TWI603487B - Composition for forming electrode, electrode manufactured using the same and solar cell - Google Patents

Composition for forming electrode, electrode manufactured using the same and solar cell Download PDF

Info

Publication number
TWI603487B
TWI603487B TW105133473A TW105133473A TWI603487B TW I603487 B TWI603487 B TW I603487B TW 105133473 A TW105133473 A TW 105133473A TW 105133473 A TW105133473 A TW 105133473A TW I603487 B TWI603487 B TW I603487B
Authority
TW
Taiwan
Prior art keywords
electrode
composition
forming
flame retardant
weight
Prior art date
Application number
TW105133473A
Other languages
Chinese (zh)
Other versions
TW201721891A (en
Inventor
朴相熙
丘顯晉
權大燦
金泰俊
朴珉秀
李智先
鄭名成
Original Assignee
三星Sdi股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星Sdi股份有限公司 filed Critical 三星Sdi股份有限公司
Publication of TW201721891A publication Critical patent/TW201721891A/en
Application granted granted Critical
Publication of TWI603487B publication Critical patent/TWI603487B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

用於形成電極的組合物、使用所述組合物製成的電極以及太陽能電池Composition for forming an electrode, electrode made using the composition, and solar cell

本發明公開一種用於形成電極的組合物、使用所述組合物製成的電極、以及太陽能電池。A composition for forming an electrode, an electrode made using the composition, and a solar cell are disclosed.

太陽能電池可利用p-n接面的光伏效應產生電能,光伏效應可將太陽光的光子轉換成電力。在太陽能電池中,可在具有p-n接面的半導體基板(半導體晶圓)的前表面及後表面上分別形成前電極及後電極。然後,可藉由進入所述基板的太陽光誘發p-n接面的光伏效應,且p-n接面的光伏效應所產生的電子可經由所述電極向外部提供電流。Solar cells can generate electricity using the photovoltaic effect of the p-n junction, which converts the photons of sunlight into electricity. In the solar cell, a front electrode and a rear electrode may be formed on the front surface and the rear surface of a semiconductor substrate (semiconductor wafer) having a p-n junction, respectively. The photovoltaic effect of the p-n junction can then be induced by sunlight entering the substrate, and electrons generated by the photovoltaic effect of the p-n junction can provide current to the outside via the electrode.

可藉由塗布電極組合物並對所述電極組合物進行圖案化及燒結而將太陽能電池的電極以預定圖案形成於晶圓的表面上。The electrode of the solar cell can be formed on the surface of the wafer in a predetermined pattern by coating the electrode composition and patterning and sintering the electrode composition.

當在使入射光最大化的同時將前電極與晶圓接觸之處的損壞最小化時,太陽能電池的前電極可提高開路電壓。借此,可實現太陽能電池的最大效率。因此,需要開發一種能夠將電極接觸晶圓時的損壞最小化的用於形成電極的組合物。The front electrode of the solar cell can increase the open circuit voltage when the damage of the front electrode to the wafer is minimized while maximizing the incident light. Thereby, the maximum efficiency of the solar cell can be achieved. Therefore, there is a need to develop a composition for forming an electrode that minimizes damage when the electrode contacts the wafer.

實施例提供一種用於形成電極的組合物,所述組合物能夠藉由將所述電極接觸晶圓時的損壞最小化並由此提高開路電壓來提高電池效率。Embodiments provide a composition for forming an electrode that is capable of improving cell efficiency by minimizing damage when the electrode contacts a wafer and thereby increasing an open circuit voltage.

實施例提供一種使用所述用於形成電極的組合物製成的電極。Embodiments provide an electrode made using the composition for forming an electrode.

實施例提供一種包括所述電極的太陽能電池。Embodiments provide a solar cell including the electrode.

根據實施例,一種用於形成電極的組合物包含導電粉末、玻璃料、有機載劑、及阻燃劑,其中基於100 wt%的初始量計,所述阻燃劑在600℃的溫度下表現出大於或等於1 wt%的殘留碳,且所述阻燃劑在200℃至500℃下表現出放熱峰值。According to an embodiment, a composition for forming an electrode comprises a conductive powder, a glass frit, an organic vehicle, and a flame retardant, wherein the flame retardant is expressed at a temperature of 600 ° C based on an initial amount of 100 wt% Residual carbon is greater than or equal to 1 wt%, and the flame retardant exhibits an exothermic peak at 200 ° C to 500 ° C.

基於所述用於形成電極的組合物的總量計,可以0.05 wt%至1.5 wt%的量使用所述阻燃劑。The flame retardant may be used in an amount of 0.05 wt% to 1.5 wt% based on the total amount of the composition for forming an electrode.

所述阻燃劑可為選自環氧丙烯酸酯類化合物、胺基甲酸酯丙烯酸酯類化合物、及矽類化合物的有機化合物。The flame retardant may be an organic compound selected from the group consisting of epoxy acrylate compounds, urethane acrylate compounds, and quinone compounds.

所述用於形成電極的組合物可包含60 wt%至95 wt%的所述導電粉末、0.5 wt%至20 wt%的所述玻璃料、0.05 wt%至1.5 wt%的所述阻燃劑,且餘量為所述有機載劑。The composition for forming an electrode may include 60 wt% to 95 wt% of the conductive powder, 0.5 wt% to 20 wt% of the glass frit, and 0.05 wt% to 1.5 wt% of the flame retardant. And the balance is the organic carrier.

所述玻璃料可包含選自以下中的一或多種元素:鉛(Pb)、碲(Te)、鉍(Bi)、鋰(Li)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鋅(Zn)、鎢(W)、鎂(Mg)、銫(Cs)、鍶(Sr)、鉬(Mo)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鈉(Na)、鉀(K)、砷(As)、鈷(Co)、鋯(Zr)、錳(Mn)、銀(Ag)及鋁(Al)。The glass frit may comprise one or more elements selected from the group consisting of lead (Pb), tellurium (Te), bismuth (Bi), lithium (Li), phosphorus (P), germanium (Ge), gallium (Ga). , cerium (Ce), iron (Fe), cerium (Si), zinc (Zn), tungsten (W), magnesium (Mg), cerium (Cs), strontium (Sr), molybdenum (Mo), titanium (Ti) , tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co) Zirconium (Zr), manganese (Mn), silver (Ag) and aluminum (Al).

所述有機載劑可包含有機黏合劑及溶劑。The organic vehicle may comprise an organic binder and a solvent.

所述用於形成電極的組合物可還包含選自以下中的至少一者:表面處理劑、分散劑、觸變劑、黏度穩定劑、消泡劑、顏料、紫外線(UV)穩定劑、抗氧化劑及偶合劑。The composition for forming an electrode may further comprise at least one selected from the group consisting of a surface treatment agent, a dispersant, a thixotropic agent, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet (UV) stabilizer, and an anti-wear agent. Oxidizers and coupling agents.

實施例提供一種使用所述用於形成電極的組合物製成的電極。Embodiments provide an electrode made using the composition for forming an electrode.

實施例提供一種包括所述電極的太陽能電池。Embodiments provide a solar cell including the electrode.

所述用於形成電極的組合物可藉由將電極接觸晶圓時的損壞最小化並由此提高開路電壓來提高電池效率。The composition for forming an electrode can improve cell efficiency by minimizing damage when the electrode contacts the wafer and thereby increasing the open circuit voltage.

以下,將參照其中示出本發明示例性實施例的附圖更全面地闡述本發明。如所屬領域中具有通常知識者將意識到,所述實施例可以各種不同方式加以修改,此均不背離本發明的精神及範圍。In the following, the invention will be explained more fully with reference to the accompanying drawings in which FIG. As will be appreciated by those skilled in the art, the described embodiments may be modified in various different ways without departing from the spirit and scope of the invention.

在圖式中,為清楚起見,誇大了層、膜、面板、區等的厚度。在本說明書通篇中,相同的參考編號指示相同的元件。應理解,當稱一元件(例如層、膜、區、或基板)位於另一元件“上”時,所述元件可直接位於所述另一元件上,或者也可存在中間元件。相比之下,當稱一元件“直接”位於另一元件“上”時,則不存在中間元件。In the drawings, the thickness of layers, films, panels, regions, etc. are exaggerated for clarity. Throughout the specification, the same reference numerals indicate the same elements. It will be understood that when an element (such as a layer, a film, a region, or a substrate) is referred to as being "on" another element, the element may be directly on the other element or the intermediate element may be present. In contrast, when an element is referred to as being "directly on" another element, there is no intermediate element.

根據實施例的一種用於形成電極的組合物是可燒結糊料組合物(firable paste composition),且包含導電粉末、玻璃料、有機載劑、及阻燃劑,其中所述阻燃劑是有機化合物,所述有機化合物基於100 wt%的初始量計,在低於或等於600℃的溫度下表現出大於或等於1 wt%的殘留碳且在200℃至500℃下表現出放熱峰值。A composition for forming an electrode according to an embodiment is a ferable paste composition, and comprises a conductive powder, a glass frit, an organic vehicle, and a flame retardant, wherein the flame retardant is organic A compound which exhibits greater than or equal to 1 wt% of residual carbon at a temperature lower than or equal to 600 ° C and exhibits an exothermic peak at 200 ° C to 500 ° C based on an initial amount of 100 wt%.

以下,將詳細說明所述用於形成電極的組合物的每一成分。Hereinafter, each component of the composition for forming an electrode will be described in detail.

所述用於形成電極的組合物可包含金屬粉末作為導電粉末。所述金屬粉末可包含選自以下的至少一種金屬:銀(Ag)、金(Au)、鈀(Pd)、鉑(Pt)、釕(Ru)、銠(Rh)、鋨(Os)、銥(Ir)、錸(Re)、鈦(Ti)、鈮(Nb)、鉭(Ta)、鋁(Al)、銅(Cu)、鎳(Ni)、鉬(Mo)、釩(V)、鋅(Zn)、鎂(Mg)、釔(Y)、鈷(Co)、鋯(Zr)、鐵(Fe)、鎢(W)、錫(Sn)、鉻(Cr)及錳(Mn),但並非僅限於此。The composition for forming an electrode may contain a metal powder as a conductive powder. The metal powder may include at least one metal selected from the group consisting of silver (Ag), gold (Au), palladium (Pd), platinum (Pt), ruthenium (Ru), rhodium (Rh), osmium (Os), ruthenium. (Ir), bismuth (Re), titanium (Ti), niobium (Nb), tantalum (Ta), aluminum (Al), copper (Cu), nickel (Ni), molybdenum (Mo), vanadium (V), zinc (Zn), magnesium (Mg), yttrium (Y), cobalt (Co), zirconium (Zr), iron (Fe), tungsten (W), tin (Sn), chromium (Cr) and manganese (Mn), but Not limited to this.

導電粉末的粒子尺寸(particle size)可為奈米規模或微米規模。例如,導電粉末可具有幾十奈米至幾百奈米、或者幾微米至幾十微米的粒子尺寸。在實例性實施例中,導電粉末可為具有不同粒子尺寸的兩種或更多種銀粉末的混合物。The particle size of the conductive powder may be on a nanometer scale or a micrometer scale. For example, the conductive powder may have a particle size of several tens of nanometers to several hundred nanometers, or several micrometers to several tens of micrometers. In an exemplary embodiment, the conductive powder may be a mixture of two or more silver powders having different particle sizes.

導電粉末可具有球形形狀、薄片形狀、或無定形形狀的粒子形狀。導電粉末可具有0.1 mm至10 mm,例如是0.5 mm至5 mm的平均粒徑(D50)。可在藉由超聲波處理將導電粉末在室溫(20℃至25℃)下分散於異丙醇(isopropyl alcohol,IPA)中三分鐘後利用例如1064D型(希勒斯有限公司(CILAS Co., Ltd.))設備來測量平均粒徑。在此平均粒徑範圍內,所述組合物可提供低的接觸電阻及低的線電阻。The conductive powder may have a spherical shape, a sheet shape, or an amorphous shape particle shape. The conductive powder may have an average particle diameter (D50) of 0.1 mm to 10 mm, for example, 0.5 mm to 5 mm. The conductive powder may be dispersed in isopropyl alcohol (IPA) at room temperature (20 ° C to 25 ° C) for three minutes by ultrasonic treatment, for example, using Model 1064D (CILAS Co., Ltd.) Ltd.)) Equipment to measure the average particle size. Within this average particle size range, the composition provides low contact resistance and low line resistance.

基於所述用於形成電極的組合物的100 wt%計,所述導電粉末可以60 wt%至95 wt%的量存在。在此範圍內,可防止因例如電阻增大而引起轉換效率劣化,且還可防止因有機載劑的相對減少而造成硬糊料的形成(hard formation of paste)。在實施例中,所述導電粉末可以70 wt%至90 wt%的量存在。The conductive powder may be present in an amount of 60 wt% to 95 wt% based on 100 wt% of the composition for forming an electrode. Within this range, deterioration of conversion efficiency due to, for example, an increase in electrical resistance can be prevented, and hard formation of paste due to relative reduction of the organic carrier can also be prevented. In an embodiment, the conductive powder may be present in an amount of 70 wt% to 90 wt%.

所述玻璃料可用於增強導電粉末與基板之間的黏合,並用於在所述用於形成電極的組合物的燒結製程期間藉由蝕刻抗反射層和熔化所述導電粉末而在射極區中形成銀晶粒(crystal grain)以降低接觸電阻。在燒結製程期間,玻璃料可被軟化並可降低燒結溫度。The glass frit may be used to enhance adhesion between the conductive powder and the substrate, and used in the emitter region by etching the antireflection layer and melting the conductive powder during the sintering process of the composition for forming the electrode. Crystal grain is formed to lower the contact resistance. During the sintering process, the frit can be softened and the sintering temperature can be lowered.

當為提高太陽能電池效率而增大太陽能電池的面積時,太陽能電池的接觸電阻可能會增大。因此,期望在將串聯電阻(Rs)最小化的同時將對於p-n接面的影響最小化。另外,隨著越來越多地使用具有不同片電阻(sheet resistance)的各種晶圓,燒結溫度可在寬廣的範圍內變化。可能期望玻璃料確保足夠的熱穩定性以耐受寬廣範圍的燒結溫度。When the area of the solar cell is increased to increase the efficiency of the solar cell, the contact resistance of the solar cell may increase. Therefore, it is desirable to minimize the influence on the p-n junction while minimizing the series resistance (Rs). In addition, as various wafers having different sheet resistances are increasingly used, the sintering temperature can be varied over a wide range. It may be desirable for the frit to ensure sufficient thermal stability to withstand a wide range of sintering temperatures.

所述玻璃料可為可用於電極組合物中的鉛玻璃料及無鉛玻璃料中的一或多種。The frit may be one or more of lead frit and lead-free frit that can be used in the electrode composition.

所述玻璃料可包含選自以下中的一或多種元素:鉛(Pb)、碲(Te)、鉍(Bi)、鋰(Li)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鋅(Zn)、鎢(W)、鎂(Mg)、銫(Cs)、鍶(Sr)、鉬(Mo)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鈉(Na)、鉀(K)、砷(As)、鈷(Co)、鋯(Zr)、錳(Mn)、銀(Ag)及鋁(Al)。The glass frit may comprise one or more elements selected from the group consisting of lead (Pb), tellurium (Te), bismuth (Bi), lithium (Li), phosphorus (P), germanium (Ge), gallium (Ga). , cerium (Ce), iron (Fe), cerium (Si), zinc (Zn), tungsten (W), magnesium (Mg), cerium (Cs), strontium (Sr), molybdenum (Mo), titanium (Ti) , tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co) Zirconium (Zr), manganese (Mn), silver (Ag) and aluminum (Al).

所述玻璃料可藉由任何適宜的方法由所述元素的氧化物製備而成。例如,可藉由將金屬元素的氧化物以預定比率混合、將混合物熔化、將所得物淬火、並接著將淬火產物粉末化而獲得所述元素的氧化物。混合可利用球磨機(ball mill)或行星式磨機(planetary mill)進行。熔化可在700℃至1300℃下進行,且淬火可在室溫(20℃至25℃)下進行。粉末化可利用盤式磨機(disk mill)或行星式磨機(planetary mill)進行,但不限於此。The frit may be prepared from the oxide of the element by any suitable method. For example, an oxide of the element can be obtained by mixing an oxide of a metal element at a predetermined ratio, melting the mixture, quenching the resultant, and then pulverizing the quenched product. Mixing can be carried out using a ball mill or a planetary mill. The melting can be carried out at 700 ° C to 1300 ° C, and the quenching can be carried out at room temperature (20 ° C to 25 ° C). The powdering can be carried out using a disk mill or a planetary mill, but is not limited thereto.

所述玻璃料可具有0.1 mm至10 mm的平均粒徑(D50),且基於所述用於形成電極的組合物的100 wt%計,可以0.5 wt%至20 wt%的量存在。在此範圍內,所述玻璃料可在不使電極的電性特性劣化的同時確保電極圖案具有優異的黏合強度。The glass frit may have an average particle diameter (D50) of 0.1 mm to 10 mm, and may be present in an amount of 0.5 wt% to 20 wt% based on 100 wt% of the composition for forming an electrode. Within this range, the glass frit can ensure excellent electrode bonding strength without deteriorating the electrical characteristics of the electrode.

所述玻璃料可具有球形形狀或無定形形狀。在實施例中,可使用具有不同轉變溫度(transition temperature)的兩種不同種類的玻璃料。例如,可將轉變溫度為大於或等於200℃且小於或等於350℃的第一玻璃料與轉變溫度為大於350℃且小於或等於550℃的第二玻璃料以1:0.2至1:1的重量比率混合。The frit may have a spherical shape or an amorphous shape. In an embodiment, two different kinds of frits having different transition temperatures can be used. For example, the first frit having a transition temperature of greater than or equal to 200 ° C and less than or equal to 350 ° C and the second frit having a transition temperature of greater than 350 ° C and less than or equal to 550 ° C may be from 1: 0.2 to 1:1. The weight ratio is mixed.

所述有機載劑可藉由與所述用於形成電極的組合物的無機成分進行機械混合而賦予所述用於形成電極的組合物適宜於印刷的黏度及流變特性。所述有機載劑包含有機黏合劑及溶劑。The organic vehicle can be imparted to the composition for forming an electrode to be suitable for printing viscosity and rheological properties by mechanical mixing with the inorganic component of the composition for forming an electrode. The organic vehicle comprises an organic binder and a solvent.

所述有機黏合劑可選自丙烯酸類樹脂(acrylate-based resin)或纖維素類樹脂。在實施例中,所述有機黏合劑可選自乙基纖維素、乙基羥乙基纖維素、硝化纖維素、乙基纖維素與酚醛樹脂的混合物、醇酸樹脂、酚類樹脂、丙烯酸酯類樹脂(acrylate ester-based resin)、二甲苯類樹脂、聚丁烯類樹脂、聚酯類樹脂、胺基甲酸酯類樹脂、三聚氰胺類樹脂、醋酸乙烯酯類樹脂、木松香或醇的聚甲基丙烯酸酯。The organic binder may be selected from an acrylate-based resin or a cellulose-based resin. In an embodiment, the organic binder may be selected from the group consisting of ethyl cellulose, ethyl hydroxyethyl cellulose, nitrocellulose, a mixture of ethyl cellulose and a phenolic resin, an alkyd resin, a phenolic resin, an acrylate. Acrylate ester-based resin, xylene resin, polybutene resin, polyester resin, urethane resin, melamine resin, vinyl acetate resin, wood rosin or alcohol Acrylate.

所述有機黏合劑可具有30,000 g/mol至200,000 g/mol、例如40,000 g/mol至150,000 g/mol的重量平均分子量(Mw)。當重量平均分子量(Mw)處於此範圍內時,可在可印刷性(printability)方面獲得優異的效果。The organic binder may have a weight average molecular weight (Mw) of from 30,000 g/mol to 200,000 g/mol, for example from 40,000 g/mol to 150,000 g/mol. When the weight average molecular weight (Mw) is in this range, an excellent effect can be obtained in terms of printability.

所述溶劑可為例如己烷、甲苯、Texanol(德克薩諾爾(商品名),2,2,4-三甲基-1,3-戊二醇單異丁酸酯)、甲基溶纖劑、乙基溶纖劑、環己酮、丁基溶纖劑、脂肪醇、丁基卡必醇(二乙二醇單丁基醚)、二丁基卡必醇(二乙二醇二丁醚)、丁基卡必醇醋酸酯(二乙二醇單丁醚醋酸酯)、丙二醇單甲醚、己二醇、松油醇、甲基乙基酮、苯甲醇、g丁內酯、乳酸乙酯或其組合。The solvent may be, for example, hexane, toluene, Texanol (Dexanol (trade name), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), methylcellulose Agent, ethyl cellosolve, cyclohexanone, butyl cellosolve, fatty alcohol, butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol dibutyl ether) , butyl carbitol acetate (diethylene glycol monobutyl ether acetate), propylene glycol monomethyl ether, hexanediol, terpineol, methyl ethyl ketone, benzyl alcohol, g-butyrolactone, ethyl lactate Or a combination thereof.

基於所述用於形成電極的組合物的100 wt%計,所述有機載劑可以1 wt%至30 wt%、例如5 wt%至20 wt%的量存在。當在此範圍內使用所述有機載劑時,可提高電極圖案與基板之間的黏合強度並可確保優異的連續可印刷性。The organic vehicle may be present in an amount from 1 wt% to 30 wt%, such as from 5 wt% to 20 wt%, based on 100 wt% of the composition used to form the electrode. When the organic vehicle is used within this range, the bonding strength between the electrode pattern and the substrate can be improved and excellent continuous printability can be ensured.

所述阻燃劑可延遲所述用於形成電極的組合物中的有機材料的燒結,並調節玻璃料的流動性並且由此調節抗反射塗層的蝕刻性質。因此,可最小化電極與射極接觸之處的損壞,並可提高開路電壓。The flame retardant may delay sintering of the organic material in the composition for forming an electrode, and adjust the fluidity of the frit and thereby adjust the etching properties of the anti-reflective coating. Therefore, damage to the electrode in contact with the emitter can be minimized, and the open circuit voltage can be increased.

所述阻燃劑是有機化合物,所述有機化合物基於其100 wt%的初始量計,在600℃的溫度下具有大於或等於1 wt%的量的殘留碳,例如在200℃至500℃下具有大於或等於1.0 wt%且大於或等於60.0 wt%的殘留碳,且在210℃至450℃下表現出放熱峰值。一般而言,有機黏合劑中的殘留碳可對用於形成電極的組合物具有負面影響且因此原本應被移除,但所述阻燃劑中的殘留碳可調節玻璃料的流動性且因此調節蝕刻性質,並且結果會增大開路電壓。當阻燃劑具有小於1 wt%的殘留碳時,殘留碳的量太少而無法調節玻璃料的流動性。殘留碳的量可在以10℃/min至30℃/min升高溫度至600℃之後,在600℃藉由熱重-差熱分析(Thermogravimetry-Differential Thermal Analysis,TG-DTA)來測量。The flame retardant is an organic compound having an amount of residual carbon of greater than or equal to 1 wt% at a temperature of 600 ° C based on an initial amount of 100 wt% thereof, for example, at 200 ° C to 500 ° C There is residual carbon of greater than or equal to 1.0 wt% and greater than or equal to 60.0 wt%, and exhibits an exothermic peak at 210 ° C to 450 ° C. In general, residual carbon in the organic binder can have a negative impact on the composition used to form the electrode and thus should be removed, but the residual carbon in the flame retardant can adjust the flowability of the frit and thus The etching properties are adjusted and as a result the open circuit voltage is increased. When the flame retardant has less than 1 wt% of residual carbon, the amount of residual carbon is too small to adjust the fluidity of the frit. The amount of residual carbon can be measured by Thermogravimetry-Differential Thermal Analysis (TG-DTA) at 600 ° C after raising the temperature from 10 ° C / min to 30 ° C / min to 600 ° C.

另外,當所述阻燃劑具有低於200℃的放熱溫度時,所述阻燃劑具有比玻璃開始具有流動性的溫度低的放熱溫度,且因此可能無法表現出阻燃功能且無法增大開路電壓,但當所述阻燃劑具有高於500℃的放熱溫度時,燃燒功能被延遲過多,且電極的電阻增大,結果會使太陽能電池的效率劣化。放熱溫度可在以5℃/min至20℃/min升高溫度的條件下藉由熱重-差熱分析(Thermogravimetry-Differential Thermal Analysis,TG-DTA)來測量。放熱溫度代表在TG-DTA圖表中的伴隨重損的峰的最高點的溫度。In addition, when the flame retardant has an exothermic temperature lower than 200 ° C, the flame retardant has an exothermic temperature lower than a temperature at which the glass starts to have fluidity, and thus may not exhibit a flame retarding function and cannot be increased. The open circuit voltage, but when the flame retardant has an exothermic temperature higher than 500 ° C, the combustion function is delayed too much, and the resistance of the electrode is increased, with the result that the efficiency of the solar cell is deteriorated. The exothermic temperature can be measured by Thermogravimetry-Differential Thermal Analysis (TG-DTA) under conditions of an elevated temperature of 5 ° C/min to 20 ° C/min. The exotherm temperature represents the temperature at the highest point of the peak accompanying the heavy loss in the TG-DTA chart.

基於用於形成電極的組合物的總量計,所述阻燃劑可以0.05 wt%至1.5 wt%、例如0.1 wt%至1.2 wt%的量使用。在所述範圍內,可提高開路電壓,且可提高太陽能電池的效率。The flame retardant may be used in an amount of 0.05 wt% to 1.5 wt%, for example, 0.1 wt% to 1.2 wt%, based on the total amount of the composition for forming the electrode. Within the range, the open circuit voltage can be increased and the efficiency of the solar cell can be improved.

所述阻燃劑可為選自環氧丙烯酸酯類化合物、胺基甲酸酯丙烯酸酯類化合物或矽類化合物的有機化合物。The flame retardant may be an organic compound selected from the group consisting of an epoxy acrylate compound, a urethane acrylate compound, or a quinone compound.

所述用於形成電極的組合物可還視需要包含典型的添加劑,以增強流動性質、加工性質及穩定性。所述添加劑可包括表面處理劑、分散劑、觸變劑、塑化劑、黏度穩定劑、消泡劑、顏料、紫外線(UV)穩定劑、抗氧化劑、偶合劑等等。這些添加劑可單獨使用或者以其混合物形式使用。The composition for forming an electrode may also contain typical additives as needed to enhance flow properties, processing properties, and stability. The additive may include a surface treatment agent, a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet (UV) stabilizer, an antioxidant, a coupling agent, and the like. These additives may be used singly or in the form of a mixture thereof.

基於所述用於形成電極的組合物的100 wt%計,這些添加劑可以0.1 wt%至5 wt%的量存在。此量可視需要改變。添加劑的量可慮及所述用於形成電極的組合物的印刷特性、分散性及存儲穩定性加以選擇。These additives may be present in an amount of from 0.1 wt% to 5 wt%, based on 100 wt% of the composition for forming an electrode. This amount can be changed as needed. The amount of the additive can be selected in consideration of the printing characteristics, dispersibility, and storage stability of the composition for forming an electrode.

實施例提供一種由所述用於形成電極的組合物形成的電極。Embodiments provide an electrode formed from the composition for forming an electrode.

實施例提供一種包括所述電極的太陽能電池。Embodiments provide a solar cell including the electrode.

參照圖1,其說明根據實施例的太陽能電池。圖1說明根據實施例的太陽能電池的結構的示意圖。Referring to Figure 1, a solar cell according to an embodiment is illustrated. FIG. 1 illustrates a schematic diagram of a structure of a solar cell according to an embodiment.

參照圖1,可藉由在包括p層(或n層)101及作為射極的n層(或p層)102的基板100上印刷電極組合物並接著對其進行燒結而形成前電極210及後電極230。例如,可將電極組合物印刷塗布於基板100的後側並在200℃至400℃下對其熱處理10秒至60秒來進行後電極的前期製備步驟。Referring to FIG. 1, a front electrode 210 can be formed by printing an electrode composition on a substrate 100 including a p-layer (or n-layer) 101 and an n-layer (or p-layer) 102 as an emitter and then sintering the same. Rear electrode 230. For example, the electrode composition may be applied to the back side of the substrate 100 and heat-treated at 200 ° C to 400 ° C for 10 seconds to 60 seconds to perform a preliminary preparation step of the back electrode.

可藉由將電極組合物印刷於基板100的前表面上並接著將其乾燥來進行前電極的前期製備步驟。接著,可在400℃至980℃,例如700℃至980℃下,燒結所述電極組合物30秒至210秒以形成所述前電極及後電極。The preliminary preparation step of the front electrode can be carried out by printing the electrode composition on the front surface of the substrate 100 and then drying it. Next, the electrode composition may be sintered at 400 ° C to 980 ° C, for example, 700 ° C to 980 ° C for 30 seconds to 210 seconds to form the front and back electrodes.

為突出一個或多個實施例的特性,提供以下實例及比較例,但應理解,所述實例及比較例不應被視為限制實施例的範圍,且比較例也不應被視為處於實施例的範圍之外。此外,應理解,所述實施例並不限於在實例及比較例中所述的具體細節。用於形成電極的組合物的製備 實例 1 至實例 9 及比較例 1 以及比較例 2 The following examples and comparative examples are provided to highlight the characteristics of one or more embodiments, but it should be understood that the examples and comparative examples should not be construed as limiting the scope of the embodiments, and the comparative examples should not be construed as being Outside the scope of the example. Further, it should be understood that the described embodiments are not limited to the specific details described in the examples and the comparative examples. Preparation Examples 1 to 9 and Comparative Example 1 and Comparative Example 2 of a composition for forming an electrode

藉由以下方式製備了用於形成電極的組合物:根據在表1中所提供的組合物在60℃下將有機黏合劑(Mw=50,000 g/mol,STD4,陶氏化學公司(Dow Chemical Company))充分溶解於溶劑(Texanol(德克薩諾爾(商品名),伊士曼公司(Eastman)))中,對其添加平均粒徑為1.5 mm的球形銀(Ag)粉末(AG-5-11F,同和高科技有限公司(Dowa Hightech Co., Ltd.))、Bi-Te-Ag-Li-Zn-O類玻璃料(Bi/Te/Ag/Li/Zn(mol%)=10/61/9/8/12)、根據表2的每一阻燃劑、分散劑(BYK-102,畢克化學公司(BYK-chemie))、及觸變劑(賽科薩綽(Thixatrol)ST,海明斯有限公司(Elementis Co.)),並以三輥式磨機(three roll mill)對其進行混合及分散。 (表1) (單位:wt%) (表2) 阻燃劑的殘留碳的量的測量 A composition for forming an electrode was prepared by disposing an organic binder at 60 ° C according to the composition provided in Table 1 (Mw = 50,000 g/mol, STD 4, Dow Chemical Company) )) sufficiently dissolved in a solvent (Texanol (trade name), Eastman) to add spherical silver (Ag) powder having an average particle diameter of 1.5 mm (AG-5-) 11F, Dowa Hightech Co., Ltd., Bi-Te-Ag-Li-Zn-O glass frit (Bi/Te/Ag/Li/Zn(mol%)=10/61 /9/8/12), according to Table 2, each flame retardant, dispersant (BYK-102, BYK-chemie), and thixotropic agent (Thixatrol ST, Elementis Co.), which is mixed and dispersed by a three roll mill. (Table 1) (Unit: wt%) (Table 2) Measurement of the amount of residual carbon in the flame retardant

藉由對實例1至實例9以及比較例1中使用的每一阻燃劑的30 mg以約20℃/min升高溫度至600℃,接著在600℃測量以得到殘留碳的量。測量的結果如上表2所示。阻燃劑的放熱峰值溫度的測量 The amount of residual carbon was obtained by raising the temperature of 30 mg of each of the flame retardants used in Examples 1 to 9 and Comparative Example 1 to about 600 ° C at about 20 ° C / min, followed by measurement at 600 ° C. The results of the measurement are shown in Table 2 above. Measurement of exothermic peak temperature of flame retardant

藉由熱重-差熱分析(Thermogravimetry-Differential Thermal Analysis,TG-DTA)以10℃/min對根據實例1至實例9以及比較例1的每一包含阻燃劑及有機載劑(有機黏合劑及溶劑)的混合物進行加熱來測量放熱峰值溫度,並將結果提供於表2中。有機載劑(有機黏合劑及溶劑)不影響阻燃劑的放熱峰值溫度。太陽能電池效率評估 Flame retardant and organic carrier (organic binder) for each of Examples 1 to 9 and Comparative Example 1 were analyzed by Thermogravimetry-Differential Thermal Analysis (TG-DTA) at 10 ° C/min. The mixture of the solvent and the solvent was heated to measure the exothermic peak temperature, and the results are shown in Table 2. Organic carriers (organic binders and solvents) do not affect the exothermic peak temperature of the flame retardant. Solar cell efficiency assessment

對根據各實例及各比較例的用於形成電極的組合物分別進行了絲網印刷,以在藉由將晶圓(摻雜有硼的p型晶圓)的前側進行紋理化並以POCl3 形成n+層、接著在其上以氮化矽(SiNx:H)形成抗反射塗層、並在紅外線乾燥爐中在300℃至400℃下進行乾燥而獲得的多晶晶圓上形成預定圖案。隨後,在晶圓的後側上印刷鋁糊料並接著使用與上述相同的方法進行乾燥。將藉由上述過程製成的電池在帶式爐(belt-type furnace)中在400℃至900℃下燒結30秒至180秒以獲得測試電池。The composition for forming an electrode according to each example and each comparative example was separately screen-printed to texture the front side of the wafer (p-type wafer doped with boron) and POCl 3 A predetermined pattern is formed on the polycrystalline wafer obtained by forming an n+ layer, then forming an antireflection coating thereon with tantalum nitride (SiNx:H), and drying at 300 ° C to 400 ° C in an infrared drying oven. Subsequently, an aluminum paste was printed on the back side of the wafer and then dried using the same method as described above. The battery fabricated by the above process was sintered in a belt-type furnace at 400 ° C to 900 ° C for 30 seconds to 180 seconds to obtain a test battery.

使用太陽能電池效率測量設備(CT-801,帕森公司(Passan))對測試電池的開路電壓(Voc ,mV)、串聯電阻(Rs ,W)、轉換效率(Eff.,%)進行了測量。結果提供於表3中。 (表3) The open cell voltage (V oc , mV), series resistance (R s , W), and conversion efficiency (Eff., %) of the test battery were measured using a solar cell efficiency measuring device (CT-801, Passan). measuring. The results are provided in Table 3. (table 3)

參照表3,與根據比較例2的太陽能電池相比,根據實例1至實例9的使用包含阻燃劑的用於形成電極的組合物所分別製成的每一太陽能電池未表現出增加太多的電阻,但表現出增大的開路電壓且因此表現出提高的效率。根據比較例1的使用包含殘留碳超出本發明範圍的阻燃劑的用於形成電極的組合物所製成的電池則表現出很小的開路電壓增大效果。Referring to Table 3, each solar cell separately prepared using the composition for forming an electrode containing a flame retardant according to Examples 1 to 9 did not exhibit an increase too much as compared with the solar cell according to Comparative Example 2 The resistance, but exhibits an increased open circuit voltage and thus exhibits increased efficiency. The battery fabricated according to Comparative Example 1 using the composition for forming an electrode containing a flame retardant having residual carbon beyond the scope of the present invention exhibited a small open circuit voltage increasing effect.

本文已公開了實例性實施例,且儘管採用特定用語,然而所述特定用語是以一般性及描述性意義加以使用及解釋而非用於限制目的。在某些情形中,如在本申請提交申請之前對於所屬領域的技術人員將顯而易見,除非另外具體指明,否則結合具體實施例所闡述的特徵、特性、及/或元件可單獨使用或者與結合其他實施例所闡述的特徵、特性、及/或元件組合使用。因此,所屬領域的技術人員將理解,可作出形式及細節上的各種改變,此並不背離在下文的申請專利範圍中所提及的本發明的精神及範圍。The exemplified embodiments have been disclosed herein, and the specific terms are used and construed in a generic and descript In some instances, it will be apparent to those skilled in the art that the present disclosure, which is described in the application, the features, characteristics, and/or elements described in connection with the specific embodiments may be used alone or in combination with others. The features, characteristics, and/or combinations of elements set forth in the embodiments are used in combination. Therefore, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention as described in the appended claims.

100‧‧‧基板
101‧‧‧p層
102‧‧‧n層
210‧‧‧前電極
230‧‧‧後電極
100‧‧‧Substrate
101‧‧‧p layer
102‧‧‧n layer
210‧‧‧ front electrode
230‧‧‧Back electrode

藉由參照附圖詳細闡述示例性實施例,本發明的特徵對於所屬領域中具有通常知識者將變得顯而易見,附圖中‧‧‧圖1說明根據實施例的太陽能電池的結構的示意圖。The features of the present invention will become apparent to those of ordinary skill in the art in the <RTIgt;

100‧‧‧基板 100‧‧‧Substrate

101‧‧‧p層 101‧‧‧p layer

102‧‧‧n層 102‧‧‧n layer

210‧‧‧前電極 210‧‧‧ front electrode

230‧‧‧後電極 230‧‧‧Back electrode

Claims (8)

一種用於形成電極的組合物,包括:導電粉末、玻璃料、有機載劑、及阻燃劑,其中基於100wt%的初始量,所述阻燃劑在600℃的溫度下表現出大於或等於1wt%的殘留碳,所述阻燃劑在200℃至500℃下表現出放熱峰值,且基於所述用於形成電極的組合物的總量計,以0.05wt%至1.5wt%的量使用所述阻燃劑。 A composition for forming an electrode, comprising: a conductive powder, a glass frit, an organic vehicle, and a flame retardant, wherein the flame retardant exhibits greater than or equal to 600 ° C based on an initial amount of 100 wt% 1 wt% of residual carbon, the flame retardant exhibits an exothermic peak at 200 ° C to 500 ° C, and is used in an amount of 0.05 wt% to 1.5 wt% based on the total amount of the composition for forming an electrode The flame retardant. 如申請專利範圍第1項所述的用於形成電極的組合物,其中所述阻燃劑是選自環氧丙烯酸酯類化合物、胺基甲酸酯丙烯酸酯類化合物及矽類化合物的有機化合物。 The composition for forming an electrode according to claim 1, wherein the flame retardant is an organic compound selected from the group consisting of an epoxy acrylate compound, a urethane acrylate compound, and an anthracene compound. . 如申請專利範圍第1項所述的用於形成電極的組合物,其中所述組合物包含60wt%至95wt%的所述導電粉末、0.5wt%至20wt%的所述玻璃料、0.05wt%至1.5wt%的所述阻燃劑,且餘量為所述有機載劑。 The composition for forming an electrode according to claim 1, wherein the composition comprises 60% by weight to 95% by weight of the conductive powder, 0.5% by weight to 20% by weight of the glass frit, 0.05% by weight. Up to 1.5% by weight of the flame retardant, and the balance being the organic vehicle. 如申請專利範圍第1項所述的用於形成電極的組合物,其中所述玻璃料包含選自以下中的一或多種元素:鉛、碲、鉍、鋰、磷、鍺、鎵、鈰、鐵、矽、鋅、鎢、鎂、銫、鍶、鉬、鈦、錫、銦、釩、鋇、鎳、銅、鈉、鉀、砷、鈷、鋯、錳、銀及鋁。 The composition for forming an electrode according to claim 1, wherein the glass frit comprises one or more elements selected from the group consisting of lead, bismuth, antimony, lithium, phosphorus, antimony, gallium, antimony, Iron, bismuth, zinc, tungsten, magnesium, lanthanum, cerium, molybdenum, titanium, tin, indium, vanadium, niobium, nickel, copper, sodium, potassium, arsenic, cobalt, zirconium, manganese, silver and aluminum. 如申請專利範圍第1項所述的用於形成電極的組合物,其中所述有機載劑包含有機黏合劑及溶劑。 The composition for forming an electrode according to claim 1, wherein the organic carrier comprises an organic binder and a solvent. 如申請專利範圍第1項所述的用於形成電極的組合物,其中所述用於形成電極的組合物還包含選自以下中的至少一者:表面處理劑、分散劑、觸變劑、黏度穩定劑、消泡劑、顏料、紫外線穩定劑、抗氧化劑及偶合劑。 The composition for forming an electrode according to claim 1, wherein the composition for forming an electrode further comprises at least one selected from the group consisting of a surface treatment agent, a dispersant, a thixotropic agent, Viscosity stabilizers, defoamers, pigments, UV stabilizers, antioxidants and coupling agents. 一種電極,是使用如申請專利範圍第1項至第6項中任一項所述的用於形成電極的組合物製成。 An electrode produced by using the composition for forming an electrode according to any one of claims 1 to 6. 一種太陽能電池,太陽能電池包括如申請專利範圍第7項所述的電極。 A solar cell comprising the electrode as described in claim 7 of the patent application.
TW105133473A 2015-12-15 2016-10-18 Composition for forming electrode, electrode manufactured using the same and solar cell TWI603487B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150179273 2015-12-15
KR1020160125112A KR101974839B1 (en) 2015-12-15 2016-09-28 Composition for forming electrode, electrode manufactured using the same and solar cell

Publications (2)

Publication Number Publication Date
TW201721891A TW201721891A (en) 2017-06-16
TWI603487B true TWI603487B (en) 2017-10-21

Family

ID=59283535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133473A TWI603487B (en) 2015-12-15 2016-10-18 Composition for forming electrode, electrode manufactured using the same and solar cell

Country Status (3)

Country Link
KR (1) KR101974839B1 (en)
CN (1) CN107068775B (en)
TW (1) TWI603487B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341416A (en) * 2009-07-01 2012-02-01 积水化学工业株式会社 Binder resin for conductive paste, conductive paste, and solar cell element
TW201319213A (en) * 2011-11-11 2013-05-16 Eternal Chemical Co Ltd Conductive adhesive composition for use in solar cells and uses thereof
CN103694232A (en) * 2013-12-13 2014-04-02 四川大学 Monocyclic benzo oxazine intermediate and preparation method and use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472375B1 (en) 2002-05-20 2005-02-21 엘지전자 주식회사 Photopolymerization Type Photosensitive Electrode Paste Composition for Plasma Display Panel and Fabricating Method Thereof
TWI390005B (en) * 2008-12-31 2013-03-21 Eternal Chemical Co Ltd Solvent-free conductive paste composition and solar cell element employing the same
KR20110117390A (en) * 2010-04-21 2011-10-27 에스에스씨피 주식회사 Electrode paste for solar cell's electrode and solar cell
US8419981B2 (en) * 2010-11-15 2013-04-16 Cheil Industries, Inc. Conductive paste composition and electrode prepared using the same
KR101608123B1 (en) * 2013-09-13 2016-03-31 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR101648253B1 (en) * 2013-09-13 2016-08-12 제일모직주식회사 Composition for forming solar cell and electrode prepared using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341416A (en) * 2009-07-01 2012-02-01 积水化学工业株式会社 Binder resin for conductive paste, conductive paste, and solar cell element
TW201319213A (en) * 2011-11-11 2013-05-16 Eternal Chemical Co Ltd Conductive adhesive composition for use in solar cells and uses thereof
CN103694232A (en) * 2013-12-13 2014-04-02 四川大学 Monocyclic benzo oxazine intermediate and preparation method and use thereof

Also Published As

Publication number Publication date
CN107068775A (en) 2017-08-18
KR101974839B1 (en) 2019-05-03
TW201721891A (en) 2017-06-16
KR20170071403A (en) 2017-06-23
CN107068775B (en) 2020-07-07

Similar Documents

Publication Publication Date Title
TWI651289B (en) Composition for solar cell electrode and electrode fabricated using the same
TWI599058B (en) Method of forming electrode, electrode manufactured therefrom and solar cell
CN113380439A (en) Composition for forming solar cell electrode and solar cell electrode formed therefrom
TWI655784B (en) Front electrode for solar cell and solar cell comprising the same
TWI598887B (en) Electrode composition, electrode manufactured using the same, and solar cell
KR101940170B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
TWI721620B (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same
TWI603487B (en) Composition for forming electrode, electrode manufactured using the same and solar cell
TWI684286B (en) Composition for forming solar cell electrode and electrode prepared using the same
CN113450941A (en) Composition for forming solar cell electrode and solar cell electrode formed therefrom
US9966480B2 (en) Electrode composition, electrode manufactured using the same, and solar cell
KR20170061023A (en) Composition for forming solar cell electrode, electrode manufactured using the same and solar cell
TWI648239B (en) a composition of a P-type solar cell electrode, an electrode prepared using the composition, and a P-type solar cell prepared using the composition
KR20170024416A (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101907500B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101835499B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
US10505056B2 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101835921B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI741393B (en) Composition for forming dsw based solar cell electrode and dsw based solar cell electrode prepared using the same
US20200203538A1 (en) Method for forming solar cell electrode and solar cell
TWI663739B (en) Composition for solar cell electrodes and solar cell electrode fabricated using the same
KR102020918B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
US20190292092A1 (en) Composition for forming solar cell electrode and electrode prepared using the same
TW201925124A (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20170025892A (en) Composition forforming electrode, electrode manufactured using the same and solar cell