薄膜(未繪示),之後於室溫或加熱使薄膜乾燥而形成前述的保護層118。在上述中,浸入化學藥劑的時間為約1至180秒,以形成厚度約為10至500埃的保護層118。經由浸泡方式所形成的保護層118將覆蓋第二電極110與第一電極112、半導體發光疊層103以及透明導電層116,如第1B圖所示。之後,可視需要進行光微影製程及蝕刻製程,將部分保護層移除,餘留下的保護層118僅覆蓋第二電極110與第一電極112之上表面,如第1A圖所示。另一實施例中,可將一承載著未切割的複數個發光二極體裝置100的晶圓,直接旋轉塗佈或浸泡該含保護層118材料之化學藥劑於晶圓表面上,依據前述步驟(旋轉塗佈或浸泡製程可參考前面的相關敘述,在此不做重複說明)形成保護膜118於複數個發光二極體裝置100上。 In another embodiment, the deposition process of the protective layer 118 may be performed using a immersion method to form the protective layer 118 and cover the second electrode 110 and the upper surface of the first electrode 112. First, the light-emitting diode device 100 as shown in FIG. 4 is attached to a carrier, and the carrier is immersed in a fixed rate. In the container having the chemical agent containing the material of the protective layer 118, after standing for a while, the carrier is taken out at the same fixed rate to form the second electrode 110 on the light-emitting diode 100 and the upper surface of the first electrode 112. A film (not shown) is then dried at room temperature or by heating to form the aforementioned protective layer 118. In the above, the chemical is immersed for about 1 to 180 seconds to form the protective layer 118 having a thickness of about 10 to 500 angstroms. The protective layer 118 formed by the immersion method will cover the second electrode 110 and the first electrode 112, the semiconductor light emitting laminate 103, and the transparent conductive layer 116 as shown in FIG. 1B. Thereafter, the photolithography process and the etching process may be performed to remove a portion of the protective layer, and the remaining protective layer 118 covers only the upper surface of the second electrode 110 and the first electrode 112, as shown in FIG. 1A. In another embodiment, a wafer carrying the uncut plurality of LED devices 100 can be directly spin coated or immersed in the chemical containing the protective layer 118 on the surface of the wafer, according to the foregoing steps. (The spin coating or immersion process can be referred to the related description above, and will not be repeatedly described herein.) The protective film 118 is formed on the plurality of light emitting diode devices 100.

在另一實施例中,也可使用掀離(lift-off)製程以形成上述如第1A圖所示的僅覆蓋第二電極110與第一電極112之上表面的保護層118。於形成保護層118前,先於發光二極體裝置100上沉積一圖案化犧牲層(未繪示),僅露出第二電極110與第一電極112。之後使用上述的旋轉塗佈或浸泡方式於發光二極體裝置100上形成一薄膜(其中旋轉塗佈或浸泡製程可參考前面的相關敘述,在此不做重複說明),之後於室溫使薄膜於室溫或加熱乾燥而形成前述的保護層118。接著選擇性移除圖案化犧牲層以及其上的保護層,餘留下的保護層118僅覆蓋第二電極110與第一電極112之上表面的保護層118,如第1A圖所示。 In another embodiment, a lift-off process may also be used to form the protective layer 118 covering only the upper surface of the second electrode 110 and the first electrode 112 as shown in FIG. 1A. Before forming the protective layer 118, a patterned sacrificial layer (not shown) is deposited on the LED device 100 to expose only the second electrode 110 and the first electrode 112. Then, a film is formed on the LED device 100 by using the spin coating or immersion method described above (in which the spin coating or immersion process can be referred to the related description, which will not be repeated here), and then the film is made at room temperature. The aforementioned protective layer 118 is formed by drying at room temperature or by heating. The patterned sacrificial layer and the protective layer thereon are then selectively removed, and the remaining protective layer 118 covers only the protective layer 118 of the second electrode 110 and the upper surface of the first electrode 112, as shown in FIG. 1A.

在一實施例中,如第1D圖所示,可視需要形成一二氧化矽保護層120於如第4圖所示的發光二極體裝置100上。在一些實施例中,可藉由化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD),或其他合適的製程順應性地沉積二氧化矽保護層120於半導體發光疊層103、透明導電層116、第一電極112以 及第二電極110上,並對二氧化矽保護層120實施圖案化製程以暴露出第一電極112以及第二電極110。接著,順應性地沉積保護層118於二氧化矽保護層120、第一電極112以及第二電極110上,如第1D圖所示。之後,可視需要進行光微影製程及蝕刻製程,將部分保護層移除,餘留下的保護層118僅覆蓋第二電極110或第一電極112之上表面,如第1C圖所示。 In one embodiment, as shown in FIG. 1D, a cerium oxide protective layer 120 may be formed on the light-emitting diode device 100 as shown in FIG. 4 as needed. In some embodiments, the ceria protective layer 120 may be conformally deposited on the semiconductor light emitting stack 103 by chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), or other suitable process. The transparent conductive layer 116 and the first electrode 112 are And the second electrode 110, and performing a patterning process on the ceria protective layer 120 to expose the first electrode 112 and the second electrode 110. Next, a protective layer 118 is deposited conformally on the ceria protective layer 120, the first electrode 112, and the second electrode 110 as shown in FIG. 1D. Thereafter, the photolithography process and the etching process may be performed to remove a portion of the protective layer, and the remaining protective layer 118 covers only the upper surface of the second electrode 110 or the first electrode 112, as shown in FIG. 1C.

於一實施例中,發光二極體裝置以打線接合方式進行推力測試。在發光二極體裝置形成保護層118後,分別以形成保護層118後直接打線接合,以及在進行熱裂解保護層118後再進行打線接合兩種方式,對焊線及電極間的黏著程度進行推力測試,推力數值(force)代表打線後,將焊線推離第二電極110/第一電極112上表面所需之力量,所需力量大代表焊線與電極上表面之間的黏著程度較高。在一實施例中,經打線推力實驗測試在形成保護層118後直接以打線方式與電極接合的推力約為43.05g,而先將保護層118經前述的高溫烘烤約300℃熱裂解後再進行打線的推力可提升至55.50g。由上述測試結果可知,經高溫烘烤熱裂解後再進行打線接合更能有效提升焊線及電極間的黏著度。保護層118同時可保護其覆蓋的第二電極110/第一電極112之上表面不受粒子或髒汙汙染,且於打線接合時擊穿保護層,使焊線與第二電極110/第一電極112電性連接,具有一定的黏著程度。再者,經由熱裂解保護層118後更能提升焊線與第二電極110/第一電極112間的黏著能力,進而提升發光二極體裝置的穩定度。此實施例之實驗測試因採取浸泡方式形成保護層118,保護層118厚度約為272nm,惟採取旋轉塗佈或其他塗佈方式時,能使得厚度更薄,而在仍保有抗汙保護膜的特性之最佳實施厚度為10至500埃時,其推力測試皆能有所提升。在另一實施例中,打線接合擊穿保護層118後可再進行熱裂解或利用打線接合後的退火溫度進行熱處理,可提升焊線與電極接合的黏著能力。於一實施例中,打線後的退火溫度可為150℃到230℃。 In one embodiment, the light emitting diode device performs a thrust test in a wire bonding manner. After the protective layer 118 is formed by the light-emitting diode device, the protective layer 118 is directly formed and then bonded, and after the thermal cracking protective layer 118 is performed, the bonding between the bonding wires and the electrodes is performed. Thrust test, the force value (force) represents the force required to push the wire away from the upper surface of the second electrode 110 / the first electrode 112 after the wire is wired, and the required force is greater than the adhesion between the wire and the upper surface of the electrode. high. In one embodiment, after the formation of the protective layer 118, the thrust of the wire bonding directly to the electrode after the formation of the protective layer 118 is about 43.05 g, and the protective layer 118 is thermally cracked by the high temperature baking described above at about 300 ° C. The thrust of the line can be increased to 55.50g. It can be seen from the above test results that the high-temperature baking and thermal cracking and then the wire bonding can effectively improve the adhesion between the bonding wire and the electrodes. The protective layer 118 can simultaneously protect the upper surface of the second electrode 110 / the first electrode 112 covered by the surface from the particles or dirt, and break the protective layer when the wire is bonded, so that the bonding wire and the second electrode 110 / first The electrode 112 is electrically connected and has a certain degree of adhesion. Moreover, after the protective layer 118 is thermally cracked, the adhesion between the bonding wire and the second electrode 110/first electrode 112 can be further improved, thereby improving the stability of the LED device. The experimental test of this embodiment forms the protective layer 118 by the immersion method, and the thickness of the protective layer 118 is about 272 nm, but when the spin coating or other coating method is adopted, the thickness can be made thinner while the antifouling protective film is still retained. The best implementation of the characteristics of the thickness of 10 to 500 angstroms, the thrust test can be improved. In another embodiment, after the wire bonding breaks through the protective layer 118, thermal cracking or heat treatment using the annealing temperature after wire bonding can be performed to improve the adhesion of the bonding wire to the electrode. In one embodiment, the annealing temperature after wire bonding may be from 150 ° C to 230 ° C.

在另一實施例之發光二極體裝置中,除了前述各實施例之特徵外,更包含一第一延伸電極以及一第二延伸電極(未繪示);以第一實施例及第1A及1B圖為例,第一延伸電極設置於半導體發光疊層103的第二半導體層108上,且連接第一電極112,自第一電極112向第二電極110方向延伸。第二延伸電極設置於半導體發光疊層103的暴露的第一半導體層104上,且連接第二電極110,自第二電極110向第一電極112方向延伸。第一延伸電極與第二延伸電極下也可設置電流阻障層(未繪示),以平均電流分布。第一延伸電極與第二延伸電極的材料和第一電極112以及第二電極110的材料相同,包括鉻、鉑、鈦、鋁、銅、鎳、金或上述之組合。保護層118亦可設置於第一延伸電極與第二延伸電極之上表面,並大體上覆蓋其上表面。第一延伸電極與第二延伸電極之尺寸,例如寬度,小於第一電極112以及第二電極110之寬度。藉由延伸電極的高導電特性提高發光疊層103的電流擴散,在兼顧電流擴散的目的下,亦可減少由發光層106發出的光被電極吸收,提高光摘出效率。 In addition to the features of the foregoing embodiments, the LED device of the other embodiment further includes a first extension electrode and a second extension electrode (not shown); and the first embodiment and the first embodiment For example, in FIG. 1B, the first extension electrode is disposed on the second semiconductor layer 108 of the semiconductor light emitting layer 103, and is connected to the first electrode 112 and extends from the first electrode 112 toward the second electrode 110. The second extension electrode is disposed on the exposed first semiconductor layer 104 of the semiconductor light emitting layer 103, and is connected to the second electrode 110 and extends from the second electrode 110 toward the first electrode 112. A current blocking layer (not shown) may also be disposed under the first extension electrode and the second extension electrode to average current distribution. The materials of the first extension electrode and the second extension electrode are the same as those of the first electrode 112 and the second electrode 110, and include chromium, platinum, titanium, aluminum, copper, nickel, gold or a combination thereof. The protective layer 118 may also be disposed on the upper surface of the first extension electrode and the second extension electrode and substantially cover the upper surface thereof. The size of the first extension electrode and the second extension electrode, for example, the width, is smaller than the width of the first electrode 112 and the second electrode 110. The current diffusion of the light-emitting layer 103 is improved by the high conductivity of the extension electrode, and the light emitted from the light-emitting layer 106 can be reduced by the electrode and the light extraction efficiency can be improved for the purpose of achieving current diffusion.

綜上所述,本發明藉由將第二電極110與第一電極112的上表面形成一層保護層118,防止在進行後續製程(例如,在封裝端電性接合製程前或是運送過程時)與空氣接觸遭到粒子或髒汙附著等汙染或氧化。保護層118具有較薄的厚度,例如10至500埃,可以在對外電性接合時直接將保護層118擊穿,或是高溫烘烤後使保護層118熱裂解後再進行對外電性接合,並同時維持發光二極體裝置的品質以及穩定度。 In summary, the present invention prevents the subsequent process (for example, before the package end electrical bonding process or during the transfer process) by forming the protective layer 118 on the upper surface of the second electrode 110 and the first electrode 112. Contact with air is contaminated or oxidized by particles or dirt. The protective layer 118 has a relatively thin thickness, for example, 10 to 500 angstroms, and can directly break the protective layer 118 during external electrical bonding, or thermally cure the protective layer 118 after high-temperature baking, and then perform external electrical bonding. At the same time, the quality and stability of the light-emitting diode device are maintained.

雖然本發明的實施例及其優點已揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。此外,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具 有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本發明使用。因此,本發明之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本發明之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present invention and the advantages thereof are disclosed above, it is not intended to limit the present invention, and any one of ordinary skill in the art can be modified, substituted, and substituted without departing from the spirit and scope of the present invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. Further, the scope of the present invention is not limited to the processes, machines, manufactures, compositions, devices, methods and steps in the specific embodiments described in the specification. Processes, machines, fabrications, compositions, devices, methods, and steps that are presently or in the future can be understood by those of ordinary skill in the art, as long as the same function can be implemented or obtained in the embodiments described herein. The same result can be used in accordance with the present invention. Accordingly, the scope of the invention includes the above-described processes, machines, manufactures, compositions, devices, methods, and steps. In addition, the scope of each of the claims constitutes an individual embodiment, and the scope of the invention also includes the combination of the scope of the application and the embodiments.

100‧‧‧發光二極體裝置 100‧‧‧Lighting diode device

102‧‧‧基板 102‧‧‧Substrate

103‧‧‧半導體發光疊層 103‧‧‧Semiconductor light-emitting laminate

104‧‧‧第一半導體層 104‧‧‧First semiconductor layer

106‧‧‧發光層 106‧‧‧Lighting layer

108‧‧‧第二半導體層 108‧‧‧Second semiconductor layer

110‧‧‧第二電極 110‧‧‧second electrode

112‧‧‧第一電極 112‧‧‧First electrode

114‧‧‧電流阻障層 114‧‧‧ Current Barrier

116‧‧‧透明導電層 116‧‧‧Transparent conductive layer

118‧‧‧保護層 118‧‧‧Protective layer

120‧‧‧二氧化矽保護層 120‧‧‧ cerium oxide protective layer

Claims (9)

一種發光二極體裝置,包括:一半導體發光疊層,位於一基板上;一電極,位於該半導體發光疊層上,作為對外電性接合之用途;以及一保護層,覆蓋該電極之上表面;其中該保護層包括氟基化合物材料、奈米高分子塗層材料、奈米鐵基材料、奈米非鐵基材料或光觸媒抗汙材料。 A light emitting diode device comprising: a semiconductor light emitting stack on a substrate; an electrode on the semiconductor light emitting stack for external electrical bonding; and a protective layer covering the upper surface of the electrode Wherein the protective layer comprises a fluorine-based compound material, a nano-polymer coating material, a nano-iron-based material, a nano-iron-based material or a photocatalyst anti-fouling material. 如申請專利範圍第1項所述之發光二極體裝置,其中該保護層更順應性覆蓋該半導體發光疊層。 The light emitting diode device of claim 1, wherein the protective layer more conformally covers the semiconductor light emitting stack. 一種發光二極體裝置,包括:一半導體發光疊層,位於一基板上;一電極,位於該半導體發光疊層上,作為對外電性接合之用途;以及一保護層,覆蓋該電極之上表面;其中該保護層的裂解溫度介於100℃-400℃。 A light emitting diode device comprising: a semiconductor light emitting stack on a substrate; an electrode on the semiconductor light emitting stack for external electrical bonding; and a protective layer covering the upper surface of the electrode Wherein the protective layer has a cracking temperature between 100 ° C and 400 ° C. 如申請專利範圍第1項或第3項所述之發光二極體裝置,其中該保護層的厚度介於10~500埃,且/或該保護層的可見光透明度高於60%,且/或該保護層之水接觸角大於90°。 The light-emitting diode device according to claim 1 or 3, wherein the protective layer has a thickness of 10 to 500 angstroms, and/or the visible layer has a visible light transparency of more than 60%, and/or The protective layer has a water contact angle greater than 90°. 一種發光二極體裝置之製造方法,包括:形成一半導體發光疊層於一基板上;形成一電極於該半導體發光疊層上,作為對外電性接合之用途;以及形成一保護層並覆蓋該電極的上表面;其中該保護層包括氟基化合物材料、奈米高分子塗層材料、奈米鐵基材料、奈米非鐵基材料、光觸媒抗汙材料、或裂解溫度介於100℃-400℃的材料。 A method of manufacturing a light emitting diode device, comprising: forming a semiconductor light emitting layer on a substrate; forming an electrode on the semiconductor light emitting layer for use as an external electrical bonding; and forming a protective layer and covering the The upper surface of the electrode; wherein the protective layer comprises a fluorine-based compound material, a nano-polymer coating material, a nano-iron-based material, a nano-non-ferrous material, a photocatalyst anti-fouling material, or a cracking temperature of between 100 ° C and 400 °C material. 如申請專利範圍第5項所述之發光二極體裝置之製造方法,更包括: 對該發光二極體裝置進行一對外電性接合步驟,其中該對外電性接合步驟包括:打線接合,使一焊線穿過該保護層而與該電極電性連接或覆晶接合。 The method for manufacturing a light-emitting diode device according to claim 5, further comprising: And performing an external electrical bonding step on the LED device, wherein the external electrical bonding step comprises: wire bonding, wherein a bonding wire is passed through the protective layer to be electrically connected or flip-chip bonded to the electrode. 如申請專利範圍第6項所述之發光二極體裝置之製造方法,其中於該打線接合之後或之前,更包括對該發光二極體裝置進行熱處理。 The method of manufacturing a light-emitting diode device according to claim 6, wherein the light-emitting diode device is further subjected to heat treatment after or before the wire bonding. 如申請專利範圍第7項所述之發光二極體裝置之製造方法,其中該熱處理溫度介於100℃-400℃。 The method of manufacturing a light-emitting diode device according to claim 7, wherein the heat treatment temperature is between 100 ° C and 400 ° C. 如申請專利範圍第5項所述之發光二極體裝置之製造方法,其中該保護層係藉由旋轉塗佈或浸泡的方式形成。 The method of manufacturing a light-emitting diode device according to claim 5, wherein the protective layer is formed by spin coating or immersion.
TW105101001A 2016-01-13 2016-01-13 Light emitting diode device and manufacturing method thereof TWI605617B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105101001A TWI605617B (en) 2016-01-13 2016-01-13 Light emitting diode device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101001A TWI605617B (en) 2016-01-13 2016-01-13 Light emitting diode device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201725756A TW201725756A (en) 2017-07-16
TWI605617B true TWI605617B (en) 2017-11-11

Family

ID=60048165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101001A TWI605617B (en) 2016-01-13 2016-01-13 Light emitting diode device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI605617B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077680B1 (en) * 2018-02-07 2020-02-28 Aledia TRANSMITTER, TRANSMITTER DEVICE AND DISPLAY SCREEN AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
TW201725756A (en) 2017-07-16

Similar Documents

Publication Publication Date Title
CN106340576B (en) Light emitting element and light emitting device
TWI599074B (en) Light emitting device
TWI422075B (en) A method for forming a filp chip structure of semiconductor optoelectronic device and fabricated thereof
TWI508321B (en) Light emitting diode and method of the same
US20110147704A1 (en) Semiconductor light-emitting device with passivation layer
TWI435474B (en) Semiconductor light-emitting device and light-emitting device package having the same
JP2008103499A (en) Light-emitting element, and manufacturing method therefor
JP2011517851A (en) Semiconductor light-emitting device with double-sided passivation
US8779411B2 (en) Light emitting diode having metal nanoparticle layered graphene
JP2009076896A (en) Semiconductor light-emitting element
WO2006011497A1 (en) Light emitting element and manufacturing method thereof
CN105914269A (en) Light emitting diode possessing transparent extended electrode structure and manufacturing method thereof
JP2011060966A (en) Light-emitting device
US20150236194A1 (en) Method of manufacturing microarray type nitride light emitting device
GB2547123A (en) LED vertical chip structure with special coarsening morphology and preparation method therefor
JP2007221146A (en) Vertical light emitting device and its manufacturing method
Chen et al. Light extraction enhancement of GaN-based light-emitting diodes with textured sidewalls and ICP-transferred nanohemispherical backside reflector
TWI605617B (en) Light emitting diode device and manufacturing method thereof
US20190074406A1 (en) Light emitting diode apparatus and method of manufacturing the same
KR101014136B1 (en) Semiconductor light emitting device and fabrication method thereof
KR101239852B1 (en) GaN compound semiconductor light emitting element
US20110133159A1 (en) Semiconductor light-emitting device with passivation in p-type layer
US9130108B2 (en) Light-emitting diode and method for manufacturing thereof
TWI634673B (en) Flip-chip light emission diode device and manufacturing method thereof
US9887322B2 (en) Light-emitting device