TWI600901B - Ion-sensitive field-effect transistor - Google Patents
Ion-sensitive field-effect transistor Download PDFInfo
- Publication number
- TWI600901B TWI600901B TW104130352A TW104130352A TWI600901B TW I600901 B TWI600901 B TW I600901B TW 104130352 A TW104130352 A TW 104130352A TW 104130352 A TW104130352 A TW 104130352A TW I600901 B TWI600901 B TW I600901B
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing
- layer
- ion
- effect transistor
- channel layer
- Prior art date
Links
- 230000005669 field effect Effects 0.000 title claims description 74
- 239000010410 layer Substances 0.000 claims description 140
- 150000002500 ions Chemical class 0.000 claims description 39
- 239000011241 protective layer Substances 0.000 claims description 24
- 230000000903 blocking effect Effects 0.000 claims description 17
- 229920002120 photoresistant polymer Polymers 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 238000005538 encapsulation Methods 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 description 17
- 239000012482 calibration solution Substances 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BCZWPKDRLPGFFZ-UHFFFAOYSA-N azanylidynecerium Chemical compound [Ce]#N BCZWPKDRLPGFFZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明是有關於一種場效電晶體,且特別是有關於一種離子感測場效電晶體(Ion-Sensitive Field Effect Transistor,ISFET)。The present invention relates to a field effect transistor, and more particularly to an ion-sensing field effect transistor (ISFET).
離子感測場效電晶體是Bergveld Piet於西元1970年提出。離子感測場效電晶體主要是用以量測溶液中的離子濃度(如氫離子濃度)。在以離子感測場效電晶體對溶液的離子濃度進行量測的過程中,流經離子感測場效電晶體的電流會隨著溶液中的離子濃度而改變。離子感測場效電晶體的元件設計概念主要源自於互補金氧半導體場效電晶體(MOSFET),Bergveld Piet發現將互補金氧半導體場效電晶體中的金屬閘極移除並將其浸入溶液中,場效電晶體的通道電流會隨著溶液中的氫離子濃度不同而有所變化,因此離子感測場效電晶體可用以量測溶液中的離子濃度。The ion-sensing field-effect transistor was proposed by Bergveld Piet in 1970. The ion sensing field effect transistor is mainly used to measure the ion concentration (such as hydrogen ion concentration) in the solution. During the measurement of the ion concentration of the solution by the ion-sensing field effect transistor, the current flowing through the ion-sensing field-effect transistor changes with the ion concentration in the solution. The component design concept of ion-sensing field-effect transistors is mainly derived from complementary MOS field-effect transistors (MOSFETs). Bergveld Piet discovered that metal gates in complementary MOS field-effect transistors were removed and immersed. In the solution, the channel current of the field effect transistor will vary with the concentration of hydrogen ions in the solution, so the ion sensing field effect transistor can be used to measure the ion concentration in the solution.
針對溶液中的不同離子,離子感測場效電晶體可採用不同材質的感測薄膜方可進行該離子濃度的量測,由於溶液中的離子與感測薄膜的鍵結有其極限(感測極限)存在,因此如何突破離子感測場效電晶體的感測極限實為目前業界亟欲解決的議題之一。For the different ions in the solution, the ion sensing field effect transistor can use different sensing films to measure the ion concentration, because the ions in the solution and the sensing film have their limits (sensing) Limits exist, so how to break through the sensing limit of ion-sensing field-effect transistors is one of the topics that the industry is currently trying to solve.
本發明提供一種離子感測場效電晶體,其具備高感測極限。The present invention provides an ion sensing field effect transistor having a high sensing limit.
本發明的一種離子感測場效電晶體,其包括一載子阻陷疊層、一閘極、一通道層、一源極、一汲極以及一感測薄膜。閘極與通道層配置於載子阻陷疊層的二相對側,源極以及汲極與通道層電性連接。感測薄膜配置於通道層上,且通道層位於載子阻陷疊層與感測薄膜之間。An ion sensing field effect transistor of the present invention comprises a carrier blocking stack, a gate, a channel layer, a source, a drain and a sensing film. The gate and the channel layer are disposed on opposite sides of the carrier block stack, and the source and the drain are electrically connected to the channel layer. The sensing film is disposed on the channel layer, and the channel layer is between the carrier blocking stack and the sensing film.
在本發明的一實施例中,上述的載子阻陷疊層包括一第一介電層、一第二介電層以及一載子阻陷層,其中載子阻陷層配置於第一介電層與第二介電層之間。In an embodiment of the invention, the carrier-trapping stack includes a first dielectric layer, a second dielectric layer, and a carrier blocking layer, wherein the carrier blocking layer is disposed in the first dielectric layer Between the electrical layer and the second dielectric layer.
在本發明的一實施例中,上述的閘極適於配置於一基板上,載子阻陷疊層覆蓋閘極,通道層覆蓋載子阻陷疊層,且源極與汲極覆蓋部分的通道層。In an embodiment of the invention, the gate is adapted to be disposed on a substrate, the carrier-trapped stack covers the gate, the channel layer covers the carrier-trapped stack, and the source and the drain cover portion Channel layer.
在本發明的一實施例中,上述的通道層的材質例如為非晶矽。In an embodiment of the invention, the material of the channel layer is, for example, amorphous.
在本發明的一實施例中,上述的離子感測場效電晶體可進一步包括一源極歐姆接觸層以及一汲極歐姆接觸層,源極歐姆接觸層配置於源極與通道層之間,且汲極歐姆接觸層配置於汲極與通道層之間。In an embodiment of the invention, the ion sensing field effect transistor may further include a source ohmic contact layer and a drain ohmic contact layer, and the source ohmic contact layer is disposed between the source and the channel layer. And the drain ohmic contact layer is disposed between the drain and the channel layer.
在本發明的一實施例中,上述的離子感測場效電晶體可進一步包括一與源極電性連接的源極接觸導體以及一與汲極電性連接之汲極接觸導體。In an embodiment of the invention, the ion sensing field effect transistor may further include a source contact conductor electrically connected to the source and a drain contact conductor electrically connected to the drain.
在本發明的一實施例中,上述的離子感測場效電晶體,可進一步包括一保護層,此保護層覆蓋源極、汲極以及通道層的一部分區域,且保護層具有一感測槽以將通道層的一部分區域暴露,而感測薄膜配置於感測槽所暴露出的通道層上。In an embodiment of the invention, the ion sensing field effect transistor may further include a protective layer covering a source, a drain, and a portion of the channel layer, and the protective layer has a sensing slot. A portion of the channel layer is exposed, and the sensing film is disposed on the channel layer exposed by the sensing groove.
在本發明的一實施例中,上述的感測槽為條狀感測槽,且條狀感測槽的延伸方向平行於閘極的延伸方向。In an embodiment of the invention, the sensing slot is a strip-shaped sensing slot, and the extending direction of the strip-shaped sensing slot is parallel to the extending direction of the gate.
在本發明的一實施例中,上述的感測槽的深度大於1毫米,而感測槽的寬度大於5毫米。In an embodiment of the invention, the sensing slot has a depth greater than 1 mm and the sensing slot has a width greater than 5 mm.
在本發明的一實施例中,上述的保護層的厚度大於1毫米。In an embodiment of the invention, the protective layer has a thickness greater than 1 mm.
在本發明的一實施例中,上述的保護層包括一光阻層。In an embodiment of the invention, the protective layer comprises a photoresist layer.
在本發明的一實施例中,上述的保護層包括一光阻層以及一元件封裝層,其中光阻層覆蓋源極、汲極以及通道層的部分區域,而元件封裝層覆蓋光阻層。In an embodiment of the invention, the protective layer includes a photoresist layer and a component encapsulation layer, wherein the photoresist layer covers a portion of the source, drain, and channel layers, and the component encapsulation layer covers the photoresist layer.
在本發明的一實施例中,上述的感測薄膜進一步覆蓋源極以及汲極。舉例而言,上述的感測薄膜包括一感測部分以及一感測部分,其中感測部分覆蓋通道層的一部分區域,而保護部分覆蓋源極以及汲極,且保護部分的厚度大於感測部分的厚度以於感測部分上方定義出一感測槽。In an embodiment of the invention, the sensing film further covers the source and the drain. For example, the sensing film includes a sensing portion and a sensing portion, wherein the sensing portion covers a portion of the channel layer, and the protective portion covers the source and the drain, and the thickness of the protective portion is greater than the sensing portion. The thickness defines a sensing slot above the sensing portion.
基於上述,本發明的離子感測場效電晶體具有載子阻陷疊層,且載子阻陷疊層可藉由閘極的控制而使載子被阻陷於載子阻陷疊層中,被阻陷於載子阻陷疊層中的載子可以有效地提升離子感測場效電晶體的感測極限。Based on the above, the ion-sensing field-effect transistor of the present invention has a carrier-trapped stack, and the carrier-trapped stack can be trapped in the carrier-trapped stack by the control of the gate. The carrier trapped in the carrier block stack can effectively enhance the sensing limit of the ion sensing field effect transistor.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
第一實施例First embodiment
圖1A是依照本發明第一實施例的離子感測場效電晶體的剖面示意圖,而圖1B是依照本發明第一實施例的離子感測場效電晶體的上視示意圖。請同時參照圖1A與圖1B,本實施例之離子感測場效電晶體100包括一載子阻陷疊層110、一閘極120、一通道層130、一源極140S、一汲極140D以及一感測薄膜150。閘極120與通道層130配置於載子阻陷疊層110的二相對側,源極140S以及汲極140D與通道層130電性連接。感測薄膜150配置於通道層130上,且通道層130位於載子阻陷疊層110與感測薄膜150之間。舉例而言,本實施例的離子感測場效電晶體100是製作於一基板SUB上,閘極120配置於基板SUB上,載子阻陷疊層110配置於基板SUB上以覆蓋住閘極120,通道層130配置於載子阻陷疊層110的部分區域上並且位於閘極120的上方,源極140S與汲極140D彼此相互分離地配置於通道層130與載子阻陷疊層110上,而感測薄膜150則配置於源極140S與汲極140D之間的通道層130上。如圖1A所示,本實施例的離子感測場效電晶體100為底電極型態的離子感測場效電晶體。1A is a schematic cross-sectional view of an ion-sensing field-effect transistor in accordance with a first embodiment of the present invention, and FIG. 1B is a top view of an ion-sensing field-effect transistor in accordance with a first embodiment of the present invention. Referring to FIG. 1A and FIG. 1B simultaneously, the ion sensing field effect transistor 100 of the present embodiment includes a carrier blocking stack 110, a gate 120, a channel layer 130, a source 140S, and a drain 140D. And a sensing film 150. The gate 120 and the channel layer 130 are disposed on opposite sides of the carrier block stack 110, and the source 140S and the drain 140D are electrically connected to the channel layer 130. The sensing film 150 is disposed on the channel layer 130 , and the channel layer 130 is located between the carrier blocking layer 110 and the sensing film 150 . For example, the ion-sensing field-effect transistor 100 of the present embodiment is fabricated on a substrate SUB, the gate 120 is disposed on the substrate SUB, and the carrier-trapped stack 110 is disposed on the substrate SUB to cover the gate. 120, the channel layer 130 is disposed on a partial region of the carrier block stack 110 and above the gate 120, and the source 140S and the drain electrode 140D are disposed apart from each other in the channel layer 130 and the carrier block stack 110. The sensing film 150 is disposed on the channel layer 130 between the source 140S and the drain 140D. As shown in FIG. 1A, the ion sensing field effect transistor 100 of the present embodiment is an ion sensing field effect transistor of a bottom electrode type.
在本實施例中,載子阻陷疊層110包括一第一介電層112、一第二介電層116以及一載子阻陷層114,其中載子阻陷層114配置於第一介電層112與第二介電層116之間。在載子阻陷疊層110中,第一介電層112扮演了穿遂介電層(tunneling dielectric layer)的角色,而第二介電層116扮演了阻斷介電層(blocking dielectric layer)的角色。當一高電壓施加於閘極120時,電荷可透過FN穿遂效應而穿遂過第一介電層112而被阻陷於載子阻陷層114中,且被阻陷於載子阻陷層114中的電荷會被第二介電層116所阻斷而不會進一步穿遂過第二介電層116。舉例而言,第一介電層112與第二介電層116的材質例如為氧化矽,而載子阻陷層114的材質例如為氮化矽。In this embodiment, the carrier blocking layer 110 includes a first dielectric layer 112, a second dielectric layer 116, and a carrier blocking layer 114. The carrier blocking layer 114 is disposed in the first dielectric layer. The electrical layer 112 is between the second dielectric layer 116. In the carrier-trapped stack 110, the first dielectric layer 112 plays the role of a tunneling dielectric layer, and the second dielectric layer 116 acts as a blocking dielectric layer. character of. When a high voltage is applied to the gate 120, the charge can be trapped in the carrier blocking layer 114 through the first dielectric layer 112 through the FN pinning effect, and is trapped in the carrier blocking layer 114. The charge in the charge will be blocked by the second dielectric layer 116 without further passing through the second dielectric layer 116. For example, the material of the first dielectric layer 112 and the second dielectric layer 116 is, for example, yttrium oxide, and the material of the carrier blocking layer 114 is, for example, tantalum nitride.
在本實施例中,透過適當施加電壓於閘極120上可以控制載子阻陷層114中載子被阻陷的狀況。換言之,透過適當施加電壓於閘極120上,可對載子阻陷疊層110進行編程(programming)、抹除(erasing)等動作。In the present embodiment, the condition in which the carrier in the carrier blocking layer 114 is trapped can be controlled by appropriately applying a voltage to the gate 120. In other words, by appropriately applying a voltage to the gate 120, the carrier block stack 110 can be programmed, erased, or the like.
在本實施例中,通道層130的材質例如為非晶矽或其他半導體材料,而感測薄膜150的材質例如為二氧化矽(SiO2 )、氮化矽(Si3 N4 )、五氧化二鉭(Ta2O5)、二氧化鉿(HfO2 )、三氧化二鋁(Al2 O3 )等。In this embodiment, the material of the channel layer 130 is, for example, an amorphous germanium or other semiconductor material, and the material of the sensing film 150 is, for example, cerium oxide (SiO 2 ), cerium nitride (Si 3 N 4 ), pentoxide. Dioxane (Ta2O5), cerium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), and the like.
為了降低源極140S與通道層130之間以及汲極140D與通道層130之間的接觸阻抗,本實施例可於源極140S與通道層130之間形成一源極歐姆接觸層160S以及於汲極140D與通道層130之間形成一汲極歐姆接觸層160D。舉例而言,源極歐姆接觸層160S與汲極歐姆接觸層160D可為N型摻雜的非晶矽層(N+ doped amorphous silicon layer)。此外,本實施例中的離子感測場效電晶體100可進一步包括一與源極140S電性連接的源極接觸導體170S以及一與汲極140D電性連接之汲極接觸導體170D。一般而言,前述的源極接觸導體170S與汲極接觸導體170D可採用金屬材質,以期增進離子感測場效電晶體100的元件表現。In order to reduce the contact resistance between the source 140S and the channel layer 130 and between the drain 140D and the channel layer 130, the present embodiment can form a source ohmic contact layer 160S between the source 140S and the channel layer 130 and A drain ohmic contact layer 160D is formed between the pole 140D and the channel layer 130. For example, the source ohmic contact layer 160S and the drain ohmic contact layer 160D may be an N+ doped amorphous silicon layer. In addition, the ion-sensing field-effect transistor 100 in this embodiment may further include a source contact conductor 170S electrically connected to the source 140S and a drain contact conductor 170D electrically connected to the drain 140D. In general, the source contact conductor 170S and the drain contact conductor 170D may be made of a metal material in order to enhance the component performance of the ion sensing field effect transistor 100.
為了增進離子感測場效電晶體100的元件信賴性,本實施例的離子感測場效電晶體100可進一步包括一保護層180,此保護層例如為氧化矽層、氮化矽層、光阻層等。舉例而言,為了增進離子感測場效電晶體100的元件信賴性,前述的保護層180可包括一光阻層180a以及一元件封裝層180b,其中光阻層180a覆蓋源極140S、汲極140D以及通道層130的部分區域,而元件封裝層180b覆蓋光阻層180a。本實施例雖以包括光阻層180a以及元件封裝層180b的保護層180為例進行說明,然本發明並不限定保護層180的具體材料,此領域具有通常知識者當可依據實際設計需求而更動保護層180的材質。In order to improve the component reliability of the ion-sensing field-effect transistor 100, the ion-sensing field-effect transistor 100 of the present embodiment may further include a protective layer 180, such as a hafnium oxide layer, a tantalum nitride layer, and light. Resistive layer, etc. For example, in order to improve the component reliability of the ion-sensing field-effect transistor 100, the foregoing protective layer 180 may include a photoresist layer 180a and an element encapsulation layer 180b, wherein the photoresist layer 180a covers the source 140S and the drain 140D and a partial region of the channel layer 130, and the component encapsulation layer 180b covers the photoresist layer 180a. The present embodiment is described by taking the protective layer 180 including the photoresist layer 180a and the component encapsulation layer 180b as an example. However, the present invention does not limit the specific material of the protective layer 180, and the general knowledge in this field can be based on actual design requirements. The material of the protective layer 180 is changed.
如圖1A所示,為了便於容納待測溶液以對待測溶液中的離子濃度進行量測,本實施例的保護層180具有一感測槽T以將通道層130的一部分區域暴露,而感測薄膜150配置於感測槽T所暴露出的通道層130上。換言之,保護層180中的感測槽T能夠用以容納適量的待測溶液。舉例而言,前述的感測槽T可為條狀感測槽,且條狀感測槽的延伸方向例如是平行於閘極120的延伸方向。在一可行的實施例中,保護層180的厚度例如是大於1毫米,感測槽T的深度例如是大於1毫米,而感測槽T的寬度例如是大於5毫米。As shown in FIG. 1A, in order to facilitate the measurement of the ion concentration in the solution to be tested, the protective layer 180 of the present embodiment has a sensing trench T to expose a portion of the channel layer 130, and sense The film 150 is disposed on the channel layer 130 exposed by the sensing trench T. In other words, the sensing groove T in the protective layer 180 can be used to accommodate an appropriate amount of the solution to be tested. For example, the foregoing sensing slot T may be a strip-shaped sensing slot, and the extending direction of the strip-shaped sensing slot is, for example, parallel to the extending direction of the gate 120. In a possible embodiment, the thickness of the protective layer 180 is, for example, greater than 1 mm, the depth of the sensing groove T is, for example, greater than 1 mm, and the width of the sensing groove T is, for example, greater than 5 mm.
在本實施例的離子感測場效電晶體100中,由於載子阻陷疊層110中的載子阻陷層114會阻陷電荷,因此載子阻陷疊層110中的載子阻陷層114有助於提升感測薄膜150對於待測溶液中離子的感測極限以及靈敏度。In the ion-sensing field-effect transistor 100 of the present embodiment, since the carrier-trapping layer 114 in the carrier-trapped stack 110 blocks the charge, the carrier in the carrier-trapped stack 110 is depressed. Layer 114 helps to increase the sensing limit and sensitivity of sensing film 150 for ions in the solution to be tested.
舉例說明,在本發明之一實施例中,以離子感測場效電晶體100進行離子濃度的量測方式如下:首先,在載子阻陷疊層110中尚未阻陷有電子於其中的情況下,量測初始之離子感測場效電晶體100的電流-電壓曲線(Id -Vg curve)以得出一第一臨限電壓Vth 1;接著,施加一個正偏壓於離子感測場效電晶體100的閘極120,使得電子被阻陷於載子阻陷疊層110中,此時的汲極140D與源極140S接地,在將電子順利被阻陷於載子阻陷疊層110中之後,將施加於閘極120正偏壓移除,並將汲極140D與源極140S的接地移除,其中施加正偏壓於閘極120的時間可依據不同的載子阻陷疊層110之厚度而有所不同。之後,在離子感測場效電晶體100的感測槽T內加入適量的校正溶液,此校正溶液的離子濃度pH校正溶液 為已知。接著,量測出離子感測場效電晶體100的電流-電壓圖表(Id -Vg curve)以得出一第二臨限電壓Vth 2。之後,將所量測到的第一臨限電壓與第二臨限電壓相減後除以校正溶液的離子濃度pH校正溶液 (即Vth 1 -Vth 2 / 校正溶液pH校正溶液 )以得出感測場效電晶體100的靈敏度A(mv/pH校正溶液 )。接著,將感測場效電晶體100從校正溶液取出並進行清洗,然後在感測槽T內倒入待測溶液。最後,量測出此時離子感測場效電晶體100的電流-電壓圖表(Id -Vg curve)以得出一第三臨限電壓Vth 3,並將第三臨限電壓Vth 3的值代入下列算式中,以計算出待測溶液的離子濃度pH待測溶 液 。For example, in one embodiment of the present invention, the ion concentration of the field-effect transistor 100 is measured in the following manner: First, in the carrier-trapped stack 110, electrons are not trapped therein. Next, measuring the current-voltage curve (I d -V g curve) of the initial ion-sensing field-effect transistor 100 to obtain a first threshold voltage V th 1; then, applying a positive bias to the ion sensation The gate 120 of the field effect transistor 100 is measured such that the electrons are trapped in the carrier block stack 110, and the drain 140D and the source 140S are grounded at this time, and the electrons are smoothly trapped in the carrier block stack. After 110, the positive bias applied to the gate 120 is removed, and the ground of the drain 140D and the source 140S is removed, wherein the time of applying the positive bias to the gate 120 may be blocked according to different carriers. The thickness of layer 110 varies. Thereafter, an appropriate amount of the calibration solution is added to the sensing tank T of the ion-sensing field effect transistor 100, and the ion concentration pH correction solution of the calibration solution is known. Next, the current-voltage graph (I d -V g curve) of the ion-sensing field-effect transistor 100 is measured to obtain a second threshold voltage V th 2 . Thereafter, the measured first threshold voltage is subtracted from the second threshold voltage and divided by the ion concentration pH correction solution of the calibration solution (ie, V th 1 -V th 2 / calibration solution pH correction solution ) The sensitivity A (mv/pH correction solution ) of the field effect transistor 100 is sensed. Next, the field-effect transistor 100 is taken out from the calibration solution and cleaned, and then the solution to be tested is poured into the sensing tank T. Finally, the current-voltage graph (I d -V g curve) of the ion-sensing field-effect transistor 100 is measured to obtain a third threshold voltage V th 3 , and the third threshold voltage V th is obtained. values are substituted into the following equation 3 in order to calculate the ion concentration pH of the test solution was measured.
Vth 3-Vth 1/ pH待測溶液 =靈敏度A(mv/pH校正溶液 )。V th 3-V th 1 / pH test solution = sensitivity A (mv / pH correction solution ).
第二實施例Second embodiment
圖2是依照本發明第二實施例的離子感測場效電晶體的剖面示意圖,而圖2B是依照本發明第二實施例的離子感測場效電晶體的上視示意圖。請參照圖2A與圖2B,本實施例的離子感測場效電晶體100’與第一實施例中的離子感測場效電晶體100類似,惟二者主要差異在於:本實施例之離子感測場效電晶體100’不具有第一實施例中的保護層180,且本實施例之離子感測場效電晶體100’採用具有保護層作用的感測薄膜150’,此感測薄膜150’除了覆蓋於通道層130之外,其還進一步覆蓋源極140S以及汲極140D。2 is a schematic cross-sectional view of an ion-sensing field-effect transistor in accordance with a second embodiment of the present invention, and FIG. 2B is a top view of an ion-sensing field-effect transistor in accordance with a second embodiment of the present invention. Referring to FIG. 2A and FIG. 2B, the ion-sensing field-effect transistor 100' of the present embodiment is similar to the ion-sensing field-effect transistor 100 of the first embodiment, but the main difference is that the ion of this embodiment The sensing field effect transistor 100 ′ does not have the protection layer 180 in the first embodiment, and the ion sensing field effect transistor 100 ′ of the embodiment adopts a sensing film 150 ′ having a protective layer function, and the sensing film In addition to covering the channel layer 130, 150' further covers the source 140S and the drain 140D.
舉例而言,上述的感測薄膜150’包括一感測部分150a以及一保護部分150b,其中感測部分150a覆蓋通道層130的一部分區域,而保護部分150b則覆蓋源極140S以及汲極140D,且保護部分150b的厚度大於感測部分150a的厚度,以於感測部分150a上方定義出一感測槽T。換言之,本實施例的感測薄膜150’可以被視為一種具有感測粒子濃度能力的保護層,其材質例如為二氧化矽(SiO2 )、氮化矽(Si3 N4 )、五氧化二鉭(Ta2O5)、二氧化鉿(HfO2 )、三氧化二鋁(Al2 O3 )等。本實施例的離子感測場效電晶體100’可以將保護層與感測薄膜150’的製程整合,省去了額外保護層的製作對於離子感測場效電晶體100’的製程簡化有很大助益,且此感測薄膜150是具有感測粒子濃度能力的保護層。For example, the sensing film 150' described above includes a sensing portion 150a and a protective portion 150b, wherein the sensing portion 150a covers a portion of the channel layer 130, and the protective portion 150b covers the source 140S and the drain 140D. The thickness of the protection portion 150b is greater than the thickness of the sensing portion 150a to define a sensing slot T above the sensing portion 150a. In other words, the sensing film 150' of the present embodiment can be regarded as a protective layer having the ability to sense particle concentration, and the material thereof is, for example, cerium oxide (SiO 2 ), cerium nitride (Si 3 N 4 ), pentoxide. Dioxane (Ta2O5), cerium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), and the like. The ion-sensing field-effect transistor 100' of the present embodiment can integrate the process of the protective layer and the sensing film 150', eliminating the need for the production of an additional protective layer. The process of simplifying the process of the ion-sensing field-effect transistor 100' is very The benefit is that the sensing film 150 is a protective layer having the ability to sense particle concentration.
本實施例中,由感測薄膜150’所定義出的感測槽T可為條狀感測槽,且條狀感測槽的延伸方向例如是平行於閘極120的延伸方向。在一可行的實施例中,感測薄膜150’之感測部分150a的厚度例如是大於0.1微米,感測薄膜150’中的感測槽T的深度例如是大於1毫米,而感測槽T的寬度例如是大於5毫米。In this embodiment, the sensing slot T defined by the sensing film 150' may be a strip-shaped sensing slot, and the extending direction of the strip-shaped sensing slot is, for example, parallel to the extending direction of the gate 120. In a possible embodiment, the thickness of the sensing portion 150a of the sensing film 150' is, for example, greater than 0.1 micrometer, and the depth of the sensing trench T in the sensing film 150' is, for example, greater than 1 mm, and the sensing slot T The width is, for example, greater than 5 mm.
基於上述,由於本發明之前述實施例中的離子感測場效電晶體具有載子阻陷疊層,因此本發明的離子感測場效電晶體具有高感測極限。Based on the above, since the ion-sensing field effect transistor in the foregoing embodiment of the present invention has a carrier-trapped laminate, the ion-sensing field-effect transistor of the present invention has a high sensing limit.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100、100’‧‧‧離子感測場效電晶體
110‧‧‧載子阻陷疊層
112‧‧‧第一介電層
116‧‧‧第二介電層
114‧‧‧載子阻陷層
120‧‧‧閘極
130‧‧‧通道層
140S‧‧‧源極
140D‧‧‧汲極
150、150’‧‧‧感測薄膜
150a‧‧‧感測部分
150b‧‧‧保護部分
160S‧‧‧源極歐姆接觸層
160D‧‧‧汲極歐姆接觸層
170S‧‧‧源極接觸導體
170D‧‧‧汲極接觸導體
150’‧‧‧保護層
150a‧‧‧光阻層
150b‧‧‧元件封裝層
SUB‧‧‧基板
T‧‧‧感測槽100, 100'‧‧‧Ion Sensing Field Effect Transistor
110‧‧‧ Carrier Deformation Lamination
112‧‧‧First dielectric layer
116‧‧‧Second dielectric layer
114‧‧‧carrier trapping layer
120‧‧‧ gate
130‧‧‧Channel layer
140S‧‧‧ source
140D‧‧‧Bungee
150, 150'‧‧‧ sensing film
150a‧‧‧Sensing section
150b‧‧‧protection section
160S‧‧‧ source ohmic contact layer
160D‧‧‧汲polar ohmic contact layer
170S‧‧‧Source contact conductor
170D‧‧‧bend contact conductor
150'‧‧‧Protective layer
150a‧‧‧ photoresist layer
150b‧‧‧Component encapsulation layer
SUB‧‧‧ substrate
T‧‧‧ sensing slot
圖1A是依照本發明第一實施例的離子感測場效電晶體的剖面示意圖。 圖1B是依照本發明第一實施例的離子感測場效電晶體的上視示意圖。 圖2A是依照本發明第二實施例的離子感測場效電晶體的剖面示意圖。 圖2B是依照本發明第二實施例的離子感測場效電晶體的上視示意圖。1A is a schematic cross-sectional view of an ion sensing field effect transistor in accordance with a first embodiment of the present invention. 1B is a top plan view of an ion sensing field effect transistor in accordance with a first embodiment of the present invention. 2A is a schematic cross-sectional view of an ion sensing field effect transistor in accordance with a second embodiment of the present invention. 2B is a top plan view of an ion sensing field effect transistor in accordance with a second embodiment of the present invention.
100‧‧‧離子感測場效電晶體 100‧‧‧Ion Sense Field Effect Transistor
110‧‧‧載子阻陷疊層 110‧‧‧ Carrier Deformation Lamination
112‧‧‧第一介電層 112‧‧‧First dielectric layer
116‧‧‧第二介電層 116‧‧‧Second dielectric layer
114‧‧‧載子阻陷層 114‧‧‧carrier trapping layer
120‧‧‧閘極 120‧‧‧ gate
130‧‧‧通道層 130‧‧‧Channel layer
140S‧‧‧源極 140S‧‧‧ source
140D‧‧‧汲極 140D‧‧‧Bungee
150‧‧‧感測薄膜 150‧‧‧Sensing film
160S‧‧‧源極歐姆接觸層 160S‧‧‧ source ohmic contact layer
160D‧‧‧汲極歐姆接觸層 160D‧‧‧汲polar ohmic contact layer
170S‧‧‧源極接觸導體 170S‧‧‧Source contact conductor
170D‧‧‧汲極接觸導體 170D‧‧‧bend contact conductor
180‧‧‧保護層 180‧‧‧protection layer
180a‧‧‧光阻層 180a‧‧‧ photoresist layer
180b‧‧‧元件封裝層 180b‧‧‧Component encapsulation layer
SUB‧‧‧基板 SUB‧‧‧ substrate
T‧‧‧感測槽 T‧‧‧ sensing slot
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104130352A TWI600901B (en) | 2015-09-14 | 2015-09-14 | Ion-sensitive field-effect transistor |
CN201510740662.7A CN105261640B (en) | 2015-09-14 | 2015-11-04 | ion sensing field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104130352A TWI600901B (en) | 2015-09-14 | 2015-09-14 | Ion-sensitive field-effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201710678A TW201710678A (en) | 2017-03-16 |
TWI600901B true TWI600901B (en) | 2017-10-01 |
Family
ID=55101239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104130352A TWI600901B (en) | 2015-09-14 | 2015-09-14 | Ion-sensitive field-effect transistor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105261640B (en) |
TW (1) | TWI600901B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201608758D0 (en) * | 2016-05-18 | 2016-06-29 | Dnae Group Holdings Ltd | Improvements in or relating to packaging for integrated circuits |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW396408B (en) * | 1998-11-20 | 2000-07-01 | Nat Science Council | Method of manufacturing ion sensor device and the device thereof |
US20060035400A1 (en) * | 2004-08-10 | 2006-02-16 | Industrial Technology Research Institute | Apparatus of ion sensitive thin film transistor and method of manufacturing of the same |
US20130075793A1 (en) * | 2010-06-14 | 2013-03-28 | Dai Nippon Printing Co., Ltd. | Field effect transistor type biosensor |
US20130270534A1 (en) * | 2010-10-07 | 2013-10-17 | Georgia Tech Research Corporation | Field-effect transistor and manufacturing process thereof |
US20140295573A1 (en) * | 2013-03-26 | 2014-10-02 | National Taiwan University | Biosensor with dual gate structure and method for detecting concentration of target protein in a protein solution |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW434704B (en) * | 1999-06-11 | 2001-05-16 | Univ Nat Yunlin Sci & Tech | Device of amorphous WO3 ion sensitive field effect transistor (ISFET) and method for making the same |
TW201427026A (en) * | 2012-12-25 | 2014-07-01 | Hon Hai Prec Ind Co Ltd | Thin film transistor |
US9395326B2 (en) * | 2013-11-01 | 2016-07-19 | Taiwan Semiconductor Manufacturing Company Limited | FET sensing cell and method of improving sensitivity of the same |
-
2015
- 2015-09-14 TW TW104130352A patent/TWI600901B/en not_active IP Right Cessation
- 2015-11-04 CN CN201510740662.7A patent/CN105261640B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW396408B (en) * | 1998-11-20 | 2000-07-01 | Nat Science Council | Method of manufacturing ion sensor device and the device thereof |
US20060035400A1 (en) * | 2004-08-10 | 2006-02-16 | Industrial Technology Research Institute | Apparatus of ion sensitive thin film transistor and method of manufacturing of the same |
US20130075793A1 (en) * | 2010-06-14 | 2013-03-28 | Dai Nippon Printing Co., Ltd. | Field effect transistor type biosensor |
US20130270534A1 (en) * | 2010-10-07 | 2013-10-17 | Georgia Tech Research Corporation | Field-effect transistor and manufacturing process thereof |
US20140295573A1 (en) * | 2013-03-26 | 2014-10-02 | National Taiwan University | Biosensor with dual gate structure and method for detecting concentration of target protein in a protein solution |
Non-Patent Citations (1)
Title |
---|
Peter Hein and Peter Egger, "Drift behaviour of ISFETs with Si,N,SiO, gate insulator," Sensors & Actuators B, Vol. 13-14, pp. 655-656, 1993. * |
Also Published As
Publication number | Publication date |
---|---|
TW201710678A (en) | 2017-03-16 |
CN105261640B (en) | 2018-04-03 |
CN105261640A (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7728363B2 (en) | Protective structure for semiconductor sensors | |
US8940548B2 (en) | Sensor for biomolecules | |
Lu et al. | High-performance double-gate $\alpha $-InGaZnO ISFET pH sensor using a HfO2 gate dielectric | |
Mondal et al. | Gate-controllable electronic trap detection in dielectrics | |
Nguyen et al. | Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing | |
JP5406479B2 (en) | Manufacturing method of semiconductor device | |
Cai et al. | High-sensitivity pH sensor based on electrolyte-gated In 2 O 3 TFT | |
TWI600901B (en) | Ion-sensitive field-effect transistor | |
Molina-Reyes | Design and electrochemical characterization of ion-sensitive capacitors with ALD Al 2 O 3 as the sensitive dielectric | |
CN103940884B (en) | Ion sensitive field effect transistor and preparation method thereof | |
KR20140044538A (en) | Method and analysis system for biosensor with room-temperature operating single-electron transistor | |
CN102812351A (en) | Sensing biomolecules & charged ions in an electrolyte | |
Hazarika et al. | Survey on Ion-Sensitive Field-Effect Transistor from the view point of ph sensitivity and drift | |
Yen et al. | Effect of sensing film thickness on sensing characteristics of dual-gate poly-Si ion-sensitive field-effect-transistors | |
CN108732225B (en) | Ion sensitive field effect transistor and forming method thereof | |
KR102098288B1 (en) | Method for measuring doping concentration of semiconductor material , and recording medium for computer program using the same | |
JP5737655B2 (en) | Semiconductor sensor | |
TWI226706B (en) | Semiconductor device, manufacture and evaluation methods for semiconductor device, and process condition evaluation method | |
JP2008109023A5 (en) | ||
Ishikawa et al. | Current reduction mechanism in organic thin film transistors | |
US9857329B2 (en) | Protected sensor field effect transistors | |
Duarte et al. | Fabrication and Electrical Characterization of ISFET for H 2 O 2 sensing | |
Sinha et al. | Simulation, fabrication and characterization of Dual-Gate MOSFET test structures | |
Li et al. | Estimation of trapped charge density in SONOS flash memory using a parallel capacitor model | |
Kusai et al. | Re-Examination of Performance and Reliability Degradation in Metal–Oxide–Nitride–Oxide–Semiconductor Memory with Ultrathin SiN Charge Trap Layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |