TWI596786B - Back contact solar cell and method for manufacturing the same - Google Patents

Back contact solar cell and method for manufacturing the same Download PDF

Info

Publication number
TWI596786B
TWI596786B TW104140523A TW104140523A TWI596786B TW I596786 B TWI596786 B TW I596786B TW 104140523 A TW104140523 A TW 104140523A TW 104140523 A TW104140523 A TW 104140523A TW I596786 B TWI596786 B TW I596786B
Authority
TW
Taiwan
Prior art keywords
layer
sub
forming
block
electric field
Prior art date
Application number
TW104140523A
Other languages
Chinese (zh)
Other versions
TW201721888A (en
Inventor
賴光傑
莊佳智
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW104140523A priority Critical patent/TWI596786B/en
Publication of TW201721888A publication Critical patent/TW201721888A/en
Application granted granted Critical
Publication of TWI596786B publication Critical patent/TWI596786B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

背接觸太陽能電池及其製造方法 Back contact solar cell and method of manufacturing same

本發明是有關於一種太陽能電池,且特別是有關於一種背接觸太陽能電池。 This invention relates to a solar cell, and more particularly to a back contact solar cell.

目前高效率太陽能電池仍屬於背接觸式高電流型太陽能電池與異質接面高電壓太陽能電池。一般而言,背接觸式高電流型太陽能電池具有較高之短路電流(Jsc),而異質接面高電壓太陽能電池具有較高之開路電壓(Voc)。 At present, high-efficiency solar cells still belong to back-contact high-current solar cells and heterojunction high-voltage solar cells. In general, back contact high current solar cells have a higher short circuit current (Jsc), while heterojunction high voltage solar cells have a higher open circuit voltage (Voc).

請參照圖1,其係繪示一種傳統背接觸太陽能電池的剖面示意圖。背接觸太陽能電池100主要包含n型基板102、n+型前面電場(front surface field)104、第一鈍化層106、n+型摻雜區108、p+型摻雜區110、第二鈍化層112、第一電極114與第二電極116。 Please refer to FIG. 1 , which is a cross-sectional view showing a conventional back contact solar cell. The back contact solar cell 100 mainly includes an n-type substrate 102, an n + type front surface field 104, a first passivation layer 106, an n + -type doping region 108, a p + -type doping region 110, and a second passivation layer. 112. The first electrode 114 and the second electrode 116.

在背接觸太陽能電池100中,n型基板102具有正面118與背面120,其中正面118與背面120分別位於n型基板102之相對二側。正面118一般為背接觸太陽能電池100之受光面,且其上設有粗糙結構122,以增加n型基板102之入光量。n+型前面電場104全面性地設於n型基板102內且位於正面118。第一鈍化層106覆蓋在n型基板102之正面118上。 In the back contact solar cell 100, the n-type substrate 102 has a front side 118 and a back side 120, wherein the front side 118 and the back side 120 are respectively located on opposite sides of the n-type substrate 102. The front surface 118 is generally a back surface of the light receiving surface of the solar cell 100, and is provided with a roughness 122 thereon to increase the amount of light entering the n-type substrate 102. The n + -type front electric field 104 is provided entirely within the n-type substrate 102 and on the front side 118. The first passivation layer 106 overlies the front side 118 of the n-type substrate 102.

n+型摻雜區108與p+型摻雜區110分別設置於n型基板102內之局部區域,並鄰近n型基板102之背面120。第二鈍化層112覆蓋在n型基板102之背面120上。第一電極114設於第二鈍化層112上,且穿過第二鈍化層112而與n+型摻雜區108電連接。第二電極116同樣設於第二鈍化層112上,且穿過第二鈍化層112而與p+型摻雜區110電連接。 The n + -type doped region 108 and the p + -type doped region 110 are respectively disposed in a partial region within the n-type substrate 102 and adjacent to the back surface 120 of the n-type substrate 102. The second passivation layer 112 is overlaid on the back surface 120 of the n-type substrate 102. The first electrode 114 is disposed on the second passivation layer 112 and electrically connected to the n + -type doping region 108 through the second passivation layer 112 . The second electrode 116 is also disposed on the second passivation layer 112 and electrically connected to the p + -type doping region 110 through the second passivation layer 112 .

請參照圖2,其係繪示一種傳統異質接面太陽能電池的剖面示意圖。異質接面太陽能電池200主要包含n型基板202、本質型非晶矽層204、n型非晶矽層206、透明導電層208、本質型非晶矽層210、p型非晶矽層212、第一電極214與第二電極216。 Please refer to FIG. 2 , which is a cross-sectional view showing a conventional heterojunction solar cell. The heterojunction solar cell 200 mainly includes an n-type substrate 202, an intrinsic amorphous germanium layer 204, an n-type amorphous germanium layer 206, a transparent conductive layer 208, an intrinsic amorphous germanium layer 210, and a p-type amorphous germanium layer 212. The first electrode 214 and the second electrode 216.

在異質接面太陽能電池200中,n型基板202具有分別位於n型基板202之相對二側的正面218與背面220。n型基板202之正面218一般為異質接面太陽能電池200之受光面,且其上設有粗糙結構222,以增加n型基板202之入光量。本質型非晶矽層204全面性地設於n型基板202之正面218上,提供鈍化n型基板202之正面218的效果。n型非晶矽層206覆蓋在本質型非晶矽層204上,其中n型非晶矽層206之摻雜濃度大於n型基板202之摻雜濃度。透明導電層208覆蓋在n型非晶矽層206上,以提供電性傳導,藉此改善因非晶矽材料阻抗較高所導致的電性效能不佳的問題。 In the heterojunction solar cell 200, the n-type substrate 202 has a front surface 218 and a rear surface 220 which are respectively located on opposite sides of the n-type substrate 202. The front surface 218 of the n-type substrate 202 is generally a light receiving surface of the heterojunction solar cell 200, and is provided with a roughness 222 thereon to increase the amount of light entering the n-type substrate 202. The intrinsic amorphous germanium layer 204 is provided entirely on the front side 218 of the n-type substrate 202 to provide the effect of passivating the front side 218 of the n-type substrate 202. The n-type amorphous germanium layer 206 is overlaid on the intrinsic amorphous germanium layer 204, wherein the doping concentration of the n-type amorphous germanium layer 206 is greater than the doping concentration of the n-type substrate 202. A transparent conductive layer 208 is overlaid on the n-type amorphous germanium layer 206 to provide electrical conduction, thereby improving the problem of poor electrical performance due to high impedance of the amorphous germanium material.

如圖2所示,本質型非晶矽層210設於n型基板202之背面220上。p型非晶矽層212則覆蓋在本質型非晶矽 層210上。n型基板202、本質型非晶矽層210與p型非晶矽層212形成異質結構接面。第一電極214設置在透明導電層208上,並與透明導電層208電連接。第二電極216設置在p型非晶矽層212上,並與p型非晶矽層212電連接。 As shown in FIG. 2, an intrinsic amorphous germanium layer 210 is provided on the back surface 220 of the n-type substrate 202. The p-type amorphous germanium layer 212 is covered by the intrinsic amorphous germanium On layer 210. The n-type substrate 202, the intrinsic amorphous germanium layer 210 and the p-type amorphous germanium layer 212 form a heterostructure junction. The first electrode 214 is disposed on the transparent conductive layer 208 and is electrically connected to the transparent conductive layer 208. The second electrode 216 is disposed on the p-type amorphous germanium layer 212 and is electrically connected to the p-type amorphous germanium layer 212.

因此,本發明之一目的就是在提供一種背接觸太陽能電池及其製造方法,其於第一導電型基板之背面形成依序堆疊之本質型與第二導電型非晶系半導體層,因而本質型與第二導電型非晶系半導體層可與第一導電型基板形成異質結構接面,藉此可有效提升太陽能電池之開路電壓。此外,太陽能電池具有背接觸電極的設計,可提升太陽能電池之短路電流。 Therefore, an object of the present invention is to provide a back contact solar cell and a method of fabricating the same, which form an intrinsic type and a second conductivity type amorphous semiconductor layer which are sequentially stacked on the back surface of the first conductive type substrate, and thus are intrinsic The second conductive type amorphous semiconductor layer can form a heterojunction junction with the first conductive type substrate, whereby the open circuit voltage of the solar cell can be effectively improved. In addition, the solar cell has a back contact electrode design that enhances the short circuit current of the solar cell.

本發明之另一目的是在提供一種背接觸太陽能電池及其製造方法,其於第一導電型基板之背面設置透明導電氧化物層來作為電性傳導,藉此可改善非晶系半導體層電阻較高的問題。此外,透明導電氧化物層的設置亦可增進金屬電極與非晶系半導體層之間的附著力。再者,透明導電氧化物層不僅可在後續金屬電極的電鍍時,作為晶種層,亦可防止金屬的擴散。 Another object of the present invention is to provide a back contact solar cell and a method of fabricating the same, which are provided with a transparent conductive oxide layer on the back surface of the first conductive type substrate as electrical conduction, thereby improving the resistance of the amorphous semiconductor layer Higher problem. Further, the arrangement of the transparent conductive oxide layer can also enhance the adhesion between the metal electrode and the amorphous semiconductor layer. Furthermore, the transparent conductive oxide layer can serve as a seed layer not only for the subsequent plating of the metal electrode, but also for preventing the diffusion of the metal.

本發明之又一目的是在提供一種背接觸太陽能電池之製造方法,其可利用離子佈植技術,而在預形成之區域直接摻雜而形成前面電場與同質接面背面電場(bask surface field),因此相較於傳統的爐管擴散製程,本方法可減少製程步驟。 It is still another object of the present invention to provide a method of fabricating a back contact solar cell that utilizes ion implantation techniques to directly dope in a pre-formed region to form a front electric field and a bask surface field. Therefore, the method can reduce the number of process steps compared to the conventional furnace tube diffusion process.

根據本發明之上述目的,提出一種背接觸太陽能電池之製造方法。在此方法中,形成同質接面背面電場於半導體基板之背面之第一區域中,其中同質接面背面電場與半導體基板皆為第一導電型。形成第一鈍化層覆蓋前述同質接面背面電場。形成非晶系半導體層覆蓋背面之第二區域,其中非晶系半導體層包含第一子層、以及位於第一子層上之第二子層,第一子層為本質型,第二子層為第二導電型。形成接觸窗開口於前述第一鈍化層中。形成透明導電氧化物層,其中透明導電氧化物層包含第一區塊、以及與第一區塊分離之第二區塊,第一區塊經由接觸窗開口而與同質接面背面電場相接,第二區塊覆蓋於第二子層上。形成二電鍍金屬電極分別位於透明導電氧化物層之第一區塊與第二區塊上。 According to the above object of the present invention, a method of manufacturing a back contact solar cell is proposed. In this method, a back surface electric field of the homojunction is formed in a first region of the back surface of the semiconductor substrate, wherein the electric field on the back surface of the homojunction and the semiconductor substrate are both of the first conductivity type. Forming a first passivation layer covers the back surface electric field of the aforementioned homojunction. Forming a second region of the back surface of the amorphous semiconductor layer, wherein the amorphous semiconductor layer comprises a first sub-layer and a second sub-layer on the first sub-layer, the first sub-layer being intrinsic, the second sub-layer It is a second conductivity type. A contact opening is formed in the aforementioned first passivation layer. Forming a transparent conductive oxide layer, wherein the transparent conductive oxide layer comprises a first block and a second block separated from the first block, the first block being connected to the back surface electric field of the homojunction via the contact window opening, The second block covers the second sub-layer. Forming the two electroplated metal electrodes are respectively located on the first block and the second block of the transparent conductive oxide layer.

依據本發明之一實施例,上述背接觸太陽能電池之製造方法更包含:於半導體基板之正面內形成前面電場;以及形成第二鈍化層覆蓋前面電場,其中每一第一鈍化層與第二鈍化層包含氧化矽層與氮化矽層,且第一鈍化層之氧化矽層與第二鈍化層之氧化矽層係在前面電場形成後之熱氧化製程中同時形成。 According to an embodiment of the present invention, the method for fabricating the back contact solar cell further includes: forming a front electric field in a front surface of the semiconductor substrate; and forming a second passivation layer covering the front electric field, wherein each of the first passivation layer and the second passivation The layer comprises a tantalum oxide layer and a tantalum nitride layer, and the tantalum oxide layer of the first passivation layer and the tantalum oxide layer of the second passivation layer are simultaneously formed in a thermal oxidation process after the formation of the front electric field.

依據本發明之另一實施例,上述之第一鈍化層之氮化矽層與第二鈍化層之氮化矽層係分別在二沉積製程中形成。 According to another embodiment of the present invention, the tantalum nitride layer of the first passivation layer and the tantalum nitride layer of the second passivation layer are respectively formed in a two deposition process.

依據本發明之又一實施例,於形成前面電場之步驟前,上述背接觸太陽能電池之製造方法更包含對半導體 基板之正面進行蝕刻步驟,以於正面上形成類金字塔型結構。 According to still another embodiment of the present invention, before the step of forming the front electric field, the method for manufacturing the back contact solar cell further includes a semiconductor An etching step is performed on the front side of the substrate to form a pyramid-like structure on the front surface.

依據本發明之再一實施例,上述形成第一鈍化層之步驟包含形成鈍化材料層覆蓋半導體基板之背面、以及移除部分之鈍化材料層。 According to still another embodiment of the present invention, the step of forming the first passivation layer includes forming a passivation material layer covering the back surface of the semiconductor substrate, and removing a portion of the passivation material layer.

依據本發明之再一實施例,上述形成非晶系半導體層之步驟包含:形成第一子材料層覆蓋第一鈍化層與半導體基板之背面;形成第二子材料層覆蓋第一子材料層;以及移除部分之第一子材料層與部分之第二子材料層,以形成依序堆疊在第二區域上之第一子層與第二子層。 According to still another embodiment of the present invention, the step of forming the amorphous semiconductor layer includes: forming a first sub-material layer covering the back surface of the first passivation layer and the semiconductor substrate; forming a second sub-material layer covering the first sub-material layer; And removing a portion of the first sub-material layer and a portion of the second sub-material layer to form a first sub-layer and a second sub-layer sequentially stacked on the second region.

依據本發明之再一實施例,上述形成透明導電氧化物層之步驟包含:形成透明導電氧化物材料層覆蓋第二子層與第一鈍化層,其中透明導電氧化物材料層從第二子層延伸至第一鈍化層;於形成電鍍金屬電極之步驟前,形成一阻隔層於第一區塊與第二區塊之間之透明導電氧化物材料層上;以及於形成電鍍金屬電極之步驟後,移除阻隔層與阻隔層下方之透明導電氧化物材料層,以形成彼此分離之第一區塊與第二區塊。 According to still another embodiment of the present invention, the step of forming a transparent conductive oxide layer comprises: forming a transparent conductive oxide material layer covering the second sub-layer and the first passivation layer, wherein the transparent conductive oxide material layer is from the second sub-layer Extending to the first passivation layer; forming a barrier layer on the transparent conductive oxide material layer between the first block and the second block before the step of forming the plated metal electrode; and after forming the step of forming the plated metal electrode And removing the transparent conductive oxide material layer under the barrier layer and the barrier layer to form the first block and the second block separated from each other.

依據本發明之再一實施例,上述形成電鍍金屬電極之步驟包含於形成阻隔層之步驟後,利用透明導電氧化物材料層作為電鍍晶種層。 According to still another embodiment of the present invention, the step of forming a plated metal electrode includes, after the step of forming a barrier layer, using a transparent conductive oxide material layer as the plating seed layer.

依據本發明之再一實施例,上述之移除阻隔層下方之透明導電氧化物材料層係利用以電鍍金屬電極為複數個蝕刻罩幕之回蝕刻製程。 According to still another embodiment of the present invention, the transparent conductive oxide material layer under the removal of the barrier layer utilizes an etch back process using a plated metal electrode as a plurality of etch masks.

根據本發明之上述目的,另提出一種背接觸太陽能電池。此背接觸太陽能電池包含半導體基板、同質接面背面電場、鈍化層、非晶系半導體層、透明導電氧化物層以及二電鍍金屬電極。同質接面背面電場設於半導體基板之背面之第一區域中,其中同質接面背面電場與半導體基板皆為第一導電型。鈍化層覆蓋同質接面背面電場,其中鈍化層包含依序堆疊之氧化矽層與氮化矽層,且鈍化層具有接觸窗開口。非晶系半導體層設於背面之第二區域上,其中非晶系半導體層包含第一子層、以及位於第一子層上之第二子層,第一子層為本質型,第二子層為第二導電型。透明導電氧化物層包含第一區塊、以及與第一區塊分離之第二區塊,其中第一區塊經由接觸窗開口而與同質接面背面電場相接,第二區塊設於第二子層上。前述二電鍍金屬電極分別位於透明導電氧化物層之第一區塊與第二區塊上。 According to the above object of the present invention, a back contact solar cell is further proposed. The back contact solar cell comprises a semiconductor substrate, a homogenous junction back surface electric field, a passivation layer, an amorphous semiconductor layer, a transparent conductive oxide layer, and a two-plated metal electrode. The electric field on the back surface of the homojunction is disposed in the first region of the back surface of the semiconductor substrate, wherein the electric field on the back surface of the homojunction and the semiconductor substrate are both of the first conductivity type. The passivation layer covers the back surface electric field of the homojunction, wherein the passivation layer comprises a tantalum oxide layer and a tantalum nitride layer which are sequentially stacked, and the passivation layer has a contact window opening. The amorphous semiconductor layer is disposed on the second region of the back surface, wherein the amorphous semiconductor layer comprises a first sub-layer and a second sub-layer on the first sub-layer, the first sub-layer is of an essential type, the second sub- The layer is of the second conductivity type. The transparent conductive oxide layer comprises a first block and a second block separated from the first block, wherein the first block is connected to the back surface electric field of the homojunction via the contact window opening, and the second block is located at the second block On the second sub-layer. The two electroplated metal electrodes are respectively located on the first block and the second block of the transparent conductive oxide layer.

100‧‧‧背接觸太陽能電池 100‧‧‧Back contact solar cells

102‧‧‧n型基板 102‧‧‧n type substrate

104‧‧‧n+型前面電場 104‧‧‧n + type front electric field

106‧‧‧第一鈍化層 106‧‧‧First passivation layer

108‧‧‧n+型摻雜區 108‧‧‧n + doped area

110‧‧‧p+型摻雜區 110‧‧‧p + doped region

112‧‧‧第二鈍化層 112‧‧‧Second passivation layer

114‧‧‧第一電極 114‧‧‧First electrode

116‧‧‧第二電極 116‧‧‧Second electrode

118‧‧‧正面 118‧‧‧ positive

120‧‧‧背面 120‧‧‧Back

122‧‧‧粗糙結構 122‧‧‧Rough structure

200‧‧‧異質接面太陽能電池 200‧‧‧Hexual junction solar cells

202‧‧‧n型基板 202‧‧‧n type substrate

204‧‧‧本質型非晶矽層 204‧‧‧ Essential amorphous layer

206‧‧‧n型非晶矽層 206‧‧‧n type amorphous layer

208‧‧‧透明導電層 208‧‧‧Transparent conductive layer

210‧‧‧本質型非晶矽層 210‧‧‧ Essential amorphous layer

212‧‧‧p型非晶矽層 212‧‧‧p-type amorphous germanium layer

214‧‧‧第一電極 214‧‧‧First electrode

216‧‧‧第二電極 216‧‧‧second electrode

218‧‧‧正面 218‧‧‧ positive

220‧‧‧背面 220‧‧‧Back

300‧‧‧背接觸太陽能電池 300‧‧‧ Back contact solar cells

302‧‧‧半導體基板 302‧‧‧Semiconductor substrate

304‧‧‧同質接面背面電場 304‧‧‧Homogeneous junction back surface electric field

306‧‧‧鈍化層 306‧‧‧ Passivation layer

308‧‧‧非晶系半導體層 308‧‧‧Amorphous semiconductor layer

310‧‧‧透明導電氧化物層 310‧‧‧Transparent conductive oxide layer

312‧‧‧電鍍金屬電極 312‧‧‧Electroplated metal electrodes

314‧‧‧電鍍金屬電極 314‧‧‧Electroplated metal electrodes

316‧‧‧正面 316‧‧‧ positive

318‧‧‧背面 318‧‧‧ back

320‧‧‧粗糙結構 320‧‧‧Rough structure

322‧‧‧第一區域 322‧‧‧First area

324‧‧‧氧化矽層 324‧‧‧Oxide layer

326‧‧‧氮化矽層 326‧‧‧layer of tantalum nitride

328‧‧‧接觸窗開口 328‧‧‧Contact window opening

330‧‧‧第二區域 330‧‧‧Second area

332‧‧‧第一子層 332‧‧‧ first sub-layer

334‧‧‧第二子層 334‧‧‧ second sub-layer

336‧‧‧第一區塊 336‧‧‧ first block

338‧‧‧第二區塊 338‧‧‧Second block

340‧‧‧前面電場 340‧‧‧ front electric field

342‧‧‧鈍化層 342‧‧‧ Passivation layer

344‧‧‧氧化矽層 344‧‧‧Oxide layer

346‧‧‧氮化矽層 346‧‧‧ layer of tantalum nitride

400‧‧‧背接觸太陽能電池 400‧‧‧Back contact solar cell

402‧‧‧半導體基板 402‧‧‧Semiconductor substrate

404‧‧‧正面 404‧‧‧ positive

406‧‧‧背面 406‧‧‧Back

408‧‧‧粗糙結構 408‧‧‧Rough structure

410‧‧‧同質接面背面電場 410‧‧‧Homogeneous junction back surface electric field

412‧‧‧第一區域 412‧‧‧First area

414‧‧‧前面電場 414‧‧‧ front electric field

416‧‧‧鈍化材料層 416‧‧‧ Passivation material layer

418‧‧‧氧化矽層 418‧‧‧Oxide layer

420‧‧‧氮化矽層 420‧‧‧ tantalum nitride layer

422‧‧‧第二鈍化層 422‧‧‧Second passivation layer

424‧‧‧氧化矽層 424‧‧‧Oxide layer

426‧‧‧氮化矽層 426‧‧‧ layer of tantalum nitride

428‧‧‧第一鈍化層 428‧‧‧First passivation layer

430‧‧‧蝕刻遮罩 430‧‧‧ etching mask

432‧‧‧氧化矽層 432‧‧‧Oxide layer

434‧‧‧氮化矽層 434‧‧‧layer of tantalum nitride

436‧‧‧非晶系半導體材料層 436‧‧‧Amorphous semiconductor material layer

438‧‧‧第一子材料層 438‧‧‧First child material layer

440‧‧‧第二子材料層 440‧‧‧Second sub-material layer

442‧‧‧非晶系半導體層 442‧‧‧Amorphous semiconductor layer

444‧‧‧第二區域 444‧‧‧Second area

446‧‧‧蝕刻遮罩 446‧‧‧ etching mask

448‧‧‧第一子層 448‧‧‧ first sub-layer

450‧‧‧第二子層 450‧‧‧Second sub-layer

452‧‧‧接觸窗開口 452‧‧‧Contact window opening

454‧‧‧透明導電氧化物材料層 454‧‧‧Transparent conductive oxide material layer

456‧‧‧阻隔層 456‧‧‧Barrier

458‧‧‧電鍍金屬電極 458‧‧‧Electroplated metal electrode

460‧‧‧電鍍金屬電極 460‧‧‧Electroplated metal electrode

462‧‧‧透明導電氧化物層 462‧‧‧Transparent conductive oxide layer

464‧‧‧第一區塊 464‧‧‧First block

466‧‧‧第二區塊 466‧‧‧Second block

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:〔圖1〕係繪示一種傳統背接觸太陽能電池的剖面示意圖;〔圖2〕係繪示一種傳統異質接面太陽能電池的剖面示意圖;〔圖3〕係繪示依照本發明之一實施方式的一種背接觸太陽能電池的剖面示意圖;以及 〔圖4A〕至〔圖4H〕係繪示依照本發明之一實施方式的一種背接觸太陽能電池之製程剖面示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Is a schematic cross-sectional view of a conventional heterojunction solar cell; [Fig. 3] is a schematic cross-sectional view of a back contact solar cell according to an embodiment of the present invention; 4A to 4H are schematic cross-sectional views showing a process of a back contact solar cell according to an embodiment of the present invention.

請參照圖3,其係繪示依照本發明之一實施方式的一種背接觸太陽能電池的剖面示意圖。背接觸太陽能電池300為異質/同質混合式接面背接觸太陽能電池。在一些例子中,背接觸太陽能電池300主要包含半導體基板302、同質接面背面電場304、鈍化層306、非晶系半導體層308、透明導電氧化物層310、以及二電鍍金屬電極312與314。 Please refer to FIG. 3 , which is a cross-sectional view of a back contact solar cell according to an embodiment of the present invention. The back contact solar cell 300 is a heterogeneous/homogeneous hybrid junction back contact solar cell. In some examples, the back contact solar cell 300 primarily includes a semiconductor substrate 302, a homojunction back surface electric field 304, a passivation layer 306, an amorphous semiconductor layer 308, a transparent conductive oxide layer 310, and two plated metal electrodes 312 and 314.

半導體基板302可為第一導電型晶體系基板,例如以n型晶體矽所形成之基板。半導體基板302具有正面316、以及與正面316相對之背面318。在一些示範例子中,半導體基板302之正面316可經蝕刻等粗化處理,而具有許多粗糙結構320。舉例而言,這些粗糙結構320可為類金字塔型結構。 The semiconductor substrate 302 may be a first conductive type crystal system substrate, for example, a substrate formed of an n-type crystal germanium. The semiconductor substrate 302 has a front side 316 and a back side 318 opposite the front side 316. In some exemplary examples, the front side 316 of the semiconductor substrate 302 may be roughened by etching or the like, but has a plurality of roughness structures 320. For example, these roughness structures 320 can be pyramid-like structures.

同質接面背面電場304設於半導體基板302之背面318的第一區域322中。同質接面背面電場304可為摻雜部,例如磷摻雜部。同質接面背面電場304與半導體基板302之導電型相同,例如n型,而同質接面背面電場304之摻雜濃度高於半導體基板302。 The homojunction back surface electric field 304 is disposed in the first region 322 of the back surface 318 of the semiconductor substrate 302. The homojunction back surface electric field 304 can be a doped portion, such as a phosphorus doped portion. The homojunction back surface electric field 304 is the same as the conductivity type of the semiconductor substrate 302, for example, an n-type, and the doping concentration of the homojunction back surface electric field 304 is higher than that of the semiconductor substrate 302.

鈍化層306位於半導體基板302之背面318且覆蓋同質接面背面電場304。在一些例子中,鈍化層306包含依序堆疊在同質接面背面電場304上之氧化矽層324與氮化矽層326。如圖3所示,鈍化層306具有至少一接觸窗開口 328。此接觸窗開口328貫穿鈍化層306,即依序穿過氮化矽層326與氧化矽層324,而暴露出同質接面背面電場304之一部分。 The passivation layer 306 is located on the back side 318 of the semiconductor substrate 302 and covers the homojunction back surface electric field 304. In some examples, passivation layer 306 includes a hafnium oxide layer 324 and a tantalum nitride layer 326 that are sequentially stacked on a homojunction back surface electric field 304. As shown in FIG. 3, the passivation layer 306 has at least one contact opening. 328. The contact opening 328 extends through the passivation layer 306, sequentially through the tantalum nitride layer 326 and the hafnium oxide layer 324, exposing a portion of the homojunction back surface electric field 304.

非晶系半導體層308則設於半導體基板302之背面318的第二區域330上。在本實施方式中,背面318的第一區域322與第二區域330並未重疊,非晶系半導體層308包含第一子層332以及位於第一子層332上之第二子層334,其中第一子層332介於背面318與第二子層334之間。第一子層332為本質型非晶系半導體層,第二子層334為第二導電型非晶系半導體層。第二導電型可例如為p型。 The amorphous semiconductor layer 308 is provided on the second region 330 of the back surface 318 of the semiconductor substrate 302. In the present embodiment, the first region 322 of the back surface 318 and the second region 330 do not overlap, and the amorphous semiconductor layer 308 includes a first sub-layer 332 and a second sub-layer 334 on the first sub-layer 332, wherein The first sub-layer 332 is interposed between the back side 318 and the second sub-layer 334. The first sub-layer 332 is an intrinsic amorphous semiconductor layer, and the second sub-layer 334 is a second-conductivity-type amorphous semiconductor layer. The second conductivity type may be, for example, a p-type.

在一些例子中,透明導電氧化物層310包含第一區塊336與第二區塊338,其中第一區塊336與第二區塊338彼此分離。如圖3所示,第一區塊336設於鈍化層306上,且經由接觸窗開口328與同質接面背面電場304之暴露部分相接。第二區塊338覆蓋於非晶系半導體層308之第二子層334上。電鍍金屬電極312與314分別位於透明導電氧化物層310之第一區塊336與第二區塊338上。由於第一區塊336與第二區塊338分離,因此分別位於第一區塊336與第二區塊338上之電鍍金屬電極312與314亦彼此分離。 In some examples, the transparent conductive oxide layer 310 includes a first block 336 and a second block 338, wherein the first block 336 and the second block 338 are separated from one another. As shown in FIG. 3, the first block 336 is disposed on the passivation layer 306 and is in contact with the exposed portion of the homojunction back surface electric field 304 via the contact window opening 328. The second block 338 overlies the second sub-layer 334 of the amorphous semiconductor layer 308. The plated metal electrodes 312 and 314 are respectively located on the first block 336 and the second block 338 of the transparent conductive oxide layer 310. Since the first block 336 is separated from the second block 338, the plated metal electrodes 312 and 314 located on the first block 336 and the second block 338, respectively, are also separated from each other.

背接觸太陽能電池300同時具有背接觸式結構與異質接面結構。背接觸式結構可增加背接觸太陽能電池300之光吸收量,而可提升元件之短路電流。另一方面,異質接面結構可獲得較高之電場,而可提升元件之開路電壓。 因此,背接觸太陽能電池300兼具高短路電流與高開路電壓的特性。 The back contact solar cell 300 has both a back contact structure and a heterojunction structure. The back contact structure can increase the amount of light absorption of the back contact solar cell 300, and can increase the short circuit current of the element. On the other hand, the heterojunction structure can obtain a higher electric field and can increase the open circuit voltage of the component. Therefore, the back contact solar cell 300 has both high short-circuit current and high open circuit voltage characteristics.

請再次參照圖3,背接觸太陽能電池300更包含前面電場340,此前面電場340全面性地形成於半導體基板302之正面316內,前面電場340的導電型和基板302相同。在一些例子中,背接觸太陽能電池300更可包含鈍化層342,此鈍化層342位於半導體基板302之正面316上,且覆蓋於前面電場340上。在一些示範例子中,鈍化層342可包含依序堆疊在前面電場340上之氧化矽層344與氮化矽層346。 Referring again to FIG. 3, the back contact solar cell 300 further includes a front electric field 340 that is formed entirely in the front side 316 of the semiconductor substrate 302. The front electric field 340 has the same conductivity type as the substrate 302. In some examples, the back contact solar cell 300 can further include a passivation layer 342 on the front side 316 of the semiconductor substrate 302 and overlying the front electric field 340. In some exemplary examples, passivation layer 342 may include a hafnium oxide layer 344 and a tantalum nitride layer 346 that are sequentially stacked on front electric field 340.

請參照圖4A至圖4H,其係繪示依照本發明之一實施方式的一種背接觸太陽能電池之製程剖面示意圖。在一些例子中,製造如圖4H所示之背接觸太陽能電池400時,可先提供半導體基板402。半導體基板402可為第一導電型晶體系基板,例如以n型晶體矽所形成之基板。半導體基板402具有正面404、以及與正面404相對之背面406。在一些示範例子中,如圖4A所示,可根據產品需求,選擇性地對半導體基板402之正面404進行蝕刻步驟,藉以粗化正面404,而在正面404上形成許多粗糙結構408。舉例而言,這些粗糙結構408可為類金字塔型結構。 4A to 4H are schematic cross-sectional views showing a process of a back contact solar cell according to an embodiment of the present invention. In some examples, when the back contact solar cell 400 as shown in FIG. 4H is fabricated, the semiconductor substrate 402 may be provided first. The semiconductor substrate 402 may be a first conductive type crystal system substrate, for example, a substrate formed of an n-type crystal germanium. The semiconductor substrate 402 has a front side 404 and a back side 406 opposite the front side 404. In some exemplary examples, as shown in FIG. 4A, the front side 404 of the semiconductor substrate 402 may be selectively etched according to product requirements to roughen the front side 404 and form a plurality of roughness structures 408 on the front side 404. For example, these roughness structures 408 can be pyramid-like structures.

接著,如圖4B所示,利用例如離子佈植製程形成同質接面背面電場410於半導體基板402之背面406的第一區域412中。同質接面背面電場410經離子佈植製程後,可摻雜有許多摻質,例如磷。同質接面背面電場410與半導 體基板402可均為第一導電型,例如n型。同質接面背面電場410之摻雜濃度可高於半導體基板402。在一些示範例子中,形成同質接面背面電場410時,可先在背面406之第一區域412以外的區域覆蓋一層罩幕層(未繪示),以避免摻質植入第一區域412以外的背面406區域。 Next, as shown in FIG. 4B, a homojunction back surface electric field 410 is formed in the first region 412 of the back surface 406 of the semiconductor substrate 402 using, for example, an ion implantation process. The homogenous junction back surface electric field 410 may be doped with a plurality of dopants, such as phosphorus, after the ion implantation process. Homogeneous junction back surface electric field 410 and semiconducting The body substrates 402 may all be of a first conductivity type, such as an n-type. The doping concentration of the homojunction back surface electric field 410 can be higher than that of the semiconductor substrate 402. In some exemplary embodiments, when the homojunction back surface electric field 410 is formed, a mask layer (not shown) may be first covered in a region other than the first region 412 of the back surface 406 to prevent the dopant from being implanted outside the first region 412. The back 406 area.

請再次參照圖4B,可於粗糙結構408形成後,利用例如離子佈植製程形成前面電場414於半導體基板402之整個正面404內。前面電場414的導電型和半導體基板402相同,在半導體基板402的導電型為n型時,前面電場414可經離子佈植製程摻雜磷而形成。在一些例子中,前面電場414可在同質接面背面電場410形成後再形成。在另一些例子中,前面電場414可在同質接面背面電場410形成前先形成。由於可利用離子佈植製程形成前面電場414與同質接面背面電場410,因此相較於傳統的爐管擴散製程,本實施方式可減少例如以微影、蝕刻定義背面電場之製程步驟。 Referring again to FIG. 4B, the front electric field 414 can be formed within the entire front side 404 of the semiconductor substrate 402 using, for example, an ion implantation process after the roughness 408 is formed. The conductivity type of the front electric field 414 is the same as that of the semiconductor substrate 402. When the conductivity type of the semiconductor substrate 402 is n-type, the front electric field 414 can be formed by doping phosphorus with an ion implantation process. In some examples, the front electric field 414 can be formed after the homojunction back surface electric field 410 is formed. In other examples, the front electric field 414 can be formed prior to the formation of the homojunction back surface electric field 410. Since the front electric field 414 and the homojunction back surface electric field 410 can be formed by the ion implantation process, the present embodiment can reduce the process steps of defining the back surface electric field by, for example, lithography and etching, compared to the conventional furnace tube diffusion process.

如圖4C所示,形成鈍化材料層416覆蓋半導體基板402的整個背面406。在一些例子中,鈍化材料層416包含依序堆疊在背面406上的氧化矽層418與氮化矽層420。舉例而言,氧化矽層418之製作可利用熱氧化製程,氮化矽層420之製作可利用化學氣相沉積(CVD)製程或物理氣相沉積(PVD)製程。 As shown in FIG. 4C, a passivation material layer 416 is formed overlying the entire back surface 406 of the semiconductor substrate 402. In some examples, passivation material layer 416 includes a hafnium oxide layer 418 and a tantalum nitride layer 420 that are sequentially stacked on back side 406. For example, the yttrium oxide layer 418 can be fabricated using a thermal oxidation process, and the tantalum nitride layer 420 can be fabricated using a chemical vapor deposition (CVD) process or a physical vapor deposition (PVD) process.

請再次參照圖4C,在一些例子中,可形成第二鈍化層422於半導體基板402之正面404上,並覆蓋前面電場414。在一些例子中,第二鈍化層422包含依序堆疊在正 面404上的氧化矽層424與氮化矽層426。舉例而言,氧化矽層424之製作可利用熱氧化製程,氮化矽層426之製作可利用化學氣相沉積製程或物理氣相沉積製程。在一些示範例子中,鈍化材料層416之氧化矽層418與第二鈍化層422之氧化矽層424可在前面電場414形成後的一道熱氧化製程中同時形成。此外,鈍化材料層416之氮化矽層420與第二鈍化層422之氮化矽層426可分別在二道沉積製程中形成。 Referring again to FIG. 4C, in some examples, a second passivation layer 422 can be formed over the front side 404 of the semiconductor substrate 402 and overlying the front electric field 414. In some examples, the second passivation layer 422 includes sequentially stacked in a positive The tantalum oxide layer 424 and the tantalum nitride layer 426 on the face 404. For example, the yttrium oxide layer 424 can be fabricated using a thermal oxidation process, and the tantalum nitride layer 426 can be fabricated using a chemical vapor deposition process or a physical vapor deposition process. In some exemplary examples, the hafnium oxide layer 418 of the passivation material layer 416 and the hafnium oxide layer 424 of the second passivation layer 422 may be simultaneously formed in a thermal oxidation process after the formation of the front electric field 414. In addition, the tantalum nitride layer 420 of the passivation material layer 416 and the tantalum nitride layer 426 of the second passivation layer 422 can be formed in a two-pass deposition process, respectively.

在一些例子中,請同時參照圖4C與圖4D,可利用例如微影與蝕刻製程定義鈍化材料層416,而形成第一鈍化層428覆蓋同質接面背面電場410。舉例而言,定義鈍化材料層416之操作包含利用微影製程形成蝕刻遮罩430覆蓋在同質接面背面電場410上方之鈍化材料層416,再利用蝕刻製程移除未被蝕刻遮罩430遮蔽之鈍化材料層416的部分,而暴露出半導體基板402之背面406的一部分。移除此部分之鈍化材料層416之步驟包含移除部分之氧化矽層418與部分之氮化矽層420,而分別形成氧化矽層432與氮化矽層434。藉此,所形成之第一鈍化層428包含依序覆蓋在同質接面背面電場410上之氧化矽層432與氮化矽層434。完成第一鈍化層428後,可利用蝕刻或剝除等方式移除蝕刻遮罩430。 In some examples, referring also to FIGS. 4C and 4D, the passivation material layer 416 can be defined using, for example, a lithography and etching process, while the first passivation layer 428 is formed to cover the homojunction back surface electric field 410. For example, the operation of defining the passivation material layer 416 includes forming a passivation material layer 416 over the homojunction back surface electric field 410 using a lithography process to form an etch mask 430, and then removing the unetched mask 430 by an etch process. Portions of the material layer 416 are passivated while exposing a portion of the back side 406 of the semiconductor substrate 402. The step of removing the portion of the passivation material layer 416 includes removing a portion of the hafnium oxide layer 418 and a portion of the tantalum nitride layer 420 to form a hafnium oxide layer 432 and a tantalum nitride layer 434, respectively. Thereby, the formed first passivation layer 428 includes a tantalum oxide layer 432 and a tantalum nitride layer 434 which are sequentially covered on the homojunction back surface electric field 410. After the first passivation layer 428 is completed, the etch mask 430 can be removed by etching or stripping.

接著,如圖4E所示,形成非晶系半導體材料層436覆蓋半導體基板402之背面406與第一鈍化層428。在一示範例子中,形成非晶系半導體材料層436之步驟包含形成第一子材料層438覆蓋第一鈍化層428與半導體基板402之 背面406,接著形成第二子材料層440覆蓋第一子材料層438。第一子材料層438之材質為本質型非晶系半導體,例如本質型非晶矽。第二子材料層440之材質為第二導電型非晶系半導體,例如第二導電型非晶矽。舉例而言,形成第一子材料層438與第二子材料層440之步驟可利用電漿輔助化學氣相沉積(PECVD)技術。 Next, as shown in FIG. 4E, an amorphous semiconductor material layer 436 is formed to cover the back surface 406 of the semiconductor substrate 402 and the first passivation layer 428. In an exemplary embodiment, the step of forming the amorphous semiconductor material layer 436 includes forming a first sub-material layer 438 overlying the first passivation layer 428 and the semiconductor substrate 402. The back side 406 then forms a second sub-material layer 440 overlying the first sub-material layer 438. The material of the first sub-material layer 438 is an intrinsic amorphous semiconductor such as an intrinsic amorphous germanium. The material of the second sub-material layer 440 is a second-conductivity-type amorphous semiconductor, for example, a second-conductivity-type amorphous germanium. For example, the step of forming the first sub-material layer 438 and the second sub-material layer 440 may utilize a plasma assisted chemical vapor deposition (PECVD) technique.

在一些例子中,請同時參照圖4E與圖4F,可利用例如微影與蝕刻製程定義非晶系半導體材料層436,而形成非晶系半導體層442覆蓋半導體基板402之背面406之第二區域444。於圖4F所示的例子中,背面406的第一區域412與第二區域444並未重疊。舉例而言,定義非晶系半導體材料層436之操作包含利用微影製程形成蝕刻遮罩446覆蓋在背面406之第二區域444上方之非晶系半導體材料層436的部分,再利用蝕刻製程移除未被蝕刻遮罩446遮蔽之非晶系半導體材料層436的部分,而暴露出第一鈍化層428。移除此部分之非晶系半導體材料層436之步驟包含移除部分之第一子材料層438與部分之第二子材料層440,而分別形成第一子層448與第二子層450。藉此,所形成之非晶系半導體層442包含依序覆蓋在背面406之第二區域444上之第一子層448與第二子層450。 In some examples, referring to FIG. 4E and FIG. 4F simultaneously, the amorphous semiconductor material layer 436 can be defined by, for example, a lithography and etching process, and the amorphous semiconductor layer 442 is formed to cover the second region of the back surface 406 of the semiconductor substrate 402. 444. In the example shown in FIG. 4F, the first region 412 and the second region 444 of the back surface 406 do not overlap. For example, the operation of defining the amorphous semiconductor material layer 436 includes forming a portion of the amorphous semiconductor material layer 436 over the second region 444 of the back surface 406 by a lithography process etch mask 446, and then using an etch process The first passivation layer 428 is exposed except for portions of the amorphous semiconductor material layer 436 that are not masked by the etch mask 446. The step of removing the portion of the amorphous semiconductor material layer 436 includes removing a portion of the first sub-material layer 438 and a portion of the second sub-material layer 440 to form a first sub-layer 448 and a second sub-layer 450, respectively. Thereby, the formed amorphous semiconductor layer 442 includes the first sub-layer 448 and the second sub-layer 450 sequentially covering the second region 444 of the back surface 406.

在本實施方式中,由於形成非晶系半導體材料層436之第一子材料層438與第二子材料層440之製程溫度較佳不超過200℃,因此在製程溫度會超過200℃之同質接面背面電場410與前面電場414的製程完成後再形成第一子 材料層438與第二子材料層440,可確保非晶系半導體材料層436之品質。 In the present embodiment, since the process temperature of the first sub-material layer 438 and the second sub-material layer 440 forming the amorphous semiconductor material layer 436 is preferably not more than 200 ° C, the homogenization in the process temperature exceeds 200 ° C. After the surface back electric field 410 and the front electric field 414 are completed, the first sub-form is formed. The material layer 438 and the second sub-material layer 440 ensure the quality of the amorphous semiconductor material layer 436.

完成非晶系半導體層442後,可利用蝕刻或剝除等方式移除蝕刻遮罩446。接著,請再次參照圖4F,利用例如微影與蝕刻製程對第一鈍化層428進行定義,以移除第一鈍化層428之氧化矽層432的一部分與氮化矽層434的一部分,而在第一鈍化層428中形成貫穿氧化矽層432與氮化矽層434的接觸窗開口452。接觸窗開口452暴露出部分之同質接面背面電場410。 After the amorphous semiconductor layer 442 is completed, the etch mask 446 can be removed by etching or stripping. Next, referring again to FIG. 4F, the first passivation layer 428 is defined by, for example, a lithography and etching process to remove a portion of the ruthenium oxide layer 432 of the first passivation layer 428 and a portion of the tantalum nitride layer 434. A contact opening 452 is formed in the first passivation layer 428 through the yttrium oxide layer 432 and the tantalum nitride layer 434. The contact window opening 452 exposes a portion of the homogenous junction back surface electric field 410.

接著,如圖4G所示,利用例如濺鍍沉積或化學氣相沉積方式,形成透明導電氧化物材料層454覆蓋非晶系半導體層442之第二子層450與第一鈍化層428。透明導電氧化物材料層454從第二子層450延伸至第一鈍化層428,並填入第一鈍化層428中的接觸窗開口452內,而與同質接面背面電場410相接。透明導電氧化物材料層454之材質可例如為氧化銻(SbO)。 Next, as shown in FIG. 4G, a transparent conductive oxide material layer 454 is formed to cover the second sub-layer 450 of the amorphous semiconductor layer 442 and the first passivation layer 428 by, for example, sputtering deposition or chemical vapor deposition. A layer of transparent conductive oxide material 454 extends from the second sub-layer 450 to the first passivation layer 428 and fills the contact opening 452 in the first passivation layer 428 to interface with the homojunction back surface electric field 410. The material of the transparent conductive oxide material layer 454 may be, for example, bismuth oxide (SbO).

隨後,形成阻隔層456於非晶系半導體層442與第一鈍化層428鄰接之區域上方的透明導電氧化物材料層454上。在阻隔層456之材質為介電材料時,可利用沉積、微影與蝕刻技術來製作阻隔層456。阻隔層456之材質為光阻時,可利用旋塗與微影技術來製作阻隔層456。接著,可以透明導電氧化物材料層454為電鍍晶種層,利用電鍍方式形成二電鍍金屬電極458與460於透明導電氧化物材料層454上。由於阻隔層456的設置,因此所成長出之二電鍍金 屬電極458與460分別位於阻隔層456之二側且為阻隔層456所隔開,如圖4G所示。透明導電氧化物材料層454可在電鍍金屬電極458與460之電鍍製程期間,防止金屬的擴散。 Subsequently, a barrier layer 456 is formed on the transparent conductive oxide material layer 454 over the region where the amorphous semiconductor layer 442 is adjacent to the first passivation layer 428. When the material of the barrier layer 456 is a dielectric material, the barrier layer 456 can be formed by deposition, lithography, and etching techniques. When the material of the barrier layer 456 is photoresist, the barrier layer 456 can be formed by spin coating and lithography. Next, the transparent conductive oxide material layer 454 can be a plated seed layer, and the two plated metal electrodes 458 and 460 are formed on the transparent conductive oxide material layer 454 by electroplating. Due to the arrangement of the barrier layer 456, the second electroplated gold The genus electrodes 458 and 460 are respectively located on the two sides of the barrier layer 456 and are separated by the barrier layer 456 as shown in FIG. 4G. The transparent conductive oxide material layer 454 prevents diffusion of the metal during the electroplating process of the plated metal electrodes 458 and 460.

如圖4H所示,於電鍍金屬電極458與460形成後,移除阻隔層456與阻隔層456下方之透明導電氧化物材料層454,而形成具有彼此分離之第一區塊464與第二區塊466的透明導電氧化物層462,而大致完成背接觸太陽能電池400的製作。在一些示範例子中,移除阻隔層456及其下方之透明導電氧化物材料層454時,先利用例如蝕刻或剝除製程移除阻隔層456,再以電鍍金屬電極458與460為蝕刻罩幕,利用回蝕刻製程,來移除阻隔層456下方之透明導電氧化物材料層454。由此可知,阻隔層456先前係形成於第一區塊464與第二區塊466之間的透明導電氧化物材料層454上,且電鍍金屬電極458與460分別位於第一區塊464與第二區塊466上。 As shown in FIG. 4H, after the plated metal electrodes 458 and 460 are formed, the barrier layer 456 and the transparent conductive oxide material layer 454 under the barrier layer 456 are removed to form the first block 464 and the second region separated from each other. The transparent conductive oxide layer 462 of block 466 substantially completes the fabrication of the back contact solar cell 400. In some exemplary examples, when the barrier layer 456 and the underlying transparent conductive oxide material layer 454 are removed, the barrier layer 456 is removed using, for example, an etch or strip process, and the plated metal electrodes 458 and 460 are used as an etch mask. The transparent conductive oxide material layer 454 under the barrier layer 456 is removed using an etch back process. It can be seen that the barrier layer 456 is previously formed on the transparent conductive oxide material layer 454 between the first block 464 and the second block 466, and the plated metal electrodes 458 and 460 are located in the first block 464 and the first Block 2 is on 466.

在透明導電氧化物層462,第一區塊464位於部分之第一鈍化層428上且經由接觸窗開口452而與同質接面背面電場410相接,第二區塊466覆蓋於非晶系半導體層442之第二子層450上。透明導電氧化物層462除了可作為電性傳導,藉此可改善非晶系半導體層442之電阻較高的問題,其第二區塊466亦可提供鈍化第二子層450的效果,並可增進電鍍金屬電極460與第二子層450之間的附著力。 In the transparent conductive oxide layer 462, the first block 464 is located on a portion of the first passivation layer 428 and is in contact with the homojunction back surface electric field 410 via the contact window opening 452, and the second block 466 is covered by the amorphous semiconductor. The second sub-layer 450 of layer 442 is on. The transparent conductive oxide layer 462 can be used as an electrical conduction, thereby improving the problem of higher resistance of the amorphous semiconductor layer 442, and the second block 466 can also provide the effect of passivating the second sub-layer 450, and The adhesion between the plated metal electrode 460 and the second sub-layer 450 is enhanced.

由上述之實施方式可知,本發明之一優點就是因為本發明實施例於第一導電型基板之背面形成依序堆疊 之本質型與第二導電型非晶系半導體層,因而本質型與第二導電型非晶系半導體層可與第一導電型基板形成異質結構接面,藉此可有效提升太陽能電池之開路電壓。此外,太陽能電池具有背接觸電極的設計,可提升太陽能電池之短路電流。 It is obvious from the above embodiments that an embodiment of the present invention forms a sequential stack on the back surface of the first conductive type substrate. The intrinsic type and the second conductive type amorphous semiconductor layer, and thus the intrinsic type and the second conductive type amorphous semiconductor layer can form a heterojunction junction with the first conductive type substrate, thereby effectively improving the open circuit voltage of the solar cell . In addition, the solar cell has a back contact electrode design that enhances the short circuit current of the solar cell.

由上述之實施方式可知,本發明之另一優點就是因為本發明之實施例於第一導電型基板之背面設置透明導電氧化物層來作為電性傳導,藉此可改善非晶系半導體層電阻較高的問題。此外,透明導電氧化物層的設置亦可增進金屬電極與非晶系半導體層之間的附著力。再者,透明導電氧化物層不僅可在後續金屬電極的電鍍時,作為晶種層,亦可防止金屬的擴散。 According to the above embodiments, another advantage of the present invention is that the transparent conductive oxide layer is disposed on the back surface of the first conductive type substrate as the electrical conduction, thereby improving the resistance of the amorphous semiconductor layer. Higher problem. Further, the arrangement of the transparent conductive oxide layer can also enhance the adhesion between the metal electrode and the amorphous semiconductor layer. Furthermore, the transparent conductive oxide layer can serve as a seed layer not only for the subsequent plating of the metal electrode, but also for preventing the diffusion of the metal.

由上述之實施方式可知,本發明之又一優點就是因為本發明之實施例可利用離子佈植技術,而在預形成之區域直接摻雜而形成前面電場與同質接面背面電場,因此相較於傳統的爐管擴散製程,本發明實施例可減少製程步驟。 According to the above embodiments, another advantage of the present invention is that the embodiment of the present invention can utilize the ion implantation technique to directly dope in the pre-formed region to form the front electric field and the back surface electric field of the homojunction. In a conventional furnace tube diffusion process, embodiments of the present invention can reduce process steps.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

300‧‧‧背接觸太陽能電池 300‧‧‧ Back contact solar cells

302‧‧‧半導體基板 302‧‧‧Semiconductor substrate

304‧‧‧同質接面背面電場 304‧‧‧Homogeneous junction back surface electric field

306‧‧‧鈍化層 306‧‧‧ Passivation layer

308‧‧‧非晶系半導體層 308‧‧‧Amorphous semiconductor layer

310‧‧‧透明導電氧化物層 310‧‧‧Transparent conductive oxide layer

312‧‧‧電鍍金屬電極 312‧‧‧Electroplated metal electrodes

314‧‧‧電鍍金屬電極 314‧‧‧Electroplated metal electrodes

316‧‧‧正面 316‧‧‧ positive

318‧‧‧背面 318‧‧‧ back

320‧‧‧粗糙結構 320‧‧‧Rough structure

322‧‧‧第一區域 322‧‧‧First area

324‧‧‧氧化矽層 324‧‧‧Oxide layer

326‧‧‧氮化矽層 326‧‧‧layer of tantalum nitride

328‧‧‧接觸窗開口 328‧‧‧Contact window opening

330‧‧‧第二區域 330‧‧‧Second area

332‧‧‧第一子層 332‧‧‧ first sub-layer

334‧‧‧第二子層 334‧‧‧ second sub-layer

336‧‧‧第一區塊 336‧‧‧ first block

338‧‧‧第二區塊 338‧‧‧Second block

340‧‧‧前面電場 340‧‧‧ front electric field

342‧‧‧鈍化層 342‧‧‧ Passivation layer

344‧‧‧氧化矽層 344‧‧‧Oxide layer

346‧‧‧氮化矽層 346‧‧‧ layer of tantalum nitride

Claims (10)

一種背接觸太陽能電池之製造方法,包含:形成一同質接面背面電場於一半導體基板之一背面之一第一區域中,其中該同質接面背面電場與該半導體基板皆為第一導電型;形成一第一鈍化層覆蓋該同質接面背面電場;形成一非晶系半導體層覆蓋該背面之一第二區域,其中該非晶系半導體層包含一第一子層、以及位於該第一子層上之一第二子層,該第一子層為本質型,該第二子層為第二導電型;形成一接觸窗開口於該第一鈍化層中;形成一透明導電氧化物層,其中該透明導電氧化物層包含一第一區塊、以及與該第一區塊分離之一第二區塊,該第一區塊經由該接觸窗開口而與該同質接面背面電場相接,該第二區塊覆蓋於該第二子層上;以及形成二電鍍金屬電極分別位於該透明導電氧化物層之該第一區塊與該第二區塊上。 A method for manufacturing a back contact solar cell, comprising: forming a back surface electric field of a homojunction in a first region of a back surface of a semiconductor substrate, wherein the electric field on the back surface of the homojunction and the semiconductor substrate are both of a first conductivity type; Forming a first passivation layer covering the back surface electric field of the homojunction; forming an amorphous semiconductor layer covering a second region of the back surface, wherein the amorphous semiconductor layer comprises a first sub-layer, and the first sub-layer a second sub-layer, the first sub-layer is of an intrinsic type, the second sub-layer is of a second conductivity type; forming a contact opening in the first passivation layer; forming a transparent conductive oxide layer, wherein The transparent conductive oxide layer includes a first block and a second block separated from the first block, and the first block is connected to the back surface electric field of the homojunction via the contact window opening, a second block overlying the second sub-layer; and forming a second electroplated metal electrode on the first block and the second block of the transparent conductive oxide layer, respectively. 如申請專利範圍第1項之背接觸太陽能電池之製造方法,更包含:於該半導體基板之一正面內形成一前面電場;以及形成一第二鈍化層覆蓋該前面電場,其中每一該第一鈍化層與該第二鈍化層包含一氧化矽層與一氮化矽層,且該第一鈍化層之該氧化矽層與該第二鈍化層之該氧化矽層係在該前面電場形成後之一熱氧化製程中同時形成。 The method for manufacturing a back contact solar cell according to claim 1, further comprising: forming a front electric field in a front surface of the semiconductor substrate; and forming a second passivation layer covering the front electric field, wherein each of the first The passivation layer and the second passivation layer comprise a tantalum oxide layer and a tantalum nitride layer, and the tantalum oxide layer of the first passivation layer and the tantalum oxide layer of the second passivation layer are formed after the front electric field is formed Formed simultaneously in a thermal oxidation process. 如申請專利範圍第2項之背接觸太陽能電池之製造方法,其中該第一鈍化層之該氮化矽層與該第二鈍化層之該氮化矽層係分別在二沉積製程中形成。 The method of manufacturing a back contact solar cell according to claim 2, wherein the tantalum nitride layer of the first passivation layer and the tantalum nitride layer of the second passivation layer are respectively formed in a two deposition process. 如申請專利範圍第2項之背接觸太陽能電池之製造方法,於形成該前面電場之步驟前,更包含對該半導體基板之該正面進行一蝕刻步驟,以於該正面上形成複數個類金字塔型結構。 The manufacturing method of the back contact solar cell of claim 2, before the step of forming the front electric field, further comprising: performing an etching step on the front surface of the semiconductor substrate to form a plurality of pyramid-like shapes on the front surface structure. 如申請專利範圍第1項之背接觸太陽能電池之製造方法,其中形成該第一鈍化層之步驟包含:形成一鈍化材料層覆蓋該半導體基板之該背面;以及移除部分之該鈍化材料層。 The method of manufacturing a back contact solar cell according to claim 1, wherein the step of forming the first passivation layer comprises: forming a passivation material layer covering the back surface of the semiconductor substrate; and removing a portion of the passivation material layer. 如申請專利範圍第1項之背接觸太陽能電池之製造方法,其中形成該非晶系半導體層之步驟包含:形成一第一子材料層覆蓋該第一鈍化層與該半導體基板之該背面;形成一第二子材料層覆蓋該第一子材料層;以及移除部分之該第一子材料層與部分之該第二子材料層,以形成依序堆疊在該第二區域上之該第一子層與該第二子層。 The manufacturing method of the back contact solar cell of claim 1, wherein the forming the amorphous semiconductor layer comprises: forming a first sub-material layer covering the first passivation layer and the back surface of the semiconductor substrate; forming a a second sub-material layer covering the first sub-material layer; and removing a portion of the first sub-material layer and a portion of the second sub-material layer to form the first sub-stack stacked on the second region a layer and the second sublayer. 如申請專利範圍第1項之背接觸太陽能電池之製造方法,其中形成該透明導電氧化物層之步驟包含:形成一透明導電氧化物材料層覆蓋該第二子層與該第一鈍化層,其中該透明導電氧化物材料層從該第二子層延伸至該第一鈍化層; 於形成該些電鍍金屬電極之步驟前,形成一阻隔層於該第一區塊與該第二區塊之間之該透明導電氧化物材料層上;以及於形成該些電鍍金屬電極之步驟後,移除該阻隔層與該阻隔層下方之該透明導電氧化物材料層,以形成彼此分離之該第一區塊與該第二區塊。 The method of manufacturing the back contact solar cell of claim 1, wherein the step of forming the transparent conductive oxide layer comprises: forming a transparent conductive oxide material layer covering the second sub-layer and the first passivation layer, wherein The transparent conductive oxide material layer extends from the second sub-layer to the first passivation layer; Forming a barrier layer on the transparent conductive oxide material layer between the first block and the second block before the step of forming the plated metal electrodes; and after the step of forming the plated metal electrodes Removing the barrier layer from the transparent conductive oxide material layer under the barrier layer to form the first block and the second block separated from each other. 如申請專利範圍第7項之背接觸太陽能電池之製造方法,其中形成該些電鍍金屬電極之步驟包含於形成該阻隔層之步驟後,利用該透明導電氧化物材料層作為一電鍍晶種層。 The method for manufacturing a back contact solar cell according to claim 7, wherein the step of forming the plated metal electrode comprises the step of forming the barrier layer, and using the transparent conductive oxide material layer as a plating seed layer. 如申請專利範圍第7項之背接觸太陽能電池之製造方法,其中移除該阻隔層下方之該透明導電氧化物材料層係利用以該些電鍍金屬電極為複數個蝕刻罩幕之一回蝕刻製程。 The method for manufacturing a back contact solar cell according to claim 7 , wherein removing the transparent conductive oxide material layer under the barrier layer utilizes an etch back process using the plated metal electrodes as one of a plurality of etching masks . 一種背接觸太陽能電池,包含:一半導體基板;一同質接面背面電場,設於該半導體基板之一背面之一第一區域中,其中該同質接面背面電場與該半導體基板皆為第一導電型;一鈍化層,覆蓋該同質接面背面電場,其中該鈍化層包含依序堆疊之一氧化矽層與一氮化矽層,且該鈍化層具有一接觸窗開口;一非晶系半導體層,設於該背面之一第二區域上,其中該非晶系半導體層包含一第一子層、以及位於該第一子 層上之一第二子層,該第一子層為本質型,該第二子層為第二導電型;一透明導電氧化物層,包含一第一區塊、以及與該第一區塊分離之一第二區塊,其中該第一區塊經由該接觸窗開口而與該同質接面背面電場相接,該第二區塊設於該第二子層上;以及二電鍍金屬電極,分別位於該透明導電氧化物層之該第一區塊與該第二區塊上。 A back contact solar cell comprising: a semiconductor substrate; a back surface electric field of a homojunction, disposed in a first region of a back surface of the semiconductor substrate, wherein the electric field on the back surface of the homojunction and the semiconductor substrate are both first conductive a passivation layer covering the back surface electric field of the homojunction, wherein the passivation layer comprises one of a tantalum oxide layer and a tantalum nitride layer stacked in sequence, and the passivation layer has a contact opening; an amorphous semiconductor layer Provided on a second region of the back surface, wherein the amorphous semiconductor layer includes a first sub-layer and is located in the first sub- a second sub-layer on the layer, the first sub-layer being of an intrinsic type, the second sub-layer being of a second conductivity type; a transparent conductive oxide layer comprising a first block, and the first block Separating a second block, wherein the first block is connected to the back surface electric field of the homojunction via the contact window opening, the second block is disposed on the second sub-layer; and the second electroplated metal electrode, The first block and the second block of the transparent conductive oxide layer are respectively located.
TW104140523A 2015-12-03 2015-12-03 Back contact solar cell and method for manufacturing the same TWI596786B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104140523A TWI596786B (en) 2015-12-03 2015-12-03 Back contact solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140523A TWI596786B (en) 2015-12-03 2015-12-03 Back contact solar cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201721888A TW201721888A (en) 2017-06-16
TWI596786B true TWI596786B (en) 2017-08-21

Family

ID=59687656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140523A TWI596786B (en) 2015-12-03 2015-12-03 Back contact solar cell and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI596786B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019053957A1 (en) * 2017-09-13 2020-10-15 株式会社カネカ Solar cells, solar cell manufacturing methods, and solar cell modules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201338179A (en) * 2012-03-05 2013-09-16 Motech Ind Inc Back-contact solar cells
TW201440236A (en) * 2013-04-02 2014-10-16 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
JP2014532314A (en) * 2011-10-11 2014-12-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド A method for forming a two-dimensional doping pattern in a solar cell.
US20150096612A1 (en) * 2013-10-09 2015-04-09 Neo Solar Power Corp. Back-contact solar cell and manufacturing method thereof
JP2015095644A (en) * 2013-11-11 2015-05-18 新日光能源科技股▲ふん▼有限公司 Back contact solar cell
US20150303319A1 (en) * 2010-10-11 2015-10-22 Lg Electronics Inc. Back contact solar cell and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303319A1 (en) * 2010-10-11 2015-10-22 Lg Electronics Inc. Back contact solar cell and manufacturing method thereof
JP2014532314A (en) * 2011-10-11 2014-12-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド A method for forming a two-dimensional doping pattern in a solar cell.
TW201338179A (en) * 2012-03-05 2013-09-16 Motech Ind Inc Back-contact solar cells
TW201440236A (en) * 2013-04-02 2014-10-16 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
US20150096612A1 (en) * 2013-10-09 2015-04-09 Neo Solar Power Corp. Back-contact solar cell and manufacturing method thereof
JP2015095644A (en) * 2013-11-11 2015-05-18 新日光能源科技股▲ふん▼有限公司 Back contact solar cell

Also Published As

Publication number Publication date
TW201721888A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
JP5390102B2 (en) Semiconductor device having heterojunction and interfinger structure
JP5223004B2 (en) Crystalline silicon PV cell with selective emitters manufactured by low temperature precision etch-back and passivation process
KR101991791B1 (en) Hybrid polysilicon heterojunction back contact cell
US8586396B2 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
JP2003532297A (en) Solar cell manufacturing method and solar cell
TW201101395A (en) Trench Schottky diode and manufacturing mehtod thereof
CN109716535B (en) Three-layer semiconductor stack for patterning features on solar cells
US20160284924A1 (en) Solar cell and method for manufacturing such a solar cell
EP2605285B1 (en) Photovoltaic device
JP2004512674A (en) Solar cell manufacturing method, and solar cell manufactured by the method
US6277667B1 (en) Method for fabricating solar cells
TWI596786B (en) Back contact solar cell and method for manufacturing the same
JP4121603B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND ITS CONNECTING METHOD
EP2597685A2 (en) Photovoltaic device and method of manufacturing the same
JP2015159198A (en) Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor
TW201431108A (en) A process of manufacturing an interdigitated back-contact solar cell
US20190207041A1 (en) Solar cells having differentiated p-type and n-type architectures fabricated using an etch paste
TWI626755B (en) Single-sided solar cell, method for manufacturing the same and solar cell module
KR102126851B1 (en) Solar cell and manufacturing method thereof
TWI548109B (en) Method of manufacturing back contact solar cell
WO2023065448A1 (en) Solar cell and manufacturing method therefor
TWI645572B (en) A method for fabricating crystalline silicon wafer based solar cells with local back fields
TW201537757A (en) Solar cell and method for manufacturing such a solar cell
CN112420879A (en) HBC solar cell and preparation method thereof
CN117317036A (en) Back contact battery and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees