TWI597496B - Vertical sensor and manufacturing method thereof - Google Patents

Vertical sensor and manufacturing method thereof Download PDF

Info

Publication number
TWI597496B
TWI597496B TW105141541A TW105141541A TWI597496B TW I597496 B TWI597496 B TW I597496B TW 105141541 A TW105141541 A TW 105141541A TW 105141541 A TW105141541 A TW 105141541A TW I597496 B TWI597496 B TW I597496B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
hole
electrode layer
sensing
Prior art date
Application number
TW105141541A
Other languages
Chinese (zh)
Other versions
TW201708813A (en
Inventor
冉曉雯
孟心飛
鄭宏志
莊明諺
林洪正
鍾龍江
周家瑋
Original Assignee
國立交通大學
臺北榮民總醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學, 臺北榮民總醫院 filed Critical 國立交通大學
Priority to TW105141541A priority Critical patent/TWI597496B/en
Publication of TW201708813A publication Critical patent/TW201708813A/en
Application granted granted Critical
Publication of TWI597496B publication Critical patent/TWI597496B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

垂直式感測器及其製造方法 Vertical sensor and method of manufacturing same

本發明係有關於一種垂直式感測器技術,更特別的是,一種垂直式感測器及其製造方法、以及應用垂直式感測器的感測系統、感測方法。 The invention relates to a vertical sensor technology, and more particularly to a vertical sensor and a manufacturing method thereof, and a sensing system and a sensing method using the vertical sensor.

大部分的氣體並無特殊的顏色,一般人並無法以嗅覺分析出其中所包含的氣體種類及詳細的濃度資訊。因此,若在氣體中存在對人體有害的無味氣體,則可能會造成危害。因此,需要有精準的氣體感測器作為工具進行感測。隨著科技的演進,對於感測器的要求除了靈敏度及準確性之外,更需要能夠同時檢測多種待檢測物之多功能感測器以提供使用者更方便的操作流程及降低時間成本。 Most of the gases do not have a special color. The average person cannot analyze the type of gas and detailed concentration information contained in the olfaction. Therefore, if there is an odorless gas harmful to the human body in the gas, it may cause harm. Therefore, a precise gas sensor is required as a tool for sensing. With the evolution of technology, in addition to the sensitivity and accuracy of the sensor, there is a need for a multi-function sensor capable of simultaneously detecting a plurality of objects to be detected to provide a more convenient operation process and a lower time cost for the user.

目前常見的氣體感測器多為單層裝置,當要感測多種氣體時,則係利用水平陣列元件,亦即,將多種感測材料分別圖樣化於不同的陣列位置以達到同時偵測多種待測物的效果,然而,其需要較複雜的製程,可能造成製備成本的提高。 At present, most common gas sensors are single-layer devices. When multiple gases are to be sensed, horizontal array elements are used, that is, multiple sensing materials are respectively patterned into different array positions to simultaneously detect multiple kinds of gases. The effect of the analyte, however, requires a more complicated process, which may result in an increase in the cost of preparation.

本發明提供一種垂直式感測器及其製造方法,利用可穿透電極組結構,使待測氣體能夠與感測層發生反應,並藉由量測反應產生的電性變化達到準確感測目的。 The invention provides a vertical sensor and a manufacturing method thereof, which can make a gas to be tested react with a sensing layer by using a penetrable electrode group structure, and achieve an accurate sensing purpose by measuring an electrical change generated by the reaction. .

本發明一實施例提供一種垂直式感測器,其包含一基板;一底部電極,係設置於該基板上;以及一可穿透電極組結構。該可穿透電極組結構包含一絕緣層、一可穿透電極層及一感測層。該絕緣層形成一多孔狀結構,且設置於該底部電極上。該可穿透電極層包含一設置於該絕緣層上的具有孔洞的電極層。該感測層用以與該待測氣體反應並包含感測材料,且位於該具有孔洞的電極層的孔洞內且連接該具有孔洞的電極層,並自該具有孔洞的電極層的孔洞延伸進入該絕緣層的多孔狀結構,而與該底部電極連接。 An embodiment of the invention provides a vertical sensor comprising a substrate; a bottom electrode disposed on the substrate; and a penetrable electrode assembly structure. The permeable electrode assembly comprises an insulating layer, a permeable electrode layer and a sensing layer. The insulating layer forms a porous structure and is disposed on the bottom electrode. The permeable electrode layer includes an electrode layer having a hole disposed on the insulating layer. The sensing layer is configured to react with the gas to be tested and includes a sensing material, and is located in the hole of the electrode layer having the hole and connected to the electrode layer having the hole, and extends from the hole of the electrode layer having the hole The porous structure of the insulating layer is connected to the bottom electrode.

本發明之另一目地在於提供一種垂直式感測器之製造方法,其中該垂直式感測器係用以感測至少一待測氣體,其步驟包含:提供一基板,於基板上形成一底部電極;以及於該底部電極上形成一可穿透電極組結構,其中可穿透電極組結構包含一絕緣層、一可穿透電極層及一感測層;該絕緣層形成一多孔狀結構,且設置於該底部電極上;該可穿透電極層包含一設置於該絕緣層上的具有孔洞的電極層;該感測層用以與該待測氣體反應並包含感測材料,位於該具有孔洞的電極層的孔洞內且連接該具有孔洞的電極層,並自該具有孔洞的電極層的孔洞延伸進入該絕緣層的多孔狀結構,而與該底部電極連接;其中形成該可穿透電極組結構的方法包含:形成一絕緣層於該底部電極;形成一具有孔洞的電極層於該絕緣層上;移除暴露出於該具有孔洞的電極層的孔洞的部分 絕緣層,以獲得形成多孔狀結構的絕緣層;以及將一感測材料設置於該具有孔洞的電極層的孔洞內,而形成該感測層。 Another object of the present invention is to provide a method for manufacturing a vertical sensor, wherein the vertical sensor is configured to sense at least one gas to be tested, and the step includes: providing a substrate to form a bottom on the substrate And forming a penetrable electrode group structure on the bottom electrode, wherein the penetrable electrode group structure comprises an insulating layer, a penetrating electrode layer and a sensing layer; the insulating layer forms a porous structure And being disposed on the bottom electrode; the permeable electrode layer includes an electrode layer having a hole disposed on the insulating layer; the sensing layer is configured to react with the gas to be tested and includes a sensing material, where An electrode layer having a hole in the hole and connecting the electrode layer having the hole and extending from the hole of the electrode layer having the hole into the porous structure of the insulating layer to be connected to the bottom electrode; wherein the penetrating is formed The method of forming an electrode assembly includes: forming an insulating layer on the bottom electrode; forming an electrode layer having a hole on the insulating layer; removing a hole exposed to the electrode layer having the hole Minute An insulating layer is obtained to obtain an insulating layer forming a porous structure; and a sensing material is disposed in the hole of the electrode layer having the hole to form the sensing layer.

以下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The purpose, technical contents, features, and effects achieved by the present invention will become more apparent from the detailed description of the appended claims.

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧底部電極 20‧‧‧ bottom electrode

31、32、33、34、310、320、330‧‧‧可穿透電極組結構 31, 32, 33, 34, 310, 320, 330‧‧‧ penetrable electrode group structure

100、200‧‧‧多層垂直式感測器 100, 200‧‧‧Multilayer vertical sensor

300‧‧‧電壓供應裝置 300‧‧‧Voltage supply device

301‧‧‧晶種層 301‧‧‧ seed layer

302‧‧‧柱狀氧化鋅 302‧‧‧ Columnar zinc oxide

303、402‧‧‧有機奈米顆粒 303, 402‧‧‧Organic nanoparticles

304‧‧‧膠體前驅物 304‧‧‧colloid precursor

305‧‧‧多孔狀結構 305‧‧‧ Porous structure

306、405‧‧‧絕緣層 306, 405‧‧‧ insulation

403、406、410‧‧‧電極 403, 406, 410‧‧‧ electrodes

307‧‧‧具有孔洞的電極層 307‧‧‧electrode layer with holes

309、407‧‧‧抗反射光阻塗佈層 309, 407‧‧‧Anti-reflective photoresist coating

310‧‧‧感測材料 310‧‧‧Sensing materials

400‧‧‧電性檢查裝置 400‧‧‧Electrical inspection device

H1、H2、H3、H4‧‧‧孔洞 H1, H2, H3, H4‧‧‧ holes

S1~S4、401、408、409、501、601‧‧‧感測層 S1~S4, 401, 408, 409, 501, 601‧‧ ‧ sensing layer

P1~P4、502、602‧‧‧可穿透電極層 P1~P4, 502, 602‧‧‧ penetrating electrode layer

S11~S15‧‧‧步驟 S11~S15‧‧‧Steps

圖1為根據本發明實施例之多層垂直式感測器之剖面圖。 1 is a cross-sectional view of a multilayer vertical sensor in accordance with an embodiment of the present invention.

圖2為根據本發明實施例之製造多層垂直式感測器之流程圖。 2 is a flow chart of manufacturing a multi-layer vertical sensor in accordance with an embodiment of the present invention.

圖3A至圖3B為根據本發明實施例形成感測層之示意圖。 3A-3B are schematic views of forming a sensing layer in accordance with an embodiment of the present invention.

圖4A至圖4C為根據本發明另一實施例形成感測層之示意圖。 4A through 4C are schematic views of forming a sensing layer in accordance with another embodiment of the present invention.

圖5A至圖5E為根據本發明再一實施例形成感測層之示意圖。 5A-5E are schematic views of forming a sensing layer according to still another embodiment of the present invention.

圖6A至圖6F為根據本發明又一實施例形成感測層之示意圖。 6A-6F are schematic views of forming a sensing layer according to still another embodiment of the present invention.

圖7A至圖7I為根據本發明一實施例形成多層垂直式感測器之示意圖。 7A through 7I are schematic views of forming a multi-layer vertical sensor in accordance with an embodiment of the present invention.

圖8為根據本發明一實施例之感測系統之示意圖。 8 is a schematic diagram of a sensing system in accordance with an embodiment of the present invention.

本發明將藉由下述之較佳實施例及其配合之圖式,做進一步之詳細說明。需注意的是,以下各實施例所揭示之實驗數據,係為便於解釋本案技術特徵,並非用以限制其可實施之態樣。 The invention will be further described in detail by the following preferred embodiments and the accompanying drawings. It should be noted that the experimental data disclosed in the following embodiments are for explaining the technical features of the present invention, and are not intended to limit the manner in which they can be implemented.

應該瞭解的是,當本文中表示一元件或層位於另一元件或層「之上」或是「被設置於」另一元件或層時,其可能係直接位於另一元件或層之上或是直接被設置於另一元件或層,或者亦可能存在中間元件或層。相反地,當本文中表示一元件「直接位於」另一元件「之上」或是「直接被設置於」另一元件或層時,則不會存在任何的中間元件或層。全文中,所使用的「及/或」一詞包含該等相關所列項目中一或多者的任何及所有組合。 It should be understood that when an element or layer is "on" or "an" or "an" It is provided directly to another element or layer, or there may be intermediate elements or layers. In contrast, when an element is referred to as being "directly on" or "directly" or "an" The term "and/or" used throughout this document includes any and all combinations of one or more of the associated listed items.

應該瞭解的係,雖然本文可能會使用第一、第二、第三、...等詞語來說明各個元件、組件、區域、層、及/或圖樣,然而,該些元件、組件、區域、層、及/或圖樣不應該受限於該些詞語。該些詞語僅係用來區分一元件、組件、區域、層、及/或圖樣以及另一元件、區域、層、及/或圖樣。因此,下文所討論的第一元件、組件、區域、層、及/或圖樣亦可被稱為第二元件、組件、區域、層、及/或圖樣,其並不會脫離本發明實施例的教示內容。 It should be understood that although the words "first, second, third," etc. may be used herein to describe various elements, components, regions, layers, and/or drawings, however, the elements, components, regions, Layers, and/or drawings should not be limited to these words. The terms are used to distinguish one element, component, region, layer, and/or pattern, and another element, region, layer, and/or pattern. Thus, the first elements, components, regions, layers, and/or drawings discussed below may also be referred to as a second element, component, region, layer, and/or pattern, without departing from the embodiments of the invention. Teaching content.

為方便說明起見,本文中可能會使用空間上相對的詞語,例如「底下」、「之下」、「下方」、「之上」、「上方」、以及類似詞語來說明圖中所示的其中一元件或特徵相對於另一元件或特徵其它多個元件或特徵圖樣)的關係。應該瞭解的係,除了圖中所示的方位之外,該等空間上相對的詞語亦希望涵蓋使用中或操作中裝置的不同方位。舉例來說,倘若翻轉圖中的裝置的話,那麼,被描述成位於其它元件或特徵「之下」或「底下」的元件便會被定向在該等其它元件或特徵「之上」。因此,示範性詞語「之下」便可能涵蓋之下與之上兩種方位。除此之外,該裝置亦可能有其它配向(旋轉90度或是其它配向)以及具以解釋之本文中所使用的空間上相對的描述符號。 For the sake of explanation, spatially relative terms such as "bottom", "below", "below", "above", "above", and similar words may be used in this article to illustrate the The relationship of one element or feature to another element or feature other element or feature pattern. It should be understood that in addition to the orientation shown in the figures, such spatially relative terms are also intended to encompass different orientations of the device in use or in operation. For example, elements that are described as "under" or "under" other elements or features may be "above" the other elements or features. Therefore, the exemplary word "below" may cover both the lower and upper directions. In addition to this, the device may have other alignments (rotated 90 degrees or other alignments) and spatially relative descriptive symbols as used herein to explain.

本發明一實施例之一種多層垂直式感測器,其包含基板、底部電極以及複數個可穿透電極組結構。其中底部電極設置於基板上;可穿透電極組結構係依序設置於底部電極上,其中每一複數個可穿透電極組結構包含:感測層及可穿透電極層,感測層用以與待測氣體反應。可穿透電極層包含複數個孔洞用以供待測氣體穿入,其中至少一部份可穿透電極層與感測層交疊,且介於兩層可穿透電極層之間的感測層包含氣體可穿透結構。請參閱圖1,其係為本發明一實施例之多層堆疊垂直式感測器100,包含依序堆疊之基板10、底部電極20、及複數個可穿透電極組結構。圖1係例示性地繪示第一可穿透電極組結構31、第二可穿透電極組結構32、第三可穿透電極組結構33、以及第四可穿透電極組結構34,其分別地包含第一感測層S1、第一可穿透電極層P1、第二感測層S2、第二可穿透電極層P2、第三感測層S3、第三可穿透電極層P3、第四感測層S4、以及第四可穿透電極層P4。然而,本發明之可穿透電極組結構的數目並不限於此,其可包含n個可穿透電極組結構,其中包含n個感測層及n個可穿透電極層,且n可為任意正整數。 A multi-layer vertical sensor according to an embodiment of the invention comprises a substrate, a bottom electrode and a plurality of penetrable electrode group structures. The bottom electrode is disposed on the substrate; the permeable electrode group structure is sequentially disposed on the bottom electrode, wherein each of the plurality of permeable electrode group structures comprises: a sensing layer and a permeable electrode layer, and the sensing layer is To react with the gas to be tested. The permeable electrode layer includes a plurality of holes for the gas to be tested to penetrate, wherein at least a portion of the permeable electrode layer overlaps the sensing layer and is sensed between the two layers of the permeable electrode layer The layer contains a gas permeable structure. Referring to FIG. 1 , a multi-layer stacked vertical sensor 100 according to an embodiment of the present invention includes a substrate 10 , a bottom electrode 20 , and a plurality of penetrable electrode group structures stacked in sequence. FIG. 1 is a view schematically showing a first penetrable electrode group structure 31, a second penetrable electrode group structure 32, a third penetrable electrode group structure 33, and a fourth penetrable electrode group structure 34. The first sensing layer S1, the first penetrable electrode layer P1, the second sensing layer S2, the second penetrable electrode layer P2, the third sensing layer S3, and the third penetrable electrode layer P3 are respectively included a fourth sensing layer S4 and a fourth penetrable electrode layer P4. However, the number of the penetrable electrode group structures of the present invention is not limited thereto, and may include n penetrable electrode group structures including n sensing layers and n penetrable electrode layers, and n may be Any positive integer.

在一實施例中,可藉由分別地單獨測量第一可穿透電極組結構31、第二可穿透電極組結構32、第三可穿透電極組結構33、或第四可穿透電極組結構34之可穿透電極與底部電極20之間的電訊號而感測待測物。在本發明之另一實施例中,可分別量測不同可穿透電極組結構之可穿透電極之間的電性變化而獲取待測物之感測訊號。舉例而言,可量測第一可穿透電極組結構31之第一可穿透電極P1與第四可穿透電極組結構34之第四可穿透電極P4之間的電性變化。據此,藉由堆疊包含感測層及電極層的複數個可穿透電極組結構,可依需求量測不同電極之間的電性變化,因而可同時感測複數個待測物,並增加感測 的靈敏度。於一實施例中,感測層之氣體可穿透結構包含感測材料或由感測材料所構成;亦或者,由介電層以及覆蓋於介電層上之感測材料所構成。其中感測材料包含但不限於接觸氣體後,會產生電性變化之有機材料或無機材料,或由有機材料或無機材料混摻之複合材料,其可為多種有機材料混摻、多種無機材料混摻或有機材料與無機材料混摻之複合材料。舉例而言,無機材料可包含矽、碳、氧化鋅(ZnO)、氧化鎢(WO3)、二氧化鈦(TiO2)、氧化銦鎵(IGZO)等,可以用於液態sol-gel製程或奈米顆粒製程的無機材料。有機材料可包含導電高分子以及有機半導體材料,或其他電特性可作為電子或電洞傳輸之有機材料,例如,聚噻吩類(Polythiophene)如聚(3-己烷基噻吩)(P3HT)、聚(3-辛烷基塞吩)(P3OT)、聚噻吩衍生物(PQT-12)等、富勒烯類如富勒烯衍生物(PCBM)等、酞菁類環化合物如銅酞菁(CuPC)等、多環芳香烴類如並五苯(Pentacene)等、TCNQ(Tetracyanoquinodimethane)類如四氰基四氟苯醌二甲烷(F4TCNQ)等、二胺類如4,4'-雙(N-(1-萘基)-N-苯基胺基)聯苯(NPB)等,苯胺類如1,1-雙[(二-4-甲苯基胺基)苯基]環己烷(TAPC)等。 In an embodiment, the first penetrable electrode group structure 31, the second penetrable electrode group structure 32, the third penetrable electrode group structure 33, or the fourth penetrable electrode may be separately measured by separately The electrical signal between the permeable electrode and the bottom electrode 20 of the group structure 34 senses the object to be tested. In another embodiment of the present invention, the electrical changes between the penetrable electrodes of the different penetrable electrode group structures can be separately measured to obtain the sensing signals of the object to be tested. For example, an electrical change between the first penetrable electrode P1 of the first penetrable electrode group structure 31 and the fourth penetrable electrode P4 of the fourth penetrable electrode group structure 34 can be measured. Accordingly, by stacking a plurality of penetrable electrode group structures including the sensing layer and the electrode layer, electrical changes between different electrodes can be measured according to requirements, so that multiple objects to be tested can be sensed simultaneously and increased. Sensing sensitivity. In one embodiment, the gas permeable structure of the sensing layer comprises or consists of a sensing material; or alternatively, the dielectric layer and the sensing material overlying the dielectric layer. The sensing material includes, but is not limited to, an organic material or an inorganic material which may be electrically changed after contacting the gas, or a composite material mixed by an organic material or an inorganic material, which may be mixed with a plurality of organic materials, and mixed with a plurality of inorganic materials. A composite material blended with an organic material and an inorganic material. For example, the inorganic material may include ruthenium, carbon, zinc oxide (ZnO), tungsten oxide (WO 3 ), titanium dioxide (TiO 2 ), indium gallium oxide (IGZO), etc., and may be used in a liquid sol-gel process or a nanometer. Inorganic materials for the particle process. The organic material may comprise a conductive polymer and an organic semiconductor material, or other organic material capable of being transmitted as electrons or holes, for example, polythiophene such as poly(3-hexanethiophene) (P3HT), poly (3-octyl exemplification) (P3OT), polythiophene derivative (PQT-12), etc., fullerene such as fullerene derivative (PCBM), etc., phthalocyanine ring compound such as copper phthalocyanine (CuPC) And other polycyclic aromatic hydrocarbons such as pentacene, TCNQ (Tetracyanoquinodimethane) such as tetracyanotetrafluorobenzoquinone dimethane (F4TCNQ), etc., diamines such as 4,4'-double (N- (1-naphthyl)-N-phenylamino)biphenyl (NPB), etc., anilines such as 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), etc. .

而可穿透電極層包含導電材料或由導電材料所構成,其中導電材料包含但不限於金屬、金屬化合材料、透明氧化物電極、奈米金屬線、奈米碳管、石墨烯及其氧化物、或前述材料混摻之複合材料。於一實施例中,感測層之氣體可穿透結構可包含一柱狀結構或一多孔狀結構,以供氣體流入。其餘實施例之細部結構與製作方式於下列說明。 The permeable electrode layer comprises or consists of a conductive material, including but not limited to metals, metal compounds, transparent oxide electrodes, nanowires, carbon nanotubes, graphene and oxides thereof. Or a composite material blended with the aforementioned materials. In an embodiment, the gas permeable structure of the sensing layer may comprise a columnar structure or a porous structure for gas to flow in. The details of the structure and fabrication of the remaining embodiments are set forth below.

請參閱圖2,根據本發明實施例之製備多層垂直式感測器之方法包含:提供其上設置有底部電極之基板(步驟S11)。接著,於底部電極上形成可 穿透電極組結構(步驟S13),其中,形成可穿透電極組結構可包含形成感測層及可穿透電極層,且其形成步驟將於後文中詳細地描述。 Referring to FIG. 2, a method of preparing a multi-layer vertical sensor according to an embodiment of the present invention includes: providing a substrate on which a bottom electrode is disposed (step S11). Then, formed on the bottom electrode The electrode assembly structure is penetrated (step S13), wherein forming the penetrable electrode group structure may include forming a sensing layer and a penetrable electrode layer, and a forming step thereof will be described in detail later.

根據本發明之一實施例,形成感測層之步驟可包含在底部電極20上塗佈一層晶種層301,如圖3A所示,接著將其浸泡於硝酸鋅與六亞甲基四胺(HMT)均勻混合之水溶液中,持續增溫一段時間,使奈米尺度之柱狀氧化鋅302成長於晶種層301上而形成氣體可穿透之結構。或者,可使用旋轉塗佈法、熱蒸鍍法、浸塗法等方式,將氣體感測材料塗佈於柱狀氧化鋅302上,以形成氣體可穿透式的感測層,如圖3B所示。 According to an embodiment of the present invention, the step of forming the sensing layer may include coating a seed layer 301 on the bottom electrode 20, as shown in FIG. 3A, and then immersing it in zinc nitrate and hexamethylenetetramine ( In the HMT) uniformly mixed aqueous solution, the temperature is continuously increased for a period of time, and the nano-sized columnar zinc oxide 302 is grown on the seed layer 301 to form a gas-permeable structure. Alternatively, the gas sensing material may be applied to the columnar zinc oxide 302 by a spin coating method, a thermal evaporation method, a dip coating method or the like to form a gas-permeable sensing layer, as shown in FIG. 3B. Shown.

根據本發明之另一實施例,參閱圖4A,形成感測層之步驟可包含利用旋轉塗佈的方式將有機奈米顆粒303塗佈於底部電極20上,形成多球狀層疊,堆疊的有機奈米顆粒之間具有一間隙。於一實施例中,有機奈米顆粒303可為聚苯乙烯球。接著參閱圖4B,將膠體前驅物304形成於有機奈米顆粒303上,使膠體前驅物304滲入有機奈米顆粒303之間的間隙中。而後,移除有機奈米顆粒303,以形成一多孔狀結構305,於本實施例中,係利用高溫加熱的方式燒毀有機奈米顆粒303,如圖4C所示。最後,將感測材料以旋轉塗佈、浸塗法等方式塗佈於多孔狀結構305上,即可形成氣體可穿透式感測層。 According to another embodiment of the present invention, referring to FIG. 4A, the step of forming the sensing layer may include applying the organic nanoparticle 303 to the bottom electrode 20 by spin coating to form a multi-spherical stack, stacked organic There is a gap between the nanoparticles. In one embodiment, the organic nanoparticle 303 can be a polystyrene sphere. Next, referring to FIG. 4B, a colloidal precursor 304 is formed on the organic nanoparticle 303, and the colloidal precursor 304 is infiltrated into the gap between the organic nanoparticles 303. Thereafter, the organic nanoparticles 303 are removed to form a porous structure 305. In the present embodiment, the organic nanoparticles 303 are burned by high-temperature heating, as shown in Fig. 4C. Finally, the sensing material is applied to the porous structure 305 by spin coating, dip coating, or the like to form a gas permeable sensing layer.

根據本發明之又一實施例,形成可穿透電極層的方法包含:形成圖案化遮罩結構於感測層上,以暴露出部分感測層;以圖案化遮罩結構為遮罩形成一圖案化電極層於暴露出的部分感測層上;以及移除圖案化遮罩結構,以形成具有複數個孔洞的可穿透電極層以暴露出部分感測層。其中,形成圖案化遮罩結構的步驟可包含:設置複數個有機奈米顆粒於感測層上,其中複數個有機奈米顆粒之間具有一間隙以暴露出部分的感測層。請參閱圖5A~圖5E,先塗佈 絕緣層306於底部電極20上;接著,塗佈有機奈米顆粒303於絕緣層306上,並利用熱蒸鍍法鍍上電極307。而後,利用膠帶撕除有機奈米顆粒303及其所形成於其上之電極後,可形成孔洞H1以暴露部分的絕緣層306,亦即,形成具有孔洞的電極307。接著,利用具有孔洞的電極307作為遮罩進行電漿蝕刻,以使絕緣層306及底部電極20產生柱狀的結構。最後,將感測材料以旋轉塗佈、浸塗法等方式塗佈於柱狀結構表面上,即可形成氣體可穿透式感測層。該實施例的垂直式感測器包含該基板10、設置於該基板上的該底部電極20,以及該可穿透電極組結構。該可穿透電極組結構包含該絕緣層306、該可穿透電極層,及該感測層。該絕緣層306形成多孔狀結構且設置於該底部電極20上。該可穿透電極層包含設置於該絕緣層306上且具有孔洞H1的電極層307。該感測層包含感測材料且位於該具有孔洞H1的電極層307的孔洞H1內且連接該具有孔洞H1的電極層307,並自該具有孔洞H1的電極層307的孔洞H1延伸進入該絕緣層306的多孔狀結構,而與該底部電極20連接。 According to still another embodiment of the present invention, a method of forming a penetrable electrode layer includes: forming a patterned mask structure on the sensing layer to expose a portion of the sensing layer; forming a mask as a mask by patterning the mask structure Patterning the electrode layer on the exposed portion of the sensing layer; and removing the patterned mask structure to form a penetrable electrode layer having a plurality of holes to expose a portion of the sensing layer. The step of forming a patterned mask structure may include: setting a plurality of organic nano particles on the sensing layer, wherein a plurality of organic nano particles have a gap therebetween to expose a portion of the sensing layer. Please refer to Figure 5A~5E, first coating The insulating layer 306 is on the bottom electrode 20; then, the organic nanoparticles 303 are coated on the insulating layer 306, and the electrode 307 is plated by thermal evaporation. Then, after the organic nanoparticle 303 and the electrode formed thereon are peeled off by a tape, a hole H1 may be formed to expose a portion of the insulating layer 306, that is, an electrode 307 having a hole is formed. Next, plasma etching is performed using the electrode 307 having a hole as a mask to cause the insulating layer 306 and the bottom electrode 20 to have a columnar structure. Finally, the sensing material is applied to the surface of the columnar structure by spin coating, dip coating or the like to form a gas permeable sensing layer. The vertical sensor of this embodiment includes the substrate 10, the bottom electrode 20 disposed on the substrate, and the penetrable electrode group structure. The penetrable electrode set structure includes the insulating layer 306, the penetrable electrode layer, and the sensing layer. The insulating layer 306 is formed in a porous structure and is disposed on the bottom electrode 20. The penetrable electrode layer includes an electrode layer 307 disposed on the insulating layer 306 and having a hole H1. The sensing layer includes a sensing material and is located in the hole H1 of the electrode layer 307 having the hole H1 and connects the electrode layer 307 having the hole H1, and extends from the hole H1 of the electrode layer 307 having the hole H1 into the insulation. The porous structure of layer 306 is connected to the bottom electrode 20.

根據本發明之再一實施例,形成可穿透電極層之方法可包含,形成介電層於底部電極或可穿透電極層上;形成電極層於介電層上;設置抗反射光阻塗佈層於電極層上;於抗反射光阻塗佈層上形成一圖案化遮罩結構,以暴露出部分的電極層;以及移除暴露出的部分電極層,以形成具有複數個孔洞的可穿透電極層。請參閱圖6A~圖6F,其係為形成可穿透式感測層的另一態樣。其中,如圖6A所示,可先塗佈絕緣層306於底部電極20上,接著熱蒸鍍電極307於絕緣層306上、再將抗反射光阻塗佈層309塗佈於電極307上。而後,利用印壓法使用柱狀模具(圖未示)將抗反射光阻塗佈層309形成孔洞H2而暴露出電極307,如圖6B所示。接著,以具有孔洞H2之抗反射光阻塗佈層309作為圖案化遮罩對下方 材料進行蝕刻而形成柱狀結構,其中,可使用濕式蝕刻將暴露出的電極307進行蝕刻,接著可使用電漿蝕刻法將絕緣層蝕刻並去除殘留的抗反射光阻塗佈層309,以獲得如圖6C所示之柱狀結構。於此,形成柱狀結構的步驟並不限於此,在本發明之另一實施例中,可在依序塗佈絕緣層30及抗反射光阻塗佈層309後,直接先以柱狀模具印壓出孔洞,再蒸鍍電極307於孔洞結構上,而後將凸出的電極以膠帶撕除,因此可於底部保留網狀的電極。最後,再利用電漿蝕刻法將殘餘的抗反射光阻塗佈層309與裸露的絕緣層30移除以獲得柱狀結構。 According to still another embodiment of the present invention, a method of forming a permeable electrode layer may include forming a dielectric layer on a bottom electrode or a permeable electrode layer; forming an electrode layer on the dielectric layer; and providing an anti-reflective photoresist coating Laying the layer on the electrode layer; forming a patterned mask structure on the anti-reflective photoresist coating layer to expose a portion of the electrode layer; and removing the exposed portion of the electrode layer to form a plurality of holes Through the electrode layer. Please refer to FIG. 6A to FIG. 6F, which are another aspect of forming a transmissive sensing layer. As shown in FIG. 6A, the insulating layer 306 may be applied to the bottom electrode 20, and then the electrode 307 is thermally evaporated on the insulating layer 306, and the anti-reflective photoresist coating layer 309 is applied to the electrode 307. Then, the anti-reflective photoresist coating layer 309 is formed into a hole H2 by a stamping method using a columnar mold (not shown) to expose the electrode 307 as shown in Fig. 6B. Next, the anti-reflective photoresist coating layer 309 having the holes H2 is used as a patterned mask to the lower side. The material is etched to form a columnar structure, wherein the exposed electrode 307 can be etched using wet etching, and then the insulating layer can be etched using a plasma etching method and the residual anti-reflective photoresist coating layer 309 can be removed. A columnar structure as shown in Fig. 6C was obtained. The step of forming the columnar structure is not limited thereto. In another embodiment of the present invention, after sequentially applying the insulating layer 30 and the anti-reflective photoresist coating layer 309, the columnar mold is directly used. The hole is pressed out, and the electrode 307 is vapor-deposited on the hole structure, and then the protruding electrode is peeled off with a tape, so that the mesh electrode can be left at the bottom. Finally, the residual anti-reflective photoresist coating layer 309 and the exposed insulating layer 30 are removed by plasma etching to obtain a columnar structure.

最後,將感測材料310以旋轉塗佈、浸塗法等方式塗佈於上述柱狀結構表面上,即可形成可穿透式感測層。其中,感測材料310可以僅包覆柱狀結構表面的方式而形成,如圖6D所示;感測材料310亦可以僅填滿結構孔洞的方式而形成,如圖6E所示;或者,感測材料310也可被填滿並覆蓋整個柱狀結構表面,如圖6F所示;然本發明並不以此為限,感測材料可以任意形式而形成於上述柱狀結構上。 Finally, the sensing material 310 is applied to the surface of the columnar structure by spin coating, dip coating, or the like to form a transmissive sensing layer. Wherein, the sensing material 310 may be formed only by covering the surface of the columnar structure, as shown in FIG. 6D; the sensing material 310 may also be formed by filling only the structural holes, as shown in FIG. 6E; The test material 310 can also be filled and cover the entire surface of the columnar structure, as shown in FIG. 6F; however, the invention is not limited thereto, and the sensing material can be formed on the columnar structure in any form.

參閱回圖2,可重複進行形成可穿透電極組結構之步驟以獲得多層垂直感測器(步驟S15)。其中,形成可穿透電極層的方法可包含:形成介電層於底部電極或可穿透電極層上;形成圖案化電極層於介電層上;移除暴露出的部分介電層,以形成柱狀結構;以及形成感測材料於柱狀結構的表面上。在一實施例中,形成圖案化電極層的方法可包含:設置複數個有機奈米顆粒於介電層上,其中複數個有機奈米顆粒之間具有間隙以暴露出部分介電層;以及以複數個有機奈米顆粒為遮罩,形成圖案化電極層。在另一實施例中,形成圖案化電極層的方法可包含:形成電極層於介電層上;設置抗反射光阻塗佈層於電極 層上;於抗反射光阻塗佈層上形成圖案化遮罩結構,暴露出部分電極層;以及移除暴露出的部分電極層,形成圖案化電極層。 Referring back to FIG. 2, the steps of forming a penetrable electrode group structure may be repeated to obtain a multilayer vertical sensor (step S15). The method of forming a permeable electrode layer may include: forming a dielectric layer on the bottom electrode or the permeable electrode layer; forming a patterned electrode layer on the dielectric layer; removing the exposed portion of the dielectric layer to Forming a columnar structure; and forming a sensing material on a surface of the columnar structure. In an embodiment, the method of forming a patterned electrode layer may include: setting a plurality of organic nano particles on the dielectric layer, wherein a plurality of organic nano particles have a gap therebetween to expose a portion of the dielectric layer; A plurality of organic nanoparticles are masked to form a patterned electrode layer. In another embodiment, the method of forming a patterned electrode layer may include: forming an electrode layer on the dielectric layer; and providing an anti-reflective photoresist coating layer on the electrode Forming a patterned mask structure on the anti-reflective photoresist coating layer to expose a portion of the electrode layer; and removing the exposed portion of the electrode layer to form a patterned electrode layer.

承上,根據本發明之一實施例,並參閱圖7A~圖7I說明形成多層垂直式感測器之方法。參閱圖7A至圖7C,提供基板10,其上設置有底部電極20,於底部電極20上塗佈第一感測材料以形成第一感測層401。接著以相同於圖5B至圖5D之方法,將有機奈米顆粒402塗佈於第一感測層401上,並利用熱蒸鍍法鍍上可穿透電極層403。而後,利用膠帶撕除有機奈米顆粒402及形成於其上之電極後,可形成孔洞H3以暴露部分的第一感測層401,亦即,形成具有孔洞結構的可穿透電極層403。其中,可穿透電極層403可包含導電材料或由導電材料所構成,且導電材料包含選自金屬、金屬化合材料、透明氧化物電極、奈米金屬線、奈米碳管、石墨烯及其氧化物、或前述材料混摻之複合材料所組成之群組之其中之一。 In accordance with an embodiment of the present invention, and referring to Figures 7A-7I, a method of forming a multi-layer vertical sensor is illustrated. Referring to FIGS. 7A through 7C, a substrate 10 is provided having a bottom electrode 20 disposed thereon, and a first sensing material is coated on the bottom electrode 20 to form a first sensing layer 401. Next, in the same manner as in FIGS. 5B to 5D, the organic nanoparticles granules 402 are applied onto the first sensing layer 401, and the permeable electrode layer 403 is plated by thermal evaporation. Then, after the organic nanoparticle 402 and the electrode formed thereon are peeled off by a tape, the hole H3 may be formed to expose a portion of the first sensing layer 401, that is, a penetrable electrode layer 403 having a hole structure is formed. The penetrable electrode layer 403 may comprise or consist of a conductive material, and the conductive material comprises a metal selected from the group consisting of a metal, a metal compound, a transparent oxide electrode, a nanowire, a carbon nanotube, a graphene, and the like. One of a group of oxides or composite materials blended with the foregoing materials.

接著,以相同於圖6A至圖6F之方法,可先塗佈絕緣層405於可穿透電極層403上,接著熱蒸鍍電極406於絕緣層405上,再將抗反射光阻塗佈層407塗佈於電極406上,如圖7D所示。而後,利用印壓法使用柱狀模具(圖未示)將抗反射光阻塗佈層407形成孔洞H4而暴露出電極406,如圖7E所示。接著,以具有孔洞H4之抗反射光阻塗佈層407作為遮罩進行蝕刻而形成柱狀結構,如圖7F所示。最後,將第二感測材料以旋轉塗佈、浸塗法等方式塗佈於柱狀結構表面上,即可形成第二感測層408,如圖7G所示。 Next, in the same manner as the method of FIG. 6A to FIG. 6F, the insulating layer 405 may be first coated on the penetrable electrode layer 403, then the electrode 406 is thermally evaporated on the insulating layer 405, and then the anti-reflective photoresist coating layer is applied. 407 is applied to electrode 406 as shown in Figure 7D. Then, the anti-reflective photoresist coating layer 407 is formed into a hole H4 by a stamping method using a columnar mold (not shown) to expose the electrode 406 as shown in Fig. 7E. Next, the anti-reflective photoresist coating layer 407 having the holes H4 is etched as a mask to form a columnar structure as shown in FIG. 7F. Finally, the second sensing material is applied to the surface of the columnar structure by spin coating, dip coating or the like to form the second sensing layer 408, as shown in FIG. 7G.

其中,形成第二感測材料之方式可如圖6D~圖6F所示,其可以形成為僅包覆柱狀結構之表面、或形成為填滿結構之孔洞、或填滿並覆蓋整個柱狀結構之表面的任一種方式而形成。需注意的是,第一感測材料與第二感測材 料可相同或不同,當第一感測材料與第二感測材料不同時,可分別感測不同的待測物,然而,當第一感測材料與第二感測材料相同時,可增加反應接觸面積,進而放大反應而提高感測器之靈敏度。 The manner of forming the second sensing material may be as shown in FIG. 6D to FIG. 6F, and may be formed to cover only the surface of the columnar structure, or to form a hole filling the structure, or to fill and cover the entire column. Formed by any of the surfaces of the structure. It should be noted that the first sensing material and the second sensing material The materials may be the same or different. When the first sensing material is different from the second sensing material, different objects to be tested may be respectively sensed. However, when the first sensing material is the same as the second sensing material, the material may be increased. The reaction contact area, which in turn amplifies the reaction, increases the sensitivity of the sensor.

另外,可穿透電極組結構中的感測層與可穿透電極可依需求而以各種形式而設置,舉例而言,在第一可穿透電極組結構310中,第一感測層401係形成以設置於可穿透電極層403之下;然而,在第二可穿透電極組結構320中,第二感測層408係形成以圍繞電極層406的方式而設置。也就是說,本發明並不限定感測層與電極層的形狀與配置,只要至少一部分可穿透電極層與感測層係彼此交疊使感測層可流通電極之間的電流即可,因此本發明之感測層與電極層的設置可包括各種不同的態樣。 In addition, the sensing layer and the penetrable electrode in the penetrable electrode group structure can be disposed in various forms as needed. For example, in the first penetrable electrode group structure 310, the first sensing layer 401 The system is formed to be disposed under the penetrable electrode layer 403; however, in the second penetrable electrode group structure 320, the second sensing layer 408 is formed to be disposed around the electrode layer 406. That is, the present invention does not limit the shape and configuration of the sensing layer and the electrode layer, as long as at least a portion of the transmissive electrode layer and the sensing layer overlap each other such that the sensing layer can flow current between the electrodes. Therefore, the arrangement of the sensing layer and the electrode layer of the present invention can include various different aspects.

在圖7G中,僅例示性地繪示兩層可穿透電極組結構,亦即,第一可穿透電極組結構310以及第二可穿透電極組結構320,然而,本發明並不以此為限制,其可包含n層可穿透電極組結構。舉例而言,如圖7H所示,可使用熱蒸鍍的方式將第三感測材料409蒸鍍於第二可穿透電極組結構320上,其中,亦可包含利用蝕刻等方式將柱狀結構頂部表面上之第二感測層408移除之步驟。接著如圖7I所示,利用滴鍍的方式於第三感測材料409上形成金屬奈米線(例如銀奈米線)以形成可穿透電極410,因此形成第三可穿透電極組結構330。 In FIG. 7G, only two layers of the penetrable electrode group structure, that is, the first penetrable electrode group structure 310 and the second penetrable electrode group structure 320 are exemplarily illustrated. However, the present invention does not This is a limitation, which may include an n-layer of penetrable electrode group structure. For example, as shown in FIG. 7H, the third sensing material 409 may be evaporated on the second penetrable electrode assembly 320 by thermal evaporation, and may also include columnar etching or the like. The step of removing the second sensing layer 408 on the top surface of the structure. Next, as shown in FIG. 7I, a metal nanowire (for example, a silver nanowire) is formed on the third sensing material 409 by means of trickle plating to form a penetrable electrode 410, thereby forming a third penetrable electrode group structure. 330.

藉由上述方法,可重複地形成感測層及電極層,藉以形成多層堆疊之垂直示感測器。需注意的是,本發明僅係以圖5B至圖5D及圖6A至圖6C之方法做為例示性的說明,但其並不意欲限制本發明,可使用選自上述任一實施例之其中之一或其組合之方法以形成多個感測層及電極層。 By the above method, the sensing layer and the electrode layer can be repeatedly formed, thereby forming a multi-layer stacked vertical display sensor. It should be noted that the present invention is merely illustrative of the methods of FIGS. 5B-5D and FIGS. 6A-6C, but is not intended to limit the present invention, and may be selected from any of the above embodiments. A method of one or a combination thereof to form a plurality of sensing layers and electrode layers.

根據本發明之一實施例,參閱圖8,提供一種感測系統1000,其包含如上述方法所製備之多層垂直式感測器200,其中,多層垂直式感測器200為方便說明,係例示性地繪示為包含依序堆疊於基板10上之底部電極20、第一感測層501、第一可穿透電極層502、第二感測層601以及第二可穿透電極層602,然而,本發明並不限於此,其可依需求包含n個感測層及n個電極層。感測系統1000可更包含電壓供應裝置300及電性檢查裝置400,其中,電壓供應裝置300係電性連接至多層垂直式感測器200之底部電極20、第一可穿透電極層502、及第二可穿透電極層602,以分別地提供偏壓至多層垂直式感測器200。而電性檢查裝置400係電性連接至多層垂直式感測器200之以測定各感測層之電性變化。 According to an embodiment of the present invention, referring to FIG. 8, a sensing system 1000 is provided, which includes a multi-layer vertical sensor 200 prepared as described above, wherein the multi-layer vertical sensor 200 is illustrated for convenience of description. The bottom electrode 20, the first sensing layer 501, the first penetrating electrode layer 502, the second sensing layer 601, and the second penetrable electrode layer 602 are sequentially stacked on the substrate 10, However, the present invention is not limited thereto, and may include n sensing layers and n electrode layers as needed. The sensing system 1000 can further include a voltage supply device 300 and an electrical inspection device 400, wherein the voltage supply device 300 is electrically connected to the bottom electrode 20 of the multi-layer vertical sensor 200, the first penetrable electrode layer 502, And a second penetrable electrode layer 602 to provide a bias voltage to the multi-layer vertical sensor 200, respectively. The electrical inspection device 400 is electrically connected to the multi-layer vertical sensor 200 to determine electrical changes of the sensing layers.

當多種氣體同時接觸各感測層後,各待測物會與相對應之感測層上之感測材料產生反應,因而使感測層產生電流變化,藉由電性檢查裝置400的測定電性變化,可達到同時感測多種待測物之目的。其中,可藉由分別量測單一可穿透電極組結構與底部電極之間的電訊號而感測待測物,或者,可藉由分別量測不同的可穿透電極組結構之可穿透電極之間的電性變化而獲取待測物的感測訊號。在本發明之另一實施例中,當各感測層之感測材料相同時,係可增加反應接觸面積,因而達到放大反應以提高靈敏度之效果。 When a plurality of gases simultaneously contact the sensing layers, each of the objects to be tested reacts with the sensing material on the corresponding sensing layer, thereby causing a current change in the sensing layer, and the electrical conductivity of the electrical inspection device 400 is determined. Sexual changes can achieve the purpose of simultaneously sensing a variety of analytes. Wherein, the object to be tested can be sensed by separately measuring electrical signals between the single penetrable electrode group structure and the bottom electrode, or can be penetrated by separately measuring different penetrable electrode group structures A sensing signal of the object to be tested is obtained by electrical changes between the electrodes. In another embodiment of the present invention, when the sensing materials of the sensing layers are the same, the reaction contact area can be increased, thereby achieving the effect of amplifying the reaction to improve the sensitivity.

綜合上述,本發明之多層垂直式感測器及其製造方法、以及應用多層垂直式感測器的感測系統、感測方法,利用多層可穿透電極組結構,使各待測氣體能夠在各感測層之間自由移動,並與感測層發生反應,並藉由量測反應產生的電性變化達到準確感測目的。此外,製作可穿透電極組結構的方式彈性,多種感測層、可穿透電極層之製造方式可供使用者可自行搭配混合使用,可提供製程多樣的選擇性。且相較於水平陣列元件,運用在多種氣體感測時, 須利用較複雜之製程,使多種感測材料分別圖形化於不同陣列位置。本發明案垂直堆疊之製程方式,將有效簡化製成方式進而降低製程成本。此外,本案使用複數感測層,故複數種類之待測分子進入各感測層後,可根據與待測分子相應之各感測層讀取電訊號,達到同時觀測之目的。再者,當針對特定待測分子時,可藉由重複堆疊與待測分子對應之感測層,增加反應接觸面積,進而放大反應以提高靈敏度。更者,當針對特定待測分子時,可藉由選定皆會與待測分子反應之不同材料,作為感測層。並根據各反應層建立待測分子之資料庫,藉由交叉比對或是指紋圖比對等方式,有效增進感測之精確性,同時排除環境分子對感測影響。 In summary, the multi-layer vertical sensor of the present invention, a manufacturing method thereof, and a sensing system and a sensing method using the multi-layer vertical sensor utilize a multi-layer transmissive electrode group structure to enable each gas to be tested to be Each sensing layer moves freely and reacts with the sensing layer, and achieves accurate sensing by measuring electrical changes generated by the reaction. In addition, the method of fabricating the structure of the penetrable electrode group is flexible, and the manufacturing methods of the plurality of sensing layers and the penetrable electrode layer can be mixed and used by the user, and the process can be selectively selected. And compared to horizontal array components, when used in a variety of gas sensing, A variety of sensing materials must be graphically mapped to different array locations using more complex processes. The vertical stacking process of the present invention will effectively simplify the manufacturing process and thereby reduce the process cost. In addition, in this case, a complex sensing layer is used. Therefore, after a plurality of types of molecules to be tested enter the sensing layers, the electrical signals can be read according to the sensing layers corresponding to the molecules to be tested, thereby achieving the purpose of simultaneous observation. Furthermore, when a specific molecule to be tested is targeted, the reaction contact area corresponding to the molecule to be tested can be repeatedly stacked to increase the reaction contact area, thereby amplifying the reaction to improve the sensitivity. Moreover, when targeting a specific molecule to be tested, a different material that reacts with the molecule to be tested can be selected as the sensing layer. According to each reaction layer, a database of molecules to be tested is established, and the accuracy of sensing is effectively improved by cross-matching or fingerprint comparison, and the influence of environmental molecules on sensing is excluded.

以上所述之實施例僅是為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。 The embodiments described above are only intended to illustrate the technical idea and the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the contents of the present invention and to implement the present invention. That is, the equivalent variations or modifications made by the spirit of the present invention should still be included in the scope of the present invention.

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧底部電極 20‧‧‧ bottom electrode

303‧‧‧有機奈米顆粒 303‧‧‧Organic nanoparticles

306‧‧‧絕緣層 306‧‧‧Insulation

307‧‧‧具有孔洞的電極層 307‧‧‧electrode layer with holes

H1‧‧‧孔洞 H1‧‧‧ hole

Claims (11)

一種垂直式感測器,用以感測至少一待測氣體,其包含:一基板;一底部電極,係設置於該基板上;以及一可穿透電極組結構,包含一絕緣層,形成一多孔狀結構,且設置於該底部電極上,一可穿透電極層,包含一設置於該絕緣層上的具有孔洞的電極層,及一感測層,用以與該待測氣體反應並包含感測材料,且位於該具有孔洞的電極層的孔洞內且連接該具有孔洞的電極層,並自該具有孔洞的電極層的孔洞延伸進入該絕緣層的多孔狀結構,而與該底部電極連接。 a vertical sensor for sensing at least one gas to be tested, comprising: a substrate; a bottom electrode disposed on the substrate; and a penetrable electrode group structure including an insulating layer to form a a porous structure, disposed on the bottom electrode, a permeable electrode layer, comprising an electrode layer having a hole disposed on the insulating layer, and a sensing layer for reacting with the gas to be tested Having a sensing material and located in the hole of the electrode layer having the hole and connecting the electrode layer having the hole, and extending from the hole of the electrode layer having the hole into the porous structure of the insulating layer, and the bottom electrode connection. 如請求項1之垂直式感測器,其中,該感測層連接該具有孔洞的電極層的頂面,並自該頂面延伸進入該具有孔洞的電極層的孔洞。 The vertical sensor of claim 1, wherein the sensing layer is connected to the top surface of the electrode layer having the hole and extends from the top surface into the hole of the electrode layer having the hole. 如請求項1之垂直式感測器,其中,該感測材料包含接觸該待測氣體後,會產生電性變化之有機材料或無機材料,或由該有機材料或該無機材料中至少其中之一混摻之複合材料。 The vertical sensor of claim 1, wherein the sensing material comprises an organic material or an inorganic material that generates an electrical change after contacting the gas to be tested, or at least one of the organic material or the inorganic material A blend of composite materials. 如請求項3之垂直式感測器,其中,該無機材料選自於矽、碳、氧化鋅(ZnO)、氧化鎢(WO3)、二氧化鈦(TiO2)、氧化銦鎵(IGZO),或上述任意的組合。 The vertical sensor of claim 3, wherein the inorganic material is selected from the group consisting of ruthenium, carbon, zinc oxide (ZnO), tungsten oxide (WO 3 ), titanium dioxide (TiO 2 ), indium gallium oxide (IGZO), or Any combination of the above. 如請求項3之垂直式感測器,其中,該有機材料選自於導電高分子、有機半導體材料、其他電特性可作為電子或電洞傳輸之有機材料,或上述任意的組合。 The vertical sensor of claim 3, wherein the organic material is selected from the group consisting of a conductive polymer, an organic semiconductor material, an organic material that can be transmitted as an electron or a hole, or any combination thereof. 如請求項3之垂直式感測器,其中,該有機材料選自於聚噻吩類(Polythiophene)、富勒烯類、酞菁類環化合物、多環芳香烴類、TCNQ(Tetracyanoquinodimethane)類、二胺類、苯胺類,或上述任意的組合。 The vertical sensor of claim 3, wherein the organic material is selected from the group consisting of polythiophenes, fullerenes, phthalocyanine ring compounds, polycyclic aromatic hydrocarbons, TCNQ (Tetracyanoquinodimethane), and Amines, anilines, or any combination of the above. 如請求項1之垂直式感測器,其中,該可穿透電極層的具有孔洞的電極層包含一導電材料或由該導電材料所構成。 The vertical sensor of claim 1, wherein the electrode layer having the holes of the penetrable electrode layer comprises or consists of a conductive material. 如請求項7之垂直式感測器,其中,該導電材料包含選自金屬、金屬化合材料、透明氧化物、奈米金屬線、奈米碳管、石墨烯及其氧化物、或其複合材料所組成之群組之其中之一。 The vertical sensor of claim 7, wherein the conductive material comprises a metal selected from the group consisting of a metal, a metal compound, a transparent oxide, a nanowire, a carbon nanotube, a graphene and an oxide thereof, or a composite thereof One of the groups formed. 一種垂直式感測器之製造方法,其中該垂直式感測器係用以感測至少一待測氣體,其步驟包含:提供一基板,於該基板上形成一底部電極;以及於該底部電極上形成一可穿透電極組結構,其中該可穿透電極組結構包含:該絕緣層形成一多孔狀結構,且設置於該底部電極上,一可穿透電極層,包含一設置於該底部電極上方的具有孔洞的電極層,一感測層,用以與該待測氣體反應並包含感測材料,位於該具有孔洞的電極層的孔洞內且連接該具有孔洞的電極層,並自該具有孔洞的電極層的孔洞延伸進入該絕緣層的多孔狀結構,而與該底部電極連接,其中形成該可穿透電極組結構的方法包含: 形成一絕緣層於該底部電極;形成一具有孔洞的電極層於該絕緣層上;移除暴露出於該具有孔洞的電極層的孔洞的部分該絕緣層,以獲得形成多孔狀結構的介電層;以及將一感測材料設置於該具有孔洞的電極層的孔洞內,而形成該感測層。 A method for manufacturing a vertical sensor, wherein the vertical sensor is configured to sense at least one gas to be tested, the method comprising: providing a substrate, forming a bottom electrode on the substrate; and the bottom electrode Forming a permeable electrode group structure, wherein the permeable electrode group structure comprises: the insulating layer forming a porous structure, and disposed on the bottom electrode, a permeable electrode layer, including a An electrode layer having a hole above the bottom electrode, a sensing layer for reacting with the gas to be tested and containing a sensing material, located in the hole of the electrode layer having the hole and connecting the electrode layer having the hole, and The hole of the electrode layer having the hole extends into the porous structure of the insulating layer and is connected to the bottom electrode, wherein the method for forming the penetrable electrode group structure comprises: Forming an insulating layer on the bottom electrode; forming an electrode layer having a hole on the insulating layer; removing a portion of the insulating layer exposed to the hole of the electrode layer having the hole to obtain a dielectric forming the porous structure And forming a sensing material by disposing a sensing material in the hole of the electrode layer having the hole. 如請求項9之垂直式感測器之製造方法,其中形成該具有孔洞的電極層的方法包含:設置複數個有機奈米顆粒於該絕緣層上,其中該複數個有機奈米顆粒之間具有一間隙以暴露出部分該絕緣層;以及以該複數個有機奈米顆粒為遮罩,形成一電極層於暴露的部分該絕緣層上;移除該複數個有機奈米顆粒,而於該絕緣層上形成該具有孔洞的電極層。 The method of manufacturing the vertical sensor of claim 9, wherein the method of forming the electrode layer having the hole comprises: setting a plurality of organic nano particles on the insulating layer, wherein the plurality of organic nano particles have a gap to expose a portion of the insulating layer; and masking the plurality of organic nanoparticles to form an electrode layer on the exposed portion of the insulating layer; removing the plurality of organic nano particles, and insulating the insulating layer The electrode layer having holes is formed on the layer. 如請求項9之垂直式感測器之製造方法,其中形成該具有孔洞的電極層的方法包含:形成一電極層於該絕緣層上;設置一抗反射光阻塗佈層於該電極層上;於該抗反射光阻塗佈層上形成一圖案化遮罩結構,暴露出部分該電極層;以及移除暴露出的部分該電極層,形成該具有孔洞的電極層。 The method of manufacturing the vertical sensor of claim 9, wherein the method of forming the electrode layer having the hole comprises: forming an electrode layer on the insulating layer; and providing an anti-reflective photoresist coating layer on the electrode layer Forming a patterned mask structure on the anti-reflective photoresist coating layer to expose a portion of the electrode layer; and removing the exposed portion of the electrode layer to form the electrode layer having the holes.
TW105141541A 2014-10-31 2014-10-31 Vertical sensor and manufacturing method thereof TWI597496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105141541A TWI597496B (en) 2014-10-31 2014-10-31 Vertical sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141541A TWI597496B (en) 2014-10-31 2014-10-31 Vertical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201708813A TW201708813A (en) 2017-03-01
TWI597496B true TWI597496B (en) 2017-09-01

Family

ID=58774391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141541A TWI597496B (en) 2014-10-31 2014-10-31 Vertical sensor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI597496B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653753B (en) * 2017-09-12 2019-03-11 元太科技工業股份有限公司 Sensing element
TWI675197B (en) * 2018-12-27 2019-10-21 國立交通大學 Gas-sensing apparatus
TWI830496B (en) * 2022-11-15 2024-01-21 國立陽明交通大學 Organic gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8001828B2 (en) * 2006-05-12 2011-08-23 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Miniaturized metal (metal alloy)/ PdOx/SiC hydrogen and hydrocarbon gas sensors
TW201215882A (en) * 2010-10-11 2012-04-16 Univ Nat Chiao Tung Vertical type sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8001828B2 (en) * 2006-05-12 2011-08-23 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Miniaturized metal (metal alloy)/ PdOx/SiC hydrogen and hydrocarbon gas sensors
TW201215882A (en) * 2010-10-11 2012-04-16 Univ Nat Chiao Tung Vertical type sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ming-Yen Chuang , Hsiao-Wen Zan , Peichen Yu , Yi-Chun Lai , Hsin-Fei Meng," Gas permeable silver nanowire electrode for realizing vertical type sensitive gas sensor",Organic Electronics 15 (2014) P2769–P2774,Available online 2014-08-14 *

Also Published As

Publication number Publication date
TW201708813A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
TWI574005B (en) Vertical sensor having multiple layers and manufacturing method thereof, and sensing system and sensing method using the vertical sensor having multiple layers
Yan et al. Inkjet printing for flexible and wearable electronics
Kauffman et al. Chemically induced potential barriers at the carbon nanotube− metal nanoparticle interface
Shu et al. Cu2+-doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing
Wang et al. Flexible transparent electronic gas sensors
Rim et al. Recent progress in materials and devices toward printable and flexible sensors
Abdellah et al. Flexible carbon nanotube based gas sensors fabricated by large-scale spray deposition
Kumar et al. A review on сhemiresistive gas sensors based on carbon nanotubes: device and technology transformation
Loh et al. Graphene and graphene-like molecules: prospects in solar cells
Abdelhalim et al. Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles
Kaskela et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique
Choi et al. Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p–n heterojunctions by functionalization with p-Cr2O3 nanoparticles
Sharma et al. A review of silver nanowire-based composites for flexible electronic applications
Lau et al. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates
Wang et al. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors
Alam et al. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays
US20150185180A1 (en) Fluid sensor chip and method for manufacturing the same
Offermans et al. Gas detection with vertical InAs nanowire arrays
Sekitani et al. Stretchable, large‐area organic electronics
EP2054716B1 (en) Nanostructure sensors
Wu et al. Free‐standing and eco‐friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli
Abdellah et al. Scalable spray deposition process for high-performance carbon nanotube gas sensors
US20050169798A1 (en) Sensitivity control for nanotube sensors
Wang et al. Functionalized horizontally aligned CNT array and random CNT network for CO2 sensing
TWI597496B (en) Vertical sensor and manufacturing method thereof