TWI604677B - Cross-domain esd protection circuit - Google Patents

Cross-domain esd protection circuit Download PDF

Info

Publication number
TWI604677B
TWI604677B TW105132276A TW105132276A TWI604677B TW I604677 B TWI604677 B TW I604677B TW 105132276 A TW105132276 A TW 105132276A TW 105132276 A TW105132276 A TW 105132276A TW I604677 B TWI604677 B TW I604677B
Authority
TW
Taiwan
Prior art keywords
node voltage
node
circuit
switch
coupled
Prior art date
Application number
TW105132276A
Other languages
Chinese (zh)
Other versions
TW201814995A (en
Inventor
曹太和
顏承正
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW105132276A priority Critical patent/TWI604677B/en
Priority to US15/673,914 priority patent/US10431975B2/en
Application granted granted Critical
Publication of TWI604677B publication Critical patent/TWI604677B/en
Publication of TW201814995A publication Critical patent/TW201814995A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • H02H9/046Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere responsive to excess voltage appearing at terminals of integrated circuits

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

跨電源域的靜電放電防護電路 Electrostatic discharge protection circuit across the power domain

本發明有關靜電放電防護電路,尤指一種跨電源域的靜電放電防護電路。 The invention relates to an electrostatic discharge protection circuit, in particular to an electrostatic discharge protection circuit across a power supply domain.

積體電路中常會將靜電放電防護電路與其他電路並聯,以提供與其他電路並聯的放電路徑。為了降低電路面積,傳統的靜電放電防護電路中所使用的電容器,多半是以金氧半導體電容(MOS capacitor)來實現。 Electrostatic discharge protection circuits are often placed in parallel with other circuits in integrated circuits to provide a discharge path in parallel with other circuits. In order to reduce the circuit area, the capacitor used in the conventional ESD protection circuit is mostly realized by a MOS capacitor.

然而,在許多先進的半導體製程中,金氧半導體電容很容易因為閘級氧化層厚度越來越薄,而發生閘級漏電流(gate leakage)的問題。如此一來,便可能導致靜電放電防護電路在其他電路正常運作的過程中產生誤作動,而造成積體電路發生故障或無法正常運作的問題。 However, in many advanced semiconductor processes, MOS capacitors are prone to gate leakage due to the thinner and thinner gate oxide thickness. As a result, the ESD protection circuit may cause a malfunction during the normal operation of other circuits, causing the integrated circuit to malfunction or fail to operate normally.

有鑑於此,如何有效避免靜電放電防護電路因金氧半導體電容的閘級漏電流問題而產生誤作動的情況,實為業界有待解決的問題。 In view of this, how to effectively avoid the accidental operation of the electrostatic discharge protection circuit due to the gate leakage current of the MOS capacitor is a problem to be solved in the industry.

本說明書提供一種跨電源域的靜電放電防護電路的實施例,其包含:一第一電流路徑開關,位於一第一電源端與一第一固定電位端之間的一第一電流路徑上,並聯於一第一電路,且設置成在一第一節點電壓處於邏輯高電位時關斷;一第一節點,耦接於該第一電流路徑開關的一控制端,用於提供該第一節點電壓;一第一電阻元件,耦接於該第一電源端與該第一節點之間;一第一金氧半導體電容,耦 接於該第一節點與該第一固定電位端之間,且設置成在該第一節點電壓處於邏輯高電位時進行充電;一第二電流路徑開關,位於一第二電源端與一第二固定電位端之間的一第二電流路徑上,並聯於一第二電路,且受控於一第二節點電壓;一開關控制電路,耦接於該第二電源端與該第二固定電位端之間,用於提供該第二節點電壓;以及一節點電壓控制電路,耦接於該第一電源端、該第一節點、以及該開關控制電路,設置成在該第一電源端供電給該第一電路且該第二電源端供電給該第二電路時,依據該第二節點電壓控制該第一節點電壓的大小,以確保該第一電流路徑開關維持在關斷狀態。 The present specification provides an embodiment of an ESD protection circuit across a power domain, comprising: a first current path switch on a first current path between a first power terminal and a first fixed potential terminal, in parallel The first circuit is configured to be turned off when the first node voltage is at a logic high level; a first node is coupled to a control end of the first current path switch for providing the first node voltage a first resistance element coupled between the first power terminal and the first node; a first MOS capacitor, coupled Connected between the first node and the first fixed potential terminal, and configured to charge when the first node voltage is at a logic high level; a second current path switch located at a second power terminal and a second a second current path between the fixed potential terminals, parallel to a second circuit, and controlled by a second node voltage; a switch control circuit coupled to the second power terminal and the second fixed potential terminal Between the second node voltage, and a node voltage control circuit coupled to the first power terminal, the first node, and the switch control circuit, configured to supply power to the first power terminal When the first circuit and the second power terminal supply power to the second circuit, the magnitude of the first node voltage is controlled according to the second node voltage to ensure that the first current path switch is maintained in an off state.

上述實施例的優點之一,是即使第一金氧半導體電容有閘級漏電流發生,節點電壓控制電路仍可依據開關控制電路提供的第二節點電壓來控制第一節點電壓的大小,以確保第一電流路徑開關不會誤作動。 One of the advantages of the above embodiment is that even if the first MOS capacitor has a gate leakage current, the node voltage control circuit can control the magnitude of the first node voltage according to the second node voltage provided by the switch control circuit to ensure The first current path switch does not malfunction.

上述實施例的另一優點,是可採用更先進的半導體製程技術來製造第一金氧半導體電容,以極小化第一金氧半導體電容的電路面積。 Another advantage of the above embodiments is that a more advanced semiconductor process technology can be employed to fabricate the first MOS capacitor to minimize the circuit area of the first MOS capacitor.

本發明的其他優點將搭配以下的說明和圖式進行更詳細的解說。 Other advantages of the invention will be explained in more detail in conjunction with the following description and drawings.

100、200‧‧‧靜電放電防護電路(ESD protection circuit) 100,200‧‧‧ ESD protection circuit

101‧‧‧第一電源端(first power terminal) 101‧‧‧first power terminal

102‧‧‧第一固定電位端(first fixed-voltage terminal) 102‧‧‧first fixed-voltage terminal

103‧‧‧第二電源端(second power terminal) 103‧‧‧second power terminal

104‧‧‧第二固定電位端(second fixed-voltage terminal) 104‧‧‧second fixed-voltage terminal

105‧‧‧第一電路(first circuit) 105‧‧‧first circuit

106‧‧‧第二電路(second circuit) 106‧‧‧second circuit

110‧‧‧第一電流路徑開關(first current path switch) 110‧‧‧First current path switch

121‧‧‧第一節點(first node) 121‧‧‧first node

123‧‧‧第一電阻元件(first resister element) 123‧‧‧first resister element

125‧‧‧第一金氧半導體電容(first MOS capacitor) 125‧‧‧First MOS capacitor

130‧‧‧第二電流路徑開關(second current path switch) 130‧‧‧second current path switch

140‧‧‧開關控制電路(switch control circuit) 140‧‧‧switch control circuit

141‧‧‧第二節點(second node) 141‧‧‧second node

143‧‧‧第二電阻元件(second resister element) 143‧‧‧second resister element

145‧‧‧第二金氧半導體電容(second MOS capacitor) 145‧‧‧Second MOS capacitor

150‧‧‧節點電壓控制電路(node voltage control circuit) 150‧‧‧node voltage control circuit

151‧‧‧第一旁通開關(first bypass switch) 151‧‧‧First bypass switch

153‧‧‧第二旁通開關(second bypass switch) 153‧‧‧second bypass switch

圖1為本發明第一實施例的靜電放電防護電路簡化後的功能方塊圖。 1 is a simplified functional block diagram of an ESD protection circuit according to a first embodiment of the present invention.

圖2為本發明第二實施例的靜電放電防護電路簡化後的功能方塊圖。 2 is a simplified functional block diagram of an ESD protection circuit according to a second embodiment of the present invention.

以下將配合相關圖式來說明本發明的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。 Embodiments of the present invention will be described below in conjunction with the associated drawings. In the drawings, the same reference numerals indicate the same or similar elements or methods.

圖1為本發明第一實施例的靜電放電防護電路100簡化後的功能方塊圖。圖1的右側繪示了位於第一電源域(power domain)中的一第一電 源端101、一第一固定電位端102、以及耦接於第一電源端101與第一固定電位端102之間的第一電路105。圖1的左側則繪示了位於第二電源域中的一第二電源端103、一第二固定電位端104、以及耦接於第二電源端103與第二固定電位端104之間的第二電路106。第一電路105代表第一電源域中可能面臨靜電放電衝擊的不特定電路,而第二電路106則代表第二電源域中可能面臨靜電放電衝擊的不特定電路。 1 is a simplified functional block diagram of an electrostatic discharge protection circuit 100 according to a first embodiment of the present invention. The right side of Figure 1 shows a first power located in the first power domain The source terminal 101, a first fixed potential terminal 102, and a first circuit 105 coupled between the first power terminal 101 and the first fixed potential terminal 102. The left side of FIG. 1 shows a second power terminal 103, a second fixed potential terminal 104, and a second coupling between the second power terminal 103 and the second fixed potential terminal 104. Two circuits 106. The first circuit 105 represents an unspecified circuit that may face an electrostatic discharge shock in the first power domain, while the second circuit 106 represents an unspecified circuit that may face an electrostatic discharge shock in the second power domain.

第一電源端101用於提供第一電路105運作所需的第一操作電壓VDD1,第二電源端103用於提供第二電路106運作所需的第二操作電壓VDD2,且第一操作電壓VDD1與第二操作電壓VDD2並不相同。第一固定電位端102耦接於一第一固定電位GND1,第二固定電位端104耦接於一第二固定電位GND2。實作上,第一固定電位GND1與第二固定電位GND2兩者可以是相同的電位(例如,0V),也可以有所不同。 The first power terminal 101 is configured to provide a first operating voltage VDD1 required for the operation of the first circuit 105, and the second power terminal 103 is configured to provide a second operating voltage VDD2 required for the operation of the second circuit 106, and the first operating voltage VDD1 It is not the same as the second operating voltage VDD2. The first fixed potential terminal 102 is coupled to a first fixed potential GND1, and the second fixed potential terminal 104 is coupled to a second fixed potential GND2. In practice, the first fixed potential GND1 and the second fixed potential GND2 may be the same potential (for example, 0V), or may be different.

靜電放電防護電路100可用來保護第一電路105與第二電路106。由於靜電放電防護電路100耦接於第一電源域中的第一電源端101與第一固定電位端102,也耦接於第二電源域中的第二電源端103與第二固定電位端104,所以靜電放電防護電路100是跨接在兩個不同電源域之間的電路。 The ESD protection circuit 100 can be used to protect the first circuit 105 and the second circuit 106. The first power supply terminal 101 and the first fixed potential terminal 102 are coupled to the second power terminal 103 and the second fixed potential terminal 104 in the second power domain. Therefore, the ESD protection circuit 100 is a circuit that is connected across two different power domains.

如圖1所示,靜電放電防護電路100包含有一第一電流路徑開關110、一第一節點121、一第一電阻元件123、一第一金氧半導體電容125、一第二電流路徑開關130、一開關控制電路140、以及一節點電壓控制電路150。 As shown in FIG. 1 , the ESD protection circuit 100 includes a first current path switch 110 , a first node 121 , a first resistance element 123 , a first MOS capacitor 125 , and a second current path switch 130 . A switch control circuit 140 and a node voltage control circuit 150.

第一電流路徑開關110位於一第一電源端101與一第一固定電位端 102之間的一第一電流路徑上,並聯於第一電路105,且設置成在一第一節點電壓V1處於邏輯高電位(logic high level)時關斷(turn off),並在第一節點電壓V1處於邏輯低電位(logic low level)時導通(turn on)。第一節點121耦接於第一電流路徑開關110的一控制端,用於提供第一節點電壓V1。第一電阻元件123耦接於第一電源端101與第一節點121之間。第一金氧半導體電容125耦接於第一節點121與第一固定電位端102之間,且設置成在第一節點電壓V1處於邏輯高電位時進行充電。 The first current path switch 110 is located at a first power terminal 101 and a first fixed potential terminal. a first current path between 102, parallel to the first circuit 105, and arranged to turn off when the first node voltage V1 is at a logic high level, and at the first node The voltage V1 is turned on when it is at a logic low level. The first node 121 is coupled to a control end of the first current path switch 110 for providing the first node voltage V1. The first resistance element 123 is coupled between the first power terminal 101 and the first node 121. The first MOS capacitor 125 is coupled between the first node 121 and the first fixed potential terminal 102 and is configured to be charged when the first node voltage V1 is at a logic high level.

第二電流路徑開關130位於一第二電源端103與一第二固定電位端104之間的一第二電流路徑上,並聯於第二電路106,且受控於一第二節點電壓V2。開關控制電路140耦接於第二電源端103與第二固定電位端104之間,用於提供第二節點電壓V2。 The second current path switch 130 is located on a second current path between a second power terminal 103 and a second fixed potential terminal 104, is connected in parallel to the second circuit 106, and is controlled by a second node voltage V2. The switch control circuit 140 is coupled between the second power terminal 103 and the second fixed potential terminal 104 for providing the second node voltage V2.

節點電壓控制電路150耦接於第一電源端101、第一節點121、以及開關控制電路140,設置成控制第一節點電壓V1和/或第二節點電壓V2的大小,以確保第一電流路徑開關110和/或第二電流路徑開關130不會誤作動而影響到第一電路105與第二電路106的正常運作。 The node voltage control circuit 150 is coupled to the first power terminal 101, the first node 121, and the switch control circuit 140, and is configured to control the magnitude of the first node voltage V1 and/or the second node voltage V2 to ensure the first current path. The switch 110 and/or the second current path switch 130 does not malfunction and affects the normal operation of the first circuit 105 and the second circuit 106.

在一實施例中,開關控制電路140包含有串聯的一第二節點141、一第二電阻元件143、以及一第二金氧半導體電容145。節點電壓控制電路150包含一第一旁通開關151與一第二旁通開關153。 In one embodiment, the switch control circuit 140 includes a second node 141, a second resistive element 143, and a second MOS capacitor 145 in series. The node voltage control circuit 150 includes a first bypass switch 151 and a second bypass switch 153.

當第一電路105與第二電路106無需運作時,第一電源端101與第二電源端103可停止供電。此時,第一電流路徑開關110與第二電流路徑開關130兩者應該要維持在導通狀態,使阻抗較低的第一電流路徑與第二電流路徑都形成通路(short circuit),以便在靜電放電事件發生時成為電流宣洩的路徑,藉此避免第一電路105與第二電路106 因靜電放電衝擊而受損。 When the first circuit 105 and the second circuit 106 do not need to operate, the first power terminal 101 and the second power terminal 103 can stop supplying power. At this time, both the first current path switch 110 and the second current path switch 130 should be maintained in an on state, so that the first current path and the second current path with lower impedance form a short circuit for static electricity. When the discharge event occurs, it becomes a path of current venting, thereby avoiding the first circuit 105 and the second circuit 106 Damaged by electrostatic discharge shock.

另一方面,當第一電路105與第二電路106要進行正常運作時,第一電源端101會供電給第一電路105,而第二電源端103會供電給第二電路106。理想上,第一電流路徑開關110與第二電流路徑開關130兩者此時應該要維持在關斷狀態,使第一電流路徑與第二電流路徑都形成斷路(open circuit),以便第一電源端101供應的電流能正確流向第一電路105,且第二電源端103供應的電流能正確流向第二電路106。 On the other hand, when the first circuit 105 and the second circuit 106 are to be normally operated, the first power terminal 101 supplies power to the first circuit 105, and the second power terminal 103 supplies power to the second circuit 106. Ideally, both the first current path switch 110 and the second current path switch 130 should be maintained in an off state at this time, so that both the first current path and the second current path form an open circuit for the first power source. The current supplied from the terminal 101 can flow correctly to the first circuit 105, and the current supplied from the second power terminal 103 can flow correctly to the second circuit 106.

在靜電放電防護電路100中,第二電流路徑開關130設置成在第二節點電壓V2處於邏輯低電位時關斷,並在第二節點電壓V2處於邏輯高電位時導通。第二節點141耦接於第二電流路徑開關130的一控制端,用於提供第二節點電壓V2。第二電阻元件143耦接於第二節點141與第二固定電位端104之間。第二金氧半導體電容145耦接於第二電源端103與第二節點141之間,且設置成在第二節點電壓V2處於邏輯低電位時進行充電。 In the ESD protection circuit 100, the second current path switch 130 is set to turn off when the second node voltage V2 is at a logic low level and is turned on when the second node voltage V2 is at a logic high level. The second node 141 is coupled to a control end of the second current path switch 130 for providing the second node voltage V2. The second resistance element 143 is coupled between the second node 141 and the second fixed potential terminal 104. The second MOS capacitor 145 is coupled between the second power terminal 103 and the second node 141 and is configured to be charged when the second node voltage V2 is at a logic low level.

第一旁通開關151位於與第一電阻元件123並聯的第一旁通路徑(bypass path)上,且設置成在第二節點電壓V2處於邏輯低電位時導通。第二旁通開關153位於與第二電阻元件143並聯的第二旁通路徑上,且設置成在第一節點電壓V1處於邏輯高電位時導通。圖1的實施例中,第一旁通開關151的第一端耦接於第一電源端101,第一旁通開關151的第二端耦接於第一節點121,且第一旁通開關151的控制端耦接於第二節點141。第二旁通開關153的第一端耦接於第二節點141,第二旁通開關153的第二端耦接於第二固定電位端104,且第二旁通開關153的控制端耦接於第一節點121。 The first bypass switch 151 is located on a first bypass path in parallel with the first resistive element 123 and is arranged to be turned on when the second node voltage V2 is at a logic low level. The second bypass switch 153 is located on the second bypass path in parallel with the second resistive element 143 and is arranged to be turned on when the first node voltage V1 is at a logic high level. In the embodiment of FIG. 1 , the first end of the first bypass switch 151 is coupled to the first power terminal 101 , the second end of the first bypass switch 151 is coupled to the first node 121 , and the first bypass switch The control end of the 151 is coupled to the second node 141. The second end of the second bypass switch 153 is coupled to the second node 141, the second end of the second bypass switch 153 is coupled to the second fixed potential end 104, and the control end of the second bypass switch 153 is coupled At the first node 121.

當第一電源端101與第二電源端103分別供電給第一電路105與第二電路106時,第一節點121初始提供的第一節點電壓V1會處於邏輯高電位,而第二節點141初始提供的第二節點電壓V2會處於邏輯低電位。此時,第一旁通開關151會被第二節點電壓V2導通,而第二旁通開關153則會被第一節點電壓V1導通,使得前述的第一旁通路徑與第二旁通路徑都形成通路。因此,第一節點電壓V1會被鎖定在邏輯高電位,而第二節點電壓V2則會被鎖定在邏輯低電位。 When the first power terminal 101 and the second power terminal 103 respectively supply the first circuit 105 and the second circuit 106, the first node voltage V1 initially provided by the first node 121 will be at a logic high level, and the second node 141 initially The provided second node voltage V2 will be at a logic low level. At this time, the first bypass switch 151 is turned on by the second node voltage V2, and the second bypass switch 153 is turned on by the first node voltage V1, so that the first bypass path and the second bypass path are both Form a pathway. Therefore, the first node voltage V1 is locked at a logic high level, and the second node voltage V2 is locked at a logic low level.

之後,即使第一金氧半導體電容125有閘級漏電流的情況發生,第一節點電壓V1也不會被拉低到邏輯低電位。另一方面,即使第二金氧半導體電容145有閘級漏電流的情況發生,第二節點電壓V2也不會被抬升到邏輯高電位。 Thereafter, even if the first MOS capacitor 125 has a gate leakage current, the first node voltage V1 is not pulled low to a logic low. On the other hand, even if the second MOS capacitor 145 has a gate leakage current, the second node voltage V2 is not raised to a logic high level.

如此一來,在第一電路105與第二電路106進行正常運作時,圖1中的節點電壓控制電路150可有效避免第一電流路徑開關110因第一金氧半導體電容125的閘級漏電流問題而錯誤地導通,同時也可有效避免第二電流路徑開關130因第二金氧半導體電容145的閘級漏電流問題而錯誤地導通。 In this way, when the first circuit 105 and the second circuit 106 are in normal operation, the node voltage control circuit 150 in FIG. 1 can effectively prevent the first current path switch 110 from leaking due to the gate current of the first MOS capacitor 125. The problem is erroneously turned on, and it is also effective to prevent the second current path switch 130 from being erroneously turned on due to the gate leakage current problem of the second MOS capacitor 145.

請參考圖2,其所繪示為本發明第二實施例的靜電放電防護電路200簡化後的功能方塊圖。 Please refer to FIG. 2, which is a simplified functional block diagram of the ESD protection circuit 200 according to the second embodiment of the present invention.

在靜電放電防護電路200中,第二電流路徑開關130設置成在第二節點電壓V2處於邏輯高電位時關斷,並在第二節點電壓V2處於邏輯低電位時導通。第二節點141耦接於第二電流路徑開關130的一控制端,用於提供第二節點電壓V2。第二電阻元件143耦接於第二電源端103與第二節點141之間。第二金氧半導體電容145耦接於第二節點141與第二固定電位端104之間,且設置成在第二節點電壓V2處於 邏輯高電位時進行充電。 In the ESD protection circuit 200, the second current path switch 130 is set to turn off when the second node voltage V2 is at a logic high level, and to turn on when the second node voltage V2 is at a logic low level. The second node 141 is coupled to a control end of the second current path switch 130 for providing the second node voltage V2. The second resistance element 143 is coupled between the second power terminal 103 and the second node 141. The second MOS capacitor 145 is coupled between the second node 141 and the second fixed potential terminal 104, and is disposed at the second node voltage V2. Charging when the logic is high.

第一旁通開關151位於與第一電阻元件123並聯的第一旁通路徑上,且設置成在第二節點電壓V2處於邏輯高電位時導通。第二旁通開關153位於與第二電阻元件143並聯的第二旁通路徑上,且設置成在第一節點電壓V1處於邏輯高電位時導通。在圖2的實施例中,第一旁通開關151的第一端耦接於第一電源端101,第一旁通開關151的第二端耦接於第一節點121,且第一旁通開關151的控制端耦接於第二節點141。第二旁通開關153的第一端耦接於第二電源端103,第二旁通開關153的第二端耦接於第二節點141,且第二旁通開關153的控制端耦接於第一節點121。 The first bypass switch 151 is located on the first bypass path in parallel with the first resistive element 123 and is arranged to be turned on when the second node voltage V2 is at a logic high level. The second bypass switch 153 is located on the second bypass path in parallel with the second resistive element 143 and is arranged to be turned on when the first node voltage V1 is at a logic high level. In the embodiment of FIG. 2, the first end of the first bypass switch 151 is coupled to the first power terminal 101, the second end of the first bypass switch 151 is coupled to the first node 121, and the first bypass is The control end of the switch 151 is coupled to the second node 141. The second end of the second bypass switch 153 is coupled to the second power terminal 103, the second end of the second bypass switch 153 is coupled to the second node 141, and the control end of the second bypass switch 153 is coupled to The first node 121.

當第一電源端101與第二電源端103分別供電給第一電路105與第二電路106時,第一節點121初始提供的第一節點電壓V1會處於邏輯高電位,而第二節點141初始提供的第二節點電壓V2也會處於邏輯高電位。此時,第一旁通開關151會被第二節點電壓V2導通,而第二旁通開關153則會被第一節點電壓V1導通,使得前述的第一旁通路徑與第二旁通路徑都形成通路。因此,第一節點電壓V1會被鎖定在邏輯高電位,且第二節點電壓V2也會被鎖定在邏輯高電位。 When the first power terminal 101 and the second power terminal 103 respectively supply the first circuit 105 and the second circuit 106, the first node voltage V1 initially provided by the first node 121 will be at a logic high level, and the second node 141 initially The second node voltage V2 provided is also at a logic high. At this time, the first bypass switch 151 is turned on by the second node voltage V2, and the second bypass switch 153 is turned on by the first node voltage V1, so that the first bypass path and the second bypass path are both Form a pathway. Therefore, the first node voltage V1 is locked at a logic high level, and the second node voltage V2 is also locked at a logic high level.

之後,即使第一金氧半導體電容125有閘級漏電流的情況發生,第一節點電壓V1也不會被拉低到邏輯低電位。另一方面,即使第二金氧半導體電容145有閘級漏電流的情況發生,第二節點電壓V2也不會被拉低到邏輯低電位。 Thereafter, even if the first MOS capacitor 125 has a gate leakage current, the first node voltage V1 is not pulled low to a logic low. On the other hand, even if the second MOS capacitor 145 has a gate leakage current, the second node voltage V2 is not pulled low to a logic low.

如此一來,在第一電路105與第二電路106進行正常運作時,圖2中的節點電壓控制電路150可有效避免第一電流路徑開關110因第一金氧半導體電容125的閘級漏電流問題而錯誤地導通,同時也可有效 避免第二電流路徑開關130因第二金氧半導體電容145的閘級漏電流問題而錯誤地導通。 In this way, when the first circuit 105 and the second circuit 106 are in normal operation, the node voltage control circuit 150 in FIG. 2 can effectively prevent the first current path switch 110 from leaking due to the gate current of the first MOS capacitor 125. The problem is erroneously turned on and can also be effective The second current path switch 130 is prevented from being erroneously turned on due to the gate leakage current problem of the second MOS capacitor 145.

由前述說明可知,即使第一金氧半導體電容125和第二金氧半導體電容145有閘級漏電流發生,節點電壓控制電路150仍可將第一節點電壓V1與第二節點電壓V2有效鎖定在正確的邏輯電位,以確保第一電流路徑開關110和第二電流路徑開關130不會誤作動。因此,可以採用更先進的半導體製程技術來製造前述第一金氧半導體電容125和第二金氧半導體電容145,以極小化第一金氧半導體電容125和第二金氧半導體電容145的電路面積。如此一來,便可讓靜電放電防護電路100或200的電路面積得以極小化。 It can be seen from the foregoing description that even if the first MOS capacitor 125 and the second MOS capacitor 145 have a gate leakage current, the node voltage control circuit 150 can effectively lock the first node voltage V1 and the second node voltage V2. The correct logic potential is to ensure that the first current path switch 110 and the second current path switch 130 do not malfunction. Therefore, the first metal oxide semiconductor capacitor 125 and the second metal oxide semiconductor capacitor 145 can be fabricated by using a more advanced semiconductor process technology to minimize the circuit area of the first metal oxide semiconductor capacitor 125 and the second metal oxide semiconductor capacitor 145. . In this way, the circuit area of the ESD protection circuit 100 or 200 can be minimized.

在前述各實施例中,倘若第一電流路徑開關110、第二電流路徑開關130、第一旁通開關151、以及第二旁通開關153中的任一開關裝置,是設置成在相對應的節點電壓處於邏輯高電位時導通(亦即,在相對應的節點電壓處於邏輯低電位時關斷),則可用一單一N型金氧半導體電晶體(NMOS transistor)來實現該開關裝置,或是用一個N型金氧半導體電晶體與串聯在該N型金氧半導體電晶體的閘級的偶數個反相器的組合來實現該開關裝置。或者,也可用一個P型金氧半導體電晶體(PMOS transistor)與串聯在該P型金氧半導體電晶體的閘級的奇數個反相器的組合來實現該開關裝置。 In the foregoing embodiments, any one of the first current path switch 110, the second current path switch 130, the first bypass switch 151, and the second bypass switch 153 is set to correspond to When the node voltage is turned on at a logic high level (that is, turned off when the corresponding node voltage is at a logic low level), the single N-type MOS transistor can be used to implement the switching device, or The switching device is implemented by a combination of an N-type MOS transistor and an even number of inverters connected in series to the gate of the N-type MOS transistor. Alternatively, the switching device may be implemented by a combination of a P-type MOS transistor and an odd number of inverters connected in series to the gate of the P-type MOS transistor.

倘若前述的任一開關是設置成在相對應的節點電壓處於邏輯低電位時導通(亦即,在相對應的節點電壓處於邏輯高電位時關斷),則可用一單一P型金氧半導體電晶體來實現該開關裝置,或是用一個P型金氧半導體電晶體與串聯在該P型金氧半導體電晶體的閘級的偶數個反相器的組合來實現該開關裝置。或者,也可用一個N型金氧半 導體電晶體與串聯在該N型金氧半導體電晶體的閘級的奇數個反相器的組合來實現該開關裝置。 If a single switch is set to be turned on when the corresponding node voltage is at a logic low level (ie, turned off when the corresponding node voltage is at a logic high level), then a single P-type MOS semiconductor can be used. The switching device is implemented by a crystal to achieve the switching device, or a combination of a P-type MOS transistor and an even number of inverters connected in series to the gate of the P-type MOS transistor. Alternatively, an N-type gold oxide half can also be used. The switching device is realized by a combination of a conductor transistor and an odd number of inverters connected in series to the gate of the N-type MOS transistor.

在前述各實施例中,倘若第一金氧半導體電容125與第二金氧半導體電容145中的任一電容裝置,是設置成在相對應的節點電壓處於邏輯高電位時進行充電,則可用一單一N型金氧半導體電晶體來實現該電容裝置的本體,或是用一個N型金氧半導體電晶體與串聯在該N型金氧半導體電晶體的閘級的偶數個反相器的組合來實現該電容裝置的本體。或者,也可用一個P型金氧半導體電晶體與串聯在該P型金氧半導體電晶體的閘級的奇數個反相器的組合來實現該電容裝置的本體。 In the foregoing embodiments, if any of the first MOS capacitor 125 and the second MOS capacitor 145 is configured to be charged when the corresponding node voltage is at a logic high level, one can be used. a single N-type MOS transistor to implement the body of the capacitor device, or a combination of an N-type MOS transistor and an even number of inverters connected in series with the gate of the N-type MOS transistor The body of the capacitive device is implemented. Alternatively, the body of the capacitive device may be implemented by a combination of a P-type MOS transistor and an odd number of inverters connected in series to the gate of the P-type MOS transistor.

倘若前述的任一電容裝置是設置成在相對應的節點電壓處於邏輯低電位時進行充電,則可用一單一P型金氧半導體電晶體來實現該電容裝置的本體,或是用一個P型金氧半導體電晶體與串聯在該P型金氧半導體電晶體的閘級的偶數個反相器的組合來實現該電容裝置的本體。或者,也可用一個N型金氧半導體電晶體與串聯在該N型金氧半導體電晶體的閘級的奇數個反相器的組合來實現該電容裝置的本體。 If any of the foregoing capacitive devices are arranged to be charged when the corresponding node voltage is at a logic low level, the body of the capacitive device can be implemented with a single P-type MOS transistor, or a P-type gold can be used. The body of the capacitive device is implemented by a combination of an oxy-semiconductor transistor and an even number of inverters connected in series to the gate of the P-type MOS transistor. Alternatively, the body of the capacitive device may be implemented by a combination of an N-type MOS transistor and an odd number of inverters connected in series to the gate of the N-type MOS transistor.

請注意,前述靜電放電防護電路100和200的架構只是幾個示範性的實施例,並非侷限本發明的實際實施方式。例如,在某些實施例中,亦可將開關控制電路140中的第二金氧半導體電容145改用閘級氧化層較厚、不會引發閘級漏電流問題的其他製程來實現。另外,在第二金氧半導體電容145不會發生閘級漏電流,或是其閘級漏電流有其他電路架構可抑制的某些應用中,亦可將前述節點電壓控制電路150中的第二旁通開關153省略,以簡化電路的架構。 Please note that the foregoing architectures of the ESD protection circuits 100 and 200 are merely a few exemplary embodiments and are not intended to limit the actual implementation of the invention. For example, in some embodiments, the second MOS capacitor 145 in the switch control circuit 140 can also be implemented by using other processes in which the gate oxide layer is thicker and does not cause gate leakage current problems. In addition, in some applications in which the second MOS capacitor 145 does not generate a gate leakage current, or the gate leakage current has other circuit architectures, the second of the node voltage control circuits 150 may be used. The bypass switch 153 is omitted to simplify the architecture of the circuit.

在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件,而本領域內的技術人員可能會用不同的名詞來稱呼同樣的元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的基準。在說明書及申請專利範圍中所提及的「包含」為開放式的用語,應解釋成「包含但不限定於」。另外,「耦接」一詞在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或通過其它元件或連接手段間接地電性或信號連接至第二元件。 Certain terms are used throughout the description and claims to refer to particular elements, and those skilled in the art may refer to the same elements. This specification and the scope of the patent application do not use the difference in the name as the means for distinguishing the elements, but the difference in function of the elements as the basis for the distinction. The term "including" as used in the specification and the scope of the patent application is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect means of attachment. Therefore, if the first element is described as being coupled to the second element, the first element may be directly connected to the second element by electrical connection or by wireless transmission, optical transmission, or the like, or by other elements or connections. The means is indirectly electrically or signally connected to the second component.

在說明書中所使用的「和/或」的描述方式,包含所列舉的其中一個項目或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的含義。 The description of "and/or" used in the specification includes any one of the listed items or any combination of items. In addition, the terms of any singular are intended to include the meaning of the plural, unless otherwise specified in the specification.

以上僅為本發明的較佳實施例,凡依本發明請求項所做的等效變化與修改,皆應屬本發明的涵蓋範圍。 The above are only the preferred embodiments of the present invention, and equivalent changes and modifications made to the claims of the present invention are intended to be within the scope of the present invention.

100‧‧‧靜電放電防護電路 100‧‧‧Electrostatic discharge protection circuit

101‧‧‧第一電源端 101‧‧‧First power terminal

102‧‧‧第一固定電位端 102‧‧‧First fixed potential end

103‧‧‧第二電源端 103‧‧‧second power terminal

104‧‧‧第二固定電位端 104‧‧‧second fixed potential end

105‧‧‧第一電路 105‧‧‧First circuit

106‧‧‧第二電路 106‧‧‧Second circuit

110‧‧‧第一電流路徑開關 110‧‧‧First current path switch

121‧‧‧第一節點 121‧‧‧first node

123‧‧‧第一電阻元件 123‧‧‧First resistance element

125‧‧‧第一金氧半導體電容 125‧‧‧First MOS Capacitor

130‧‧‧第二電流路徑開關 130‧‧‧Second current path switch

140‧‧‧開關控制電路 140‧‧‧Switch Control Circuit

141‧‧‧第二節點 141‧‧‧second node

143‧‧‧第二電阻元件 143‧‧‧second resistance element

145‧‧‧第二金氧半導體電容 145‧‧‧Second MOS capacitor

150‧‧‧節點電壓控制電路 150‧‧‧node voltage control circuit

151‧‧‧第一旁通開關 151‧‧‧First bypass switch

153‧‧‧第二旁通開關 153‧‧‧Second bypass switch

Claims (5)

一種跨電源域的靜電放電防護電路(100;200),包含:一第一電流路徑開關(110),位於一第一電源端(101)與一第一固定電位端(102)之間的一第一電流路徑上,並聯於一第一電路(105),且設置成在一第一節點電壓(V1)處於邏輯高電位時關斷;一第一節點(121),耦接於該第一電流路徑開關(110)的一控制端,用於提供該第一節點電壓(V1);一第一電阻元件(123),耦接於該第一電源端(101)與該第一節點(121)之間;一第一金氧半導體電容(125),耦接於該第一節點(121)與該第一固定電位端(102)之間,且設置成在該第一節點電壓(V1)處於邏輯高電位時進行充電;一第二電流路徑開關(130),位於一第二電源端(103)與一第二固定電位端(104)之間的一第二電流路徑上,並聯於一第二電路(106),且受控於一第二節點電壓(V2);一開關控制電路(140),耦接於該第二電源端(103)與該第二固定電位端(104)之間,用於提供該第二節點電壓(V2);以及一節點電壓控制電路(150),耦接於該第一電源端(101)、該第一節點(121)、以及該開關控制電路(140),設置成在該第一電源端(101)供電給該第一電路(105)且該第二電源端(103)供電給該第二電路(106)時,依據該第二節點電壓(V2)控制該第一節點電壓(V1)的大小,以確保該第一電流路徑開關(110)維持在關斷狀態。 An ESD protection circuit (100; 200) across a power domain includes: a first current path switch (110) located between a first power supply terminal (101) and a first fixed potential terminal (102) The first current path is parallel to a first circuit (105) and is set to be turned off when the first node voltage (V1) is at a logic high level; a first node (121) coupled to the first a control terminal of the current path switch (110) for providing the first node voltage (V1); a first resistance component (123) coupled to the first power terminal (101) and the first node (121) a first MOS capacitor (125) coupled between the first node (121) and the first fixed potential terminal (102) and disposed at the first node voltage (V1) Charging is performed at a logic high level; a second current path switch (130) is located on a second current path between a second power supply terminal (103) and a second fixed potential terminal (104), and is connected in parallel The second circuit (106) is controlled by a second node voltage (V2); a switch control circuit (140) coupled to the second power terminal (103) and the second fixed potential terminal ( Between 104) for providing the second node voltage (V2); and a node voltage control circuit (150) coupled to the first power terminal (101), the first node (121), and the switch a control circuit (140) configured to supply power to the first circuit (105) at the first power terminal (101) and to supply the second circuit (106) to the second circuit (106) The node voltage (V2) controls the magnitude of the first node voltage (V1) to ensure that the first current path switch (110) remains in the off state. 如請求項1所述的靜電放電防護電路(100;200),其中,該第二電流路徑開關(130)設置成在該第二節點電壓(V2)處於邏輯低電位時關斷, 且該開關控制電路(140)包含有:一第二節點(141),耦接於該第二電流路徑開關(130)的一控制端,用於提供該第二節點電壓(V2);一第二電阻元件(143),耦接於該第二節點(141)與該第二固定電位端(104)之間;以及一第二金氧半導體電容(145),耦接於該第二電源端(103)與該第二節點(141)之間,且設置成在該第二節點電壓(V2)處於邏輯低電位時進行充電;其中,該節點電壓控制電路(150)包含有:一第一旁通開關(151),位於與該第一電阻元件(123)並聯的一第一旁通路徑上,且設置成在該第二節點電壓(V2)處於邏輯低電位時導通。 The ESD protection circuit (100; 200) of claim 1, wherein the second current path switch (130) is set to be turned off when the second node voltage (V2) is at a logic low level, The switch control circuit (140) includes: a second node (141) coupled to a control end of the second current path switch (130) for providing the second node voltage (V2); The second resistive component (143) is coupled between the second node (141) and the second fixed potential terminal (104); and a second MOS capacitor (145) coupled to the second power terminal And (103) is disposed between the second node (141) and configured to perform charging when the second node voltage (V2) is at a logic low level; wherein the node voltage control circuit (150) includes: a first The bypass switch (151) is located on a first bypass path in parallel with the first resistive element (123) and is arranged to be turned on when the second node voltage (V2) is at a logic low level. 如請求項2所述的靜電放電防護電路(100;200),其中,該節點電壓控制電路(150)另包含有:一第二旁通開關(153),位於與該第二電阻元件(143)並聯的一第二旁通路徑上,且設置成在該第一節點電壓(V1)處於邏輯高電位時導通。 The electrostatic discharge protection circuit (100; 200) of claim 2, wherein the node voltage control circuit (150) further comprises: a second bypass switch (153) located at the second resistive element (143) And a second bypass path connected in parallel and arranged to be turned on when the first node voltage (V1) is at a logic high level. 如請求項1所述的靜電放電防護電路(100;200),其中,該第二電流路徑開關(130)設置成在該第二節點電壓(V2)處於邏輯高電位時關斷,且該開關控制電路(140)包含有:一第二節點(141),耦接於該第二電流路徑開關(130)的一控制端,用於提供該第二節點電壓(V2);一第二電阻元件(143),耦接於該第二電源端(103)與該第二節點(141)之間;以及 一第二金氧半導體電容(145),耦接於該第二節點(141)與該第二固定電位端(104)之間,且設置成在該第二節點電壓(V2)處於邏輯高電位時進行充電;其中,該節點電壓控制電路(150)包含有:一第一旁通開關(151),位於與該第一電阻元件(123)並聯的一第一旁通路徑上,且設置成在該第二節點電壓(V2)處於邏輯高電位時導通。 The ESD protection circuit (100; 200) of claim 1, wherein the second current path switch (130) is set to be turned off when the second node voltage (V2) is at a logic high level, and the switch The control circuit (140) includes: a second node (141) coupled to a control end of the second current path switch (130) for providing the second node voltage (V2); a second resistance element (143) coupled between the second power terminal (103) and the second node (141); a second MOS capacitor (145) coupled between the second node (141) and the second fixed potential terminal (104), and configured to be at a logic high level at the second node voltage (V2) Charging at a time; wherein the node voltage control circuit (150) includes: a first bypass switch (151) located on a first bypass path in parallel with the first resistive element (123), and configured to Turns on when the second node voltage (V2) is at a logic high level. 如請求項4所述的靜電放電防護電路(100;200),其中,該節點電壓控制電路(150)另包含有:一第二旁通開關(153),位於與該第二電阻元件(143)並聯的一第二旁通路徑上,且設置成在該第一節點電壓(V1)處於邏輯高電位時導通。 The ESD protection circuit (100; 200) of claim 4, wherein the node voltage control circuit (150) further comprises: a second bypass switch (153) located at the second resistive element (143) And a second bypass path connected in parallel and arranged to be turned on when the first node voltage (V1) is at a logic high level.
TW105132276A 2016-10-05 2016-10-05 Cross-domain esd protection circuit TWI604677B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105132276A TWI604677B (en) 2016-10-05 2016-10-05 Cross-domain esd protection circuit
US15/673,914 US10431975B2 (en) 2016-10-05 2017-08-10 Cross-domain ESD protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105132276A TWI604677B (en) 2016-10-05 2016-10-05 Cross-domain esd protection circuit

Publications (2)

Publication Number Publication Date
TWI604677B true TWI604677B (en) 2017-11-01
TW201814995A TW201814995A (en) 2018-04-16

Family

ID=61023071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132276A TWI604677B (en) 2016-10-05 2016-10-05 Cross-domain esd protection circuit

Country Status (2)

Country Link
US (1) US10431975B2 (en)
TW (1) TWI604677B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607071A (en) * 2004-08-02 2006-02-16 Realtek Semiconductor Corp ESD circuit with an ESD bus
TW201101460A (en) * 2009-06-18 2011-01-01 Faraday Tech Corp ESD protection circuit for integrated circuit with multiple power domain
US20120162832A1 (en) * 2010-12-27 2012-06-28 Global Unichip Corp. Esd protection circuit for multi-powered integrated circuit
TW201236133A (en) * 2010-10-20 2012-09-01 Univ Nanyang Tech Miniature passive structures for ESD protection and input and output matching
CN104347621A (en) * 2014-08-27 2015-02-11 北京中电华大电子设计有限责任公司 Electrostatic discharge protection method of chip with multiple power systems and multiple package types

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797899A (en) 1986-12-15 1989-01-10 Maxim Integrated Products, Inc. Integrated dual charge pump power supply including power down feature and rs-232 transmitter/receiver
US5946177A (en) 1998-08-17 1999-08-31 Motorola, Inc. Circuit for electrostatic discharge protection
US6385021B1 (en) 2000-04-10 2002-05-07 Motorola, Inc. Electrostatic discharge (ESD) protection circuit
US6724603B2 (en) 2002-08-09 2004-04-20 Motorola, Inc. Electrostatic discharge protection circuitry and method of operation
US6989979B1 (en) 2003-09-22 2006-01-24 Pericom Semiconductor Corp. Active ESD shunt with transistor feedback to reduce latch-up susceptibility
TWI266406B (en) * 2003-10-14 2006-11-11 Realtek Semiconductor Corp Electrostatic discharge protection circuit for a voltage source
CN100399665C (en) 2003-10-27 2008-07-02 瑞昱半导体股份有限公司 Voltage source electrostatic discharge protective circuit
US20130120885A1 (en) * 2011-11-15 2013-05-16 Mansour Keramat LOW NOISE ESD PROTECTION FOR SOCs WITH ANALOG OR RADIO FREQUENCY DEVICES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607071A (en) * 2004-08-02 2006-02-16 Realtek Semiconductor Corp ESD circuit with an ESD bus
TW201101460A (en) * 2009-06-18 2011-01-01 Faraday Tech Corp ESD protection circuit for integrated circuit with multiple power domain
TW201236133A (en) * 2010-10-20 2012-09-01 Univ Nanyang Tech Miniature passive structures for ESD protection and input and output matching
US20120162832A1 (en) * 2010-12-27 2012-06-28 Global Unichip Corp. Esd protection circuit for multi-powered integrated circuit
CN104347621A (en) * 2014-08-27 2015-02-11 北京中电华大电子设计有限责任公司 Electrostatic discharge protection method of chip with multiple power systems and multiple package types

Also Published As

Publication number Publication date
US20180097355A1 (en) 2018-04-05
US10431975B2 (en) 2019-10-01
TW201814995A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
US8867183B2 (en) ESD protection techniques
TWI405325B (en) Esd protection circuit
US9184586B2 (en) SiGe based gate driven PMOS trigger circuit
KR100702933B1 (en) Power supply clamp circuit and semiconductor device
TW201541782A (en) Electrostatic discharge protection circuit
US20130182356A1 (en) ESD Clamp with Novel RC Triggered Circuit
US20060274466A1 (en) High voltage power supply clamp circuitry for electrostatic discharge (ESD) protection
US10177137B1 (en) Electrostatic discharge protection apparatus
US8817437B2 (en) High voltage open-drain electrostatic discharge (ESD) protection device
JP2013055102A (en) Semiconductor integrated circuit and protection circuit
US8059376B2 (en) ESD clamp for high voltage operation
WO2016088482A1 (en) Semiconductor integrated circuit
WO2017157117A1 (en) Electrostatic discharge (esd) protective circuit for integrated circuit
WO2016017386A1 (en) Protection element, protection circuit, and semiconductor integrated circuit
US20060103427A1 (en) Overvoltage tolerant input buffer
TWI604677B (en) Cross-domain esd protection circuit
TWI604676B (en) Cross-domain esd protection circuit
TWI504090B (en) Esd protection circuit
CN107947139B (en) ESD protection circuit across power domain
CN105428351B (en) Integrated circuit
TWI449158B (en) Esd protection circuit for integrated circuit with multiple power domain
TWI464858B (en) Esd protection circuit with merged triggering mechanism
JP2009284463A (en) Auto-detecting input circuit for single-voltage-supply cmos
US7274544B2 (en) Gate-coupled ESD protection circuit for high voltage tolerant I/O
CN107947138B (en) ESD protection circuit across power domain