TWI601821B - 治療神經發展性疾病 - Google Patents

治療神經發展性疾病 Download PDF

Info

Publication number
TWI601821B
TWI601821B TW105111748A TW105111748A TWI601821B TW I601821 B TWI601821 B TW I601821B TW 105111748 A TW105111748 A TW 105111748A TW 105111748 A TW105111748 A TW 105111748A TW I601821 B TWI601821 B TW I601821B
Authority
TW
Taiwan
Prior art keywords
mecp2
group
flag
mecp2wt
vector
Prior art date
Application number
TW105111748A
Other languages
English (en)
Other versions
TW201736598A (zh
Inventor
李小媛
戴瑞徵
劉彥呈
徐偉倫
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Priority to TW105111748A priority Critical patent/TWI601821B/zh
Application granted granted Critical
Publication of TWI601821B publication Critical patent/TWI601821B/zh
Publication of TW201736598A publication Critical patent/TW201736598A/zh

Links

Description

治療神經發展性疾病
本揭示內容是關於治療神經發展性疾病,例如雷特氏症候群(Rett(RTT)syndrome)。
甲基-CpG-結合蛋白2(methyl-CpG-binding protein 2,MeCP2)基因Mecp2為X-性聯基因(X-linked gene),可編碼出包含486個胺基酸的MeCP2蛋白;MeCP2蛋白具有二個主要結構保留性區域(structurally conserved domain),分別為甲基-DNA結合區域(methyl-DNA binding domain,MBD;由位置78到162,共85個胺基酸),以及轉錄抑制區域(transcriptional repression domain,TRD;由位置207到310,共104個胺基酸)。MeCP2可藉由結合至甲基化DNA之CpG島(CpG island)及吸引諸如組織蛋白去乙醯酶-1(histone deacetylase 1,HDAC1)及Sin3a等輔抑制物(co-repressor)來抑制轉錄作用。先前研究指出, MeCP2是一種多功能性的染色質相關蛋白,可調控不同基因的表現,且可作為轉錄抑制物或活化物。
在數種神經發展性疾病中,MeCP2扮演著關鍵的角色,例如雷特氏症候群(RTT),其係是一種由MECP2基因突變導致的泛自閉症障礙(autism spectrum disorder,ASD),已知與218個突變相關。罹患RTT的病患通常在18個月前可正常發展,之後則會出現包含運動及語言缺失、認知障礙、智能障礙及自閉症相似行為等行為異常及退化。於具有截斷性(truncated)MeCP2之小鼠及RTT動物模式(具有T158及R306突變之MeCP2)中,亦可觀察到相似的行為障礙。此外,可發現RTT之截斷性MeCP2小鼠模式會表現出學習功能、記憶功能及突觸可塑性(synaptic plasticity)等缺失。
有鑑於此,相關領域亟需一種用以回復RTT病患體內之MeCP2表現量或其功能的方法,藉以研發用以治療包含RTT等神經發展性疾病及/或病症的藥物。
發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。
一般來說,本揭示內容是基於發明人意外 發現野生型甲基-CpG-結合蛋白2(methyl-CpG-binding protein 2,MeCP2)或經修飾之MeCP2的表現可成功回復MeCP2剔除小鼠之社會互動、恐懼記憶及長效增益(long-term potentiation,LTP)等缺失,據以改善MeCP2剔除小鼠的社會互動、記憶表現及突觸可塑性。因此,野生型MeCP2或經修飾之MeCP2可作為一種候選藥劑,藉以研發適用於治療神經發展性疾病的藥物。
因此,本揭示內容的第一態樣是關於一種治療罹患神經發展性疾病之個體的方法。該方法包含對該個體投予一有效量之MeCP2或一用以編碼MeCP2之核酸,據以減緩或降低與神經發展性疾病相關的病症。
依據某些實施方式,MeCP2具有一或多個轉譯後修飾,相較於個體之內源性MeCP2,轉譯後修飾會增加MeCP2之類小泛素化(SUMOylation)、磷酸化或二者的程度。依據一實施方式,轉譯後修飾是對應於野生型MeCP2第412個位置之胺基酸的類小泛素化。依據另一實施方式,轉譯後修飾是對應於野生型MeCP2第308或421位置之胺基酸的磷酸化。
依據某些實施方式,投予至個體之MeCP2的劑量是每公斤0.001-100毫克。較佳地,投予至個體之MeCP2的劑量是每公斤0.01-80毫克。
依據某些實施方式,用以編碼MeCP2的核酸是一表現載體。該表現載體可以源自一病毒,其係選自由疱疹病毒(herpes virus)、反轉錄病毒 (retrovirus)、牛痘病毒(vaccinia virus)、減毒性牛痘病毒(attenuated vaccinia virus)、金絲雀痘病毒(canary pox virus)、腺病毒(adenovirus)及腺相關病毒(adeno-associated virus)所組成的群組。依據一實施方式,在傳送至個體體內後,該表現載體可成功編碼出MeCP2,其第412位置的胺基酸殘基具有類小泛素化修飾。依據另一實施方式,在傳送至個體體內後,該表現載體可成功編碼出MeCP2,其第308或421位置的胺基酸殘基具有磷酸化修飾。依據再另一實施方式,在傳送至個體體內後,該表現載體可成功編碼出MeCP2,其第308或421位置的胺基酸殘基具有磷酸化修飾,且第412位置的胺基酸殘基具有類小泛素化修飾。
依據某些實施方式,神經發展性疾病是注意力不足過動症(attention deficit hyperactivity disorder,ADHD)、精神分裂症(schizophrenia)、強迫症(obsessive-compulsive disorder,OCD)、智能障礙(mental retardation)、自閉症(autistic spectrum disorder)、腦性麻痺(cerebral palsy)、構音異常(articulation disorder)、雷特氏症候群(Rett syndrome)或學習障礙(learning disability)。在一較佳實施方式中,神經發展性疾病是雷特氏症候群。
依據具選擇性之實施方式,該方法更包含對該個體投予一有效量之氮-甲基天門冬胺酸(N-methyl-D-aspartate,NMDA)、類胰島素生長因子-1(insulin-like growth factor,IGF-1)或激腎 上腺皮質素釋放因子(corticotropin-releasing factor,CRF)。
依據本揭示內容實施方式,該個體為人類。
在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。
為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第一圖是關於辨識MeCP2中類小泛素的候選位置。(a)活體外類小泛素化試驗指出,PIAS1會對MeCP2進行類小泛素化修飾。將經純化之GST-E1、His-E2、His-PIAS1、GST-MeCP2及GST-SENP1蛋白加入至反應中,以進行該試驗分析。(b)以V5-MeCP2質體、Myc-SUMO1質體及不同劑量之Flag-PIAS1質體共轉染HEK293T細胞,藉以確認PIAS1會對MeCP2進行類小泛素化修飾。(c)利用SUMO2.0軟體預測MeCP2中類小泛素的接受位置(acceptor)。箭號所指字母「K」表示類小泛素的候選位置。(d)以Flag-PIAS1質體、Myc-SUMO1(或Myc-SUMO1△GG)質體及V5-MeCP2WT或不同的V5-MeCP2離胺酸(lysine) 突變質體共轉染HEK293T細胞。利用抗-V5抗體進行免疫印漬分析(immunoblotting)以檢測MeCP2的類小泛素化程度。下圖顯示定量結果(各組n=2;F9,10=240.59,# P<0.001;比較第3條及第9條蛋白蛋:q=12.73,# P<0.001;比較第3條及第10條蛋白蛋:q=21.1,# P<0.001;比較第9條及第10條蛋白蛋:q=8.37,# P<0.01,單向ANOVA(one-way ANOVA)分析後進行紐-柯事後多重比對(Newman-Keul posthoc multiple comparisons)。(e)以V5-MeCP2或V5-MeCP2K412R質體與Myc-SUMO1及Flag-PIAS1質體共轉染HEK293T細胞。以抗-Myc抗體對細胞溶解物進行免疫沉澱後,利用抗-V5抗體進行免疫印漬分析,藉以確認MeCP2之Lys-412的類小泛素化修飾。箭號所指為MeCP2之Lys-412的類小泛素化修飾。所有實驗皆為二重複實驗。以平均質±平均值標準誤差(mean±SEM)表示結果。
第2圖是關於大鼠海馬迴(hippocampus)中MeCP2與PIAS1的關連性及PIAS1可對MeCP2之Lys-412進行類小泛素化修飾的結果。(a)Co-IP實驗指出在大鼠CA1區域中,PIAS1是與MeCP2相關且反之亦然。實驗為二重複實驗。(b)免疫組織化學分析(immunohistochemistry)指出,PIAS1及MeCP2會表現於大鼠腦部CA1區域中相同神經元的細胞核位置。N=3。上圖的比例尺為25微米,下圖的比例尺則為10微米。(c)免疫組織化學分析指出,在源自大鼠海馬迴培 養之相同神經元中,PIAS1及MeCP2會共同表現於細胞核中。比例尺為5微米。實驗為二重複實驗。(d)以Flag-vector、Flag-MeCP2WT(有加入或無加入SUMO1突變蛋白)及Flag-MeCP2K412R質體轉染大鼠CA1區域,48小時後,利用活體外類小泛素化試驗分析海馬迴中MeCP2之Lys-412的類小泛素化程度。左圖:以抗-MeCP2抗體進行免疫印漬分析。右圖:以抗-SUMO1抗體進行免疫印漬分析。利用抗-Flag抗體進行西方墨點法來確認質體的轉染及表現。定量結果闡述於(f)(各組n=4;F3,12=76.75,# P<0.001;比較Flag-MeCP2WT組及Flag-載體組:q=16.5,# P<0.001;比較Flag-MeCP2K412R組及Flag-MeCP2WT組:q=18.39,# P<0.001;比較Flag-MeCP2WT+SUMO1突變組及Flag-MeCP2WT組:q=17.47,# P<0.001;單向ANOVA分析後進行紐-柯事後多重比對)。(e)以抗-MeCP2抗體對第(d)圖所述之經相同質體轉染的細胞溶解物進行免疫沉澱分析,並以抗-泛素(ubiquitin)抗體對該些細胞溶解物進行免疫印漬分析。Ub-MeCP2:泛素化之MeCP2。(g)以對照組siRNA或PIAS1 siRNA(8批莫耳(pmol))轉染大鼠腦部之CA1區域,並利用活體外類小泛素化試驗檢測內源性MeCP2的類小泛素化程度。(h)上圖繪示了MeCP2類小泛素化的定量結果(各組n=6;t1,10=9.65,# P<0.001,Student’s-t分析)。以西方墨點法檢測經PIAS1 siRNA轉染後PIAS1的表現量,下圖繪示了該定量結果(各組n=6;t1,10=11.38,# P<0.001,Student’s-t分析)。以平均質±平均值標準誤差表示結果。
第3圖是關於MeCP2磷酸化有助於MeCP2的類小泛素化,以及投予NMDA、IGF-1及CRF會誘發海馬迴中MeCP2的類小泛素化。(a)以Flag-載體、Flag-MeCP2WT、Flag-MeCP2S421A或Flag-MeCP2T308A質體轉染至大鼠CA1區域,並以活體外類小泛素化試驗檢測MeCP2類小泛素化後進行定量分析(各組n=4;F3,12=40.85,# P<0.001;比較Flag-MeCP2WT組及Flag-載體組:q=12.02,# P<0.001;比較Flag-MeCP2S421A組及Flag-MeCP2WT組:q=12.1,# P<0.001;比較Flag-MeCP2T308A組及Flag-MeCP2WT組:q=13.88,# P<0.001)。(b)如上述方法以相同質體轉染大鼠CA1區域。在質體轉染47小時後投予NMDA(每微升2微克)。將以Flag-載體轉染+生理食鹽水(Phosphate-buffered saline,PBS)注射的組別設定為對照組。於注射NMDA 1小時後,以活體外類小泛素化試驗檢測MeCP2之類小泛素化程度,並利用抗-磷酸化-Ser421MeCP2抗體進行西方墨點法以檢測MeCP2之Ser-421的磷酸化程度(分析MeCP2類小泛素化時,各組n=4;F4,15=74.65,# P<0.001;比較Flag-載體+NMDA組及Flag-vector+PBS組:q=12.7,# P<0.001;比較Flag-MeCP2WT+NMDA 組及Flag-vector+NMDA組:q=4.65,**P<0.01;比較Flag-MeCP2S421A+NMDA組及Flag-載體+NMDA組:q=12.15,# P<0.001;比較Flag-MeCP2T308A+NMDA組及Flag-載體+NMDA組:q=14.42,# P<0.001;分析MeCP2之Ser-421磷酸化時,各組n=4;F4,15=23.65,# P<0.001;比較Flag-載體+NMDA組及Flag-載體+PBS組:q=5.97,**P<0.01;比較Flag-MeCP2WT+NMDA組及Flag-載體+NMDA組:q=4.59,**P<0.01;比對Flag-MeCP2S421A+NMDA組及Flag-MeCP2WT+NMDA組:q=8.17,# P<0.001;比對Flag-MeCP2S421A+NMDA組及Flag-載體+NMDA組:q=3.58,*P<0.05)。(c)將PBS或IGF-1(每毫升100奈克)注入大鼠CA1區域中,1小時後檢測MeCP2的類小泛素化程度。左圖:以抗-MeCP2抗體進行免疫印漬分析。右圖:以抗-SUMO1抗體進行免疫印漬分析(各組n=6;t1,10=15.9,# P<0.001)。(d)將PBS或CRF(每微升100奈克)注入大鼠CA1區域中,1小時後檢測MeCP2的類小泛素化程度(各組n=6;t1,10=10.91,# P<0.001)。(e)將DMSO或迪皮質醇(dexamethasone,每微升30奈克)注入大鼠CA1區域中,1小時後檢測MeCP2的類小泛素化程度(各組n=6;t1,10=0.57,P>0.05)。Dex:迪皮質醇。以單向ANOVA分析後進行紐-柯事後多重比對(a及b)或 Student’s-t分析(c-e)。以平均質±平均值標準誤差表示結果。
第4圖是關於MeCP2之類小泛素化會減少其與CREB的作用、增加CREB與DNA之結合及Bdnf基因的表現,並增加甲基-DNA結合。(a)以Flag-載體、Flag-MeCP2WT、Flag-MeCP2K412R或Flag-MeCP2WT-SUMO1融合質體轉染大鼠CA1區域,利用抗-Flag抗體及抗-CREB抗體進行co-IP來分析MeCP2及CREB的關連性。以抗-Flag抗體進行西方墨點法來確認質體的轉染及表現(左圖)。以抗-MeCP2抗體對細胞溶解物進行免疫沉澱分析,並以抗-SUMO1抗體進行免疫印漬分析,結果顯示類小泛素化之MeCP2的特定蛋白道(lane,中圖)。右圖指出co-IP的定量結果(各組n=3;F3,8=72.69,# P<0.001;比較Flag-MeCP2K412R組及Flag-MeCP2WT組:q=11.99,# P<0.001;比較Flag-MeCP2WT-SUMO1組及Flag-MeCP2WT組:q=4.31,*P<0.05)。(b)以相同質體轉染大鼠CA1區域,利用寡下拉試驗(oligo pull-down assay)檢測CREB與DNA之結合活性。以西方墨點法檢測CREB的表現。利用抗-Flag抗體進行西方墨點法以確認質體的轉染及表現(各組n=7;F3,24=52.07,# P<0.001;比較Flag-MeCP2WT組及Flag-載體組:q=3.26,*P<0.05;比較Flag-MeCP2K412R組及Flag-載體組:q=8.94,# P<0.001;比較 Flag-MeCP2WT-SUMO1組及Flag-載體組:q=8.2,# P<0.001;比較Flag-MeCP2K412R組及Flag-MeCP2WT組:q=12.21,# P<0.001;比較Flag-MeCP2WT-SUMO1組及Flag-MeCP2WT組:q=4.93,*P<0.05;比較Flag-MeCP2WT-SUMO1組及Flag-MeCP2K412R組:q=17.14,# P<0.001)。(c)以相同質體轉染大鼠CA1區域,利用RT-qPCR檢測Bdnf的mRNA表現量後,以Gapdh的mRNA表現量進行定量分析(各組n=6;F3,20=38.45,# P<0.001;比較Flag-MeCP2K412R組及Flag-載體組:q=7.26,# P<0.001;比較Flag-MeCP2WT-SUMO1組及Flag-載體組:q=7.56,# P<0.001)。(d)以相同質體轉染至大鼠CA1區域,利用ChIP方法檢測CREB是否直接結合至Bdnf啟動子。以抗-Flag抗體進行西方墨點法以確認質體的轉染及表現。(e)單獨以V5-MeCP2T158M、V5-MeCP2WT質體,或是與Flag-PIAS1及Myc-SUMO1質體共同轉染HEK293T細胞後,以甲基-DNA結合試驗及活體外類小泛素化試驗檢測細胞溶解物(各組n=3;F3,8=230.02,# P<0.001;比較V5-MeCP2T158M組及V5-MeCP2WT組:q=11.53,# P<0.001;比較Flag-PIAS1+Myc-SUMO1+V5-MeCP2WT組及V5-MeCP2WT組:q=15.75,# P<0.001)。以單向ANOVA分析後進行紐-柯事後多重比對。以平均質±平均值標準誤差表示結果。
第5圖是關於由RTT病患確認之數個MECP2突變會減少MeCP2的類小泛素化程度並減少與PIAS1的作用。(a)以V5-MeCP2WT質體或與RTT相關之不同的V5-MeCP2突變質體與Flag-PIAS1及Myc-SUMO1質體共轉染HEK293T細胞後,利用活體外類小泛素化驗分析細胞溶解物。以磷酸化-Ser421 MeCP2抗體檢測MeCP2於Ser-421的磷酸化程度。第8條蛋白道之下方蛋白帶(band)為截斷性MeCP2R168X蛋白。(b)MeCP2之類小泛素化的定量結果(各組n=4;F9,30=579.1,# P<0.001;比較V5-MeCP2R106W組及V5-MeCP2WT組:q=57.8,# P<0.001;比較V5-MeCP2R133C組及V5-MeCP2WT組:q=41.81,# P<0.001;比較V5-MeCP2P152A組及V5-MeCP2WT組:q=16.69,# P<0.001;比較V5-MeCP2T158M組及V5-MeCP2WT組q=58.68:# P<0.001;比較V5-MeCP2R306C組及V5-MeCP2WT組:q=46.2,# P<0.001;比較V5-MeCP2P376R組及V5-MeCP2WT組:q=33.56,# P<0.001;以單向ANOVA分析後進行紐-柯事後多重比對)。(c)MeCP2之Ser-421磷酸化的定量結果(各組n=3;F9,20=119.55,# P<0.001;比較V5-MeCP2R106W組及V5-MeCP2WT組:q=16.73,# P<0.001;比較V5-MeCP2R133C組及V5-MeCP2WT組:q=14.48,# P<0.001;比較V5-MeCP2P152A組及V5-MeCP2WT組:q=3.54, *P<0.05;比較V5-MeCP2T158M組及V5-MeCP2WT組:q=16.63,# P<0.001;比較V5-MeCP2R306C組及V5-MeCP2WT組:q=4.97,**P<0.01;比較V5-MeCP2P376R組V5-MeCP2WT組:q=4.52,**P<0.01;以單向ANOVA分析後進行紐-柯事後多重比對)。(d)以V5-MeCP2WT質體或具有V5-標籤之各MeCP2突變質體轉染HEK293T細胞後,藉由抗-V5抗體進行免疫沉澱,並利用抗-Flag抗體進行免疫印漬分析,據以進行co-IP實驗。以抗-V5抗體進行西方墨點法來檢測MeCP2(野生型或突變蛋白)的表現量。(e)PIAS1與MeCP2(或MeCP2突變蛋白)關連性的定量結果(各組n=3;F7,16=27.47,# P<0.001;比較V5-MeCP2R106W組及V5-MeCP2WT組:q=5.85,**P<0.01;比較V5-MeCP2R133C組及V5-MeCP2WT組:q=3.01,*P=0.05;比較V5-MeCP2P152A組及V5-MeCP2WT組:q=8.46,# P<0.001;比較V5-MeCP2T158M組及V5-MeCP2WT組:q=5.60,**P<0.01;比較V5-MeCP2R306C組及V5-MeCP2WT組:q=11.09,# P<0.001;比較V5-MeCP2P376R組及V5-MeCP2WT組:q=10.88,# P<0.001;以單向ANOVA分析後進行紐-柯事後多重比對)。以平均質±平均值標準誤差表示結果。
第6圖是關於MeCP2的類小泛素化會回復Mecp2 cKO小鼠引發的行為及LTP缺失。將不同MeCP2 lenti-mRFP-載體傳送至Mecp2 loxp小鼠及Mecp2 cKO小鼠之BLA區域,7-10天後進行(a)活動能力試驗(motor activity test)、(b)社會能力試驗(social ability test)及(c)社會識別試驗(social novelty test)(各組n=10-11;嗅探到右側陌生小鼠2:F4,47=19.87,# P<0.001;比較Mecp2 cKO+lenti-mRFP-載體組及Mecp2 loxp+lenti-mRFP-載體組:q=8.55;比較Mecp2 cKO+lenti-mRFP-MeCP2WT組及Mecp2 cKO+lenti-mRFP-載體組:q=7.85;比較Mecp2 cKO+lenti-mRFP-MeCP2K412R組及Mecp2 cKO+lenti-mRFP-MeCP2WT組:q=6.56;比較Mecp2 cKO+lenti-mRFP-MeCP2WT-SUMO1組及Mecp2 cKO+lenti-mRFP-MeCP2K412R組:q=8.29)。(d)7天後,對相同小鼠進行線索恐懼制約學習(cued fear conditioning learning)(F4,47=37.17,# P<0.001;比較Mecp2 cKO+lenti-mRFP-載體組及Mecp2 loxp+lenti-mRFP-載體組:q=10.77;比較Mecp2 cKO+lenti-mRFP-MeCP2K412R組及Mecp2 loxp+lenti-mRFP-載體組:q=5.27;比較Mecp2 cKO+lenti-mRFP-MeCP2K412R組及Mecp2 cKO+lenti-mRFP-載體組:q=5.75;比較Mecp2 cKO+lenti-mRFP-MeCP2WT-SUMO1組及Mecp2 loxp+lenti-mRFP-載體組:q=4.07)。(e)對取自 Mecp2 loxp+lenti-mRFP-載體組及Mecp2 cKO+lenti-mRFP-載體組小鼠的BLA組織進行西方墨點分析,藉以了解MeCP2的表現(t1,18=20.99,# P<0.001)。(f)對取自Mecp2 cKO+lenti-mRFP-載體、Mecp2 cKO+lenti-mRFP-MeCP2WT及Mecp2 cKO+lenti-mRFP-MeCP2K412R組小鼠的BLA組織進行西方墨點分析,以了解MeCP2的表現及MeCP2之Ser-421的磷酸化程度(在MeCP2表現方面,F2,28=241.64,# P<0.001;比較Mecp2 cKO+lenti-mRFP-MeCP2WT組及Mecp2 loxp+lenti-mRFP-載體組:q=27.46;比較Mecp2 cKO+lenti-mRFP-MeCP2K412R組及Mecp2 loxp+lenti-mRFP-載體組:q=26.58。在pS421MeCP2方面,F2,28=3.72,*P<0.05;比較Mecp2 cKO+lenti-mRFP-MeCP2WT組及Mecp2 loxp+lenti-mRFP-載體組:q=3.59;比較Mecp2 cKO+lenti-mRFP-MeCP2K412R組及Mecp2 loxp+lenti-mRFP-載體組:q=3.04)。(g)在投予HFS 7天後,對CA1區域接受不同MeCP2 lenti-mRFP-載體傳送之老年雌性Mecp2 cKO小鼠進行LTP記錄。接受lenti-mRFP載體傳送之Mecp2 loxp小鼠前10分鐘之記錄(各組n=5;F3,16=14.36,# P<0.001;比較Mecp2 cKO組及Mecp2 loxp組:q=6.3;比較Mecp2 cKO+MeCP2WT組及Mecp2 cKO組:q=8.45;比較Mecp2 cKO+MeCP2K412R組及Mecp2 cKO組:q=3.31)。(h)在投予TBS後,對相同小鼠進行前10分鐘之記錄(各組n=5;F3,16=14.65,# P<0.001;比較Mecp2 cKO組及Mecp2 loxp組:q=7.08;比較Mecp2 cKO+MeCP2WT組及Mecp2 cKO組:q=8.05;比較Mecp2 cKO+MeCP2K412R組及Mecp2 cKO組:q=4.69)。箭號所指為投予HFS或TBS的時間點。以單向或雙向(two-way)ANOVA分析後進行紐-柯統計。* P<0.05及# P<0.001。以平均質±平均值標準誤差表示結果。
為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。
1.定義
為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步 驟順序。
「神經發展性疾病」(neurodevelopmental disorder)一詞是指任何因神經發展及/或基本行為處理(包含注意力及感知處理、執行能力、抑制控制(例如感覺門控sensory gating)、社會認知及通溝與友好行為)異常所導致的病狀、病症或疾病。例示性之神經發展性疾病包含,但不限於,注意力不足過動症(attention deficit hyperactivity disorder,ADHD)、精神分裂症(schizophrenia)、強迫症(obsessive-compulsive disorder,OCD)、智能障礙(mental retardation)、自閉症(autistic spectrum disorder)、腦性麻痺(cerebral palsy)、構音異常(articulation disorder)、雷特氏症候群(Rett syndrome)或學習障礙(learning disability,即閱讀或運算障礙)。在某些實施方式中,神經發展性疾病是雷特氏症候群,其係一種由MeCP2基因突變所造成的自閉症。
「雷特氏症候群」(Rett syndrome)一詞是指一種具有社會互動缺陷及伴隨重複與刻板行為之溝通缺陷的神經發展性疾病。自閉症包含社會互動缺陷及溝通缺陷;然而,依據社會互動缺陷及溝通缺陷程度的不同,自閉症大致可分為「高功能自閉症」(high functioning autism)或「低功能自閉症」(low functioning autism)。經診斷患有「高功能自閉症」的個體具有輕微卻可辨識的社會互動缺陷及溝通缺陷(即亞斯伯格症 (Asperger's syndrome))。
在本說明書中,「表現」(expression)一詞是指當符合條件時可產生mRNA且通常可編碼出蛋白的轉錄作用。表現可於細胞中自然地實現或執行(即無人為介入)或經人為實現或執行(即具有人為介入,例如利用化學試劑來調控啟動子)。可利用由位置特異重組酶(site-specific recombinase)所引發的重組事件(例如與Cre相關之重組)來啟動表現。可測定基因轉錄之mRNA或基因編碼之蛋白來決定表現。
「核酸」(nucleic acid)一詞是指諸如去氧核糖核酸(deoxyribonucleic acid,DNA)及核糖核酸(ribonucleic acid,RNA)等多核苷酸。核酸包含,但不限於,單股及雙股多核苷酸。例示性之多核苷酸包含DNA、單股DNA、cDNA及mRNA。「核酸」(nucleic acid)一詞亦包含由核苷酸類似物所組成之DNA或RNA類似物,及可應用之單股(正股(sense)或負股(antisense))及雙股多核苷酸。「核酸」(nucleic acid)一詞更包含經修飾的多核苷酸,其係包含經修飾的DNA及經修飾的RNA,例如包含一或多非自然核苷酸及核苷的DNA及RNA。「核酸」(nucleic acid)及「多核苷酸」(polynucleotide)在本說明書為可互換的詞彙,是指去氧核糖核苷酸或核糖核苷酸,以及其單股或雙股形式之聚合物。「核酸」(nucleic acid)一詞包含具有已知核苷酸類似物或經修飾之骨架殘基或連結的核酸,其中該修飾可以是合成、自然產生或非自然產生的修飾,且/或 具有與參照核酸相似的結合特性,且/或具有與參照核酸相似的代謝方式。例示性的類似物包含,但不限於,硫代磷酸化(phosphorothioates)、磷醯胺(phosphoramidates)、甲基磷酸酯(methyl phosphonates)、掌性甲基磷酸酯(chiral-methyl phosphonates)、2-O-甲基核糖核苷酸(2-O-methyl ribonucleotides)、胜肽-核酸(peptide-nucleic acids,PNAs)。除非另有所指,否則一特定的核酸序列亦包含其保留性修飾變異物(例如簡併密碼子取代(degenerate codon substitutions))、互補序列及明確指示之序列。
「載體」(vector)一詞在本說明書是指一核酸分子,其係能轉殖與其連結之另一核酸。「表現載體」(expression vector)一詞是指一載體,其係包含一可操作式連結至一核酸的啟動子,藉以驅動該核酸的表現。載體或表現載體在本說明書因此包含質體或噬菌體,其可合成由載體中特定重組基因所編碼的特定蛋白。載體或表現載體亦包含病毒形式的載體,其可將一核酸轉殖至細胞(例如哺乳動物細胞)中。某些載體可自主複製(autonomous replication)及/或表現與其連結的核酸。
在本揭示內容中,當一核酸放置於與另一核酸序列具有功能相關性的位置時,則稱該核酸為「可操作式地連結」(operably linked)。一般來說,「可操作式地連結」(operably linked)是指連續連結且位於 閱讀相位(reading phase)的DNA序列。然而,增強子(enhancer)不必然是連續的。可藉由慣用限制位置的連接(ligation)來產生連結;若該些位置不存在,則可依據慣用方法來合成寡核苷酸適體(adaptor)或連接子(linker)。
「轉殖」(transduction)是指利用病毒載體刻意將核酸轉入細胞(較佳是動物細胞)的過程。適用於本揭示內容的病毒載體為源自疱疹病毒(herpes virus)、反轉錄病毒(retrovirus)、牛痘病毒(vaccinia virus)、減毒性牛痘病毒(attenuated vaccinia virus)、金絲雀痘病毒(canary pox virus)、腺病毒(adenovirus)或腺相關病毒(adeno-associated virus)的病毒載體。
「多肽」(polypeptide)及「蛋白」(protein)在本說明書為可互換的詞彙,是指胺基酸殘基的聚合物、該聚合物的變異物及合成類似物。因此,該些詞彙可指胺基酸聚合物,其中一或多胺基酸殘基為合成性之非自然產生的胺基酸,例如自然產生之胺基酸的化學類似物;以及自然產生的胺基酸聚合物。本說明書之多肽不侷限於特定長度的產物;因此,本說明書對多肽的定義包含多肽、寡肽(oligopeptide)及蛋白,且除非另有所指,該些詞彙為可互換的詞彙。本說明書所述多肽亦可以包含表現後修飾,例如醣化(glycosylation)、乙醯化(acetylation)及磷酸化(phosphorylation)等,以及本所屬領域所熟知之其他類型的修飾(包含自然產生及非 自然產生的修飾)。多肽可以是完整蛋白、完整蛋白之次序列、完整蛋白之片段、完整蛋白之變異或完整蛋白之衍生物。
在本說明書中,「治療」(treatment)一詞是指產生一藥學及/或生理的效果。該效果可以是預防性的,即完全或部分預防一疾病或其病徵;及/或是治療性的,即部分或完全治癒一疾病及/或其所造成的不適。「治療」(Treatment)在本說明書包含預防、治療或減緩一哺乳類動物(特別是人類)的疾病;該治療包含:(1)預防、治療或減緩一個體罹患一疾病(例如神經法展性疾病),其中該個體為罹患該疾病之高風險族群,或是已罹患該疾病而尚未確診斷定;(2)抑制一疾病(例如抑制其發生);或(3)減輕一疾病(例如減輕與該疾病相關之徵狀)。
「投予」(administered、administering或administration)在本說明書中係為可互換的詞彙,是指傳遞的模式,該包含,但不限於靜脈內、肌肉內、腹腔內、動脈內或皮下投予一藥試(例如本發明經修飾之MeCP2或用以編碼經修飾之MeCP2的核酸)。在某些實施方式中,是將經修飾之MeCP2或用以編碼經修飾之MeCP2的核酸配製為使用(例如靜脈內注射)前可與適當載體(例如緩衝溶液)混合之粉末。
「有效量」(effective amount)一詞在本說明書是指一種於特定時間內可產生治療疾病之期望反應的使用量,其中該疾病是由MECP2基因突變所造 成的疾病。舉例來說,在治療神經發展性疾病時,能減少、預防、延遲或抑制任何因MECP2基因突變所致病症的藥劑(即經修飾的MeCP2或用以編碼經修飾之MeCP2的核酸)即為有效的藥劑。一藥劑的有效量不必然能治癒一疾病或病症,卻可治療一疾病或病症,據以延遲、防止或預防該疾病或病症的發生,或是減緩疾病或病症的徵狀。具體的有效量取決於多種因素,如所欲治療的特定狀況、患者的生理條件(如,患者體重、年齡或性別)、接受治療的哺乳動物或動物種類、治療持續時間、目前療法(如果有的話)的本質以及所用的具體配方。舉例來說,可將有效量表示成藥物的總重量(譬如以克、毫克或微克為單位)或表示成藥物重量與體重之比例(其單位為毫克/公斤(mg/kg))。有效量可配製為適合形式之進行1、2或多次投予的劑量,並於特定時間間隔進行1、2或多次投予。
「個體」(subject)或「病患」(patient)一詞在本說明書中係為可互換的詞彙,是指包含人類等能接受本發明化合物治療的哺乳動物。「哺乳動物」(mammal)一詞是指哺乳綱中所有的成員,包含人類、靈長類、家畜及農場動物(例如兔子、豬、羊及牛)、動物園、比賽或寵物動物,以及囓齒類動物(例如小鼠及大鼠)。此外,除非另有所指,否則「個體」(subject)或「病患」(patient)一詞泛指男性及女性。因此,「個體」(subject)或「病患」(patient)一詞包含任何能受益於本揭示內容之治療方法的哺乳動物。例示性的「個體」(subject)或「病患」(patient)包含,但不限於人類、 大鼠、小鼠、天竺鼠、猴子、豬、山羊、牛、馬、狗、貓、鳥類及禽類。在一較佳的實施方式中,個體是人類。
「藥學上可接受的」(pharmaceutically acceptable)一詞是指當投予至一個體(例如人類)後,不會產生不良或非預期性反應(例如毒性或過敏反應)的分子及組合物。
「賦形劑」(excipient)一詞在本說明書是指任何可形成一活物藥劑之載體的惰性物質(例如粉末或液體)。賦形劑通常是安全、無毒性的物質,且就廣義來說,可包含任何已知藥學工業用於製備藥學組合物的物質,例如填充劑、稀釋劑、凝集物、接合劑、潤滑劑、助流劑、穩定劑、著色劑、潤濕劑及崩解劑等。
雖然用以界定本發明較廣範圍的數值範圍與參數界是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。在此處,「約」通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了操作實施例或另有所指,否則本說明書在對材料、時間、溫度、操作條件及數量比進行定量時,所有的數字範圍、劑量、數值及百分比皆視為經「約」一詞之修飾。因此,除非有相反之教示,本揭示內容及申請專利範圍中的數字參數為可變異的約略值。至少,各數字參數應依照報導的顯著數字並佐以習知捨入 法進行解讀。
除非本說明書另有定義,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具有通常知識者所理解與慣用的意義相同。此外,在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。同時,在此處「至少一」以及「一或多」等詞彙當包含一、二、三或更多種。
2.較佳實施方法之詳細說明
本揭示內容部分是基於發明人意外發現野生型MeCP2多肽或經修飾之MeCP2多肽可回復Mecp2條件剔除小鼠(conditional knockout mouse,cko)所表現之與神經發展性疾病及/或病狀相關的社會互動、恐懼記憶及長效增益(long-term potentiation,LTP)等缺失。因此,野生型或經修飾之MeCP2多肽可作為一種候選藥劑,藉以研發適用於治療神經發展性疾病的藥物。
以下將詳述本發明的實施態樣,包含MeCP2多肽的用途及製備用以預防或治療一罹患神經發展性疾病之個體或病患的藥物。
如本揭示內容實施例所述,發明人未預期地發現野生型MeCP2或經修飾之MeCP2的表現可回復Mecp2 cko動物之社會互動、恐懼記憶及長效增益(long-term potentiation,LTP)等缺失。因此,本揭示內容之一重要態樣為提供一種用以治療一罹患神經發 展性疾病之個體的方法,其係藉由將野生型MeCP2或經修飾之MeCP2轉殖至該個體體內。不受限於特定理論,類小泛素化、磷酸化或二者同時修飾MeCP2多肽會改變其活性,進而改善個體之社會互動、記憶功能及突觸可塑性。
依據本揭示內容實施方式,MeCP2可以是一野生型多肽或具有轉譯後修飾(例如磷酸化或類小泛素化)之多肽。在特定實施方式中,是對單一位置進行磷酸化以轉譯後修飾人類MeCP2多肽。在其他實施方式中,是對MeCP2多肽進行磷酸化。在特定的實施方式中,是對單一位置進行類小泛素化以轉譯後修飾MeCP2多肽,且E3連接酶PIAS1在該修飾過程中扮演著重要的角色。在某些實施方式中,是對MeCP2多肽進行類小泛素化。
「磷酸化」(phosphorylation)在本說明書是指將一磷酸根(PO4 3-)加至一多肽的胺基酸殘基上。可逆式蛋白磷酸化(特別是在絲胺酸(serine)、蘇胺酸(threonine)或酪胺酸(tyrosine)上的磷酸化)是目前最為重要且充分研究的轉譯後修飾之一。磷酸化在多種細胞反應機制中皆具有關鍵性的影響,包含細胞週期、生長、凋亡及訊息傳遞路徑。在某些實施方式中,MeCP2多肽是一經修飾的MeCP2多肽,其包含一胺基酸修飾,且該修飾是對野生型MeCP2多肽之第308位置的蘇胺酸進行磷酸化。在某些實施方式中,MeCP2多是一經修飾的MeCP2多肽,其包含一胺基酸修飾,且該修飾是對野生型MeCP2多肽之第421位置的絲胺酸進行磷酸化。
「類小泛素化」(Sumoylation或SUMOylation)在本說明書是指多肽與類小泛素蛋白(SUMO protein;與小泛素相關之修飾分子(Small Ubiquitin-related Modifier))之間的共價鍵結。SUMO蛋白是一種於細胞中藉由自一蛋白分離且共價接合至另一蛋白來調控功能的小蛋白。類小泛素化是一種參與不同細胞作用機制(例如核質轉移、轉錄調控、細胞凋亡、蛋白穩定性、對壓力之反應及細胞週期調控)的轉譯後修飾。在某些實施方式中,MeCP2多肽是一經修飾的MeCP2多肽,其包含一胺基酸修飾,且該修飾是對野生型MeCP2多肽之第412位置的離胺酸進行類小泛素化。依據本揭示內容某些實施方式,對MeCP2多肽之Ser421或Thr308位置進行磷酸化會增加MeCP2類小泛素化的程度。相較之下,對其他位置(例如Ser80、Ser164、Ser229及Ser399)進行磷酸化則不會改變MeCP2類小泛素化的程度。
可將MeCP2提供給一有所要之個體,其係藉由對該個體投予MeCP2多肽或一用以編碼MeCP2多肽之核酸來進行提供。在某些實施方式中,MeCP2多肽是野生型人類MeCP2蛋白,在其他實施方式中,MeCP2多肽是包含一或多胺基酸修飾之經修飾的人類MeCP2多肽。在不同的實施方式中,該一或多胺基酸修飾包含對野生型MeCP2多肽之胺基酸位置進行類小泛素化或磷酸化修飾,例如對全長人類野生型MeCp2多肽之第308位置的胺基酸進行修飾(例如對Thr進行磷酸 化修飾)、對全長人類野生型MeCp2多肽之第421位置的胺基酸進行修飾(例如對Ser進行磷酸化修飾)或是對全長人類野生型MeCp2多肽之第412位置的胺基酸進行修飾(例如對Lys進行類小泛素化修飾)。
本揭示內容之一方法包含對個體投予一有效量之多肽或一用以編碼該多肽之核酸,其中該多肽是一經修飾的人類MeCP2,且其第412位置的離胺酸具有類小泛素化修飾。
本揭示內容之另一方法包含對個體投予一有效量之多肽或一用以編碼該多肽之核酸,其中該多肽是一經修飾的人類MeCP2,且其第308位置的蘇胺酸或第421位置的絲胺酸具有磷酸化修飾。
可利用相關領域已知方法或重組技術來合成或製備本發明多肽。舉例來說,可利用表現載體來選殖用以編碼MeCP2多肽(例如野生型MeCP2或經修飾之MeCP2)的核酸,其中該核酸是可操作式地連結至一調控序列,藉以於宿主細胞中表現該多肽。接著可將該載體轉殖至適合的宿主細胞中,以表現該多肽。可利用諸如硫酸銨沉澱(ammonium sulfate precipitation)及分餾管柱層析(fractionation column chromatography)由宿主細胞純化表現出的重組蛋白。依據相關領域已知或本揭示內容所述方法來分析製得之多肽的活性。
可藉由不同方式將本發明多肽投予至個體體內,包含「裸露的」(naked)多肽或與增強傳遞之藥物形成的複合體。在特定實施方式中,MeCP2多肽是與能 增強細胞吞噬之藥劑連結。
可利用本所屬領域熟知之聚合且具生物降解性的微粒(microparticle)或微膠囊(microcapsule)傳遞裝置將用以編碼MeCP2多肽的核酸傳遞至個體體內。亦可藉由標準方法製備的微脂體(liposome)使宿主吸收核酸。該多肽可單獨置入傳遞載體或與組織特異抗體共同置入。或者是,習知技藝人士可製備由質體或其他載體組成的分子共軛物,其中該質體或其他載體是經由靜電力或共價力連結至聚-L-離胺酸(poly-L-lysine)。聚-L-離胺酸可結合至能與標的細胞之受器(receptor)結合的配體(ligand)(Cristiano,et al.,1995,J.Mol.Med.73:479)。或者是,可利用本所屬領域所熟知之組織特異轉錄調控要素(tissue-specific transcriptional regulatory element)來達到組織特異標的之目的。將「裸露的DNA」(naked DNA)(即無傳遞載體)傳遞至肌肉內、真皮內或皮下位置則是另一種於活體內進行表現的方法。
可藉由不同方法將核酸投予至個體體內,包含「裸露的」DNA或RNA、與脂質形成複合體或包含於脂質顆粒中。在特定實施方式中,是將核酸(即多核苷酸)投予至個體體內,且該核酸是建構於表現載體中。在某些實施方式中,核酸是建構於病毒載體中。病毒載體可以是複製缺陷(replication defective)或複製勝任(replication competent)病毒載體。在不同實施方式中,該病毒載體是源自疱疹病毒(herpes virus)、反轉 錄病毒(retrovirus)、牛痘病毒(vaccinia virus)、減毒性牛痘病毒(attenuated vaccinia virus)、金絲雀痘病毒(canary pox virus)、腺病毒(adenovirus)或腺相關病毒(adeno-associated virus)。核酸可以建構於表現載體中,其中用以編碼MeCP2多肽的核酸序列是可操作式地連結至一啟動子或一增強子-啟動子組合。適合的表現載體包含質體及病毒載體(例如疱疹病毒、反轉錄病毒、牛痘病毒、減毒性牛痘病毒、金絲雀痘病毒、腺病毒或腺相關病毒)。在特定實施方式中,是將核酸建構於源自反轉錄病毒的載體中,例如慢病毒載體。在特定實施方式中,核酸是可操作式地連結至啟動子序列及增強子(非必要性地)。在特定實施方式中,啟動子及/或增強子可使核酸及其編碼的多肽於特定組織進行表現。
在某些實施方式中,是將多肽或核酸投予至個體體內,該方法更包含對該個體投予一有效量之另一種能誘發MeCP2進行多肽類小泛素化的活性劑。能與本發明方法共同使用之適合的活性劑可以是氮-甲基天門冬胺酸(N-methyl-D-aspartate,NMDA)、類胰島素生長因子-1(insulin-like growth factor,IGF-1)或激腎上腺皮質素釋放因子(corticotropin-releasing factor,CRF)。在特定實施方式中,活性劑是NMDA。在某些實施方式中,活性劑是IGF-1。在其他實施方式中,活性劑是CRF。
依據本揭示內容某些實施方式,可藉由血管內(intravascular,例如注射(injection)或輸入 (infusion))、口腔(oral)、腸內(enteral)、直腸(rectal)、肺部(pulmonary,例如吸入)、鼻腔(nasal)、局部(topical,包含經皮(transdermal)、頰部(buccal)及舌下(sublingual))、膀胱內(intravesical)、玻璃體內(intravitreal)、腹腔內(intraperitoneal)、陰道(vaginal)、腦部(brain,例如腦室內(intracerebroventricular)及大腦內(intracerebral))、中區神經(CNS,例如鞘內(intrathccal)、脊側(perispinal)及脊髓內(intra-spinal))、非口服的(parenteral,例如皮下(subcutaneous)、肌肉內(intramuscular)、靜脈內(intravenous)及真皮內(intradermal))或經黏膜(transmucosal)等傳遞方法將MeCP2投予至個體體內,投予劑量為每公斤0.001-100毫克;較佳為每公斤0.01-80毫克;更佳為每公斤0.1-50毫克。
本揭示內容的第二態樣是關於一種用以治療神經發展性病狀、病症及/或疾病的藥物或藥學組合物。該藥學組合物包含一有效量之MeCP2多肽或一用以編碼MeCP2多肽的核酸;以及一藥學上可接受之賦形劑。
在特定的實施方式中,MeCP2多肽是野生型MeCP2多肽。在其他特定實施方式中,MeCP2多肽是包含一或多胺基酸修飾之經修飾的MeCP2多肽。在某些實施方式中,經修飾之MeCP2多肽包含一胺基酸修飾,其中是將全長人類野生型MeCp2多肽之第308位置的胺基酸進行磷酸化修飾。在其他實施方式中,經修飾 之MeCP2多肽包含一胺基酸修飾,其中是將全長人類野生型MeCp2多肽之第421位置的胺基酸進行磷酸化修飾。在其他實施方式中,經修飾之MeCP2多肽包含一胺基酸修飾,其中是將全長人類野生型MeCp2多肽之第412位置的胺基酸進行類小泛素化修飾。
一般來說,包含於藥學組合物中之MeCP2多肽的重量百分比(相對於藥學組合物之總重量)是為0.01%到99.9%。在某些實施方式中,MeCP2多肽的重量百分比(相對於藥學組合物之總重量)至少為0.1%。在某些實施方式中,MeCP2多肽的重量百分比(相對於藥學組合物之總重量)至少為5%。在其他實施方式中,MeCP2多肽MeCP2多肽的重量百分比(相對於藥學組合物之總重量)至少為10%。在其他實施方式中,MeCP2多肽的重量百分比(相對於藥學組合物之總重量)至少為25%。
在某些實施方式中,本發明藥學組合物更包含已知可誘發MeCP2多肽進行類小泛素化的活性劑,藉以減緩或降低與神經發展性病狀、病症及/或疾病相關的病徵。例示性之活化劑包含,但不限於NMDA、IGF-1及CRF。在特定實施方式中,活化劑是NMDA。在某些實施方式中,活化劑是IGF-1。在其他實施方式中,活化劑是CRF。
藥學上可接受之賦形劑為該些能與其他成分相容且具生物接受性的物質。
依據投予路徑的不同,藥學組合物可包含 不同形式的賦形劑。可藉由The present composition may be administered靜脈內、真皮內、動脈內、腹腔內、病灶內(intralesionally)、顱內(intracranially)、鼻腔內、胸腔內(intrapleurally)、氣管內(intratracheally)、直腸內、局部性、肌肉內、皮下、血管內、心包內(intrapericardially)、眼內(intraocularally)、口腔內(orally)、部位性(locally)注射、吸入、輸入、部位性灌注(localized perfusion)等方式進行投予,且可配製為粉末、乳劑、液體及噴霧劑等形式。
臨床醫護人員可依據個體的生理因素來決定藥物或藥學組合物的實際投予劑量,該些生理因素包含,但不限於年齡、性別、體重、疾病種類、疾病的嚴重程度、病史、是否使用其他藥物及投藥路徑等。依據本揭示內容非限定之實施例,MeCP2多肽的每次投予劑量可以是每公斤個體體0.001-100毫克。
可將包含MeCP2多肽的藥學組合物配製為適合口服使用的劑型,舉例來說,片劑(tablets)、錠劑(lozenges)、水性或油性懸浮液(aqueous or oily suspensions)、分散性粉末或顆粒(dispersible powders or granules)、乳劑(emulsions)、硬性或軟性膠囊(hard or soft capsules)、糖漿(syrups)或酏劑(elixirs)。可依據任何本所屬領域所熟知之配製藥學組合物的方法來製備口服使用的組合物,製得的組合物可以包一或多種成份,其係選自由甜味劑(sweetening agents)、香味劑(flavoring agents)、著色劑(coloring agents)及提供藥學上美觀及可口的防腐劑(preserving agents)。片劑包含MeCP2多肽及與MeCP2多肽混合之非毒性且適合用以製備片劑之藥學上可接受的賦形劑。舉例來說,該些賦形劑可以是惰性稀釋劑(inert diluents,例如碳酸鈣、碳酸鈉、乳糖、磷酸鈣或磷酸鈉)、造粒及崩解劑(granulating and disintegrating agents,例如玉米澱粉或海藻酸(alginic acid))、結合劑(binding agents,例如澱粉、明膠(gelatin)或阿拉伯膠(acacia))及潤滑劑(lubricating agents,例如硬脂酸鎂(magnesium stearate)、硬酯酸(stearic acid)或滑石(talc))。
片劑可以是未塗覆的(uncoated)形式或利用已知技術塗覆的形式,藉以延緩片劑於胃腸道中的崩解及吸收,進而提供一長效性的作用。
亦可將口服使用的劑型配製為硬明膠膠囊(hard gelatin capsules),其中是將活性成分與一惰性固體稀釋劑(例如碳酸鈣、磷酸鈣或高嶺土(kaolin))進行混合,或是配製為軟明膠膠囊(hard gelatin capsules),其中是將活性成分與一水混溶溶劑(water-miscible solvents,例如丙二醇(propylene glycol)、PEG及乙醇或包含花生油、液體石蠟及橄欖油等油性介質(oil medium))進行混合。
舉例來說,一固體口服組合物(例如片劑或膠囊)可包含1到99%(重量/重量)之MeCP2多肽;0 到99%(重量/重量)之稀釋劑或填充物(filler);0到20%(重量/重量)之崩解劑;0到5%(重量/重量)之潤滑劑;0到5%(重量/重量)之助流劑(flow aid);0到50%(重量/重量)之造粒劑或結合劑;0到5%(重量/重量)之抗氧化劑(antioxidants);及0到5%(重量/重量)之色素(pigment)。
非口服製劑(例如用以注射之溶液或懸浮物,或是用以輸入之溶液)可以包含1到50%(重量/重量)之MeCP2多肽;及50%(重量/重量)到99%(重量/重量)的液體或半固體載體(例如水等溶劑);及0-20%(重量/重量)之一或多種其他賦形劑,例如緩衝劑(buffering agents)、抗氧化劑、懸浮穩定劑(suspension stabilizers)、張力調節劑(tonicity adjusting agents)或防腐劑。
可將本發明藥學組合物配製為水包油乳劑(oil-in-water emulsion)的形式。該油相可以是植物油(舉例來說,橄欖油或花生油)、礦物油(例如來說,液體石蠟)或其混合物。適合的乳化劑可以是自然形成的磷脂(phosphatides,例如大豆、卵磷脂(lecithin))、酯類或源自脂肪酸及糖醇酐(hexitol anhydrides)的偏脂(partial esters,例如山梨醇單油酸酯(sorbitan monooleate))及上述偏脂與環氧乙烷(ethylene oxide)的濃縮產物(例如聚氧乙烯山梨醇單油酸酯(polyoxyethylene sorbitan monooleate))。乳劑亦可包含甜味劑及香味劑。
可將糖漿及酏劑與甜味劑(例如甘油、丙二醇、山梨醇或蔗糖)共同配製。配製後的劑型亦可包含防腐劑、香味劑及著色劑。藥學組合物可配製為無菌注射液體或油性懸浮液劑量。可依據本所屬領域所熟知的方法、利用適合的分散或溼潤劑及懸浮劑來配製懸浮液。該無菌注射製劑亦可為無菌注射溶液或懸浮液,其係配製於無毒性之非口服性可接受的稀釋劑或溶劑,例如於1,3-丁二醇(1,3-butane diol)中的溶液。可接受之載體及溶劑可以是水、林格氏液(Ringers solution)或等張氯化鈉溶液。亦可使用諸如乙醇、丙二醇或聚乙二醇等共溶劑(co-solvent)。此外,通常會利用無菌之定性油(fixed oils)作為溶劑或懸浮介質。為此,可使用包含合成單或雙甘油酯等溫和性定性油。另外,亦可利用油酸(oleic acid)等脂肪酸來製備注射劑。
MeCP2多肽亦可製備為栓劑(suppositories),並以直腸投藥方法投予至個體體內。可將藥物與一適合的非刺激性賦形劑混合以製備該些組合物,其中該非刺激性賦形劑於室溫下為固體,於直腸溫度下為液體,因此於直腸中會溶解並釋放出藥物。該些材料為可可脂(cocoa butter)及聚乙二醇。
下文提出多個實驗例來說明本發明的某些態樣,以利本發明所屬技術領域中具有通常知識者實作本發明,且不應將這些實驗例視為對本發明範圍的限制。據信習知技藝者在閱讀了此處提出的說明後,可在不需過度解讀的情形下,完整利用並實踐本發明。此處所引用的 所有公開文獻,其全文皆視為本說明書的一部分。
實施例
材料及方法
動物 本研究是使用成熟雄性(2-3個月大)及老年雌性(6-8個月大)之Mecp2 loxp小鼠。該些小鼠是購買自Jackson Laboratory(Bar Harbor,ME,USA)(品系名:B6.129P2-Mecp2tm1Bird/J,匹號:006847),並飼養及交配於台灣中央研究院之生物醫學科學研究所的動物中心(bred and mated at the Animal Facility of the Institute of Biomedical Sciences,IBMS)。將本研究使用的成熟雄性Sprague-Dawley大鼠(250-350克)飼養於IBMS的動物中心。所有的動物皆飼養於12/12小時光/黑暗週期(於早上6:30開燈)中,且可自由採食食物及水。隨機將動物分成不同的實驗組別。所有實驗皆依照國家衛生研究院之動物使用及注意規範且經中央研究院之動物試驗委員會核准後進行。
製備海馬迴溶解物及細胞溶解物 以斷頸方式犠牲動物後,取出其海馬迴組織。將大鼠的海馬迴組織置於包含50mM Tris-HCl(pH 7.4)、150mM NaCl、2mM EDTA、1% IGEPAL CA-630、1mM苯甲基磺醯氟(phenylmethylsulfonyl fluoride,PMSF)、每毫升20微克之胃蛋白酶抑制劑(pepstatin A)、每毫升20微克之亮抑肽酶(leupeptin)、每毫升20微克之抑肽酶(aprotinin)、50mM NaF及1mM Na3VO4之溶解緩衝液中,進行簡單音波振動處理以分解海馬迴組織。利用1毫升之包含20mM Tris(pH 7.4)、150mM NaCl、1mM MgCl2、1% IGEPAL CA-630、10%甘油、1mM二硫蘇糖醇(dithiothreitol,DTT)、50mM β-甘油磷酸鹽(β-glycerophosphate)、50mM NaF、每毫升10微克之PMSF、每毫升4微克之抑肽酶、每毫升4微克之亮抑肽酶及每毫升4微克之胃蛋白酶抑制劑的溶解緩衝液來製備初級神經元細胞溶解物及HEK293T細胞溶解物。
免疫沉澱及西方墨點分析 將E3 SUMO-protein連接酶PIAS1、MeCP2、Flag、V5及Myc之澄清細胞溶解物(0.5毫克)與was immunoprecipitated by mixed with 0.5微升之抗-PIAS1抗體(目錄編號:2474-1,Epitomics,Burlingame,CA)、2μl微升之抗MeCP2抗體(目錄編號:3456,Cell Signaling,Danvers,MA)、2微升之抗-Flag M2抗體(目錄編號:F1804,Sigma-Aldrich,St.Louis,MO)、1微升之抗-V5抗體(目錄編號:MCA2895,AbD Serotec,Kidlington,UK)及2微升之抗-Myc抗體(目錄編號:05-419,Millipore,Bedford,MA)於4℃均勻混合並使混合物反應至隔日,藉以進行免疫沉澱。對照組是使用20微升之兔子或小鼠。將蛋白A或G磁珠(30毫升,50%乳劑,GE Healthcare,Barrington,IL)加入IP反應產物,於4℃作用3小時,以抓取免疫複合 體。以包含20mM HEPES(pH 7.4)、150mM NaCl、1mM EDTA、1% IGEPAL CA-630、1mM DTT、50mM β-甘油磷酸鹽、50mM NaF、每毫升10毫克之PMSF、每毫升4微克之抑肽酶、每毫升4微克之亮抑肽酶及每毫升4微克之胃蛋白酶抑制劑的洗滌緩衝液洗滌免疫複合體3次,之後將免疫複合體注入8% SDS-PAGE,並將其轉位至硝化纖維(Nitrocellulose,NC)膜(GE Healthcare)上。利用以下抗體進行西方墨點分析:兔子抗-PIAS1(1:10000,目錄編號:2474-1,Epitomics)、抗-MeCP2(1:2000,目錄編號:3456,Cell Signaling)、抗-磷酸-Ser421MeCP2(1:1000,目錄編號:AP3693a,ABGENT,San Diego,CA)、抗-SUMO1(1:4000,目錄編號:40120 SUMOlink kit,Active Motif,Carlsbad,CA)、抗-泛素(1:3000,目錄編號:3936,Cell Signaling)、抗-Flag M2(1:5000,目錄編號:F1804,Sigma-Aldrich)、抗-V5(1:8000,目錄編號:MCA2895,AbD Serotec)、抗-His(1:5000,目錄編號:OB05,Millipore,Bedford,MA)、抗-GST(1:5000,目錄編號:110736,GeneTex,San Antonio,TX)、抗-RFP(1:2000,目錄編號:600-401-379,Rockland,Gilbertsville,PA)及抗-肌動蛋白(1:200000,目錄編號:MAB1501,Millipore)。以與HRP接合之山羊抗-兔子IgG抗體或山羊抗-小鼠IgG抗體(Chemicon)作為二級抗體。藉 由與化學發光HRP基質(Millipore)反應進行呈色,並利用LAS-3000影像系統(Fujifilm,Tokyo,Japan)觀察蛋白帶。以NIH Image J軟體定量蛋白帶。
建構質體及進行DNA轉染 為建構具有V5標籤之MeCP2質體,利用引子5’-ATTTGCGGCCGCCACCATGGTAGCTGGGATGTTAG-3’(序列編號:1)及5’-TAACCGCGGGCTAACTCTCTCGGTCAC-3’(序列編號:2)由大鼠海馬迴Mecp2 cDNA(登錄號:# NM_022673)擴增全長Mecp2。將PCR產物次選殖至哺乳動物表現載體pcDNA3.1-V5-His之NotI及SacII限制酶位置之間。利用快變位置直接突變套組(QuickChange Site-Directed Mutagenesis Kit,Stratagene,La Jolla,CA)製備Mecp2突變質體。為製備具有mRFP標籤之Mecp2質體,將野生型Mecp2Mecp2K412RMecp2WT-SUMO1Mecp2WT-SUMO1融合質體次選殖至pmRFP表現載體(Addgene質體#13990)中。利用Tai等人所述步驟(EMBO J.30.205-220(2011))建構具有Flag標籤之Pias1質體。依照Tai等人所述方法(I.Biol.Chem.284,4073-4089(2009)),將HEK293T細胞及Neuro2A細胞培養於包含10%胎牛血清(fetal bovine serum)之細胞培養液Dulbecco’s modified Eagle’s medium(DMEM)中,並培養於37℃且具有5%二氧化碳之溼潤環境中。依據使用操作說明,利用 Lipofectamine 2000試劑(Invitrogen,Carlsbad,CA)於12孔洞之細胞培養盤中進行轉染。
建構及製備慢病毒載體 為建構mRFPmRFP-Mecp2WTmRFP-Mecp2K412RmRFP-Mecp2WT-SUMO1慢病毒載體,利用不同引子擴增不同pmRFP-MeCP2相關非病毒建構體將全長之mRFP-MeCP2WTmRFP-MeCP2K412RmRFP-MeCP2WT-SUMO1融合質體次選殖至慢病毒載體pLenti-Tri-cistronic(ABM,Richmond,BC,Canada)中。5種建構體所用的正向引子皆為5’-ATCGGGATCCGCCACCATGGCCTCCTCCGAGGAC-3’(序列編號:3)。用以建構mRFP載體之反向引子為5’-ATCGCCTAGGTTAGGCGCCGGTGGAGTGGCG-3’(序列編號:4);用以建構mRFP-Mecp2WTmRFP-Mecp2K412R的向引子為5’-ATCGCCTAGGTCAGCTAACTCTCTCGGTCACGGG-3’(序列編號:5)。用以建構mRFP-Mecp2-SUMO1mRFP-Mecp2WT-SUMO1的向引子為5’-ATCGCCTAGGCTAAACCGTCCGAGTGACCCCCCG-3’(序列編號:6)。將該些PCR產物次選殖至慢病毒載體之BamHI及AvrII限制酶位置之間。為建構GFP-2A-NLS-Cre慢病毒載體,利用PCR擴增反應將全長之Cre重組酶cDNA接至核定位訊號(nuclear localization signal,NLS),並選殖至pLenti-Tri-cistronic(ABM)以製得可表現GFP及NLS-Cre的雙作用子(bicistronic)載體。使用於Cre載體的引子為5’-ATCGGAATTCCCAAAGAAGAAGAGAAAGGTTATGTCCAATTTACTGACC-3’(正向,序列編號:7)及5’-ATCGGCGGCCGCCTAATCGCCATCTTCCAG-3’(反向,序列編號:8)。將PCR產物次選殖至慢病毒載體pLenti-Tri-cistronic(ABM)之EcoRI及NotI限制酶位置之間。由pLenti-CMV-GFP-2A-Puro-Blank(ABM)擴增GFP基因,並次選殖至pLenti-Tri-cistronic載體之ScaI及KpnI限制酶位置之間,且位於2A胜肽(一種會自我切割之病毒胜肽橋(self-processing viral peptide bridge))及Nls-Cre序列的上游,據以製備GFP建構體。建構GFP載體所使用的引子為5’-ATCGAGTACTGCCACCATGGAGATCGAGTGCCGCATC-3’(正向,序列編號:9)及5’-ATCGGGTACCGGCGAAGGCGATGGGGGTC-3’(反向,序列編號:10)。為包裝慢病毒,以10微升之Lipofectamine 2000(Invitrogen)將1.5微克之psPAX2(Addgene質體#12260)、0.5微克之pMD2.G(Addgene質體#12259)及2微克之pLenti-GFP-2A-Nls-Cre、mRFP、mRFP-Mecp2mRFP-Mecp2K412RmRFP-Mecp2WT-SUMO1或2微克之用以編碼產生GFP(作為對照組)的pLenti-CMV-GFP-2A-Puro-Blank(ABM)轉染至種植於6孔洞細胞培養盤之HEK293LTV細胞(Cell Biolabs,San Diego,CA)中。依據使用操作說明,利用快速慢病毒純化溶液(speedy lentivirus purification solution,ABM)收集慢病毒顆粒。轉染後12到36小時可收集2到3次之包含慢病毒顆粒的細胞培養液,在收集期間將其放置於4℃的環境中。將收集到的細胞培養液以2,500 x g的轉速離心10分鐘,並利用0.45微米之注射型過濾器進行過濾,藉以得到澄清的細胞培養液。將快速慢病毒純化溶液(speedy lentivirus purification solution,ABM)加至包含慢病毒顆粒之過濾後的上清液(1:9,體積/體積),再反轉均勻混合。將慢病毒上清液以5,000 x g的轉速於4℃離心10分鐘。丟棄上清液後,以冰的生理食鹽水再次懸浮病毒沉澱物。經滴定分析後,將病毒原液分裝並保存於-80℃。依據使用操作說明(ABM),利用慢病毒qPCR效價套組(lentivirus qPCR Titer Kit,ABM)來決定慢病毒的效價。
活體外類小泛素化試驗 依據使用操作說明(Active Motif,Carlsbad,CA),以類小泛素連結套組(SUMO link kit)進行活體外類小泛素化試驗。利用由His結合樹脂(His-bind resin,Novagen,WI)純化之重組、具有GST標籤之MeCP2蛋白(Prospec, East Brunswick,NJ)及具有GST標籤之SENP1蛋白(Enzo,Ann Arbor,MI)進行試驗,於30℃反應3小時後,置於Laemmli檢體緩衝液並於95℃煮沸10分鐘。將活體外類小泛素化產物注入8% SDS-PAGE後,轉移至NC膜上。以抗-His及抗-GST抗體進行免疫印漬分析。
用以分析CA1組織之活體外類小泛素化試驗 以西方墨點分析所述之方法製備海馬迴CA1組織溶解物。為免疫沉澱MeCP2,以3微升之抗-MeCP2抗體(目錄編號:3456,Cell Signaling)對澄清的溶解物進行免疫沉澱,於41℃作用至隔日。將蛋白A瓊脂糖珠(30毫升,50%乳劑,GE Healthcare,Barrington,IL)加入IP反應產物中,於41℃作用3小時以抓取免疫複合體。以包含20mM HEPES(pH 7.4)、150mM NaCl、1mM EDTA、1% IGEPAL CA-630、1mM DTT、50mM β-甘油磷酸鹽、50mM NaF、每毫升10毫克之PMSF、每毫升4微克之抑肽酶、每毫升4微克之亮抑肽酶及每毫升4微克之胃蛋白酶抑制劑的洗滌緩衝液洗滌免疫複合體3次,之後將免疫複合體注入活體外類小泛素化反應,並加入套組提供之重組PIAS1蛋白(3微升,目錄編號:BML-UW9960,Enzo Life Sciences,Farmingdale,NY)、E1(1微升)、E2(1微升)及SUMO1(0.5微升)蛋白。依據使用操作說明(Active Motif,Carlsbad,CA),利用SUMO linkTM套組進行活體外類小泛素化試驗,於Laemmli 檢體緩衝液中以95℃煮沸10分鐘。將活體外類小泛素化產物注入8% SDS-PAGE後,轉移至PVDF膜(Millipore)上。利用抗-MeCP2抗體(1:1000,目錄編號:3456,Cell Signaling)或抗-SUMO1抗體(1:4000,目錄編號:40120,Active Motif)進行免疫印漬分析。為決定經PIAS1 siRNA轉染後內源性MeCP2的類小泛素化,未將E1、E2、SUMO1及PIAS1蛋白加入IP反應產物中。其餘步驟皆與活體外類小泛素化試驗之步驟相同。
用以分析MeCP2甲基-DNA結合之下拉試驗 將5’生物素接合至包含源自Bdnf基因之CpG單元(粗體字)的DNA寡核苷酸(5’-CAATGCCCTGGAACGGAATTCTTCTAATAAAAGATGTATCATTTTAAATGC-3’,序列編號:11)的正股。由Bdnf外顯子1(exon1)之轉錄起始位置的-125鹼基對開始合成DNA寡核苷酸序列。依據Tai等人所述方法(EMBO J.30,205-220(2011))黏著(anneal)互補寡核苷酸。依據DNA甲基化的建議步驟(NEB),以SssI修飾烷酶(SssI methylase,NEB,Ipswich,MA)對製得的DNA寡核苷酸進行甲基化修飾。為進行MeCP2與甲基-DNA的結合試驗,將6微升之寡核苷酸對(duplex oligonucleotides,100μM)及聚dI-dC(poly dI-dC,每毫升1微克,GE Healthcare)加入至經V5-MeCP2WTV5-MeCP2T158M轉染之HEK293T細胞的細胞溶解 物(0.4微克)中,於4℃反應至隔日。將卵白素(streptavidin)瓊脂糖珠(10微升,Sigma)加入至下拉反應產物,於4℃反應3小時以抓取MeCP2-DNA寡核苷酸複合體。以包含20mM HEPES(pH 7.4)、150mM NaCl、1mM EDTA、1% IGEPAL CA-630、1mM DTT、50mM β-甘油磷酸鹽、50mM NaF、每毫升10毫克之PMSF、每毫升4微克之抑肽酶、每毫升4微克之亮抑肽酶及每毫升4微克之胃蛋白酶抑制劑的洗滌緩衝液洗滌下拉反應複合體3次,置於Laemmli檢體緩衝液並於95℃煮沸10分鐘。為分析MeCP2與甲基-DNA的結合活性,將下拉試驗產物注入8% SDS-PAGE,並轉移至PVDF膜(Millipore)上,之後利用抗-MeCP2抗體(1:2000,目錄編號:3456,Cell Signaling)進行免疫印漬分析。
用以分析CREB與DNA之結合活性之下拉試驗 依據Vallejo等人所述方法,(J.Biol.Chem.267,12876-12884(1992)),將5’生物素接合至包含二個CRE單元(粗體字)之DNA寡核苷酸(正股:5’-AGAGATTGCCTGACGTCAGAGAGCTAGGATTGCCTGACGTCAGAGAGCTAG-3’,序列編號:12;負股:5’-CTAGCTCTCTGACGTCAGGCAATCCTAGCTCTCTGACGTCAGGCAATCTCT-3’,序列編號:13)的正股。以黏著緩衝液(10mM Tris[pH 8.0],50mM NaCl,1mM EDTA)懸浮互補寡核苷酸。為黏著 正股及負股寡核苷酸,將10微升之各互補寡核苷酸及80微升之黏著緩衝液於0.5微升之微管中進行混合,並放置於90℃的加熱槽中。加熱槽可逐漸冷卻至室溫,並可維持冰上或-20℃以待後續實驗分析。為進行CREB下拉試驗,將澄清之海馬迴CA1組織溶解物(0.4毫克)與6微升之寡核苷酸對(100μM)及聚dI-dC(每毫升1微克,GE Healthcare)均勻混合,並於4℃反應至隔日。將卵白素瓊脂糖珠(10微升,Sigma)加入至下拉反應產物,於4℃反應3小時以抓取CREB-DNA寡核苷酸複合體。以生理食鹽水洗滌下拉反應複合體3次,並置於Laemmli檢體緩衝液於95℃煮沸10分鐘。為分析CREB與DNA之結合活性,將下拉試驗產物注入8% SDS-PAGE,再轉移至PVDF膜上,之後以抗-CREB抗體(1:2000,目錄編號:9197,Cell Signaling)進行免疫印漬分析。
反轉錄即時定量PCR(Reverse transcription-quantitative real-time PCR,RT-qPCR) 依據使用操作說明,以RNeasy微型套組(RNeasy Mini Kit,Qiagen,Germantown,MD)將總RNA由20毫克之海馬迴CA1組織中分離出來。將RNA檢體懸浮於無核酸酶(nuclease-free)之水中,並以260奈米進行光譜定量。所有RNA檢體的A260:A280比值皆落於1.8到2.0之間。依據使用操作說明,利用QuantiTect反轉錄套組(QuantiTect Reverse Transcription Kit,Qiagen)合成cDNA。 將cDNA原液冷凍於-20℃。以iQ SYBR Green Supermix(Bio-rad)對Bdnf及內源性對照基因甘油醛-3-磷酸去氫酶(glyceraldehyde 3-phosphate dehydrogenase,Gapdh)進行定量PCR。用以分析Gapdh的引子序列為5’-GGCAAGTTCAATGGCACAGT-3’(正向,序列編號:14)及5’-TGGTGAAGACGCCAGTAGACTC-3’(反向,序列編號:15)。用以分析Bdnf的引子序列為5’-CTAGGACTGGAAGTGGAAA-3’(正向,序列編號:16)及5’-ATTTCATGCTAGCTCGCCG-3’(反向,序列編號:17)。依據使用操作說明,利用Rotor-Gene Q即時PCR系統(Rotor-Gene Q Real Time PCR system,Qiagen)進行擴增反應。將溫度循環設定為95℃:10分鐘、95℃:10秒及60℃:30秒(重複40個循環)。以Rotor-Gene Q即時PCR系統(Rotor-Gene Q Real Time PCR system,Qiagen)分析循環臨界(cycle threshold,Ct)值及相關資料。以Gapdh的表現量標準化Bdnf的表現量。利用2-(△△Ct)方法(Livak and Schmittgen,Methods 25,402-408(2001))決定相對表現量(以倍數表示)。
記錄細胞外場電位(field potentiation) 記錄CA1區域會過量表現lenti-mRFP載體、lenti-mRFP-MeCP2WT載體或lenti-mRFP-MeCP2K412R載體之Mecp2 cKO小鼠的電生理狀況。犠牲動物後,將其腦組織切割轉移至浸入 型記錄室(immersion-type recording chamber),以包含苦毒素(picrotoxin)之ACSF、以每分鐘2毫升之流速於室溫進行灌注。切開CA1及CA3之間的區域以移除CA3的傳入訊息(afferent input)。在記錄細胞外場電位時,將一具有3M NaCl填充之玻璃吸管放置於CA1放線層區域(stratum radiatum area),以記錄fEPSP。將雙極銹鋼刺激電極(Bipolar stainless steel stimulating electrodes,Frederick Haer Company,Bowdoin,ME)置於放線層區域以刺激薛佛側支路徑(Schaffer collateral pathway)。每15秒於預定的強度下投予一短暫的電流刺激(約40微秒),持續至少20分鐘,以記錄穩定基線fEPSP活性。接著依據Moretti等人所述方法(J.Neurosci.26,319-327,(2006)),以HFS模式及TBS模式誘發LTP。在HFS模式時,是投予2次100赫茲(Hz)的刺激(tetani,每次1秒,間隔時間為20秒),藉以誘發LTP。在TBS模式時,是投予3次θ脈衝刺激(theta-burst stimulation)以誘發LTP。各次刺激包含10組脈衝(4刺激,100赫茲),且各脈衝的間隔時間為200毫秒。各次刺激的間隔時間為20秒。
藥物 NMDA是購買自Tocris Bioscience(St.Louis,MO,USA)。IGF-1、激腎上腺皮質素釋放因子(corticotropin-releasing factor,CRF)及迪皮質醇是購買自Sigma-Aldrich(St.Louis,MO)。在使用前將NMDA、IGF-1及CRF 溶於生理食鹽水中。於注射前將迪皮質醇溶於DMSO中。
海馬迴內轉染及注射 以戊巴比妥(pentobarbital,每公克40毫克)麻醉大鼠後進行立體定向手術(stereotaxic surgery)。將2個23號不銹鋼薄壁套管植入大鼠腦部CA1區域的二側,植入位置為:前囟(bregma)後方3.5微米、中線旁2.5微米及頭顱表面3.4微米的位置。手術復原後,以每分鐘0.1微升的速度將NMDA(每微升2微克)、IGF-1(每毫升100奈克)、CRF(每微升100奈克)及迪皮質醇(每微升30奈克)直接注入CA1區域。每側各注入0.7微升。在進行暫時性之Mecp2質體DNA轉染時,是利用非病毒轉染試劑聚乙亞胺(polyethyleneimine,PEI)將0.7微升之質體DNA複合體(每微升1.5微克)直接注入大鼠腦部之CA1區域的二側。注入前,先利用5%葡萄糖稀釋質體DNA,使原液濃度為每微升2.77微克。以5%葡萄糖稀釋25kDa之分支PEI(Sigma,St.Louis,MO)至濃度為0.1M後,加入DNA溶液中。注射前,加入0.1M PEI,使PEI氮對每DNA磷酸的比例達到10。對混合物劇烈振盪30秒,並放置15分鐘使其平衡。在注入siRNA時,亦利用轉染試剖PEI將0.7微升之PIAS1 siRNA(8披莫耳(pmol))或對照組siRNA轉染至大鼠腦部CA1區域的二側。依據先前研究(Tai et al.,EMBO J.30.205-220(2011))所述選取用於PIAS1 siRNA的正股及負股序列。正股序列為5 -UCCGGAUCAUUCUAGAGCUtt-3(序列編號:18),負股序列則為5-AGCUCUAGAAUGAUCCGGAtt-3(序列編號:19)。以緘默負對照編號1 siRNA作為對照組。該些序列皆是由Ambion(Austin,TX)合成。主射針頭的內徑為0.31毫米,壁的厚度則為0.12毫米。注射後將針頭停留於原處5分鐘,以減少注射試劑的滲漏。於藥物注射、質體及siRNA轉染後的不同時間點犠牲動物。移除動物腦部後,以大腦切片機進行切片。進一步以內徑為2毫米的不銹鋼沖壓機(punch)沖壓其CA1組織。將組織冷凍於-80℃,以待後續生化實驗分析。
於基底外側杏仁核(basolateral amygdala)內注射慢病毒載體 以戊巴比妥(腹腔注射,每公克40毫克)麻醉小鼠後,無插管地進行立體定向手術。待動物由手術恢復後,將慢病毒載體直接注入BLA。進行BLA的位置為:前囟(bregma)後方0.5微米、中線旁3.3微米及頭顱表面4.8微米的位置。採取對基因剔除小鼠進行用以編碼Cre的慢病毒及用以編碼不同形式之MeCP2的慢病毒共同感染的替代測試。注射前將稀釋於生理食鹽水之效價為每毫升2 x 108的重組酶Cre慢病毒載體與不同之同樣稀釋於生理食鹽水且效價為每毫升2 x 108的mRFP-Mecp2慢病毒載體混合,使各Mecp2載體的體積比為1:1。將0.25微升注入BLA各側。輸入速度為每分鐘0.1微升。於慢病毒轉殖7-10天後測量社會互動行為。於恐懼制約測試後犠牲小鼠。移 除其腦組織後,以與沖壓CA1組織的相同方法沖壓BLA組織。亦將組織冷凍於-80℃,以待後續生化實驗分析。
三房室社會能力及社會識別檢測 以具有三房室、規格為60 x 40 x 22公分(L x W x H)的鼠籠進行社會能力及社會識別的檢測。檢測步驟則如先前技術(Faizi et al.,Brain Behav.2,142-154,(2012))所述。將房室分為三隔間,其中左右二隔間的寬度為21公分,中間隔間的寬度則為18公分。於左及右隔間中另設置高度為15公分、直徑為10公分的柱體房室。在測試社會能力時,是將陌生小鼠1放置於左隔間的柱體房室中,而右隔間的柱體房室則無放置任何動物。將受測個體(Mecp2 cKO小鼠)放置於中間房室中10分鐘,並記錄其對於陌生小鼠1及空房室的嗅探時間。測試結束後,取出受測個體及陌生小鼠1,並清潔房室。10分鐘後,將受測個體及陌生小鼠1分別放回原房室中。同時將陌生小鼠2放置於右隔間中。於10分鐘觀察期記錄受測個體對陌生小鼠1及陌生小鼠2的嗅探時間,即為社會識別測試。利用大鼠來進行社會互動行為檢測,其三房室的鼠寵規格為:108 x 50 x 42公分(L x W x H)。
線索恐懼制約學習 在進行社會互動測試後7天進行恐懼制約學習。制約前一天,將小鼠放置於制約房室(46 x 30 x 46公分,L x W x H)中,放置時間為5分鐘,藉以使小鼠習慣該環境。24小時後,將該些動物放置於相同房室中以進行恐懼制約訓練。在給予3分鐘的自由探索後,投予5次音調-腳部刺激配對(five tone-foot shock pairings)進行訓練。各次音調-刺激配對包含30秒的音調(85dB,10KHz)並於終止時同步給予一腳部刺激(0.1毫安培,1秒)。刺激後,於下一次音調及腳部刺激前給予一60秒的間隔時間。24小時後,將動物放置於另一房室中,以進行保留測試(retention test)。在給予3分鐘的自由探索後,單獨投予一30秒的音調刺激(85dB,10KHz),而不給予腳部刺激。在保留測試中,共投予5次音調刺激,每次刺激的間隔時間為60秒。以30秒音調刺激時間中小鼠呈現靜止狀態的時間百分比來計算小鼠的靜止反應。依據先前研究(King et al.,Learn Mem.16,625-634(2009))取得恐懼制約學習的參數。
免疫組織化學分析 為對大鼠腦部CA1區域進行PIAS1及MeCP2的免疫組織化學染色,以戊巴比妥(腹腔注射,每公克100毫克)麻醉大鼠後,分別以冰的生理食鹽水及4%三聚甲醛(paraformaldehyde)進行灌注。以20%蔗糖/4%三聚甲醛溶液固定取出的腦組織,固定時間為20-48小時。接著冷凍腦組織,並以冷凍切片段切割為30微米的切片後,固定於以明膠塗佈的玻片上。以1倍生理食鹽水浸潤腦切片10分鐘後,利用預冷的EtOH/CH3COOH(95%:5%)反應10分鐘通透(permeabilize)細胞,再以1倍生理食鹽水洗滌3次,每次10分鐘。以包含3%正常山羊血清、3% BSA及0.2%氚核X-100(Triton X-100)之1倍生理食鹽水的阻斷溶液(blocking solution)預處理組織2小時,再以1倍生理食鹽水洗滌3次,每次10分鐘。以觀察海馬迴CA1區域中內源性PIAS1及MeCP2的表現,將腦組織切片與兔子抗-PIAS1抗體(1:100,目錄編號:2474-1,Epitomics)及小鼠抗-MeCP2抗體(1:100,目錄編號:H00004204-M01,Abnova,Taipei,Taiwan)於4℃反應至隔日。以1倍生理食鹽水洗滌腦組織切片3次,每次10分鐘後,加入與FITC接合之山羊抗-兔子二級抗體(1:500,目錄編號:111-095-003,Jackson Immunoresearch,West Grove,PA)及Cy3驢子抗小鼠抗體(1:500,目錄編號:GTX85338,Genetex),反應1小時。在偵測細胞核的免疫螢光表現時,是將20微升之具有DAPI(每毫升1.5微克)的VECTASHIELD封固劑(Vector Laboratories,Burlingame,CA)加入組織切片中。觀察腦組織切片之GFP(綠色)及RFP(紅色)螢光表現量來檢測BLA中慢病毒載體的轉染率。利用Zeiss LSM510共軛焦顯微鏡拍攝顯微照片。
初級海馬迴組織培養及免疫組織化學分析 由E18之Sprague-Dawley大鼠取出胚胎初級海馬迴神經元。以每毫升100U的木瓜酵素papain分離由胚胎取出的海馬迴組織,再將其置於以每毫升100微克之聚-L-離胺酸塗佈的玻片上,細胞密度為每毫升3×105個細胞,將細胞培養於包含5%胎牛血清及5%馬血清的最小必需細胞培養液(minimal essential medium)中。 3小時後,以包含B27補體(目錄編號:17504044,Invitrogen)、GlutaMAX補體(目錄編號:35050061,Invitrogen)、每毫升100單位之青黴素(Penicillin)及每毫升100微克的鏈黴素(Streptomycin,目錄編號:15140122,Invitrogen)的神經元培養液(neurobasal medium,目錄編號:21103049,Invitrogen)進行置換。將細胞培養於包含5%二氧化碳之37℃的溼潤環境中,二天後再次置換神經元培養液。為觀察經分離之神經元中PIAS1及MeCP2的表現,以4%三聚甲醛-4%蔗糖(重量/體積)固定於活體外培養5天(DIV5)的海馬迴神經元,於室溫作用10分鐘後,吸乾三聚甲醛/蔗糖混合液,並於各孔洞加入1毫升之溶於生理食鹽水的氚核X-100(0.25%(體積/體積)),於室溫作用10分鐘。小心以生理食鹽水洗滌玻片後,加入1毫升之溶於生理食鹽水之胎牛血清白蛋白(bovine serum albumin,BSA;5%(重量/體積)),於室溫作用1小時。以包含1%(重量/體積)BSA之生理食鹽水稀釋兔子抗-PIAS1抗體(1:300,目錄編號:2474-1,Epitomics,Burlingame,CA)及小鼠抗-MeCP2抗體(1:300,目錄編號:61285,Active Motif)等初級抗體後,之後將稀釋後的抗體加入玻片並於4℃反應至隔日。以生理食鹽水輕輕地洗滌玻片3次。以包含1%(重量/體積)BSA之生理食鹽水稀釋DyLight 488山羊抗-兔子抗體(1:1000,目錄編號:GTX76757,Genetex)及Cy3驢抗-小鼠抗體 (1:1000,目錄編號:GTX85338,Genetex),之後將稀釋後的抗體加入玻片,反應1小時。利用生理食鹽水洗滌玻片3次後,加入20微升之具有DAPI的VECTASHIELD封固劑(Vector Laboratories,Burlingame,CA)加入組織切片中。利用Zeiss LSM510共軛焦顯微鏡拍攝顯微照片。
統計 利用重複檢測之單向或雙向變異分析(one-way or two-way analysis of variance,ANOVA)後進行事後紐-柯多重比對(post-hoc Newman-Keuls multiple comparisons,以q值表示),藉以分析行為數據。以Student’s-t分析或單向ANOVA分析後進行紐-柯比對,據以分析生物數據。以重複檢測之雙向ANOVA分析後進行紐-柯比對,藉以分析電生理數據。P<0.05之數值即視為具有統計顯著差異(*P<0.05,**P<0.01,#P<0.001)。
實施例1 確認MeCP2之SUMO候選位置
在本實施例中,將利用活體化類小泛素化試驗來研究MeCP2中類小泛素化的候選位置。第1a圖闡述了該些實驗結果。第1a圖的資料顯示,當加入E1、E2、PIAS1(活化STAT1的蛋白抑制劑)及MeCP2蛋白時,MeCP2會產生類小泛素化;若加入類小泛素蛋白酶SENP1(sentrin-specific protease 1,一種用以將類小泛素由類小泛素結合蛋白移除的酵素),則會阻斷該反應。
接著將研究PIAS1於細胞中類小泛素化MeCP2的可能性。為此,先以V5-MeCP2、Myc-SUMO1及Flag-PIAS1(不同劑量)質體分別轉染HEK293T細胞後,進行活體外類小泛素化試驗分析。第1b圖闡述了該些實驗結果。結果指出,PIAS1會與劑量相關地增強MeCP2的類小泛素化。
然後,利用質譜分析(mass spectrometric,MS)來研究MeCP2上類小泛素的候選受器。MS結果指出,在MeCP2上有10個類小泛素的候選殘基,卻無任何殘基符合SUMO-受質共通模組(consensus SUMO-substrate motif)。因此,進一步嘗試利用生物資訊方法及SUMO2.0軟體來確認候選殘基。分析後發現2個離胺酸殘基具有較高的分數,其中之一(Lys-363)符合SUMO-受質共通模組。此外,發現4個離胺酸殘基具有中等分數(第1c圖)。據此產生不同之能分別對抗該6種殘基的突變型,並以該些突變型(具有V5標籤)及Flag-PIAS1與Myc-SUMO1轉染HEK293T細胞。第1d圖闡述了該些實驗結果。當以V5-MeCP2WT轉染細胞時,MeCP2會產生類小泛素化;然而,當以Myc-SUMO1△GG(一種缺乏對SUMO1結合為必要之C端雙甘胺酸模組(di-glycine motif)的SUMO1質體)轉染細胞時,則會阻斷該反應(第1d圖)。在以V5-MeCP2K12R、V5-MeCP2K32R、V5-MeCP2K35R及V5-MeCP2K36R進行轉染時,則不會改變MeCP2的類小泛素化。以 V5-MeCP2K363R轉染細胞會減少MeCP2的類小泛素化,其會阻斷上方MeCP2的類小泛素蛋白帶(第1d圖)。此外,以V5-MeCP2K412R轉染細胞時,上方及中間之MeCP2類小泛素蛋白帶的表現會受到抑制(第1d圖)。相較於V5-MeCP2K363R,以V5-MeCP2K412R進行轉染會顯著地減少類小泛素化的總程度(第1d圖)。
進一步分析確認MeCP2於細胞中產生類小泛素化的位置是位於Lys-412。以Flag-PIAS1、Myc-SUMO1、V5-MeCP2WT或V5-MeCP2K412R質體轉染HEK293T細胞。利用抗-Myc抗體進行免疫沉澱,以抗-V5抗體進行免疫印漬分析。第1e圖闡述了V5-MeCP2K412R轉染會減少類小泛素化的程度(第1e圖)。
基於相較於MeCP2K363R,MeCP2K412R會更顯著地減少MeCP2的類小泛素化,後續實驗將著重於Lys-412。此外,先前報導指出MeCP2之Lys-223位置可進行類小泛素修飾(Cheng et al.,J.Neurochem.128,798-806(2014)),因此亦將觀察於MeCP2中該殘基位置的類小泛素化狀態。將V5-MeCP2WT或V5-MeCP2K223R與Flag-PIAS1及Myc-SUMO1共轉染至HEK293T細胞,並檢測MeCP2的類小泛素化。將轉染V5-MeCP2K412R的細胞作為正對照組。結果顯示,V5-MeCP2K223R轉染不會改變MeCP2的類小泛素 化程度(結果未顯示)。
實施例2 PIAS1於海馬迴中會對MeCP2之Lys-412進行類小泛素化修飾
實施例1之結果指出,PIAS1於細胞中會對MeCP2之Lys-412進行類小泛素化修飾;在本實施例中,將研究PIAS1是否亦會於大鼠腦組織之海馬迴中的MeCP2進行類小泛素化修飾。先利用免疫沉澱來進行研究。第2a圖闡述了該些實驗結果,其中當以抗-MeCP2抗體進行免疫沉澱後,再利用抗-PIAS1抗體進行免疫印漬分析,可發現MeCP2會明顯地與PIAS1相關(第2a之左圖)。反之,利用抗-PIAS1抗體進行免疫沉澱後,再利用抗-MeCP2抗體進行免疫印漬分析亦可得到相似的結果(第2a之右圖)。
接著,將了解PIAS1及MeCP2是否是表現於相同的海馬迴神經元中。將包含CA1區域的腦組織切片進行免疫組織化學分析染色。第2b圖闡述了該些實驗結果。分別觀察CA1神經元中,PIAS1(綠色)、MeCP2(紅色)及DAPI(藍色)的螢光表現量(第2b之上圖)。當以高倍率觀察CA1神經元時,會發現PIAS1及MeCP2會共同表現於相同海馬迴神經元的細胞核中(第2b之下圖)。為便於觀察PIAS1及MeCP2於個別神經元的分佈,對經培養的海馬迴神經元進行PIAS1及MeCP2的免疫組織化學染色。結果顯示PIAS1及MeCP2會共同表現於相同海馬迴神經元的細胞核中,且於異染色質(heterochromatins)上可觀察到MeCP2 的點狀分佈(第2c圖)。
接著,將探討於海馬迴中MeCP2之Lys-412位置是否會進行類小泛素化。以Flag-vector、Flag-MeCP2WT或Flag-MeCP2K412R轉染大鼠CA1區域,48小時後,再利用活體外類小泛素化試驗進行分析。結果指出,轉染Flag-MeCP2WT會顯著地增加MeCP2類小泛素化的程度,而轉染Flag-MeCP2K412R則會阻斷該反應。加入SUMO1突變蛋白亦會阻斷Flag-MeCP2WT對MeCP2類小泛素化之功效(相較於Flag-MeCP2WT組)(第2d之下圖)。進一步利用抗anti-MeCP2抗體進行免疫沉澱後,以抗-類小泛素1抗體進行免疫印漬分析(第2d之上圖)以證實上述結果。以抗-Flag抗體進行西方墨點分析來確認質體的轉染及表現(第2d之右下圖)。基於類小泛素化及泛素化會係發生於離胺酸殘基,為排除觀察到的SUMO-MeCP2蛋白事實上是泛素化MeCP2的可能性,以抗-MeCP2抗體對相同細胞溶解物進行免疫沉澱後,利用抗-泛素抗體進行免疫印漬分析。第2d及2e圖總結了該些結果,其中泛素化MeCP2蛋白帶的分子量不是低於95千道耳吞(kDa),就是高於130千道耳吞(第2e圖),該結果與類小泛素化MeCP2蛋白帶介於95-130千道耳吞的分子量不同(第2d圖)。第2f圖闡述了MeCP2類小泛素化的定量結果。以抗-Flag抗體及與FITC接合之二級抗體進行免疫組織化學分析,藉以確認CA1神經元中質體的轉染及表現(結果未顯示)。
進而將了解PIAS1是否會內源性地對MeCP2進行類小泛素化修飾。先以對照組siRNA或PIAS1 siRNA(8批莫耳)轉染大鼠的CA1區域,48小時後,利用活體外類小泛素化試驗來了解內源性MeCP2的類小泛素化狀態。結果顯示,降低PIAS1表現會顯著地減少內源性MeCP2的類小泛素化程度(第2g圖)。第2h圖闡述了定量結果(上圖)。藉由減少CA1區域中PIAS1的表現來確認PIAS1 siRNA的轉染效率(第2h之下圖)。
實施例3 MeCP2磷酸化有助於MeCP2類小泛素化,且投予NMDA及IGF-1及投予CRF會誘發MeCP2的類小泛素化
3.1 MeCP2磷酸化有助於MeCP2類小泛素化
先前研究指出,神經元活化會誘發MeCP2之Ser-421及Thr-308位置的磷酸化(Zhou et al.,Neuron 52,255-269(2006);Ebert et al.,Nature 499,341-345(2013))。在本實例中,將研究MeCP2磷酸化是否有助於MeCP2類小泛素化。
以Flag-vector、Flag-MeCP2WT、Flag-MeCP2S421A或Flag-MeCP2T308A轉染大鼠CA1區域,48小時後,以活體外類小泛素化試驗進行分析。結果指出,Flag-MeCP2WT轉染會增加MeCP2類小泛素化的程度,而Flag-MeCP2S421A或Flag-MeCP2T308A轉染則會阻斷該反應(第3a圖)。
3.2 NMDA與IGF-1以及CRF會誘發MeCP2類小泛素化
本實施例將研究利用氮-甲基天門冬胺酸(N-methyl-D-aspartate,NMDA)刺激神經元活化是否會誘發MeCP2類小泛素化,以及二個磷酸化突變是否會阻斷由NMDA所誘發的MeCP2類小泛素化。為此,如上述方法以Flag-vector、Flag-MeCP2WT、Flag-MeCP2S421A或Flag-MeCP2T308A轉染大鼠。質體轉染47小時後,將NMDA(每微升2微克)注入該些大鼠的CA1區域。於NMDA注入1小時後,犠牲動物,分別沖壓其CA1組織以進行活體外類小泛素化試驗。接受Flag-vector轉染及生理食鹽水注射之大鼠在本實驗係為對照組。結果指出,NMDA注射會增加MeCP2的類小泛素化程度。Flag-MeCP2WT轉染會進一步增加該反應,而Flag-MeCP2S421A及Flag-MeCP2T308A轉染則會中止該反應(第3b圖)。與先前報導一致,神經元活化會增加MeCP2之Ser-421及Thr-308位置磷酸化的程度(Zhou et al.,Neuron 52,255-269(2006);Ebert et al.,Nature 499,341-345(2013)),注入NMDA亦會增加MeCP2之Ser-421位置磷酸化的程度(第3b圖)。Flag-MeCP2WT轉染會產生相似的增強功效,而Flag-MeCP2S421A轉染則會阻斷該功效。Flag-MeCP2T308A轉染不會影響功效(第3b圖)。下圖闡述了該些定量結果。
已知類胰島素生長因子-1(Insulin-like growth factor-1,IGF-1)具有治療RTT病患之潛力(Pini et al.,Autism Res Treat 2012,679801(2012);Pine et al.,Front Pediatr.2,52(2014)),因此將進一步研究MeCP2類小泛素化是否為IGF-1的分子標的。將PBS或IGF-1(每毫升100奈克)注入大鼠的CA1區域,1小時後,分析其MeCP2的類小泛素化狀態。結果指出,IGF-1會顯著地增加MeCP2類小泛素化的程度。此外,IGF-1似乎會產生多條類小泛素蛋白帶,以抗-MeCP2(第3c之左圖)及抗-SUMO1(第3c之右圖)抗體進行的免疫印漬分析即證實該結果。同時,IGF-1亦會增加MeCP2之Ser-421位置的磷酸化程度(第3c之左下圖)。
已知激腎上腺皮質素釋放因子(Corticotropin-releasing factor,CRF)(Wu et al.,Neuroscience 78,147-153(1997))及迪皮質醇(dexametlasone,一種合成的糖皮質素(glucocorticoid))(Hossain et al.,Endocrinology 149,6356-6365(2008))可增加認識功能及Bdnf基因表現,且具有減緩RTT病徴的潛力。因此,將進一步研究CRF或迪皮質醇對MeCP2類小泛素化的功效。為此,將生理食鹽水或CRF(每微升100奈克)注入大鼠的CA1區域,1小時後犠牲動物,並對其CA1組織進行活體外類小泛素化試驗分析。在另一實驗中,是將DMSO或迪皮質醇(每微升30奈克)注入大鼠 的CA1區域,亦於1小時後犠牲動物,並檢測其CA1組織中MeCP2的類小泛素化狀態。結果指出,CRF會明顯地增加MeCP2類小泛素化的程度(第3d圖);然而,迪皮質醇則不具有相同的功效(第3e圖)。
實施例4 MeCP2的類小泛素化會減少其與CREB的作用、增加CREB與DNA之結合及Bdnf基因表現,以及增加其結合至甲基-DNA
在本實驗中,將研究MeCP2類小泛素化之下游分子作用。
4.1 MeCP2的類小泛素化會減少其與CREB的作用
基於Bdnf在RTT中扮演著重要的角色,且CREB會直接結合至Bdnf啟動子;因此,首先將了解MeCP2的類小泛素化會改變其與CREB的作用。以Flag-vector、Flag-MeCP2WT、Flag-MeCP2K412R或Flag-MeCP2WT-SUMO1轉染大鼠的CA1區域。48小時後,犠牲該些大鼠,並將其CA1組織進行co-IP實驗。結果指出,MeCP2與CREB相關;Flag-MeCP2K412R轉染會增加二者之結合,而Flag-MeCP2WT-SUMO1轉染則會減少二者之結合(第4a之左圖)。為進一步確認分子量較高的蛋白帶是類小泛素化MeCP2,以抗-MeCP2抗體對由相同組別取得的細胞溶解物進行免疫沉澱後,利用抗-SUMO1抗體進行免疫印漬分析。結果指出,僅有在Flag-MeCP2-SUMO1組別可觀察到具有相同分子量 的特定蛋白帶(第4a之中圖)。下圖為定量結果。
4.2 MeCP2類小泛素化會增加CREB與DNA之結合
上述結果可能的解釋原因為一旦MeCP2類小泛素化,CREB會由MeCP2抑制子複合體中釋放出來,因而更能與DNA結合及調控轉錄作用。本實施例將檢驗該假設。以Flag-vector、Flag-MeCP2WT、Flag-MeCP2K412R及Flag-MeCP2WT-SUMO1轉染大鼠CA1區域。48小時後,犠牲動物,檢測其CA1組織中CREB與DNA之結合。結果指出,相較於對照組,Flag-MeCP2WT會增加、而Flag-MeCP2K412R則會減少CREB與DNA之結合。相較於Flag-MeCP2WT,Flag-MeCP2WT-SUMO1轉染會進一步增加CREB與DNA之結合(第4b之左圖)。質體轉染不會改變CREB的表現量。
4.3 MeCP2類小泛素化會增加Bdnf基因表現
基於阻斷MeCP2類小泛素化會減少CREB與DNA之結合,而CREB會直接結合至Bdnf啟動子,本實施例將檢測MeCP2之類小泛素化是否可調控Bdnf啟動子的活化。以不同之具有V5標籤之MeCP2質體、包含Bdnf外顯子IV啟動子之建構體及用以編號海腎螢光素酶(Renilla luciferase,作為內部對照組)之建構體共轉染Neuro2A細胞。48小時後,以報導螢光素酶試驗分析Bdnf啟動子的活性。結果指出, V5-MeCP2K412R會減少、而V5-MeCP2WT-SUMO1則會增加Bdnf啟動子的活性(結果未顯示)。進一步檢測本實驗的轉染效率。以mRFP-MeCP2WT轉染Neuro2A細胞;48小時後,計算總細胞數量及具有紅色螢光表現的細胞數量。結果指出,轉染效率約為40%(結果未顯示)。
本實施例亦探討MeCP2之類小泛素化是否會調控Bdnf mRNA的表現。為此,以Flag-vector、Flag-MeCP2WT、Flag-MeCP2K412R或Flag-MeCP2WT-SUMO1轉染大鼠。48小時後,犠牲動物,檢測其CA1組織中Bdnf mRNA的表現量。結果指出,相較於對照組,Flag-MeCP2WT轉染約會增加18%之Bdnf mRNA表現量,Flag-MeCP2K412R轉染會減少約50%的Bdnf mRNA表現量。此外,Flag-MeCP2WT-SUMO1轉染會增加約50%的Bdnf mRNA表現量(第4c圖)。由於MeCP2可能會調控不同基因的表現,亦利用cDNA微陣列(microarray)分析來進行分析。結果指出,相較於Flag-MeCP2WT轉染,Flag-MeCP2K412R轉染會改變約40,000個基因的表現。在該些基因中,1,368個基因的表現增加量會大於2倍,1,686基因的表現增加量會小於2倍(結果未顯示)。為驗證微陣分析的結果,挑選3個表現量會因Flag-MeCP2K412R轉染而增加的基因,以及3個表現量會因Flag-MeCP2K412R轉染而減少的基因,並利用RT-qPCR來分析。結果指出,Flag-MeCP2K412R 會增加Olr640、Bco2及M x 1基因的mRNA表現量(約分別增加9倍、4.3倍及3.8倍);且會減少Igf2、Wnt6及Wnt5b基因的mRNA表現量(約分別減少5倍、3.6倍及1.7倍)(結果未顯示)。即使倍數差異與微陣列分析結果不同,然RT-qPCR數據仍大致呈現與微陣列分析一致的結果。然而,微陣列分析名單並不包含Bdnf基因。無法確定原因是否為微陣列分析所選取的時間點並非偵測Bdnf mRNA改變的最佳時間點。因此,本實驗將採用包含24小時、36小時及48小時等不同時間點來檢測不同組動物中Flag-MeCP2K412R轉染對Bdnf mRNA表現之功效。結果指出,Flag-MeCP2K412R轉染於各檢測時間點中,皆會顯著地增加Bdnf mRNA表現量(結果未顯示)。
本實施例亦檢測MeCP2之類小泛素化是否會增加CREB結合至內源性Bdnf啟動子。以Flag-vector、Flag-MeCP2WT、Flag-MeCP2K412R及Flag-MeCP2WT-SUMO1轉染大鼠CA1區域。48小時後,犠牲動物,對其CA1組織進行染色質免疫沉澱(chromatin immunoprecipitation,ChIP)試驗分析。結果指出,CREB會直接結合至內源性Bdnf啟動子。相較於Flag-MeCP2WT組,以Flag-MeCP2K412R轉染阻斷MeCP2之類小泛素化會減少CREB結合至Bdnf啟動子,而以Flag-MeCP2WT-SUMO1轉染增加MeCP2之類小泛素化則會增加CREB結合至Bdnf啟動 子(第4d圖)。
4.4 MeCP2類小泛素化會增加其結合至甲基-DNA
已知於RTT病患發現的數個MECP2突變會改變MECP2與其他蛋白作用或影響MECP2結合至甲基-DNA(Ballestar,Biochemistry 39,7100-7106(2000)),本實施例將探討MeCP2之類小泛素化是否會改變其結合至甲基-DNA。在有或無Flag-PIAS1 and Myc-SUMO1的情況下,以V5-MeCP2WT轉染HEK293T細胞。V5-MeCP2T158M轉染在本實驗是為負對照組。當以Flag-MeCP2WT進行轉染時,可發現MeCP2會結合至甲基-DNA;然而,以Flag-PIAS1及Myc-SUMO1進行共轉染,則會發現該些表現會明顯地增加MeCP2結合至甲基-DNA;此外,該些表現亦會增加MeCP2的類小泛素化(第4e圖)。V5-MeCP2T158M轉染幾乎完全抑制MeCP2結合至甲基-DNA及MeCP2的類小泛素化(第4e圖)。
實施例5 於RTT病患確認的數個MECP2突變型具有低程度的MeCP2類小泛素化且會減少與PIAS1的結合
在本實施例中,將探討於RTT病患確認的MECP2突變型是否具有異常之MeCP2類小泛素化及/或與PIAS1的作用。
5.1 RTT觀察到之MECP2突變型具有 低程度的MeCP2類小泛素化
本實施例將探討在RTT病患中,7種最常見之MECP2突變型的MeCP2類小泛素化。以不同之具有V5標籤的MECP2突變質體轉染HEK293T細胞;48小時後,以活體外類小泛素化試驗進行分析。結果指出,包含R106W、R133C、P152A、T158M、R306C及P376R等MECP2突變型皆會不同程度地顯著減少MeCP2類小泛素化。R168X突變型由於為一截段型蛋白(truncated protein),因此不具有MeCP2類小泛素化(第5a圖)。第5b圖闡述了該些定量結果。然而,該些突變型不含類小泛素化殘基(Lys-363,Lys-412)及會調控MeCP2類小泛素化的磷酸化殘基(Thr-308,Ser-421)。為了解該些突變型是否具有低程度的類小泛素化,本實施例將檢測該些突變型是否會改變MeCP2的磷酸化程度。結果顯示,唯有MeCP2R306C及MeCP2P376R會減少MeCP2的磷酸化;其他MeCP2突變型皆會增加MeCP2的磷酸化(第5a圖)。第5c圖闡述了該些定量結果。
5.2 RTT之MECP2突變型會減少與PIAS1的結合
本實施例將探討於上述突變型觀察到低程度的MeCP2類小泛素化,是否是由於PIAS1與MECP2突變型之間的結合下降所導致。以具有V5標籤之MeCP2突變質體、Flag-PIAS1及Myc-SUMO1共轉染HEK293T細胞;48小時後以co-IP進行分析。 結果指出,所有的MeCP2突變型與PIAS1的結合皆會下降(第5d之上圖)。第5e圖闡述了該些定量結果。該些經轉染質體於細胞溶解物中具有相似的表現量(第5d之下圖)。本實施例亦檢測PIAS1及MeCP2K223R之間的結合。結果指出,相較於MeCP2WT,PIAS1與MeCP2K223R之間的結合並沒有改變(結果未顯示)。
實施例6 MeCP2類小泛素化可回復Mecp2 cKO小鼠誘發之行為及LTP缺失
本實施例是利用Mecp2 cKO小鼠來探討MeCP2類小泛素化之功能重要性
為製備Mecp2剔除動物,分別將lenti-mRFP載體、lenti-mRFP-MeCP2WT載體、lenti-mRFP-MeCP2K412R載體及lenti-mRFP-MeCP2WT-SUMO1融合載體投予至小鼠的基底外側杏仁核(basolateral amygdala,BLA),接著進行習慣性(habituation)及社會互動檢測。投予lenti-mRFP載體之Mecp2 loxp小鼠在本實驗係作為對照組。分別以GFP(綠色)及mRFP(紅色的)免疫組織化學分析來闡述GFP-Cre及mRFP-MeCP2於BLA神經元中的表現位置。利用活體外類小泛素化試驗來確認BLA中MeCP2的過量表現會誘發MeCP2類小泛素化。第6圖闡述該些結果。
5組動物進入房室的總數皆相似(第6a圖),該結果表示該些動物具有相似之自主活動力(locomotor activity level)。由社會能力測試結果可 知,所有組別之動物在嗅探陌生小鼠1所花的時間較嗅探空隔間的時間長,且嗅探陌生小鼠1的時間相似(第6b圖)。在完成社會能力測試10分鐘後進行社會識別測試。結果指出,對照組動物於嗅探陌生小鼠2所花的時間較嗅探陌生小鼠1的時間長,而相較於對照組動物,Mecp2 cKO小鼠花較少的時間於嗅探陌生小鼠2。相較於Mecp2 cKO小鼠,經lenti-mRFP-MeCP2WT載體轉殖之Mecp2 cKO小鼠體於嗅探陌生小鼠2的時間會顯著地增加。然而,相較於經lenti-mRFP-MeCP2WT載體轉殖之Mecp2 cKO小鼠,經lenti-mRFP-MeCP2K412R載體轉殖之Mecp2 cKO小鼠於嗅探陌生小鼠2的時間會再次減少,該時間與Mecp2 cKO小鼠相近。相較於經lenti-mRFP-MeCP2K412R載體轉殖之Mecp2 cKO小鼠,經lenti-mRFP-MeCP2WT-SUMO1融合載體轉殖之Mecp2 cKO小鼠於嗅探陌生小鼠2的時間會增加,該時間與對照組動物相近(第6c圖)。
認知障礙是RTT病患及RTT小鼠模式中另一種常見的行為缺失,本實施例將探討於社會互動測試中表現較佳的動物具有較佳的記憶保留。於社會識別測試7天後,對相同的動物進行線索恐懼制約學習測試。24小時後測量其記憶保留能力。結果顯示,相較於對照組動物,Mecp2 cKO小鼠具有受損的恐懼記憶。然而,經lenti-mRFP-MeCP2WT載體轉殖之Mecp2 cKO小鼠具有顯著改善的記憶表現,且與對照組動物之表現相近。 相較之下,經lenti-mRFP-MeCP2K412R載體轉殖之Mecp2 cKO小鼠則具有較對照組動物更差的記憶表現,而優於Mecp2 cKO小鼠的記憶表現。此外,相較於經lenti-mRFP-MeCP2K412R載體轉殖之Mecp2 cKO小鼠,經lenti-mRFP-MeCP2WT-SUMO1融合載體轉殖之Mecp2 cKO小鼠具有顯著改善的記憶表現,且與經lenti-mRFP-MeCP2WT載體轉殖之Mecp2 cKO小鼠的表現相近(第6d圖)。
為證實杏仁核中Cre的表現會成功抑制MeCP2的表現,將由對照組及Mecp2 cKO組動物取得的BLA組織進行西方墨點分析以檢測MeCP2的表現。結果顯示,重組酶Cre轉殖會顯著地減少(約75%)BLA神經元中MeCP2的表現(第6e圖)。該些結果指出,相較於Mecp2 cKO小鼠,經lenti-mRFP-MeCP2K412R載體轉殖之Mecp2 cKO小鼠具有較佳的記憶表現。可能的原因為過量表現的MeCP2K412R依然具有磷酸化修飾,因此導致與恐懼記憶形成相關的訊息傳遞。為測試該假設,於恐懼記憶測試後,犠生Mecp2 cKO+載體組、Mecp2 cKO+MeCP2WT組及Mecp2 cKO+MeCP2K412R組的小鼠,並利用西方墨點分析來檢測其BLA組織中pS421MeCP2及MeCP2的表現。結果顯示,在經lenti-mRFP-MeCP2WT及lenti-mRFP-MeCP2K412R轉殖的組別中,MeCP2的表現量會提升近2.5倍。然而,二組之MeCP2的磷 酸化仍增加約16%(第6f圖)。基於是利用相同的動物進行社會互動及恐懼制約學習測試,本實施例將了解二種行為表現間是否具有關連性。分析結果顯示,花在嗅探陌生小鼠2之時間分數與恐懼記憶表現分數之間具有顯著的關連性(結果未顯示)。
由於Lys-223是MeCP2之類小泛素化的候選位置,進一步分析MeCP2K223R對互動行為的影響。將Flag-MeCP2WT或Flag-MeCP2K223R轉染至動物的BLA區域,48小時後測量其社會互動行為。結果顯示,MeCP2K223R轉染不會影響該些動物的運動活動性、社會能力及社會識別表現(結果未顯示)。
上述結果顯示,神經元活化(注射NMDA)會增加MeCP2類小泛素化,而MeCP2磷酸化(位於Ser-421及Thr-308)會有助於MeCP2類小泛素化(第3b圖);然而,目前仍不清楚缺乏類小泛素化是否會影響與MeCP2相關之神經元可塑性。在此利用長效增益(long-term potentiation,LTP)之高頻率刺激(high frequency stimulation,HFS)模式及θ脈衝刺激(theta-burst stimulation,TBS)模式進行分析。將lenti-mRFP載體、lenti-mRFP-MeCP2WT載體或lenti-mRFP-MeCP2K412R載體轉殖至Mecp2 cKO小鼠的CA1區域。以經mRFP載體轉殖之Mecp2 loxp小鼠作為本實驗對照組。7天後犠牲小鼠,並記錄其海馬迴組織切片之細胞外興奮性突觸後電位(field excitatory postsynaptic potential,fEPSP)。結 果顯示,在使用HFS模式時可發現,相較於Mecp2 loxp小鼠,Mecp2 cKO小鼠具有顯著缺損的LTP誘發及表現。於Mecp2 cKO小鼠過量表現MeCP2WT可回復該種LTP缺損,而過量表現MeCP2K412R則無法回復。然而,相較於Mecp2 loxp小鼠,Mecp2 cKO小鼠的早期LTP誘發(前10分鐘)較不會受到影響(第6g圖)。於TBS模式亦可得到相似的結果(第6h圖)。
雖然上文實施方式中揭露了本發明的具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。
<110> 中央研究院
<120> 治療神經發展性疾病
<130> P2920-TW
<160> 19
<170> BiSSAP 1.3
<210> 1
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> Mecp2 cDNA之引子-1
<400> 1
<210> 2
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> Mecp2 cDNA之引子-2
<400> 2
<210> 3
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 建構體之正向引子
<400> 3
<210> 4
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> mRFP之反向引子
<400> 4
<210> 5
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> mRFP-Mecp2WT或mRFP-Mecp2K412R之反向引子
<400> 5
<210> 6
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> mRFP-Mecp2-SUMO1或mRFP-Mecp2WT-SUMO1之反向引子
<400> 6
<210> 7
<211> 49
<212> DNA
<213> 人工序列
<220>
<223> Cre載體之正向引子
<400> 7
<210> 8
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> Cre載體之反向引子
<400> 8
<210> 9
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> GFP載體之正向引子
<400> 9
<210> 10
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> GFP載體之反向引子
<400> 10
<210> 11
<211> 51
<212> DNA
<213> 人工序列
<220>
<223> DNA寡核苷酸
<400> 11
<210> 12
<211> 51
<212> DNA
<213> 人工序列
<220>
<223> DNA寡核苷酸之正股
<400> 12
<210> 13
<211> 51
<212> DNA
<213> 人工序列
<220>
<223> DNA寡核苷酸之負股
<400> 13
<210> 14
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> GAPDH之正向引子
<400> 14
<210> 15
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> GAPDH之反向引子
<400> 15
<210> 16
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> Bdnf之正向引子
<400> 16
<210> 17
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> Bdnf之反向引子
<400> 17
<210> 18
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 正股序列
<220>
<221> misc_RNA
<222> 20,21
<223> /note="t為DNA核苷酸-胸腺嘧啶"
<400> 18
<210> 19
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> /note="負股序列"
<220>
<221> mRNA
<222> 20,21
<223> /note="t為DNA核苷酸-胸腺嘧啶"
<400> 19

Claims (6)

  1. 一種MeCP2或一用以編碼MeCP2之核酸的用途,其係用以製備一藥物以治療一個體之神經發展性疾病,其中該MeCP2具有一轉譯後修飾,其係對應於野生型MeCP2第412位置之胺基酸的類小泛素化。
  2. 如請求項1所述之用途,其中該核酸是一表現載體。
  3. 如請求項2所述之用途,其中該表現載體是源自一病毒,其係選自由疱疹病毒(herpes virus)、反轉錄病毒(retrovirus)、牛痘病毒(vaccinia virus)、減毒性牛痘病毒(attenuated vaccinia virus)、金絲雀痘病毒(canary pox virus)、腺病毒(adenovirus)及腺相關病毒(adeno-associated virus)所組成的群組。
  4. 如請求項1所述之用途,其中該神經發展性疾病是注意力不足過動症(attention deficit hyperactivity disorder,ADHD)、精神分裂症(schizophrenia)、強迫症(obsessive-compulsive disorder,OCD)、智能障礙(mental retardation)、自閉症(autistic spectrum disorder)、腦性麻痺(cerebral palsy)、構音異常(articulation disorder)、雷特氏症候群(Rett syndrome)或學習障礙(learning disability)。
  5. 如請求項4所述之用途,其中該神經發展性疾病是雷特氏症候群。
  6. 如請求項5所述之用途,其中該藥物更包含氮-甲基天門冬胺酸(N-methyl-D-aspartate,NMDA)、類胰島素生長因子-1(insulin-like growth factor-1,IGF-1)或激腎上腺皮質素釋放因子(corticotropin-releasing factor,CRF)。
TW105111748A 2016-04-15 2016-04-15 治療神經發展性疾病 TWI601821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105111748A TWI601821B (zh) 2016-04-15 2016-04-15 治療神經發展性疾病

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105111748A TWI601821B (zh) 2016-04-15 2016-04-15 治療神經發展性疾病

Publications (2)

Publication Number Publication Date
TWI601821B true TWI601821B (zh) 2017-10-11
TW201736598A TW201736598A (zh) 2017-10-16

Family

ID=61011056

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105111748A TWI601821B (zh) 2016-04-15 2016-04-15 治療神經發展性疾病

Country Status (1)

Country Link
TW (1) TWI601821B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304245A (zh) * 2018-12-10 2020-06-19 中国科学院昆明动物研究所 基于mecp2基因的非治疗目的的将病毒注入动物特定脑区进行基因编辑的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115578A1 (en) * 2006-04-07 2007-10-18 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Synthetic mecp2 sequence for protein substitution therapy
WO2008153929A1 (en) * 2007-06-08 2008-12-18 Massachusetts Institute Of Technology Igf for the treatment of rett syndrome and synaptic disorders
WO2009043520A1 (en) * 2007-09-11 2009-04-09 Mondobiotech Laboratories Ag Use of grf-1 (1-29 ) and corticotropin-releasing factor as therapeutic agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115578A1 (en) * 2006-04-07 2007-10-18 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Synthetic mecp2 sequence for protein substitution therapy
WO2008153929A1 (en) * 2007-06-08 2008-12-18 Massachusetts Institute Of Technology Igf for the treatment of rett syndrome and synaptic disorders
WO2009043520A1 (en) * 2007-09-11 2009-04-09 Mondobiotech Laboratories Ag Use of grf-1 (1-29 ) and corticotropin-releasing factor as therapeutic agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Guy, Jacky, et al. "Reversal of neurological defects in a mouse model of Rett syndrome." Science 315.5815 (2007): 1143-1147. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304245A (zh) * 2018-12-10 2020-06-19 中国科学院昆明动物研究所 基于mecp2基因的非治疗目的的将病毒注入动物特定脑区进行基因编辑的方法
CN111304245B (zh) * 2018-12-10 2024-02-20 中国科学院昆明动物研究所 基于mecp2基因的非治疗目的的将病毒注入动物特定脑区进行基因编辑的方法

Also Published As

Publication number Publication date
TW201736598A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
US11642423B2 (en) Motor neuron-specific expression vectors
Rannals et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1
US10238681B2 (en) Micro-RNAs and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone-associated medical conditions
Wei et al. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways
JP2019172696A (ja) セロトニン放出ホルモン、アドレナリン放出ホルモン、ノルアドレナリン放出ホルモン、グルタミン酸放出ホルモンおよび副腎皮質刺激ホルモン放出ホルモン関連の医学的状態の処置および診断のためのマイクロrnaおよび該マイクロrnaを含む組成物
Passos et al. Role of the macrophage inflammatory protein-1α/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by β-amyloid peptide
US11365413B2 (en) Inhibition of poly(A) binding protein and the treatment of pain
CN111956658B (zh) miRNA 148簇作为诊断和/或治疗认知障碍相关疾病标志物的应用
JP2013529181A (ja) 神経障害を治療するための組成物および方法
Cheng et al. Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons
Rui et al. LRRK2 contributes to secondary brain injury through a p38/Drosha signaling pathway after traumatic brain injury in rats
ES2923015T3 (es) Fijación como objetivo de sinaptogirina-3 en el tratamiento de tauopatías
Jiao et al. Cordycepin improved neuronal synaptic plasticity through CREB-induced NGF upregulation driven by MG-M2 polarization: A microglia-neuron symphony in AD
TWI601821B (zh) 治療神經發展性疾病
US20180318379A1 (en) Inhibition of triggering receptor expressed on myeloid cells 1 (trem1) to treat central nervous system disorders
Wang et al. Early activation of Toll-like receptor-3 reduces the pathological progression of Alzheimer’s disease in APP/PS1 mouse
US20220305027A1 (en) Methods of controlling and improving brain health
US20170290886A1 (en) Treatment of neurodevelopmental disorders
KR20200028982A (ko) 시냅스 기능을 증진시키기 위한 hdac2-sp3 복합체 표적화
CN116949169B (zh) Smek1在缺血性脑卒中诊治中的应用
Gould Exploring SARM1 as a target to delay programmed axon degeneration
WO2015187929A1 (en) Treatment of fragile x syndrome by inhibition of cdh1-apc
Nelson Investigating the Roles of Poly (ADP-ribose) Polymerase 1 in Cortical Development
Shukla Pharmacological Regulation of Protein Translation in Fragile X Syndrome
Xiaojuan et al. Neuronal NR4A1 and complement coordinate synaptic stripping by microglia in lupus