TWI597822B - Self-aligned buried word line isolation and fabrication method thereof - Google Patents
Self-aligned buried word line isolation and fabrication method thereof Download PDFInfo
- Publication number
- TWI597822B TWI597822B TW104112327A TW104112327A TWI597822B TW I597822 B TWI597822 B TW I597822B TW 104112327 A TW104112327 A TW 104112327A TW 104112327 A TW104112327 A TW 104112327A TW I597822 B TWI597822 B TW I597822B
- Authority
- TW
- Taiwan
- Prior art keywords
- word line
- material layer
- line isolation
- forming
- recess
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明係有關於一種半導體記憶裝置,且特別係有關於一種自對準埋入式字元線隔離結構及其形成方法。 The present invention relates to a semiconductor memory device, and more particularly to a self-aligned buried word line isolation structure and method of forming the same.
動態隨機存取記憶體(dynamic random access memory,DRAM)主要是由一個電容器和一個電晶體組成。隨著電子產品日漸小型化之趨勢,對於記憶體裝置亦有逐漸小型化的需求。然而,習知動態隨機存取記憶體中的電容器,佔據大部分可利用的空間,使得動態隨機存取記憶體之體積無法再縮小,而研發出一種無電容器動態隨機存取記憶體。 A dynamic random access memory (DRAM) is mainly composed of a capacitor and a transistor. With the trend toward miniaturization of electronic products, there is also a need for a miniaturization of memory devices. However, the capacitors in the conventional dynamic random access memory occupy most of the available space, so that the volume of the dynamic random access memory can no longer be reduced, and a capacitorless dynamic random access memory is developed.
因此,隨著記憶體小型化發展之趨勢,對於具有更小臨界尺寸的記憶體裝置以及更簡便且低成本的形成方法仍有所需求。 Therefore, as memory miniaturization progresses, there is still a need for a memory device having a smaller critical dimension and a more simple and low-cost formation method.
本揭露之一實施例係揭示一種自對準埋入式字元線隔離結構之形成方法,包括:提供半導體基板,其中半導體基板包括陣列區及複數個晶胞區位於陣列區中,其中晶胞區的每一者包括兩條字元線;形成第一材料層於半導體基板上,其中第一材料層的上表面具有一凹口介於兩個相鄰的晶胞區之間;形成第二材料層於第一材料層上並填入凹口中,其中位於 凹口底部的第二材料層具有第一厚度,且位於晶胞區的第二材料層具有大於第一厚度的第二厚度;沿著凹口進行第一蝕刻步驟穿過第一材料層及第二材料層,以在半導體基板中形成一字元線隔離溝槽介於兩個相鄰的晶胞區之間,其中字元線隔離溝槽的位置係對應於凹口的位置;以及進行第二蝕刻步驟,以擴大字元線隔離溝槽的底部,其中字元線隔離溝槽具有上部及擴大的底部。 An embodiment of the present disclosure discloses a method for forming a self-aligned buried word line isolation structure, including: providing a semiconductor substrate, wherein the semiconductor substrate includes an array region and a plurality of unit cells are located in the array region, wherein the unit cell Each of the regions includes two word lines; forming a first material layer on the semiconductor substrate, wherein the upper surface of the first material layer has a recess between two adjacent cell regions; forming a second a layer of material on the first layer of material and filled in the recess, wherein a second material layer at the bottom of the recess has a first thickness, and a second material layer at the cell region has a second thickness greater than the first thickness; a first etching step is performed along the recess through the first material layer and a material layer for forming a word line isolation trench in the semiconductor substrate between two adjacent cell regions, wherein the position of the word line isolation trench corresponds to the position of the recess; A second etching step to expand the bottom of the word line isolation trench, wherein the word line isolation trench has an upper portion and an enlarged bottom portion.
本揭露之另一實施例係揭示一種自對準埋入式字元線隔離結構,包括:半導體基板,包括陣列區及複數個晶胞區位於陣列區中,其中晶胞區的每一者包括兩條字元線;字元線隔離溝槽,位於兩個相鄰的晶胞區之間,其中字元線隔離溝槽具有上部及擴大的底部;摻雜區,位於半導體基板中且包圍擴大的底部;以及填充材料,填入字元線隔離溝槽中。 Another embodiment of the present disclosure discloses a self-aligned buried word line isolation structure including: a semiconductor substrate including an array region and a plurality of cell regions in the array region, wherein each of the cell regions includes Two word lines; a word line isolation trench between two adjacent cell regions, wherein the word line isolation trench has an upper portion and an enlarged bottom portion; the doped region is located in the semiconductor substrate and is surrounded by the expansion The bottom; and the filling material, filled in the word line isolation trench.
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.
1a‧‧‧第一材料 1a‧‧‧First material
2a‧‧‧罩幕層 2a‧‧‧ Cover layer
10‧‧‧陣列區 10‧‧‧Array area
20‧‧‧周邊電路區 20‧‧‧ peripheral circuit area
100‧‧‧自對準埋入式字元線隔離結構 100‧‧‧Self-aligned buried word line isolation structure
102‧‧‧半導體基板 102‧‧‧Semiconductor substrate
104‧‧‧淺溝隔離結構 104‧‧‧Shallow trench isolation structure
106‧‧‧穿隧氧化物層 106‧‧‧ Tunneling oxide layer
108‧‧‧字元線 108‧‧‧ character line
110‧‧‧第一材料柵狀膜層 110‧‧‧First material grid layer
110p‧‧‧突出部 110p‧‧‧ protruding parts
112‧‧‧第一材料層 112‧‧‧First material layer
114‧‧‧第二材料層 114‧‧‧Second material layer
118‧‧‧開口 118‧‧‧ openings
120‧‧‧字元線溝槽 120‧‧‧word line trench
130‧‧‧凹口 130‧‧‧ notch
140‧‧‧溝槽 140‧‧‧ trench
150‧‧‧字元線隔離溝槽 150‧‧‧word line isolation trench
150a‧‧‧上部 150a‧‧‧ upper
150b‧‧‧擴大的底部 150b‧‧‧ enlarged bottom
160‧‧‧摻雜區 160‧‧‧Doped area
170‧‧‧填充材料 170‧‧‧Filling materials
210‧‧‧摻雜步驟 210‧‧‧Doping step
C‧‧‧晶胞區 C‧‧‧cell area
s1‧‧‧第一間距 s 1 ‧‧‧first spacing
s2‧‧‧第二間距 s 2 ‧‧‧second spacing
t1‧‧‧第一厚度 t 1 ‧‧‧first thickness
t2‧‧‧第二厚度 t 2 ‧‧‧second thickness
w1‧‧‧第一寬度 w 1 ‧‧‧first width
w2‧‧‧第二寬度 w 2 ‧‧‧second width
第1圖至第7圖為本揭露一些實施例之自對準埋入式字元線隔離結構100的製程剖面示意圖。 1 to 7 are schematic cross-sectional views showing a process of the self-aligned buried word line isolation structure 100 of some embodiments.
為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。然而,任何所屬技術領域中具有通常知識者將會瞭解本發明中各種特徵結構僅用於說明,並未依照比例描繪。事 實上,為了使說明更加清晰,可任意增減各種特徵結構的相對尺寸比例。在說明書全文及所有圖式中,相同的參考標號是指相同的特徵結構。 The above and other objects, features and advantages of the present invention will become more <RTIgt; However, it will be understood by those of ordinary skill in the art that the description thing In fact, in order to make the description clearer, the relative size ratio of various feature structures can be arbitrarily increased or decreased. Throughout the specification and in all figures, the same reference numerals refer to the same features.
本揭露提供一種自對準埋入式字元線隔離結構及其形成方法,第1圖至第7圖為本揭露一些實施例之自對準埋入式字元線隔離結構100的製程剖面示意圖。 The present disclosure provides a self-aligned buried word line isolation structure and a method for forming the same. FIGS. 1 through 7 are schematic cross-sectional views of a self-aligned buried word line isolation structure 100 according to some embodiments of the present disclosure. .
請參照第1圖,提供半導體基板102,其包括陣列區10,其中陣列區10具有複數個晶胞區C,以及相鄰於陣列區10的周邊電路區20。另外,如第1圖所示,淺溝隔離結構(shallow trench isolation,STI)104分別位於陣列區10及周邊電路區20中。 Referring to FIG. 1, a semiconductor substrate 102 is provided that includes an array region 10 having a plurality of cell regions C and peripheral circuit regions 20 adjacent to the array regions 10. In addition, as shown in FIG. 1, shallow trench isolation (STI) 104 is located in the array region 10 and the peripheral circuit region 20, respectively.
半導體基板102的材料可包括矽、砷化鎵、氮化鎵、矽化鍺、絕緣層上覆矽(silicon on indulator,SOI)、其他合適之材料或上述材料之組合。在一些實施例中,半導體基板102為矽基板。 The material of the semiconductor substrate 102 may include germanium, gallium arsenide, gallium nitride, germanium germanium, silicon on indulator (SOI), other suitable materials, or a combination thereof. In some embodiments, the semiconductor substrate 102 is a germanium substrate.
淺溝隔離結構104的功能為電性隔離後續將形成於陣列區10中的元件。本技術領域具有通常知識者應可了解,從俯視角度觀察,淺溝隔離結構104為平行排列的多個長條形區域,而字元線108亦為平行排列的多個長條形區域。由於淺溝隔離結構104的延伸方向與字元線108的延伸方向彼此並非垂直或平行,而是以一特定角度(例如,介於約10-80度之間)排列。因此,隨著剖線的位置不同,所得到的剖面圖亦不相同。且在剖面圖中,溝隔離結構104與字元線108在陣列區10中並非呈現規則排列,如第1圖所示。 The function of the shallow trench isolation structure 104 is to electrically isolate the components that will subsequently be formed in the array region 10. It should be understood by those skilled in the art that the shallow trench isolation structure 104 is a plurality of elongated regions arranged in parallel as viewed from a plan view, and the word lines 108 are also a plurality of elongated regions arranged in parallel. Since the extending direction of the shallow trench isolation structure 104 and the extending direction of the word line 108 are not perpendicular or parallel to each other, they are arranged at a specific angle (for example, between about 10-80 degrees). Therefore, the resulting profile is different as the position of the line is different. Also, in the cross-sectional view, the trench isolation structure 104 and the word line 108 are not regularly arranged in the array region 10, as shown in FIG.
仍請參照第1圖,在半導體基板102及淺溝隔離結構104的表面上依序(由下而上)沉積穿隧氧化物層(tunneling oxide layer)106、第一材料1a及罩幕層2a。接著,對位於陣列區10的罩幕層2a進行圖案化製程,以定義出複數個開口118。沿著開口118進行蝕刻步驟並穿過第一材料、穿隧氧化物層106、半導體基板102及/或淺溝隔離結構104,以形成複數個字元線溝槽120,如第1圖所示。 Still referring to FIG. 1, a tunneling oxide layer 106, a first material 1a, and a mask layer 2a are sequentially deposited (from bottom to top) on the surface of the semiconductor substrate 102 and the shallow trench isolation structure 104. . Next, a masking process is performed on the mask layer 2a located in the array region 10 to define a plurality of openings 118. An etching step is performed along the opening 118 and through the first material, the tunnel oxide layer 106, the semiconductor substrate 102, and/or the shallow trench isolation structure 104 to form a plurality of word line trenches 120, as shown in FIG. .
請參照第2圖,在字元線溝槽120中依序填入導電材料及第一材料1a。填入字元線溝槽120中的導電材料形成字元線108。由於字元線108係埋入半導體基板的頂面之下,因此亦可稱為「埋入式字元線」。再者,填入字元線溝槽120中的第一材料1a與覆蓋於穿隧氧化物層106上的第一材料1a相連,因而形成第一材料柵狀膜層110。第一材料柵狀膜層110具有柵欄狀(fence-shaped)的剖面輪廓(profile),且第一材料柵狀膜層110在晶胞區C具有複數個突出部110p對應於字元線108的位置,如第2圖所示。在形成第一材料柵狀膜層110之後,移除罩幕層2a。 Referring to FIG. 2, the conductive material and the first material 1a are sequentially filled in the word line trenches 120. The conductive material filled in the word line trenches 120 forms word lines 108. Since the word line 108 is buried under the top surface of the semiconductor substrate, it can also be referred to as a "buried word line." Furthermore, the first material 1a filled in the word line trench 120 is connected to the first material 1a overlying the tunnel oxide layer 106, thereby forming the first material gate film layer 110. The first material gate film layer 110 has a fence-shaped profile, and the first material gate film layer 110 has a plurality of protrusions 110p corresponding to the word line 108 in the cell region C. Location, as shown in Figure 2. After the first material gate film layer 110 is formed, the mask layer 2a is removed.
請參照第3圖,在形成第一材料柵狀膜層110之後,沉積與第一材料柵狀膜層110相同的第一材料1a於第一材料柵狀膜層110上,使第一材料1a沿著第一材料柵狀膜層110之柵欄狀的剖面輪廓堆疊一適當的厚度,以形成具有複數個凹口130的第一材料層112。在本實施例中,位於第一材料層112上表面的每一個凹口130皆介於兩個相鄰的晶胞區C之間,如第3圖所示。 Referring to FIG. 3, after forming the first material gate film layer 110, depositing the same first material 1a as the first material gate film layer 110 on the first material gate film layer 110, so that the first material 1a A suitable thickness is stacked along the fence-like cross-sectional profile of the first material gate film layer 110 to form a first material layer 112 having a plurality of notches 130. In the present embodiment, each of the notches 130 on the upper surface of the first material layer 112 is interposed between two adjacent cell regions C, as shown in FIG.
請參照第2圖,在一些實施例中,第一材料柵狀膜 層110的突出部110p具有不同的間距。位於同一晶胞區C的兩個突出部110p具有第一間距s1。位於相鄰晶胞區C的兩個突出部110p具有第二間距s2。藉由選擇第一間距s1與第二間距s2,可控制凹口130的形成位置。舉例而言,在本實施例中,第一間距s1小於第二間距s2。當沉積第一材料填滿第一間距s1的空間時,在第二間距s2的空間尚未被完全填滿。如此一來,即可在相鄰的晶胞區C之間形成凹口130。應注意的是,在本實例中,藉由形成第一材料柵狀膜層110,並選擇第一間距s1與第二間距s2,即可控制凹口130的形成位置。換言之,依據本實例,在形成字元線之後,不需要進行額外的圖案化製程,以定義凹口130介於兩個相鄰的晶胞區C之間。因此,可減少製程步驟及光罩的使用,進而降低成本。 Referring to FIG. 2, in some embodiments, the protrusions 110p of the first material gate film layer 110 have different pitches. The two protrusions 110p located in the same cell region C have a first pitch s 1 . The two protrusions 110p located in the adjacent unit cell region C have a second pitch s 2 . By selecting the first pitch s 1 and the second pitch s 2 , the formation position of the notch 130 can be controlled. For example, in the embodiment, the first pitch s 1 is smaller than the second pitch s 2 . When the deposited first material fills the space of the first pitch s 1 , the space at the second pitch s 2 has not been completely filled. In this way, the recess 130 can be formed between the adjacent unit cells C. It should be noted that in the present example, the formation position of the notch 130 can be controlled by forming the first material gate film layer 110 and selecting the first pitch s 1 and the second pitch s 2 . In other words, according to the present example, after the word line is formed, no additional patterning process is required to define the notch 130 between two adjacent cell regions C. Therefore, the process steps and the use of the mask can be reduced, thereby reducing the cost.
此外,需注意的是,沉積第一材料1a於第一材料柵狀膜層110上的步驟為非順應性(non-conformal)沉積步驟,可能會在凹口130的頂部形成懸突部(overhang)。因此,凹口130的頂部具有第一口徑w1,且凹口130的底部具有大於或等於第一口徑w1的第二口徑w2。如第3圖所示,在本實施例中,凹口130底部的第二口徑w2大於頂部的第一口徑w1,此特徵在後續步驟中將有助於形成具有不同厚度的第二材料層,此部分在下文中將會詳細討論。 In addition, it should be noted that the step of depositing the first material 1a on the first material gate film layer 110 is a non-conformal deposition step, which may form an overhang at the top of the notch 130 (overhang) ). Thus, the top of the recess 130 has a first aperture w 1 and the bottom of the recess 130 has a second aperture w 2 that is greater than or equal to the first aperture w 1 . As shown in FIG. 3, in the present embodiment, the second aperture w 2 at the bottom of the recess 130 is greater than the first aperture w 1 of the top, this feature will help to form a second material having a different thickness in subsequent steps. Layers, which are discussed in more detail below.
請參照第3圖,在形成具有複數個凹口130的第一材料層112之後,沉積與第一材料1a不同的第二材料,以形成第二材料層114於第一材料層112上並填入凹口130中。在本實施例中,位於凹口130底部的第二材料層114具有第一厚度t1, 且位於晶胞區的第二材料層114具有大於第一厚度的第二厚度t2,如第3圖所示。 Referring to FIG. 3, after forming the first material layer 112 having the plurality of notches 130, a second material different from the first material 1a is deposited to form the second material layer 114 on the first material layer 112 and fill in Into the notch 130. In the present embodiment, the second material layer 114 at the bottom of the recess 130 has a first thickness t 1 , and the second material layer 114 located in the cell region has a second thickness t 2 greater than the first thickness, such as the third The figure shows.
應注意的是,由於凹口130底部的第二口徑w2大於頂部的第一口徑w1,當沉積第二材料填入凹口130中時,位於凹口130頂部的懸突部將產生遮蔽效果,因而減少第二材料填入凹口130中的量。如此一來,即可使第二材料層在凹口130底部的第一厚度t1小於在晶胞區的第二厚度t2。在一些實施例中,第二厚度t2對該第一厚度t1具有一比例t2/t1為約3-10。在本實施例中,第二材料層在凹口底部的厚度小於在晶胞區的厚度,此特徵在後續步驟中將有助於降低記憶體裝置的臨界尺寸(critical dimension,CD),此部分在下文中將會詳細討論。 It should be noted that since the second aperture w 2 at the bottom of the recess 130 is larger than the first aperture w 1 of the top, when the second material is deposited into the recess 130, the overhang at the top of the recess 130 will be obscured. The effect, thus reducing the amount of the second material filled into the recess 130. In this way, the first thickness t 1 of the second material layer at the bottom of the recess 130 can be made smaller than the second thickness t 2 of the unit cell region. In some embodiments, the second thickness t 2 has a first thickness t 1 ratio t 2 / t 1 is about 3-10. In this embodiment, the thickness of the second material layer at the bottom of the recess is less than the thickness of the cell region, and this feature will help to reduce the critical dimension (CD) of the memory device in a subsequent step. This will be discussed in detail below.
可利用合適的製程沉積第一材料及第二材料。在本實施例中,利用高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDPCVD)製程沉積第一材料及第二材料,以形成第一材料層112及第二材料層114。 The first material and the second material may be deposited using a suitable process. In the present embodiment, the first material and the second material are deposited by a high density plasma chemical vapor deposition (HDPCVD) process to form the first material layer 112 and the second material layer 114.
請參照第4圖,在形成第二材料層114之後,沿著凹口130進行第一蝕刻步驟穿過第一材料層112及第二材料層114,以在兩個相鄰的該等晶胞區之間形成溝槽140。 Referring to FIG. 4, after forming the second material layer 114, a first etching step is performed along the recess 130 through the first material layer 112 and the second material layer 114 to form two adjacent cells. A trench 140 is formed between the regions.
在本揭露中,所謂「自對準」係指利用第一材料層112及第二材料層114作為蝕刻罩幕而進行第一蝕刻步驟,即可在不使用額外光罩的條件下,使溝槽140的位置對應於凹口130的位置,如第4圖所示。如上文所述,依據本揭露之方法,在形成字元線隔離結構的製程中,不需要進行額外的圖案化製程以定義字元線隔離結構介於兩個相鄰的晶胞區之間。因此, 可減少製程步驟及光罩的使用,進而降低成本。 In the present disclosure, the term "self-aligned" means that the first etching step is performed by using the first material layer 112 and the second material layer 114 as an etching mask, so that the trench can be made without using an additional mask. The position of the slot 140 corresponds to the position of the recess 130 as shown in FIG. As described above, in accordance with the method of the present disclosure, in the process of forming the word line isolation structure, no additional patterning process is required to define the word line isolation structure between two adjacent cell regions. therefore, It can reduce the cost of the process steps and the use of the mask.
在本揭露中,第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性。換言之,第一蝕刻步驟對第一材料層112的蝕刻速率R1大於對第二材料層114的蝕刻R2。再者,如上文所述,第二材料層114在凹口130底部的第一厚度t1小於在晶胞區的第二厚度t2。當進行第一蝕刻製程時,位於凹口130底部的第二材料層114厚度較小,故較快被蝕刻移除,而暴露出第一材料層112。相較之下,位於晶胞區的第二材料層114厚度較大,故可作為蝕刻罩幕,保護位於凹口130開口處及側壁的第一材料層112,避免第一材料層112受到過度的蝕刻。在一些實施例中,第一蝕刻步驟對第一材料層112的蝕刻速率相對於對第二材料層114的蝕刻速率的比例R1/R2為約2-20。 In the present disclosure, the first etching step has a high etch selectivity for the first material and the second material. In other words, the first etching step has an etching rate R 1 for the first material layer 112 that is greater than the etching R 2 for the second material layer 114. Again, as described above, the first thickness t 1 of the second material layer 114 at the bottom of the recess 130 is less than the second thickness t 2 at the cell region. When the first etching process is performed, the second material layer 114 at the bottom of the recess 130 is relatively small in thickness, so that it is removed by etching faster, exposing the first material layer 112. In contrast, the second material layer 114 located in the cell region has a large thickness, so that it can serve as an etching mask to protect the first material layer 112 located at the opening and the sidewall of the recess 130, thereby avoiding excessive exposure of the first material layer 112. Etching. In some embodiments, the ratio R 1 /R 2 of the first etching step to the etching rate of the first material layer 112 relative to the etching rate of the second material layer 114 is about 2-20.
應注意的是,若在未形成第二材料層114的情況下直接進行第一蝕刻步驟而形成溝槽140,則第一蝕刻步驟將過度蝕刻第一材料層112,並拓寬溝槽140的口徑,使其大於凹口130的第一口徑w1。如此一來,當第一蝕刻步驟進行至半導體基板102時,由於溝槽140位於半導體基板102處的口徑經過拓寬,因而減少半導體基板102的表面面積。因此,在後續步驟中,在半導體基板102的表面形成電性連接至外部電路的接觸(contact)時,半導體基板102可與後續形成之接觸電性連接的表面面積減少。如此一來,將導致接點的電阻變大,增加電性失效的風險。再者,若溝槽140的口徑過寬,亦不利於降低記憶體裝置的臨界尺寸。 It should be noted that if the first etching step is directly performed to form the trench 140 without forming the second material layer 114, the first etching step will overetch the first material layer 112 and widen the aperture of the trench 140. So that it is larger than the first aperture w 1 of the recess 130. As such, when the first etching step proceeds to the semiconductor substrate 102, the surface area of the semiconductor substrate 102 is reduced because the aperture of the trench 140 at the semiconductor substrate 102 is widened. Therefore, in a subsequent step, when a contact electrically connected to an external circuit is formed on the surface of the semiconductor substrate 102, the surface area of the semiconductor substrate 102 that can be electrically connected to the subsequently formed contact is reduced. As a result, the resistance of the contacts will increase, increasing the risk of electrical failure. Moreover, if the aperture of the trench 140 is too wide, it is not conducive to reducing the critical size of the memory device.
本揭露藉由使第二材料層114在凹口130底部的第 一厚度t1小於在晶胞區的第二厚度t2,並且使第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性,可於蝕刻期間保護第一材料層112,因而避免拓寬溝槽140的口徑。因此,可降低後續電性失效的風險,並且有助於降低記憶體裝置的臨界尺寸。 The present disclosure discloses that the first thickness t 1 of the second material layer 114 at the bottom of the recess 130 is smaller than the second thickness t 2 of the cell region, and the first etching step has a high etching for the first material and the second material. Optionally, the first material layer 112 can be protected during etching, thereby avoiding widening the aperture of the trench 140. Therefore, the risk of subsequent electrical failure can be reduced and the critical dimension of the memory device can be reduced.
為使第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性,可選擇適當的第一材料、第二材料及/或蝕刻製程。舉例而言,在本實施例中,第一材料為氮化物,例如,氮化矽;且第二材料為氧化物,例如,氧化矽,且進行乾式蝕刻。應注意的是,以上所列舉的第一材料、第二材料及蝕刻製程僅用以舉例說明,並非用以限定本發明。本技術領域中具有通常知識者應可理解,可視需要選擇第一材料、第二材料及/或蝕刻製程,以使第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性。因此,任何第一材料、第二材料及/或蝕刻製程的組合,只要能夠使第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性(R1/R2大於2),皆屬於本揭露的保護範圍。 In order for the first etching step to have a high etch selectivity for the first material and the second material, a suitable first material, second material, and/or etching process may be selected. For example, in the present embodiment, the first material is a nitride, such as tantalum nitride; and the second material is an oxide, such as hafnium oxide, and is dry etched. It should be noted that the first materials, the second materials, and the etching processes listed above are for illustrative purposes only and are not intended to limit the invention. It will be understood by those of ordinary skill in the art that the first material, the second material, and/or the etching process can be selected as desired to provide a first etching step with high etch selectivity for the first material and the second material. Therefore, any combination of the first material, the second material, and/or the etching process is such that the first etching step has a high etching selectivity (R 1 /R 2 greater than 2) for the first material and the second material. The scope of protection disclosed herein.
請參照第5圖,沿著溝槽140繼續進行第一蝕刻步驟穿過半導體基板102及/或淺溝隔離結構104,以在半導體基板102中形成字元線隔離溝槽150的上部150a。接著,當字元線隔離溝槽150的上部150a達到預定的深度之後,在字元線隔離溝槽150之底部進行第二蝕刻步驟,以擴大字元線隔離溝槽150之底部,而形成擴大的底部150b,如第5圖所示。在一些實施例中,第二蝕刻步驟包括進行乾式蝕刻。 Referring to FIG. 5, the first etching step is continued along the trench 140 through the semiconductor substrate 102 and/or the shallow trench isolation structure 104 to form the upper portion 150a of the word line isolation trench 150 in the semiconductor substrate 102. Next, after the upper portion 150a of the word line isolation trench 150 reaches a predetermined depth, a second etching step is performed at the bottom of the word line isolation trench 150 to expand the bottom of the word line isolation trench 150 to form an enlarged portion. The bottom 150b is shown in Figure 5. In some embodiments, the second etching step includes performing a dry etch.
應注意的是,在本揭露中,第一蝕刻步驟為非等 向性(anisotropic)蝕刻步驟,且第二蝕刻步驟為等向性(isotropic)蝕刻步驟。藉由第一蝕刻步驟實施非等向性的蝕刻,可使字元線隔離溝槽150的上部150a具有均一的口徑,有助於降低記憶體裝置的臨界尺寸。再者,藉由第二蝕刻步驟實施等向性的蝕刻,可擴大字元線隔離溝槽150的底部,而形成擴大的底部150b,可增加字元線隔離溝槽150底部的表面積。因此當後續進行摻雜製程時,在相同的摻雜製程條件下,擴大的底部150b可產生具有較高摻質濃度且較大體積的摻雜區。如此一來,可使字元線隔離溝槽150具有更佳的隔離效果。 It should be noted that in the disclosure, the first etching step is non-equal An anisotropic etching step, and the second etching step is an isotropic etching step. By performing the anisotropic etching by the first etching step, the upper portion 150a of the word line isolation trench 150 can have a uniform aperture, which helps to reduce the critical dimension of the memory device. Moreover, by performing an isotropic etching by the second etching step, the bottom of the word line isolation trench 150 can be enlarged to form an enlarged bottom portion 150b, which can increase the surface area of the bottom of the word line isolation trench 150. Therefore, when the doping process is subsequently performed, the enlarged bottom portion 150b can produce a doped region having a higher dopant concentration and a larger volume under the same doping process conditions. In this way, the word line isolation trench 150 can be made to have a better isolation effect.
在一些實施例中,第二蝕刻製程可使用相同於第一蝕刻製程的蝕刻製程,且可使用相同於第一蝕刻製程的蝕刻氣體。在其他實施例中,第二蝕刻製程可使用相同於第一蝕刻製程的蝕刻製程,但使用不同於第一蝕刻製程蝕刻氣體。在本實施例中,第一蝕刻製程及第二蝕刻製程為相同的乾式蝕刻製程。本實施例藉由第一蝕刻製程及第二蝕刻製程中選用相同的蝕刻製程,可在不更換製程設備的條件下,僅需調整其他製程參數即可控制蝕刻的等向性程度。舉例而言,可調整的製程參數包括但不限於以下所列:蝕刻氣體流量、蝕刻氣體壓力、蝕刻溫度及/或蝕刻功率。在一些實施例中,可藉由降低蝕刻氣體的流量而提升蝕刻的等向性程度。 In some embodiments, the second etch process can use an etch process that is the same as the first etch process, and an etch gas that is the same as the first etch process can be used. In other embodiments, the second etch process may use an etch process that is the same as the first etch process, but uses an etch gas that is different than the first etch process. In this embodiment, the first etching process and the second etching process are the same dry etching process. In this embodiment, the same etching process is selected in the first etching process and the second etching process, and the degree of isotropic of the etching can be controlled only by adjusting other process parameters without replacing the process equipment. For example, adjustable process parameters include, but are not limited to, the following: etch gas flow, etch gas pressure, etch temperature, and/or etch power. In some embodiments, the degree of isotropicity of the etch can be increased by reducing the flow of the etch gas.
應注意的是,以上所列舉的第一蝕刻製程、第二蝕刻製程及蝕刻製程參數僅用以舉例說明,並非用以限定本發明。本技術領域中具有通常知識者應可理解,可視需要選擇第一蝕刻製程、第二蝕刻製程及/或蝕刻製程參數,以使第一蝕 刻步驟與第二蝕刻製程具有不同的等向性程度。因此,任何第一蝕刻製程、第二蝕刻製程及/或蝕刻製程參數的組合,只要能夠使為非等向性蝕刻步驟,且第二蝕刻步驟為等向性蝕刻步驟,皆屬於本揭露的保護範圍。 It should be noted that the first etching process, the second etching process, and the etching process parameters listed above are for illustrative purposes only and are not intended to limit the invention. It should be understood by those of ordinary skill in the art that the first etching process, the second etching process, and/or the etching process parameters can be selected as needed to make the first etch The engraving step and the second etching process have different degrees of isotropic. Therefore, any combination of the first etching process, the second etching process, and/or the etching process parameter is a protection of the present disclosure as long as it can be an anisotropic etching step and the second etching step is an isotropic etching step. range.
請參照第6圖,在半導體基板102中形成字元線隔離溝槽150(包括上部150a及擴大的底部150b)之後,進行摻雜步驟210,以形成摻雜區160於半導體基板102中且包圍擴大的底部105b。在一些實施例中,可使用P型摻質(例如硼)進行摻雜步驟210。在其他實施例中,可使用N型摻質(例如磷)進行摻雜步驟210。 Referring to FIG. 6, after the word line isolation trench 150 (including the upper portion 150a and the enlarged bottom portion 150b) is formed in the semiconductor substrate 102, a doping step 210 is performed to form the doped region 160 in the semiconductor substrate 102 and surround Expanded bottom 105b. In some embodiments, the doping step 210 can be performed using a P-type dopant (eg, boron). In other embodiments, the doping step 210 can be performed using an N-type dopant (eg, phosphorus).
由於摻雜步驟係以實質上垂直於半導體基板102表面的方向進行,因此所形成的摻雜區160包圍字元線隔離溝槽150之擴大的底部105b,且實質上輕度地摻雜甚至並未摻雜至字元線隔離溝槽150之上部150a的側壁區域,如第6圖所示。 Since the doping step is performed in a direction substantially perpendicular to the surface of the semiconductor substrate 102, the formed doped region 160 surrounds the enlarged bottom portion 105b of the word line isolation trench 150 and is substantially lightly doped or even The sidewall region of the upper portion 150a of the word line isolation trench 150 is undoped as shown in FIG.
應注意的是,本揭露藉由第二蝕刻製程擴大字元線隔離溝槽的底部,藉以增加受到摻雜的表面積。因此當進行摻雜製程時,在相同的摻雜製程條件下,相較於底部未經擴大的字元線隔離溝槽,本揭露之底部經過擴大的字元線隔離溝槽可形成體積較大的摻雜區且具有較高摻質濃度。如此一來,可獲得更佳的隔離效果。 It should be noted that the present disclosure extends the bottom of the word line isolation trench by a second etching process to increase the surface area to be doped. Therefore, when the doping process is performed, the enlarged word line isolation trenches at the bottom of the present disclosure can form a larger volume under the same doping process conditions than the un-expanded word line isolation trenches at the bottom. Doped regions and have a higher dopant concentration. In this way, better isolation can be obtained.
請參照第7圖,在進行摻雜步驟210且形成摻雜區160之後,將填充材料170填入字元線隔離溝槽150中,以完成字元線隔離結構。合適的填充材料170可包括絕緣材料或導電材料。在一些實施例中,填充材料170包括氮化物、氧化物、 高介電常數(high-k)介電材料或其他合適的絕緣材料。 Referring to FIG. 7, after the doping step 210 is performed and the doping region 160 is formed, the filling material 170 is filled into the word line isolation trench 150 to complete the word line isolation structure. Suitable fill material 170 can include an insulating material or a conductive material. In some embodiments, the fill material 170 includes nitrides, oxides, High dielectric constant (high-k) dielectric materials or other suitable insulating materials.
仍請參照第7圖,本揭露亦提供一種自對準埋入式字元線隔離結構100,其包括半導體基板102,此半導體基板102具有陣列區10及相鄰於陣列區10的周邊電路區20。自對準埋入式字元線隔離結構100亦包括多個晶胞區C位於陣列區10中,其中每一個晶胞區C包括兩條字元線108。自對準埋入式字元線隔離結構100亦包括在兩個相鄰的晶胞區C之間具有一個字元線隔離溝槽150,其中字元線隔離溝槽150具有上部150a及擴大的底部150b。自對準埋入式字元線隔離結構100亦包括摻雜區160,位於半導體基板102中且包圍擴大的底部150b,其中摻雜區160可包括P型摻質或N型摻質。自對準埋入式字元線隔離結構100亦包括填入字元線隔離溝槽150中的填充材料170,其中填充材料170可包括絕緣材料或導電材料。 Still referring to FIG. 7 , the present disclosure also provides a self-aligned buried word line isolation structure 100 including a semiconductor substrate 102 having an array region 10 and a peripheral circuit region adjacent to the array region 10 . 20. The self-aligned buried word line isolation structure 100 also includes a plurality of cell regions C located in the array region 10, wherein each of the cell regions C includes two word lines 108. The self-aligned buried word line isolation structure 100 also includes a word line isolation trench 150 between two adjacent cell regions C, wherein the word line isolation trench 150 has an upper portion 150a and an enlarged portion. Bottom 150b. The self-aligned buried word line isolation structure 100 also includes a doped region 160 located in the semiconductor substrate 102 and surrounding the enlarged bottom portion 150b, wherein the doped region 160 may include a P-type dopant or an N-type dopant. The self-aligned buried word line isolation structure 100 also includes a fill material 170 that is filled into the word line isolation trenches 150, wherein the fill material 170 can comprise an insulating material or a conductive material.
在本實施例中,由於第一材料層112及第二材料層114分別在第一及第二蝕刻製程期間作為蝕刻罩幕,保護位於周邊電路區20的半導體基板102不被蝕刻製程所蝕刻,因此,不需再形成額外的蝕刻罩幕。如此一來。可省略一道蝕刻罩幕及圖案化製程,因而可簡化製程並且降低成本。 In this embodiment, since the first material layer 112 and the second material layer 114 serve as etching masks during the first and second etching processes, respectively, the semiconductor substrate 102 located in the peripheral circuit region 20 is protected from being etched by the etching process. Therefore, no additional etching masks need to be formed. So come. An etching mask and patterning process can be omitted, which simplifies the process and reduces costs.
相較於習知技術,本揭露所提供之形成自對準埋入式字元線隔離結構的方法,此方法至少具有下述優點: Compared with the prior art, the present disclosure provides a method for forming a self-aligned buried word line isolation structure, which has at least the following advantages:
(1)藉由形成第一材料柵狀膜層110,並選擇第一間距s1與第二間距s2,而控制凹口130(後續的溝槽140)的形成位置。在形成字元線之後,不需要進行額外的圖案化製程,以定義凹口130介於兩個相鄰的晶胞區C之間。因此,可減少製程步驟及光 罩的使用,進而降低成本。 (1) The formation position of the notch 130 (subsequent groove 140) is controlled by forming the first material gate film layer 110 and selecting the first pitch s 1 and the second pitch s 2 . After the word line is formed, no additional patterning process is required to define the notch 130 between two adjacent cell regions C. Therefore, the process steps and the use of the mask can be reduced, thereby reducing the cost.
(2)藉由使第二材料層114在凹口130底部的第一厚度t1小於在晶胞區的第二厚度t2,並且使第一蝕刻步驟對於第一材料與第二材料具有高蝕刻選擇性,可於蝕刻期間保護第一材料層112,因而避免拓寬溝槽140的口徑。因此,可降低後續電性失效的風險,並且有助於降低記憶體裝置的臨界尺寸。 (2) by making the first thickness t 1 of the second material layer 114 at the bottom of the recess 130 smaller than the second thickness t 2 at the cell region, and making the first etching step high for the first material and the second material The etch selectivity protects the first material layer 112 during etching, thereby avoiding widening the aperture of the trench 140. Therefore, the risk of subsequent electrical failure can be reduced and the critical dimension of the memory device can be reduced.
(3)藉由第二蝕刻步驟實施等向性的蝕刻,形成擴大的底部150b。擴大的底部150b可產生具有較高摻質濃度且較大體積的摻雜區。因此,可使字元線隔離溝槽150具有更佳的隔離效果。 (3) An isotropic etching is performed by the second etching step to form an enlarged bottom portion 150b. The enlarged bottom portion 150b can produce a doped region having a higher dopant concentration and a larger volume. Therefore, the word line isolation trench 150 can be made to have a better isolation effect.
(4)藉由第一材料層112及第二材料層114分別在第一及第二蝕刻製程期間作為蝕刻罩幕,因此,可省略一道蝕刻罩幕及圖案化製程,因而可簡化製程並且降低成本。 (4) By using the first material layer 112 and the second material layer 114 as etching masks during the first and second etching processes, respectively, an etching mask and a patterning process can be omitted, thereby simplifying the process and reducing the process. cost.
綜上所述,本揭露所提供之形成自對準埋入式字元線隔離結構的方法,可有效改善記憶體裝置的臨界尺寸,並且可簡化製程及降低製造成本。 In summary, the method for forming a self-aligned buried word line isolation structure provided by the present disclosure can effectively improve the critical size of the memory device, and can simplify the process and reduce the manufacturing cost.
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.
10‧‧‧陣列區 10‧‧‧Array area
20‧‧‧周邊電路區 20‧‧‧ peripheral circuit area
100‧‧‧自對準埋入式字元線隔離結構 100‧‧‧Self-aligned buried word line isolation structure
102‧‧‧半導體基板 102‧‧‧Semiconductor substrate
104‧‧‧淺溝隔離結構 104‧‧‧Shallow trench isolation structure
108‧‧‧字元線 108‧‧‧ character line
112‧‧‧第一材料層 112‧‧‧First material layer
150‧‧‧字元線隔離溝槽 150‧‧‧word line isolation trench
150a‧‧‧上部 150a‧‧‧ upper
150b‧‧‧擴大的底部 150b‧‧‧ enlarged bottom
160‧‧‧摻雜區 160‧‧‧Doped area
170‧‧‧填充材料 170‧‧‧Filling materials
C‧‧‧晶胞區 C‧‧‧cell area
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104112327A TWI597822B (en) | 2015-04-17 | 2015-04-17 | Self-aligned buried word line isolation and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104112327A TWI597822B (en) | 2015-04-17 | 2015-04-17 | Self-aligned buried word line isolation and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201639123A TW201639123A (en) | 2016-11-01 |
TWI597822B true TWI597822B (en) | 2017-09-01 |
Family
ID=57850399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104112327A TWI597822B (en) | 2015-04-17 | 2015-04-17 | Self-aligned buried word line isolation and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI597822B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10734390B1 (en) | 2019-03-15 | 2020-08-04 | Winbond Electronics Corp. | Method of manufacturing memory device |
-
2015
- 2015-04-17 TW TW104112327A patent/TWI597822B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10734390B1 (en) | 2019-03-15 | 2020-08-04 | Winbond Electronics Corp. | Method of manufacturing memory device |
Also Published As
Publication number | Publication date |
---|---|
TW201639123A (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9786598B2 (en) | Semiconductor device with air gaps and method for fabricating the same | |
US11765881B2 (en) | Semiconductor structure with capacitor landing pad and method of making the same | |
US9613967B1 (en) | Memory device and method of fabricating the same | |
US10424586B2 (en) | Memory device including a trench isolation structure between buried word lines and manufacturing method thereof | |
TWI490924B (en) | Semiconductor device and method for fabricating the same | |
KR20060124597A (en) | A method for forming a semiconductor device | |
US8835249B2 (en) | Retrograde substrate for deep trench capacitors | |
JP2014216327A (en) | Semiconductor device and method of manufacturing the same | |
US9960168B2 (en) | Capacitor strap connection structure and fabrication method | |
KR20090096996A (en) | Semiconductor device and method of fabricating the same | |
TW201608674A (en) | Dynamic random access memory and method of manufacturing the same | |
KR20120126228A (en) | Methods of forming a pattern and methods of manufacturing a semiconductor device using the same | |
US20130115745A1 (en) | Methods of manufacturing semiconductor devices including device isolation trenches self-aligned to gate trenches | |
TWI597822B (en) | Self-aligned buried word line isolation and fabrication method thereof | |
TWI617007B (en) | Memory device | |
US20020123208A1 (en) | Method of fabricating a self-aligned shallow trench isolation | |
US20140346591A1 (en) | Semiconductor device and method for manufacturing the same | |
CN106206585B (en) | The forming method of autoregistration embedded type word line isolation structure | |
JP2013135029A (en) | Semiconductor device manufacturing method | |
US7394124B2 (en) | Dynamic random access memory device | |
US7696075B2 (en) | Method of fabricating semiconductor device having a recess channel structure therein | |
KR20130022957A (en) | Bit line in semiconductor device and method for fabricating the same | |
TWI576993B (en) | Method of fabricating memory device | |
US20090298271A1 (en) | Method for manufacturing a semiconductor device | |
TWI565006B (en) | Method for fabricating memory device |