TW201537757A - Solar cell and method for manufacturing such a solar cell - Google Patents

Solar cell and method for manufacturing such a solar cell Download PDF

Info

Publication number
TW201537757A
TW201537757A TW103111374A TW103111374A TW201537757A TW 201537757 A TW201537757 A TW 201537757A TW 103111374 A TW103111374 A TW 103111374A TW 103111374 A TW103111374 A TW 103111374A TW 201537757 A TW201537757 A TW 201537757A
Authority
TW
Taiwan
Prior art keywords
layer
conductive
semiconductor layer
junction structure
type semiconductor
Prior art date
Application number
TW103111374A
Other languages
Chinese (zh)
Inventor
Paula Catharina Petronella Bronsveld
Lambert Johan Geerligs
Maciej Stodolny
Yu Wu
Original Assignee
Stichting Energie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stichting Energie filed Critical Stichting Energie
Priority to TW103111374A priority Critical patent/TW201537757A/en
Publication of TW201537757A publication Critical patent/TW201537757A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell includes a semiconductor substrate, that has a front side surface for receiving radiation and a back-side surface provided with a first junction structure in a first area portion of the substrate and with a second junction structure in a second area portion of the substrate. The second area portion borders on the first area portion. The first junction structure includes a first conductivity type semiconductor layer covering the first area portion. The second junction structure includes a second conductivity type semiconductor layer covering the second area portion. The second conductivity type semiconductor layer of the second junction structure partially overlaps the first conductivity type semiconductor layer of the first junction structure, with the overlapping portion of the second conductivity type semiconductor layer being above a portion of the first conductivity type semiconductor layer while separated by a first dielectric layer therebetween. The portion of the first conductivity type semiconductor layer under the overlapping portion of the second conductivity type semiconductor layer is in direct contact with the semiconductor surface of the substrate.

Description

太陽電池以及製造太陽電池的方法 Solar cell and method of manufacturing solar cell

本發明是有關於一種太陽電池。此外,本發明是有關於一種製造所述太陽電池的方法。 The invention relates to a solar cell. Further, the present invention relates to a method of manufacturing the solar cell.

本領域已知具有背側接點(back-side contact)的太陽電池。在此種太陽電池中,已經將接觸層(contact layer)實質上完全地配置在太陽電池基板的背側上。在此方式中,可將可收集輻射能(radiative energy)的太陽電池的前側區域最大化。 Solar cells with back-side contacts are known in the art. In such solar cells, the contact layer has been placed substantially completely on the back side of the solar cell substrate. In this manner, the front side region of the solar cell that can collect the radiant energy can be maximized.

在背側上,接點結構被用於收集完全來自電池背面的光產生電荷載子(photogenerated charge carriers)。 On the back side, the contact structure is used to collect photogenerated charge carriers from the back of the cell.

此種接點結構可包括交指型的p型及n型異質結構接面(heterostructure junctions)(異質接面(heterojunction))。 Such contact structures may include interdigitated p-type and n-type heterostructure junctions (heterojunctions).

舉例來說,已知此種類型的太陽電池被揭露於具有異質接面及跨指結構(inter-finger structure)的US 2008/0061293中。此種半導體裝置在結晶型半導體基板的至少一表面上包括經第一型 導電體所摻雜的至少一第一非晶半導體區。上述半導體基板在相同的至少一表面上包括經第二型導電體所摻雜的至少一第二非晶半導體區,且第二型導電體與第一型導電體的導電型相反。第一非晶半導體區及第二非晶半導體區形成交指型結構,且第一非晶半導體區藉由與半導體基板接觸的至少一介電區而與第二非晶半導體區絕緣。 For example, solar cells of this type are known to be disclosed in US 2008/0061293 having a heterojunction and an inter-finger structure. Such a semiconductor device includes a first type on at least one surface of a crystalline semiconductor substrate At least one first amorphous semiconductor region doped by the electrical conductor. The semiconductor substrate includes at least one second amorphous semiconductor region doped with the second type conductor on the same at least one surface, and the second type conductor is opposite to the conductivity type of the first type conductor. The first amorphous semiconductor region and the second amorphous semiconductor region form an interdigitated structure, and the first amorphous semiconductor region is insulated from the second amorphous semiconductor region by at least one dielectric region in contact with the semiconductor substrate.

此種半導體裝置的缺點為介電區無法收集光產生載子。此外,介電區需要將表面良好鈍化。再者,製造此種圖案化介電區需要額外的製程步驟,其增加太陽電池的成本。 A disadvantage of such a semiconductor device is that the dielectric region cannot collect light to generate carriers. In addition, the dielectric region needs to be well passivated. Furthermore, the fabrication of such patterned dielectric regions requires an additional process step that increases the cost of the solar cell.

此外,在半導體層包括非晶矽的案例中,因為大部分的鈍化介電質的沉積是在相對高的基板溫度下進行,而此相對高的基板溫度將劣化藉由非晶矽層所產生的鈍化層,故鈍化介電層的沉積通常受限在沉積半導體層之前進行。此種沉積順序意味著需要在所欲沉積半導體層的表面部分上移除介電質,此增加了表面損壞或污染的額外風險,且因此損耗了太陽電池的品質。 In addition, in the case where the semiconductor layer includes amorphous germanium, since most of the passivation dielectric is deposited at a relatively high substrate temperature, the relatively high substrate temperature is deteriorated by the amorphous germanium layer. The passivation layer is such that deposition of the passivation dielectric layer is typically limited prior to deposition of the semiconductor layer. This deposition sequence means that the dielectric needs to be removed over the surface portion of the semiconductor layer to be deposited, which increases the additional risk of surface damage or contamination and thus degrades the quality of the solar cell.

WO 2012/014960 A1揭露一種用於製造背接觸太陽電池的製程,其中第二半導體層經形成以覆蓋第一主表面。藉由使用對於第二半導體層的蝕刻速率大於絕緣層的第一蝕刻液進行蝕刻以部分地移除位於絕緣層上的第二半導體層的一部分。使用對於絕緣層的蝕刻速率大於第二半導體層的第二蝕刻液對上述第二半導體層進行蝕刻以移除絕緣層的一部分,從而暴露出第一半導體區。再者,WO2012/014960揭露「使用位於絕緣層下方的半導體 層作為n型非晶半導體層。接著在p型非晶半導體層上實質上全面地形成p側電極。基於此原因,可易於將具少數載子的電洞收集至p側電極。」。 WO 2012/014960 A1 discloses a process for fabricating a back contact solar cell in which a second semiconductor layer is formed to cover the first major surface. A portion of the second semiconductor layer on the insulating layer is partially removed by etching using a first etchant having an etch rate for the second semiconductor layer greater than the insulating layer. The second semiconductor layer is etched using a second etchant having an etch rate higher than that of the second semiconductor layer for the insulating layer to remove a portion of the insulating layer, thereby exposing the first semiconductor region. Furthermore, WO 2012/014960 discloses "using a semiconductor located below the insulating layer The layer serves as an n-type amorphous semiconductor layer. Next, the p-side electrode is formed substantially entirely on the p-type amorphous semiconductor layer. For this reason, it is easy to collect holes with a small number of carriers to the p-side electrode. "."

本發明的目的在於提供一種太陽電池及一種製造所述太陽電池的方法,其可克服先前技術的缺點。 It is an object of the present invention to provide a solar cell and a method of manufacturing the same that overcomes the shortcomings of the prior art.

藉由包括半導體基板的太陽電池來達成前述目的。所述半導體基板具有用於接收輻射的前側表面及配置有第一接面結構及第二接面結構的背側表面,第一接面結構位於基板的第一區域部分中,第二接面結構位於基板的第二區域部分中。第二區域部分毗鄰(borders)第一區域部分。第一接面結構包括覆蓋第一區域部分的第一導電型半導體層。第二接面結構包括覆蓋第二區域部分的第二導電型半導體層。第二接面結構的第二導電型半導體層與第一接面結構的第一導電型半導體層部分地重疊。第二導電型半導體層的重疊部分在第一導電型半導體層的部分上方,且同時藉由它們之間的第一介電層而分開。第二導電型半導體層的重疊部分下方的第一導電型半導體層的部分直接接觸基板的半導體表面,其中第二區域部分中的第二導電型半導體層毗鄰第一區域部分中的第一導電型半導體層,且第二區域部分中的第二導電型半導體層鄰近於第一導電型半導體層及第二導電型半導體層的重疊部分。 The foregoing object is achieved by a solar cell including a semiconductor substrate. The semiconductor substrate has a front side surface for receiving radiation and a back side surface configured with a first junction structure and a second junction structure, the first junction structure being located in the first region portion of the substrate, and the second junction structure Located in the second region portion of the substrate. The second area portion borders the first area portion. The first junction structure includes a first conductive type semiconductor layer covering the first region portion. The second junction structure includes a second conductive type semiconductor layer covering the second region portion. The second conductive type semiconductor layer of the second junction structure partially overlaps the first conductive type semiconductor layer of the first junction structure. The overlapping portion of the second conductive type semiconductor layer is over the portion of the first conductive type semiconductor layer while being separated by the first dielectric layer therebetween. A portion of the first conductive type semiconductor layer under the overlapping portion of the second conductive type semiconductor layer directly contacts the semiconductor surface of the substrate, wherein the second conductive type semiconductor layer in the second region portion is adjacent to the first conductive type in the first region portion a semiconductor layer, and the second conductive type semiconductor layer in the second region portion is adjacent to an overlapping portion of the first conductive type semiconductor layer and the second conductive type semiconductor layer.

文中的直接接觸意指,第一導電型半導體層的部分的表面位於半導體的基板表面上而不具有電性絕緣層於其間。 Direct contact herein means that the surface of the portion of the first conductive type semiconductor layer is located on the surface of the substrate of the semiconductor without having an electrically insulating layer therebetween.

文中的毗鄰(bordering)或直接毗鄰(immediate bordering)意指,第二區域部分鄰近或最接近或抵接第一區域部分而不具有位於兩區域部分之間的中間介電材料。 Bordering or immediate bordering herein means that the second region portion is adjacent or closest to or abuts the first region portion and does not have an intermediate dielectric material between the portions of the region.

有利地說,本發明提供以下方案與優點,也就是由於第一及第二接面結構直接毗鄰而兩者之間不具有間隙,因而將用於收集光產生電荷載子的區域最大化。再者,藉由僅使第一及第二導電型半導體層位於基板的半導體上,而不包括第一及第二接面區域之間的基板上的第一介電層,可達成較佳的鈍化層,其減少再結合效應(recombination effect)且改善太陽電池的效率。此外,在半導體層包括非晶矽的案例中,因為大部分的鈍化介電質(passivation dielectrics)的沉積是在相對高的基板溫度下進行,而此相對高的基板溫度將劣化藉由非晶矽層所產生的鈍化層,故鈍化介電層的沉積通常受限於在半導體層的沉積之前進行。此沉積順序意味著需要在欲沉積半導體層的表面部分上移除介電質,此增加了表面損壞或污染的額外風險,且因此損耗了太陽電池的品質。本發明不需要使用表面鈍化介電質,且因此在材料及介電層的沉積溫度的選擇上具有更大的彈性。 Advantageously, the present invention provides the following aspects and advantages in that the first and second junction structures are directly adjacent without a gap therebetween, thereby maximizing the area for collecting light generating charge carriers. Furthermore, by placing only the first and second conductive semiconductor layers on the semiconductor of the substrate without including the first dielectric layer on the substrate between the first and second junction regions, a better A passivation layer that reduces the recombination effect and improves the efficiency of the solar cell. In addition, in the case where the semiconductor layer includes amorphous germanium, since most of the deposition of passivation dielectrics is performed at a relatively high substrate temperature, the relatively high substrate temperature is deteriorated by amorphous. The passivation layer produced by the germanium layer, so the deposition of the passivation dielectric layer is typically limited prior to deposition of the semiconductor layer. This deposition sequence means that the dielectric needs to be removed on the surface portion where the semiconductor layer is to be deposited, which increases the additional risk of surface damage or contamination and thus degrades the quality of the solar cell. The present invention eliminates the need for surface passivating dielectrics and therefore greater flexibility in the choice of deposition temperature of the material and dielectric layer.

本發明在定義第一及第二區域部分時允許非常有益的製造寬容度。雖然可如使用本發明的任何適當的高圖案定義精確性來製造太陽電池,但本發明亦允許製造諸如圖案精確性較10微米 差或者更差的太陽電池。相較之下,對於習知的太陽電池製造來說,此種低精確性易於造成諸如因引起分流(shunt)、或增加串聯電阻、或殘留未鈍化的基板區域的電池效率損失。 The present invention allows for very beneficial manufacturing latitude in defining the first and second region portions. While solar cells can be fabricated using any suitable high pattern definition accuracy of the present invention, the present invention also allows for fabrication such as pattern accuracy of less than 10 microns. Poor or worse solar cells. In contrast, for conventional solar cell fabrication, such low accuracy tends to cause battery efficiency losses such as by causing shunts, or increasing series resistance, or residual unpassivated substrate regions.

除了使用半導體層將表面實質上完全覆蓋以外,本發明允許可將介電層用於圖案定義(如作為蝕刻期間的罩幕層或終止層)以及用於隔絕。此雙重功能減少成本並且節省製程步驟。 In addition to using a semiconducting layer to substantially completely cover the surface, the present invention allows the dielectric layer to be used for pattern definition (e.g., as a mask or termination layer during etching) and for isolation. This dual function reduces costs and saves process steps.

在本發明是有關於上述太陽電池的態樣中,其中第一接面結構包括第一穿隧阻障層(tunnel barrier layer),第一穿隧阻障層配置在第一導電型半導體層與基板之間;及/或其中第二接面結構包括第二穿隧阻障層,第二穿隧阻障層配置在第二導電型半導體層與基板之間。 In the aspect of the invention, the first junction structure includes a first tunnel barrier layer, and the first tunnel barrier layer is disposed on the first conductive semiconductor layer and And between the substrates; and/or wherein the second junction structure comprises a second tunneling barrier layer, the second tunneling barrier layer being disposed between the second conductive semiconductor layer and the substrate.

在本發明是有關於上述太陽電池的態樣中,其中第一接面結構及第二接面結構的至少一者包括磊晶矽層(epitaxial Si layer),第一導電型半導體層為磊晶矽層及/或第二導電型半導體層為磊晶矽層。 In the aspect of the present invention, in the aspect of the solar cell, at least one of the first junction structure and the second junction structure includes an epitaxial Si layer, and the first conductive semiconductor layer is epitaxial The tantalum layer and/or the second conductive type semiconductor layer is an epitaxial layer.

在本發明是有關於上述太陽電池的態樣中,其中第一導電型半導體層與基板的表面的重疊部分的界面為介電層的空隙(void)。 In the aspect of the invention, the interface of the solar cell, wherein the interface between the first conductive semiconductor layer and the surface of the substrate overlaps is a void of the dielectric layer.

在本發明是有關於上述太陽電池的態樣中,其中第一導電型是p型,第一導電型半導體層包括p型摻雜的非晶氫化矽(p+ a-Si:H),且第一介電層包括氫化氮化矽(SiNx:H)。 In the aspect of the invention relating to the solar cell described above, wherein the first conductivity type is a p-type, the first conductivity type semiconductor layer comprises a p-type doped amorphous hydrogen hydride (p+ a-Si:H), and A dielectric layer includes yttrium hydrogen hydride (SiNx:H).

在本發明是有關於上述太陽電池的態樣中,其中第一接 面結構包括在第一導電型半導體層的頂部上的額外第一導電層或層堆疊。 In the aspect of the present invention relating to the above solar cell, the first connection The face structure includes an additional first conductive layer or layer stack on top of the first conductive semiconductor layer.

在本發明是有關於上述太陽電池的態樣中,其中額外第一導電層為金屬層,或者層堆疊包括導電氧化層及非晶半導體層,非晶半導體層配置在導電氧化層及第一導電型半導體層的堆疊的頂部上。 In the aspect of the invention, the additional first conductive layer is a metal layer, or the layer stack comprises a conductive oxide layer and an amorphous semiconductor layer, the amorphous semiconductor layer is disposed on the conductive oxide layer and the first conductive layer On top of the stack of semiconductor layers.

在本發明是有關於上述太陽電池的態樣中,其中第二接面結構包括在第二導電型半導體層的頂部上的額外第二導電層或層堆疊。 In a preferred aspect of the invention, the second junction structure comprises an additional second conductive layer or layer stack on top of the second conductivity type semiconductor layer.

在本發明是有關於上述太陽電池的態樣中,其中額外第二導電層為金屬層,或者層堆疊包括導電氧化層及非晶半導體層,非晶半導體層配置在導電氧化層及第二導電型半導體層的堆疊的頂部上。 In the aspect of the invention, the second conductive layer is a metal layer, or the layer stack includes a conductive oxide layer and an amorphous semiconductor layer, and the amorphous semiconductor layer is disposed on the conductive oxide layer and the second conductive layer. On top of the stack of semiconductor layers.

在本發明是有關於上述太陽電池的態樣中,其中第一導電型半導體層的材料包括本徵非晶矽層或穿隧阻障層、以及摻雜層。摻雜層是選自於包括第一型摻雜非晶矽、第一型摻雜矽-碳混合物、第一型摻雜矽-鍺合金、第一型摻雜磊晶成長結晶矽以及第一型摻雜多晶矽的群組中的一者。 In the aspect of the invention, the material of the first conductive type semiconductor layer includes an intrinsic amorphous germanium layer or a tunneling barrier layer, and a doped layer. The doped layer is selected from the group consisting of a first type doped amorphous germanium, a first type doped germanium-carbon mixture, a first type doped germanium-tellurium alloy, a first type doped epitaxial growth crystal germanium, and a first One of a group of doped polysilicon groups.

在本發明是有關於上述太陽電池的態樣中,其中第二導電型半導體層的材料是選自於包括第二型摻雜非晶矽、第二型摻雜矽-碳混合物、第二型摻雜矽-鍺合金、第二型摻雜磊晶成長結晶矽、第二型摻雜多晶矽以及另一半導體的群組中的一者。 In the aspect of the invention, the second conductive type semiconductor layer is selected from the group consisting of a second type doped amorphous germanium, a second type doped germanium-carbon mixture, and a second type. One of a group of doped ytterbium-rhenium alloys, second type doped epitaxially grown crystalline germanium, second type doped poly germanium, and another semiconductor.

在本發明是有關於上述太陽電池的態樣中,其中第一介電層的材料是選自於包括氮化矽、二氧化矽、氮氧化矽、介電有機化合物、介電金屬氧化物或介電金屬氮化物的群組中的一者。 In the aspect of the invention, the first dielectric layer is selected from the group consisting of tantalum nitride, hafnium oxide, hafnium oxynitride, dielectric organic compound, dielectric metal oxide or One of a group of dielectric metal nitrides.

在本發明是有關於上述太陽電池的態樣中,其中第一接面結構包括第一穿隧阻障層,第一穿隧阻障層配置在第一導電型半導體層與基板之間;及/或其中第二接面結構包括第二穿隧阻障層,第二穿隧阻障層配置在第二導電型半導體層與基板之間。 In the aspect of the invention, the first junction structure includes a first tunneling barrier layer, and the first tunneling barrier layer is disposed between the first conductive semiconductor layer and the substrate; / or wherein the second junction structure comprises a second tunneling barrier layer, the second tunneling barrier layer being disposed between the second conductive semiconductor layer and the substrate.

此外,本發明是有關於一種由半導體基板製造太陽電池的方法,半導體基板具有用於接收輻射的前側表面、以及配置有第一接面結構及第二接面結構的背側表面,第一接面結構位於基板的第一區域部分中,第二接面結構位於基板的第二區域部分中,且第二區域部分毗鄰第一區域部分。所述方法包括:在至少第一區域部分上方的基板的背側表面上沉積第一導電型半導體層;選擇性沉積導電層;至少在第一導電型半導體層上方沉積第一介電層;圖案化第一介電層以藉由覆蓋第一區域部分中的第一導電型半導體層來定義第一區域部分及暴露第二區域部分;使用經圖案化第一介電層作為罩幕對第一導電型半導體層進行圖案化,以在第一區域部分中的產生第一接面結構及暴露第二區域部分中的矽基板的表面;在背側表面及經暴露的第二區域部分上沉積第二導電型半導體層,第二導電型半導體層在毗鄰第二區域部分的第一介電層的至少部分上方。在此種方式中,第二接面結構的第二導電型半導體層與第一接面結構的第一導電型半導體層部 分地重疊,第二導電型半導體層的重疊部分在第一導電型半導體層的部分上方,且同時藉由它們之間的第一介電層而分開,且第二導電型半導體層的重疊部分下方的第一導電型半導體層的部分直接接觸基板的半導體表面。 Further, the present invention relates to a method of manufacturing a solar cell from a semiconductor substrate having a front side surface for receiving radiation, and a back side surface configured with a first junction structure and a second junction structure, the first connection The face structure is located in the first region portion of the substrate, the second junction structure is located in the second region portion of the substrate, and the second region portion is adjacent to the first region portion. The method includes: depositing a first conductive type semiconductor layer on a back side surface of a substrate above at least a first region portion; selectively depositing a conductive layer; depositing a first dielectric layer at least over the first conductive type semiconductor layer; Forming the first dielectric layer to define the first region portion and exposing the second region portion by covering the first conductive type semiconductor layer in the first region portion; using the patterned first dielectric layer as a mask pair first The conductive semiconductor layer is patterned to generate a first junction structure in the first region portion and expose a surface of the germanium substrate in the second region portion; depositing a portion on the back side surface and the exposed second region portion A second conductive semiconductor layer, the second conductive semiconductor layer being over at least a portion of the first dielectric layer adjacent to the second region portion. In this manner, the second conductive type semiconductor layer of the second junction structure and the first conductive type semiconductor layer portion of the first junction structure Overlying the ground, the overlapping portion of the second conductive semiconductor layer is over the portion of the first conductive semiconductor layer while being separated by the first dielectric layer therebetween, and the overlapping portion of the second conductive semiconductor layer A portion of the lower first conductivity type semiconductor layer directly contacts the semiconductor surface of the substrate.

在選擇性沉積的導電層為導電氧化物的案例中,可使用本徵非晶矽層替代以下的介電層。 In the case where the selectively deposited conductive layer is a conductive oxide, the intrinsic amorphous germanium layer may be used in place of the following dielectric layer.

第一導電型可相等於或相反於半導體基板的導電型。 The first conductivity type may be equal to or opposite to the conductivity type of the semiconductor substrate.

如本發明的方法允許第一導電型膜層的邊緣與第一介電層的邊緣的自對準形式(self-aligned formation),最大化覆蓋主動層(第一或第二導電型半導體層)的基板區域,同時改善兩半導體層之間的隔絕(isolation)。 The method of the present invention allows a self-aligned formation of the edge of the first conductive type film layer and the edge of the first dielectric layer to maximize coverage of the active layer (first or second conductive type semiconductor layer) The substrate area simultaneously improves the isolation between the two semiconductor layers.

此外,上述方法利於使得第一介電層用於分開第一及第二導電型半導體層、以及在沉積第二導電型半導體層期間用於覆蓋第一導電型半導體層。在沉積第二導電型半導體層期間,此覆蓋可以避免由第一導電型半導體層產生的鈍化層發生熱劣化(thermal degradation)。已知此劣化會在n型摻雜的a-Si:H層的沉積期間發生在p型摻雜的a-Si:H層中。 Further, the above method facilitates the use of the first dielectric layer for separating the first and second conductive type semiconductor layers, and for covering the first conductive type semiconductor layer during deposition of the second conductive type semiconductor layer. This covering can prevent thermal degradation of the passivation layer generated by the first conductive type semiconductor layer during deposition of the second conductive type semiconductor layer. It is known that this degradation occurs in the p-doped a-Si:H layer during the deposition of the n-doped a-Si:H layer.

如一態樣,上述方法更提供在第二導電型半導體層上方沉積罩幕層的步驟,罩幕層至少覆蓋第二區域部分及(毗鄰的)的第一區域部分的一部分,接著對罩幕層進行圖案化;以及使用圖案化罩幕層來局部地移除第二導電型半導體層。 In one aspect, the method further provides the step of depositing a mask layer over the second conductive semiconductor layer, the mask layer covering at least a portion of the second region portion and the (adjacent) first region portion, and then the mask layer Patterning is performed; and the patterned mask layer is used to locally remove the second conductive type semiconductor layer.

或者,可藉由直接的方法(direct method)來蝕刻第二導電 型半導體層,所述直接的方法例如為以所需要的圖案印刷蝕刻膠。 Alternatively, the second conductive can be etched by a direct method The type of semiconductor layer, the direct method is, for example, printing an etchant in a desired pattern.

可選地,可使用第二導電型半導體層作為罩幕來移除第一介電層。此將使得這些膜層自對準。有利地說,因此上述方法允許第一導電型膜層及第二導電型膜層的邊緣與第一介電層的邊緣的自對準形式,最大化第一及第二導電型半導體層的暴露區域以用來塗佈金屬層,同時確保兩膜層之間的隔絕。 Alternatively, the second conductive type semiconductor layer may be used as a mask to remove the first dielectric layer. This will make these layers self-aligned. Advantageously, the above method allows the self-aligned form of the edges of the first conductive type film layer and the second conductive type film layer and the edges of the first dielectric layer to maximize the exposure of the first and second conductive type semiconductor layers. The area is used to coat the metal layer while ensuring insulation between the two layers.

在上述方法的一態樣中,更包括:在第二導電型半導體層上方沉積罩幕層,罩幕層至少覆蓋第二區域部分及部分的第一區域部分;對罩幕層進行圖案化;使用圖案化罩幕層作為罩幕對第二導電型半導體層進行圖案化以在第二區域部分中產生具有圖案的第二接面結構,第二接面結構的圖案使得第二導電型半導體層毗鄰且部分地重疊第一導電型半導體層,第二導電型半導體層的重疊部分在第一導電型半導體層的頂部上,且被第一介電層分開。 In one aspect of the method, the method further includes: depositing a mask layer over the second conductive semiconductor layer, the mask layer covering at least the second region portion and the portion of the first region portion; patterning the mask layer; Patterning the second conductive semiconductor layer using the patterned mask layer as a mask to create a patterned second junction structure in the second region portion, the second junction structure patterning such that the second conductive semiconductor layer Adjacent and partially overlapping the first conductive semiconductor layer, the overlapping portion of the second conductive semiconductor layer is on top of the first conductive semiconductor layer and separated by the first dielectric layer.

如上述方法的一態樣,提供配置有第一穿隧阻障層的第一接面結構,第一穿隧阻障層配置在第一導電型半導體層與基板之間;及/或其中第二接面結構配置有第二穿隧阻障層,第二穿隧阻障層配置在第二導電型半導體層與基板之間。 As one aspect of the method, a first junction structure configured with a first tunneling barrier layer is disposed, the first tunneling barrier layer being disposed between the first conductive semiconductor layer and the substrate; and/or wherein The second junction structure is provided with a second tunneling barrier layer, and the second tunneling barrier layer is disposed between the second conductive semiconductor layer and the substrate.

在如上述方法的態樣中,第一接面結構及第二接面結構中至少一者包括磊晶矽層,第一導電型半導體層為磊晶矽層及基板,及/或第二導電型半導體層為磊晶矽層。 In the aspect of the method, at least one of the first junction structure and the second junction structure comprises an epitaxial layer, the first conductive semiconductor layer is an epitaxial layer and a substrate, and/or the second conductive The type semiconductor layer is an epitaxial layer.

在如上述方法的一態樣中,第一導電型為p型,第一導 電型半導體層包括p型摻雜非晶氫化矽(p+ a-Si:H),且第一介電層包括氫化氮化矽(SiNx:H),所述SiNx:H層覆蓋所述p+ a-Si:H層。 In an aspect of the method as described above, the first conductivity type is p-type, the first guide The electro-type semiconductor layer includes p-type doped amorphous lanthanum hydride (p+ a-Si:H), and the first dielectric layer includes lanthanum hydride (SiNx:H), and the SiNx:H layer covers the p+ a -Si: H layer.

藉由附屬項進一步定義較佳的實施例。 The preferred embodiment is further defined by the accompanying items.

1、2、3‧‧‧太陽電池 1, 2, 3‧‧‧ solar cells

5‧‧‧基板 5‧‧‧Substrate

10‧‧‧第一導電型半導體層 10‧‧‧First Conductive Semiconductor Layer

10a、10b‧‧‧穿隧阻障層 10a, 10b‧‧‧ tunneling barrier

11‧‧‧圖案化第一導電型半導體層 11‧‧‧ patterned first conductive semiconductor layer

15‧‧‧導電層 15‧‧‧ Conductive layer

20‧‧‧第一介電層 20‧‧‧First dielectric layer

21‧‧‧圖案化第一介電層 21‧‧‧ patterned first dielectric layer

22、37‧‧‧介電層 22, 37‧‧‧ dielectric layer

25‧‧‧第二導電型半導體層 25‧‧‧Second conductive semiconductor layer

26‧‧‧圖案化第二導電型半導體層 26‧‧‧ patterned second conductive semiconductor layer

27‧‧‧光阻圖案 27‧‧‧resist pattern

30、50‧‧‧罩幕層 30, 50‧‧ ‧ cover layer

31‧‧‧圖案化罩幕 31‧‧‧ patterned mask

34、35‧‧‧金屬層 34, 35‧‧‧ metal layer

36‧‧‧間隙 36‧‧‧ gap

40‧‧‧第二導電層 40‧‧‧Second conductive layer

45‧‧‧圖案化第二導電層 45‧‧‧ patterned second conductive layer

55‧‧‧保護介電主體 55‧‧‧Protected dielectric body

A‧‧‧第一區域部分 A‧‧‧First Area Section

B‧‧‧第二區域部分 B‧‧‧Part II section

C‧‧‧第三區域部分 C‧‧‧Part III

D‧‧‧重疊部分 D‧‧‧ overlap

E、F‧‧‧邊界 E, F‧‧‧ border

S‧‧‧間隔 S‧‧‧ interval

將參照一些繪示例示實施例的圖式更詳細地說明本發明。這些圖式只用於例示的目的且不限制由申請專利範圍所定義的發明概念。在圖式中:圖1a至圖1c繪示進行第一製造步驟後的太陽電池的剖面圖。 The invention will be explained in more detail with reference to the drawings which illustrate some exemplary embodiments. These drawings are for illustrative purposes only and are not limiting of the inventive concepts defined by the scope of the claims. In the drawings: Figures 1a to 1c show cross-sectional views of a solar cell after the first manufacturing step.

圖2繪示進行接續製程步驟後的太陽電池的剖面圖。 2 is a cross-sectional view showing the solar cell after the subsequent process step.

圖3繪示進行初始圖案化步驟後的太陽電池半導體基板的剖面圖。 3 is a cross-sectional view showing a solar cell semiconductor substrate after the initial patterning step.

圖4繪示完成第一半導體層的圖案化步驟後的太陽電池半導體基板的剖面圖。 4 is a cross-sectional view showing a solar cell semiconductor substrate after the patterning step of the first semiconductor layer is completed.

圖5a及5b繪示進行接續製程步驟後的太陽電池的剖面圖。 5a and 5b are cross-sectional views showing the solar cell after the subsequent process step.

圖6繪示沉積罩幕層後的太陽電池的剖面圖。 Figure 6 is a cross-sectional view of the solar cell after deposition of the mask layer.

圖7繪示進行後續圖案化步驟後的太陽電池的剖面圖。 Figure 7 is a cross-sectional view of the solar cell after the subsequent patterning step.

圖8繪示進行蝕刻步驟後的太陽電池的剖面圖。 FIG. 8 is a cross-sectional view showing the solar cell after the etching step.

圖9a至圖9c繪示進行接續製程步驟後的太陽電池的剖面圖。 9a to 9c are cross-sectional views showing the solar cell after the subsequent process step.

圖10a至圖10e繪示進行金屬化步驟後太陽電池的剖面圖。 10a to 10e are cross-sectional views showing a solar cell after the metallization step.

圖11a至圖11c繪示如另一實施例的太陽電池的剖面圖。 11a to 11c are cross-sectional views of a solar cell according to another embodiment.

圖12繪示進行接續步驟後的如另一實施例的太陽電池的剖面圖。 Figure 12 is a cross-sectional view showing a solar cell according to another embodiment after the continuation step.

圖13繪示移除第二罩幕層後的太陽電池的剖面圖。 Figure 13 is a cross-sectional view showing the solar cell after removing the second mask layer.

圖14繪示進行後續製造步驟後的太陽電池的剖面圖。 Figure 14 is a cross-sectional view showing the solar cell after the subsequent manufacturing steps.

在以下圖中,在各圖中的相同元件符號指稱相似或完全相同的組件。 In the following figures, the same component symbols in the various figures refer to similar or identical components.

太陽電池包括半導體基板,其通常為矽晶圓。此種晶圓可為多晶型或單晶型。 Solar cells include a semiconductor substrate, which is typically a germanium wafer. Such a wafer may be polycrystalline or single crystal.

至少晶圓的前側上可被紋理化,且晶圓可藉由例如是前擴散層及前鈍化塗層而配置有前側鈍化層(front side passivation)。晶圓的前側上亦可配置有抗反射塗層。亦可在後續製程期間提供前側紋理層(texture)及塗層。所述前側亦可配置有犧牲層,其針對以下描述的一些製程提供保護。 At least the front side of the wafer can be textured, and the wafer can be configured with a front side passivation by, for example, a front diffusion layer and a front passivation coating. An anti-reflective coating may also be disposed on the front side of the wafer. The front side texture and coating can also be provided during subsequent processing. The front side may also be provided with a sacrificial layer that provides protection for some of the processes described below.

圖1a繪示進行製造程序中第一製程步驟後的半導體基板5的剖面圖。在此步驟中,第一導電型半導體層10沉積在基板5的表面的至少第一部分上方。第一導電型半導體層將會與半導體基板的表面的形成第一接面。 Figure 1a is a cross-sectional view of the semiconductor substrate 5 after the first process step in the fabrication process. In this step, the first conductive type semiconductor layer 10 is deposited over at least a first portion of the surface of the substrate 5. The first conductive type semiconductor layer will form a first junction with the surface of the semiconductor substrate.

第一導電型半導體層的材料可選自包括第一型摻雜非晶富氫矽(a-Si:H)、第一型摻雜微結晶矽、第一型摻雜非晶矽-碳混合物、第一型摻雜矽-鍺合金、第一型摻雜磊晶成長結晶矽、第一型 摻雜多晶矽或其他半導體的群組中。此外,第一導電型半導體層可包括本徵半導體層及第一型摻雜半導體層的堆疊(材料選自上述者),其例如是習知技術中已知的具有本徵薄層的異質接面(HIT結構)。 The material of the first conductive type semiconductor layer may be selected from the group consisting of a first type doped amorphous hydrogen-rich germanium (a-Si:H), a first type doped microcrystalline germanium, and a first type doped amorphous germanium-carbon mixture. , the first type doped yttrium-tellurium alloy, the first type doped epitaxial growth crystallization, the first type Doped in groups of polysilicon or other semiconductors. Further, the first conductive type semiconductor layer may include a stack of intrinsic semiconductor layers and first type doped semiconductor layers (materials selected from the above), which are, for example, heterojunctions having intrinsic thin layers known in the prior art. Face (HIT structure).

第一導電型膜層亦可包括基板的表面層,由摻雜至基板中的擴散或植入所產生,基板的摻雜可為局部的或後續可為第一區域部分A(請參照圖3)外側的回蝕刻(etch-back)。 The first conductive type film layer may further include a surface layer of the substrate, which is generated by diffusion or implantation into the substrate, and the doping of the substrate may be partial or subsequent may be the first region portion A (please refer to FIG. 3 Etch-back on the outside.

被覆蓋的第一區域部分至少相等於所欲產生第一接面的區域。 The portion of the first region that is covered is at least equal to the region where the first junction is to be created.

可選地,在一實施例中,第一接面及/或第二接面可包括金屬-絕緣-半導體(metal-insulator-semiconductor;MIS)接面。 Optionally, in an embodiment, the first junction and/or the second junction may comprise a metal-insulator-semiconductor (MIS) junction.

圖1b繪示進行第一製造步驟後的半導體基板的剖面圖,在此案例中,第一導電型半導體層被導電層15覆蓋,導電層15作為收集層及/或並聯導體(parallel conductor)以改善電流萃取及/或電流流動(current flow)。導電層可例如是金屬層或(透明)導電氧化層或其組合。 1b is a cross-sectional view of the semiconductor substrate after the first fabrication step. In this case, the first conductive semiconductor layer is covered by the conductive layer 15, and the conductive layer 15 serves as a collector layer and/or a parallel conductor. Improve current extraction and/or current flow. The conductive layer can be, for example, a metal layer or a (transparent) conductive oxide layer or a combination thereof.

以下將參照第一導電型半導體層不具有導電層的實施例來描述本發明。應理解的是,在另一實施例中可使用具有導電層15的第一導電型半導體層10的堆疊來取代第一導電型半導體層。 Hereinafter, the present invention will be described with reference to an embodiment in which the first conductive type semiconductor layer does not have a conductive layer. It should be understood that a stack of the first conductive type semiconductor layer 10 having the conductive layer 15 may be used in place of the first conductive type semiconductor layer in another embodiment.

亦注意到如圖1c中所繪示,在一實施例中,在半導體基板5的表面與第一導電型半導體層10之間可配置薄的穿隧阻障層10a,薄的穿隧阻障層10a對半導體基板5與第一導電型半導體層 10之間的電荷載子提供穿隧接點(tunneling contact)。 It is also noted that, as illustrated in FIG. 1c, in an embodiment, a thin tunneling barrier layer 10a, a thin tunneling barrier, may be disposed between the surface of the semiconductor substrate 5 and the first conductive semiconductor layer 10 Layer 10a to semiconductor substrate 5 and first conductive semiconductor layer A charge carrier between 10 provides a tunneling contact.

圖2繪示進行接續步驟後的太陽電池1的剖面圖。在此接續步驟中,在第一導電型半導體層的頂部上沉積第一介電層20,以至少在第一區域部分A(請參照圖3)中覆蓋第一導電型半導體層。 2 is a cross-sectional view showing the solar cell 1 after the continuation step. In this subsequent step, a first dielectric layer 20 is deposited on top of the first conductive semiconductor layer to cover the first conductive semiconductor layer at least in the first region portion A (please refer to FIG. 3).

應注意到,在選擇性將導電層沉積為導電氧化物的案例中,可沉積本徵非晶矽層來取代第一介電層。 It should be noted that in the case of selectively depositing a conductive layer as a conductive oxide, an intrinsic amorphous germanium layer may be deposited instead of the first dielectric layer.

第一介電層的材料可包括選自包括氮化矽、二氧化矽、氮氧化矽、介電有機化合物(例如「光阻(resist)」或樹脂)、介電金屬氧化物或介電金屬氮化物、以及其他適合的介電質的群組中的材料。 The material of the first dielectric layer may include a material selected from the group consisting of tantalum nitride, hafnium oxide, hafnium oxynitride, dielectric organic compounds (such as "resist" or resin), dielectric metal oxide or dielectric metal. Nitride, and other materials in the group of suitable dielectrics.

在圖1a、圖1b或圖1c的堆疊端具有導電氧化物作為頂層的案例中,可有益地選擇可用的蝕刻液將介電層取代為本徵非晶矽層。 In the case where the stacked end of FIG. 1a, FIG. 1b or FIG. 1c has a conductive oxide as the top layer, it may be beneficial to select a useful etchant to replace the dielectric layer with the intrinsic amorphous germanium layer.

圖3繪示第一介電層的圖案化步驟後的半導體基板的剖面圖。圖案化將第一介電層從所欲產生第二接面的半導體基板的第二區域部分B移除。在所欲產生第一接面的第一區域部分A中,保留圖案化第一介電層21。如本發明的態樣,第一區域部分A毗鄰(鄰近)半導體基板的第二區域部分B。 3 is a cross-sectional view of the semiconductor substrate after the patterning step of the first dielectric layer. Patterning removes the first dielectric layer from the second region portion B of the semiconductor substrate from which the second junction is to be created. In the first region portion A where the first junction is to be created, the patterned first dielectric layer 21 remains. As in the aspect of the invention, the first region portion A is adjacent (adjacent) to the second region portion B of the semiconductor substrate.

藉由圖案化步驟,可在第一型接面與第二型接面交錯的地方定義交指型結構。 By the patterning step, the interdigitated structure can be defined where the first type of junction and the second type of junction are staggered.

上述圖案化步驟包括蝕刻步驟(可為選擇性蝕刻步驟),以 移除第一介電層以及在移除第一介電層的區域中將第一導電型半導體層暴露出來。 The patterning step includes an etching step (which may be a selective etching step) to The first dielectric layer is removed and the first conductive semiconductor layer is exposed in a region where the first dielectric layer is removed.

圖案化第一介電層21用作產生圖案化第一導電型半導體層11的罩幕。使用蝕刻步驟(可為選擇性蝕刻步驟)將經暴露的第一導電型半導體層由半導體基板的第二區域部分B移除。 The patterned first dielectric layer 21 functions as a mask for producing the patterned first conductive type semiconductor layer 11. The exposed first conductive type semiconductor layer is removed from the second region portion B of the semiconductor substrate using an etching step which may be a selective etching step.

圖4示意地繪示第一導電型半導體層的圖案化。因為第一介電層的圖案轉移到第一導電型膜層的圖案中,兩膜層的圖案邊緣實質上為自對準。此種自對準具有減少製程步驟數目、減少所需的對準寬容度及減少成本的優點。 FIG. 4 schematically illustrates the patterning of the first conductive type semiconductor layer. Since the pattern of the first dielectric layer is transferred into the pattern of the first conductive type film layer, the pattern edges of the two film layers are substantially self-aligned. Such self-alignment has the advantage of reducing the number of process steps, reducing the required alignment tolerance, and reducing cost.

圖5a繪示後續步驟後的太陽電池剖面圖。在圖案化表面上,至少在半導體基板的第二區域部分B上方、以及至少在鄰近第二區域部分B的圖案化第一介電層21及圖案化第一導電型半導體層11的堆疊的毗鄰部分的上方沉積第二導電型半導體層25。 Figure 5a shows a cross-sectional view of the solar cell after the subsequent steps. On the patterned surface, at least adjacent to the second region portion B of the semiconductor substrate, and at least adjacent to the stack of the patterned first dielectric layer 21 and the patterned first conductive semiconductor layer 11 adjacent to the second region portion B A second conductive type semiconductor layer 25 is deposited over a portion.

在此結構中,圖案化第一介電層21在重疊於圖案化第一導電型半導體層11的第二導電型半導體層25與圖案化第一導電型半導體層11之間提供絕緣。 In this structure, the patterned first dielectric layer 21 provides insulation between the second conductive type semiconductor layer 25 overlying the patterned first conductive type semiconductor layer 11 and the patterned first conductive type semiconductor layer 11.

第一及第二導電型半導體的重疊被繪示為具有斜坡。應注意的是,實際的傾斜角度可視實際上的製程步驟及條件而定。此外,斜坡可實質上垂直於基板表面或為階梯狀。 The overlap of the first and second conductivity type semiconductors is illustrated as having a slope. It should be noted that the actual tilt angle may depend on the actual process steps and conditions. Further, the ramp may be substantially perpendicular to the surface of the substrate or stepped.

此外,第二導電型半導體層25毗鄰(border on)圖案化第一導電型半導體層11。 Further, the second conductive type semiconductor layer 25 is bordered on the patterned first conductive type semiconductor layer 11.

因為在對圖案化第一導電型半導體層11(對膜層21下方 的膜層11進行蝕刻)進行蝕刻的期間可能發生一些底切(undercut),故詞彙「毗鄰」意欲定義兩個圖案化半導體層11及25之間的橫向距離最多為第一導電型半導體層11的厚度的數倍。 Because the first conductive type semiconductor layer 11 is patterned (below the film layer 21) The film layer 11 is etched. During the etching process, some undercut may occur, so the word "adjacent" is intended to define that the lateral distance between the two patterned semiconductor layers 11 and 25 is at most the first conductive type semiconductor layer 11 Several times the thickness.

舉例而言,若圖案化第一導電型半導體層11的厚度為20nm,則毗鄰的膜層意指其與圖案化第一導電型半導體層11的距離為100nm或更小。 For example, if the thickness of the patterned first conductive type semiconductor layer 11 is 20 nm, the adjacent film layer means that the distance from the patterned first conductive type semiconductor layer 11 is 100 nm or less.

相似於圖案化第一導電型半導體層11,膜層25可選擇性地被導電層覆蓋,導電層例如是透明導電氧化物(TCO)及/或金屬。 Similar to the patterned first conductive type semiconductor layer 11, the film layer 25 may be selectively covered by a conductive layer such as a transparent conductive oxide (TCO) and/or a metal.

第二導電型半導體層的材料可選自於包括第二型摻雜非晶矽、第二型摻雜矽-碳混合物、第二型摻雜矽-鍺合金、第二型摻雜磊晶成長結晶矽、第二型摻雜多晶矽、或者其他半導體的群組中。此外,與第一導電型半導體層相似,第二導電型半導體層可包括本徵半導體層及第二型摻雜半導體層的堆疊,其具有選自上述的材料。此外,與第一導電型半導體相似,在半導體基板5的表面與第二導電型半導體層之間,可配置有薄的穿隧阻障層(未繪示)。 The material of the second conductive semiconductor layer may be selected from the group consisting of a second type doped amorphous germanium, a second type doped germanium-carbon mixture, a second type doped germanium-tellurium alloy, and a second type doped epitaxial growth. In the group of crystalline germanium, second doped polysilicon, or other semiconductors. Further, similarly to the first conductive type semiconductor layer, the second conductive type semiconductor layer may include a stack of an intrinsic semiconductor layer and a second type doped semiconductor layer having a material selected from the above. Further, similarly to the first conductive type semiconductor, a thin tunneling barrier layer (not shown) may be disposed between the surface of the semiconductor substrate 5 and the second conductive type semiconductor layer.

此外,第二導電型膜層也可由形成MIS接面的層堆疊組成。 Further, the second conductive type film layer may also be composed of a layer stack forming a MIS junction.

第二導電型與第一導電型相反。第一導電型半導體層可構成射極(emitter),而第二導電型膜層可構成BSF;或者,第一導電型膜層可構成BSF,第二導電型膜層可構成射極。 The second conductivity type is opposite to the first conductivity type. The first conductive type semiconductor layer may constitute an emitter, and the second conductive type film layer may constitute a BSF; or the first conductive type film layer may constitute a BSF, and the second conductive type film layer may constitute an emitter.

在一實施例中,第一導電型為p型且第一導電型半導體 層為p+ a-Si:H,且第一介電層為SiNx:H。較佳地,本發明提供p型a-Si:H層被第一介電質所覆蓋的結構。在後續沉積a-Si層期間,暴露的p型a-Si:H層在裸露時基本上會因為熱暴露(thermal exposure)而劣化(degrade)。SiNx:H的覆蓋能保護p型層免於遭受上述劣化,且因此本發明使用p型射極作為第一導電型半導體層。由於p型層一般為通常在後表面上佔據最大面積的射極,因此基於電池效率因素,起始於p型層是較佳的。 In an embodiment, the first conductivity type is a p-type and the first conductivity type semiconductor The layer is p+ a-Si:H and the first dielectric layer is SiNx:H. Preferably, the present invention provides a structure in which the p-type a-Si:H layer is covered by the first dielectric. During subsequent deposition of the a-Si layer, the exposed p-type a-Si:H layer is substantially degraded by thermal exposure when exposed. The coverage of SiNx:H can protect the p-type layer from the above deterioration, and thus the present invention uses a p-type emitter as the first conductive type semiconductor layer. Since the p-type layer is generally the emitter that typically occupies the largest area on the back surface, it is preferred to start with a p-type layer based on battery efficiency factors.

此外,由於將第一導電型膜層開孔的製程可能造成表面損壞,而表面損壞將減少在開孔區域上所沉積的膜層的鈍化性質,故上述方式為較佳的。 Further, since the process of opening the first conductive type film layer may cause surface damage, and the surface damage will reduce the passivation property of the film layer deposited on the open area, the above manner is preferable.

圖5b繪示如進行上述圖5a所述的後續步驟後的一實施例的太陽電池的剖面圖,於此實施例中,穿隧阻障10a及10b存在於半導體基板5的表面與圖案化第一導電型半導體層11之間、或者穿隧阻障10a及10b存在於半導體基板5的表面與圖案化的第二導電型半導體層25之間、或者穿隧阻障10a及10b存在於半導體基板5的表面與圖案化第一導電型半導體層11及第二導電型半導體層25之間。 FIG. 5b is a cross-sectional view showing a solar cell according to an embodiment after the subsequent steps described in FIG. 5a. In this embodiment, the tunneling barriers 10a and 10b are present on the surface of the semiconductor substrate 5 and patterned. Between one of the conductive semiconductor layers 11 or the tunneling barriers 10a and 10b is present between the surface of the semiconductor substrate 5 and the patterned second conductive semiconductor layer 25, or the tunneling barriers 10a and 10b are present on the semiconductor substrate. The surface of 5 is between the patterned first conductive semiconductor layer 11 and the second conductive semiconductor layer 25.

在第一導電型半導體層及第二導電型半導體層下方的穿隧阻障10a及10b可各自在分別獨立的製程中形成。可藉由表面反應(surface reaction)來成長穿隧阻障10a及10b,或者可藉由物理或化學沉積來沉積穿隧阻障10a及10b。 The tunneling barriers 10a and 10b under the first conductive semiconductor layer and the second conductive semiconductor layer may each be formed in separate processes. The tunneling barriers 10a and 10b may be grown by a surface reaction, or the tunneling barriers 10a and 10b may be deposited by physical or chemical deposition.

圖6繪示如本發明在進行另一步驟後的太陽電池的剖面 圖,在此另一步驟中,罩幕層30沉積在第一區域部分A及第二區域部分B中的至少部分上方。 Figure 6 is a cross section of a solar cell after performing another step as in the present invention. In this further step, the mask layer 30 is deposited over at least a portion of the first region portion A and the second region portion B.

罩幕層可包括選自於包括氮化矽(SiNx)、二氧化矽(SiO2)、氮氧化矽(SiOxNy)、介電有機化合物(「光阻」或樹脂)、介電金屬氧化物或介電金屬氮化物、及其他適合的介電質的材料。罩幕層也可為金屬(例如接觸(contacting))層。 The mask layer may be selected from the group consisting of tantalum nitride (SiNx), cerium oxide (SiO 2 ), cerium oxynitride (SiO x N y ), dielectric organic compound ("resistance" or resin), dielectric metal. Oxide or dielectric metal nitride, and other suitable dielectric materials. The mask layer can also be a metal (e.g., contacting) layer.

或者,視前述製程步驟中所沉積的頂層的蝕刻性質而定,罩幕層可為本徵非晶矽層。 Alternatively, the mask layer may be an intrinsic amorphous layer depending on the etching properties of the top layer deposited in the process steps described above.

接著進行圖7中繪示的圖案化步驟。在圖案化步驟中,藉由從圖案化第一介電層21及圖案化第一導電型半導體層11的堆疊的第三區域部分C移除罩幕層,以將罩幕層30圖案化為圖案化罩幕31。 The patterning step illustrated in Figure 7 is then performed. In the patterning step, the mask layer 30 is patterned by removing the mask layer from the patterned third dielectric layer 21 and the patterned third region portion C of the patterned first conductive semiconductor layer 11 The mask 31 is patterned.

或者是,也可以例如是經由接近式罩幕(proximity mask)進行沉積、或藉由印刷技術進行沉積等方式以適合的圖案(膜層31的圖案)來沉積罩幕層30。 Alternatively, the mask layer 30 may be deposited in a suitable pattern (pattern of the film layer 31), for example, by deposition via a proximity mask, or by deposition by printing techniques.

所產生的第三區域部分C小於第一區域部分A,因此暴露圖案化第一介電層21及圖案化第一導電型半導體層11的堆疊上方的第二導電型半導體層的部分。同時,介電層31覆蓋與圖案化第一介電層21及圖案化第一導電型半導體層11的堆疊重疊的第二導電型半導體層25的其他部分。 The generated third region portion C is smaller than the first region portion A, thus exposing portions of the patterned second dielectric layer 21 and the second conductive type semiconductor layer over the stack of the patterned first conductive semiconductor layer 11. At the same time, the dielectric layer 31 covers other portions of the second conductive type semiconductor layer 25 that overlap with the stacked layers of the patterned first dielectric layer 21 and the patterned first conductive type semiconductor layer 11.

圖8繪示進行後續蝕刻步驟後的太陽電池的剖面圖,在此後續蝕刻步驟中,使用圖案化罩幕31將在第三區域部分C上暴 露出來的第二導電型半導體層25移除,而因此產生圖案化第二導電型半導體層26。在此移除期間,第一介電層21保護第一導電型膜層11,且第一介電層21亦作為此第二移除的蝕刻終止層(etch-stop)。 Figure 8 is a cross-sectional view of the solar cell after the subsequent etching step, in which the patterned mask 31 is used to blast the third region portion C. The exposed second conductive type semiconductor layer 25 is removed, thereby producing the patterned second conductive type semiconductor layer 26. During this removal, the first dielectric layer 21 protects the first conductive type film layer 11, and the first dielectric layer 21 also serves as this second removed etch-stop.

除了前述進行沉積及圖案化膜層30及31並且蝕刻膜層25的方式以外,另一種可選的方式是藉由直接蝕刻製程在第三區域部分C上移除第二導電型半導體層25,其中直接蝕刻製程例如是印刷或(墨水)噴射蝕刻劑、或透過接近式罩幕進行電漿蝕刻。 In addition to the foregoing manner of depositing and patterning the film layers 30 and 31 and etching the film layer 25, another alternative is to remove the second conductive type semiconductor layer 25 on the third region portion C by a direct etching process. The direct etching process is, for example, printing or (ink) jet etchant, or plasma etching through a proximity mask.

至此,太陽電池結構包括:第一區域部分A,其中第一接面配置於圖案化第一導電型半導體層11與基板5之間;以及第二區域部分B,其中第二接面配置於圖案化第二導電型半導體層26與基板5之間。由於第一區域部分A及第二區域部分B在半導體基板的表面上,第一區域部分A及第二區域部分B彼此鄰近,故第一接面及第二接面也彼此鄰近。在此方式中,第一接面及第二接面可以最靠近的方式配置。此接面的毗鄰配置對主要用於收集電荷載子的基板區域(actively used substrate area for collecting charge carriers)提供實質上完整的覆蓋。 So far, the solar cell structure includes: a first region portion A, wherein the first junction is disposed between the patterned first conductive semiconductor layer 11 and the substrate 5; and the second region portion B, wherein the second junction is disposed in the pattern The second conductive semiconductor layer 26 is interposed between the substrate 5. Since the first region portion A and the second region portion B are on the surface of the semiconductor substrate, the first region portion A and the second region portion B are adjacent to each other, and the first junction surface and the second junction surface are also adjacent to each other. In this manner, the first junction and the second junction can be arranged in the closest manner. The adjacent configuration of this junction provides substantially complete coverage of the actively used substrate area for collecting charge carriers.

圖9a至圖9c繪示如不同實施例之進行後續步驟後的太陽電池的剖面圖。 9a-9c are cross-sectional views of a solar cell after subsequent steps as in various embodiments.

在此步驟中,圖案化罩幕31或圖案化第二導電型半導體層26作用為用於蝕刻及移除第三區域部分C中的圖案化第一介電層21的罩幕。舉例而言,在藉由直接蝕刻製程(如上述)來局部移 除膜層25的案例中,可不存在罩幕31。 In this step, the patterned mask 31 or the patterned second conductive semiconductor layer 26 functions as a mask for etching and removing the patterned first dielectric layer 21 in the third region portion C. For example, local shifting by a direct etch process (as described above) In the case of the film layer 25, the mask 31 may not be present.

在藉由諸如印刷蝕刻膠(圖9b)等直接圖案化步驟中,可局部地移除膜層21(在第三區域部分C或其較小的區域部分中)。 The film layer 21 (in the third region portion C or a smaller portion thereof) may be partially removed by a direct patterning step such as printing an etchant (Fig. 9b).

藉由諸如濕式化學蝕刻步驟局部地移除膜層21及31的同時,可藉由諸如介電蝕刻罩幕(諸如所沉積的光阻圖案27)來保護區域D及在區域A及B上的一些鄰近區域。如圖9c所示,膜層21具有延伸至區域A中的部分(此部分具有一長度),且膜層31存在於區域D上且具有延伸至區域B中的部分(此部分具有一長度),故經由上述製程所得的結構與圖9a所示者不同。 While locally removing the film layers 21 and 31 by a wet chemical etching step, the region D and the regions A and B can be protected by, for example, a dielectric etching mask such as the deposited photoresist pattern 27. Some of the adjacent areas. As shown in Fig. 9c, the film layer 21 has a portion extending into the region A (this portion has a length), and the film layer 31 exists on the region D and has a portion extending into the region B (this portion has a length) Therefore, the structure obtained through the above process is different from that shown in Fig. 9a.

圖9c的配置可用於改善長期穩定性及改善最終太陽電池(如圖10e所示的結構)中的電性隔離。 The configuration of Figure 9c can be used to improve long term stability and improve electrical isolation in the final solar cell (structure as shown in Figure 10e).

若存在圖案化罩幕31時,可在移除膜層21的同一蝕刻步驟中移除圖案化罩幕31(在第一及第二介電層的蝕刻選擇比及厚度都相符合(comparable)的案例中),或在另一選擇性蝕刻步驟中移除圖案化罩幕31。 If the patterned mask 31 is present, the patterned mask 31 can be removed in the same etching step of removing the film layer 21 (the etching selectivity and thickness of the first and second dielectric layers are compatible) In the case of the method, or in another selective etching step, the patterned mask 31 is removed.

在對圖案化罩幕31進行蝕刻步驟與移除步驟後,太陽電池結構包括:第一區域部分A,其中第一接面配置於圖案化第一導電型半導體層11與基板5之間;以及第二區域部分B,其中第二接面配置於圖案化第二導電型半導體層26與基板5之間。進一步地說,太陽電池結構包括圖案化第二導電型半導體層26與圖案化第一導電型半導體層重疊的重疊部分。在重疊區域D中,藉由圖案化第一介電層21將第二導電型半導體層26分開及隔離。在 此實例中,圖9a、圖9b及圖9c中所示的區域D的寬度為介於約1微米至約1000微米之間。在其他實例中,區域D的寬度介於約10微米至約500微米之間。在又一實施例中,區域D的寬度介於約50微米至約250微米之間。 After performing the etching step and the removing step on the patterned mask 31, the solar cell structure includes: a first region portion A, wherein the first junction is disposed between the patterned first conductive semiconductor layer 11 and the substrate 5; The second region portion B, wherein the second junction is disposed between the patterned second conductive semiconductor layer 26 and the substrate 5. Further, the solar cell structure includes an overlapping portion in which the patterned second conductive type semiconductor layer 26 overlaps the patterned first conductive type semiconductor layer. In the overlap region D, the second conductive type semiconductor layer 26 is separated and isolated by patterning the first dielectric layer 21. in In this example, the width of the region D shown in Figures 9a, 9b, and 9c is between about 1 micrometer and about 1000 micrometers. In other examples, the width of region D is between about 10 microns and about 500 microns. In yet another embodiment, the width of the region D is between about 50 microns and about 250 microns.

在第一區域部分A中的圖案化第一導電型半導體層11及第二區域部分B中的圖案化第二導電型半導體層26兩者與相應的全區域部分上方的基板表面直接接觸(或者在基板表面上存在有穿隧阻障層的案例中,兩者與覆蓋基板表面的穿隧阻障層直接接觸),而分別形成第一接面及第二接面。 Both the patterned first conductive semiconductor layer 11 in the first region portion A and the patterned second conductive semiconductor layer 26 in the second region portion B are in direct contact with the substrate surface above the corresponding full region portion (or In the case where a tunneling barrier layer is present on the surface of the substrate, the two are in direct contact with the tunneling barrier layer covering the surface of the substrate, and the first junction and the second junction are respectively formed.

因此,第一導電型半導體層11與基板實質上全面地接觸。 Therefore, the first conductive type semiconductor layer 11 is substantially in full contact with the substrate.

圖10至圖14繪示可用於金屬化的一些製程。金屬化可由先前介紹的導電層、及/或後續可(額外)應用的其他導電層所構成。 Figures 10 through 14 illustrate some of the processes that can be used for metallization. Metallization may be comprised of the conductive layers previously described, and/or other conductive layers that may be subsequently (additional) applied.

在圖10至圖14中,與前述圖中具有相同元件符號的元件指稱相應的元件。 In FIGS. 10 to 14, elements having the same reference numerals as those in the aforementioned figures refer to corresponding elements.

圖10a至圖10e繪示進行金屬化步驟後的太陽電池1的剖面圖。如圖10a所繪示,在圖案化第一導電型半導體層11及圖案化第二導電型半導體層26的頂部上沉積金屬層(金屬導電層)34、35。圖10b至圖10e繪示此步驟的選擇性調整。 10a to 10e are cross-sectional views showing the solar cell 1 after the metallization step. As shown in FIG. 10a, metal layers (metal conductive layers) 34, 35 are deposited on top of the patterned first conductive semiconductor layer 11 and the patterned second conductive semiconductor layer 26. Figures 10b to 10e illustrate the selective adjustment of this step.

至少藉由金屬層中的間隙36對金屬層34及35進行圖案化,以在基板5及膜層11的第一接面結構上方的金屬層的第一部分(元件符號34處)與基板5及膜層26的第二接面結構上方的金屬 層的第二部分(元件符號35處)之間產生電性絕緣。間隙36至少位於第二導電型半導體層26的重疊部分上方,以達成膜層11及膜層26上的最大金屬覆蓋及最小阻抗損失,但間隙36也可進一步延伸至部分A或B或兩者的上方。 The metal layers 34 and 35 are patterned by at least the gaps 36 in the metal layer to form a first portion (at the symbol 34) of the metal layer over the first junction structure of the substrate 5 and the film layer 11 and the substrate 5 and Metal above the second junction structure of film layer 26 Electrical insulation is created between the second portion of the layer (at symbol 35). The gap 36 is located at least over the overlapping portion of the second conductive semiconductor layer 26 to achieve maximum metal coverage and minimum impedance loss on the film layer 11 and the film layer 26, but the gap 36 may further extend to the portion A or B or both. Above.

舉例而言,若介電層21不完全是無針孔(pinhole)時,則將間隙36從重疊部分延伸至第一部分A或第二部分B或部分A及B兩者的上方,且此種方式可減少發生分流(shunt)的可能性。 For example, if the dielectric layer 21 is not completely pinhole, the gap 36 is extended from the overlapping portion to the first portion A or the second portion B or both of the portions A and B, and such The way to reduce the possibility of shunting.

圖10e繪示圖案化第一導電型半導體層11及圖案化第二導電型半導體層26的所有區域都不直接暴露於大氣條件下的實施例。與圖9c中所繪示的介電層27相同的介電層37覆蓋鄰近於第一半導體層11及第二半導體層26的重疊區域的膜層26的區域。此配置可增強太陽電池效能的耐久性。可將金屬層34及35沉積為毯層(blanket)並後續藉由蝕刻來圖案化,或者是可直接以圖案的方式沉積之。 FIG. 10e illustrates an embodiment in which all regions of the patterned first conductive semiconductor layer 11 and the patterned second conductive semiconductor layer 26 are not directly exposed to atmospheric conditions. The same dielectric layer 37 as the dielectric layer 27 depicted in FIG. 9c covers the area of the film layer 26 adjacent to the overlapping regions of the first semiconductor layer 11 and the second semiconductor layer 26. This configuration enhances the durability of solar cell performance. The metal layers 34 and 35 may be deposited as a blanket and subsequently patterned by etching, or may be deposited directly in a pattern.

金屬層亦可由以下方式組成:第一毯式沉積層(例如導電氧化物及/或種子金屬(seed metal)層);接著進行第二金屬層的圖案化沉積(例如(網版)印刷或噴墨式的銀圖案、或者光阻圖案接續(電)鍍敷);接著使用第二金屬圖案作為罩幕來對第一毯層進行回蝕刻。 The metal layer may also be composed of a first blanket deposited layer (eg, a conductive oxide and/or a seed metal layer); followed by a patterned deposition of the second metal layer (eg, screen printing or spraying) The ink pattern of the ink or the photoresist pattern is connected (electro) plating; then the second metal pattern is used as a mask to etch back the first layer.

在一實施例中,亦可藉由塗佈具有介電層(例如氮化矽)的第一毯層,之後再將對介電層進行圖案化及在不具有介電質的地方電鍍導電氧化物,以使得第一毯式沉積的膜層配置有金屬圖 案。 In one embodiment, the first blanket layer having a dielectric layer (for example, tantalum nitride) may be applied, and then the dielectric layer may be patterned and electroplated and oxidized in a place without a dielectric. a material such that the first blanket deposited film layer is provided with a metal pattern case.

圖11a至圖11c繪示如相應的其他實施例的太陽電池2的剖面圖。單層的第一導電型半導體層被取代為第一堆疊層,而第一堆疊層在基板上形成第一接面結構且包括在其頂部的第一導電型半導體層11及導電層15。堆疊配置相似於圖1b所繪示者。 11a to 11c illustrate cross-sectional views of a solar cell 2 as in other corresponding embodiments. The single-layer first conductive type semiconductor layer is replaced with a first stacked layer, and the first stacked layer forms a first junction structure on the substrate and includes a first conductive type semiconductor layer 11 and a conductive layer 15 on the top thereof. The stack configuration is similar to that shown in Figure 1b.

圖案化第二導電型半導體層26被第二導電層40覆蓋且形成第二堆疊層。較佳地,例如是藉由參照圖8的上述製程,以與第二導電型半導體層26相對應的方式對第二導電層進行圖案化。在圖11a所繪示的實施例中,可省略重疊部分上方的間隙36。 The patterned second conductive type semiconductor layer 26 is covered by the second conductive layer 40 and forms a second stacked layer. Preferably, the second conductive layer is patterned in a manner corresponding to the second conductive type semiconductor layer 26, for example, by referring to the above-described process of FIG. In the embodiment illustrated in Figure 11a, the gap 36 above the overlapping portion may be omitted.

第一堆疊層毗鄰第二堆疊層。第二堆疊層與第一堆疊層在重疊區域D中重疊。在重疊區域D中,以與圖5至圖8所繪示相似的方式,藉由21使得第一堆疊層與重疊的第二堆疊層分開。 The first stacked layer is adjacent to the second stacked layer. The second stacked layer overlaps the first stacked layer in the overlap region D. In the overlap region D, the first stacked layer is separated from the overlapped second stacked layer by 21 in a manner similar to that illustrated in FIGS. 5 to 8.

在第一接面結構中的導電層15為導電氧化物的案例中,介電層21可被取代為本徵非晶半導體層。 In the case where the conductive layer 15 in the first junction structure is a conductive oxide, the dielectric layer 21 may be substituted for the intrinsic amorphous semiconductor layer.

圖11b及圖11c繪示第二導電層40中的間隙36延伸至重疊部分D或部分的第二區域部分B上方的實施例。 11b and 11c illustrate an embodiment in which the gap 36 in the second conductive layer 40 extends above the overlap portion D or a portion of the second region portion B.

必要時,可圍繞第二導電型半導體層26的重疊部分於第二導電層40中產生間隙36,以改善與第一接面結構中的導電層15的隔絕。 If necessary, a gap 36 may be formed in the second conductive layer 40 around the overlapping portion of the second conductive type semiconductor layer 26 to improve isolation from the conductive layer 15 in the first junction structure.

應理解的是,如上述可得到多種傾斜形式的重疊部分D,因此如圖11a及圖11b、圖11c中所示,第一及第二導電型半導體層具有不同斜度的重疊。 It should be understood that the overlapping portions D of various oblique forms are obtained as described above, and thus the first and second conductive type semiconductor layers have different slopes of overlap as shown in FIGS. 11a and 11b and 11c.

圖12繪示進行製造步驟後的如另一實施例的太陽電池的剖面圖。 Figure 12 is a cross-sectional view showing a solar cell according to another embodiment after the manufacturing step.

在此實施例中,第一區域部分A中的第一接面結構包括在其頂部的第一導電型半導體層11及導電層15的堆疊。對第一導電型半導體層11及導電層15的堆疊進行圖案化,並藉由圖案化介電層22覆蓋第一導電型半導體層11及導電層15的堆疊。 In this embodiment, the first junction structure in the first region portion A includes a stack of the first conductive type semiconductor layer 11 and the conductive layer 15 at the top thereof. The stack of the first conductive type semiconductor layer 11 and the conductive layer 15 is patterned, and the stack of the first conductive type semiconductor layer 11 and the conductive layer 15 is covered by the patterned dielectric layer 22.

第二導電型半導體層25覆蓋第一導電型半導體層11、導電層15及介電層22的圖案化堆疊。在第二區域部分B中的第二接面結構中,配置有圖案化第二導電層45及第二罩幕層50的堆疊,而第二罩幕層50在第二導電層45的頂部上。 The second conductive type semiconductor layer 25 covers the patterned stack of the first conductive type semiconductor layer 11, the conductive layer 15, and the dielectric layer 22. In the second junction structure in the second region portion B, a stack of the patterned second conductive layer 45 and the second mask layer 50 is disposed, and the second mask layer 50 is on the top of the second conductive layer 45. .

為了得到圖12中所繪示的結構,至少在第二區域部分B上方沉積第二導電層45及第二罩幕層50兩者。接著將第二罩幕層50圖案化。接著將圖案化第二罩幕層50用於在第二區域部分B中定義圖案化第二導電層45的位置。在圖案化第二導電層45的末端E與第一區域部分A及第二區域部分B的邊界F之間選擇性地產生間隔S,以改善隔絕。 In order to obtain the structure illustrated in FIG. 12, at least the second conductive layer 45 and the second mask layer 50 are deposited over at least the second region portion B. The second mask layer 50 is then patterned. The patterned second mask layer 50 is then used to define the location of the patterned second conductive layer 45 in the second region portion B. An interval S is selectively generated between the end E of the patterned second conductive layer 45 and the boundary F of the first region portion A and the second region portion B to improve insulation.

圖13為如一實施例繪示的圖12的太陽電池在進行接續步驟後的剖面圖,其中選擇性地移除第二罩幕層50。應理解的是,由於可透過第二罩幕層50達成與第二導電層45的接觸(例如藉由機械力),因此第二罩幕層50的移除可為選擇性的。 FIG. 13 is a cross-sectional view of the solar cell of FIG. 12 after the subsequent step, in which the second mask layer 50 is selectively removed, as illustrated in an embodiment. It should be understood that the removal of the second mask layer 50 may be selective due to the contact with the second conductive layer 45 (eg, by mechanical force) through the second mask layer 50.

圖14繪示圖13的太陽電池3在進行後續製造步驟後的剖面圖。在此後續步驟中,在如圖13所繪示的結構上方沉積介電 層(例如光阻層)。接著,若不以圖案的方式沉積介電層,則對介電層進行圖案化以產生保護介電主體55(例如光阻層),其覆蓋第二導電型半導體層的重疊部分及第一區域部分A與第二區域部分B之間的邊界區域(E至F)。 Figure 14 is a cross-sectional view of the solar cell 3 of Figure 13 after subsequent manufacturing steps. In this subsequent step, a dielectric is deposited over the structure as depicted in FIG. A layer (such as a photoresist layer). Then, if the dielectric layer is not patterned, the dielectric layer is patterned to form a protective dielectric body 55 (eg, a photoresist layer) covering the overlapping portion of the second conductive semiconductor layer and the first region A boundary region (E to F) between the portion A and the second region portion B.

以第二導電型半導體層的重疊部分重疊於圖案化導電層15及圖案化第一導電型半導體層11的堆疊的方式,將圖案化保護介電主體用作為蝕刻/移除第二導電型半導體層25及介電層22的部分的罩幕,其中使用導電層15及第二導電層45作為蝕刻終止層。第一介電層21作為分隔層。 The patterned protective dielectric body is used as an etching/removing second conductivity type semiconductor in such a manner that the overlapping portion of the second conductive type semiconductor layer overlaps the stack of the patterned conductive layer 15 and the patterned first conductive type semiconductor layer 11 A portion of the layer 25 and the dielectric layer 22 are masked, wherein the conductive layer 15 and the second conductive layer 45 are used as an etch stop layer. The first dielectric layer 21 serves as a separation layer.

可將保護介電主體55用於後續的鍍敷步驟(例如電鍍步驟)中,使得在第一區域部分A上的金屬接點與第二區域部分B上的金屬接點分開。由於保護介電主體55能保護非常薄且易受到大氣條件穿透太陽模組影響的膜層26,因此保護介電主體55也可提供太陽電池效能的耐久性。 The protective dielectric body 55 can be used in a subsequent plating step, such as a plating step, such that the metal contacts on the first region portion A are separated from the metal contacts on the second region portion B. Since the protective dielectric body 55 can protect the film layer 26 which is very thin and susceptible to atmospheric conditions penetrating the solar module, the protective dielectric body 55 can also provide durability for solar cell performance.

本發明所屬技術領域具有通常知識者應理解的是,保護介電主體可應用在其他實施例中,例如是圖10e所示的實施例。 It will be understood by those of ordinary skill in the art that the protective dielectric body can be utilized in other embodiments, such as the embodiment illustrated in Figure 10e.

本發明所屬技術領域具有通常知識者應理解的是,可以設想並具以實現本發明的其他實施例而不違背本發明的真實精神,且本發明的範疇僅受限於所附的申請專利範圍。上述實施例是用於說明而非限制本發明。 It is to be understood by those of ordinary skill in the art that the present invention may be practiced and practiced without departing from the true spirit of the invention, and the scope of the invention is only limited by the scope of the appended claims. . The above examples are intended to illustrate and not to limit the invention.

1‧‧‧太陽電池 1‧‧‧Solar battery

11‧‧‧圖案化第一導電型半導體層 11‧‧‧ patterned first conductive semiconductor layer

21‧‧‧圖案化第一介電層 21‧‧‧ patterned first dielectric layer

26‧‧‧圖案化第二導電型半導體層 26‧‧‧ patterned second conductive semiconductor layer

A‧‧‧第一區域部分 A‧‧‧First Area Section

B‧‧‧第二區域部分 B‧‧‧Part II section

C‧‧‧第三區域部分 C‧‧‧Part III

D‧‧‧重疊部分 D‧‧‧ overlap

Claims (18)

一種太陽電池,包括:半導體基板,具有前側表面及背側表面,所述前側表面用於接收輻射,且所述背側表面配置有在所述半導體基板的第一區域部分中的第一接面結構以及在所述半導體基板的第二區域部分中的第二接面結構;所述第二區域部分毗鄰所述第一區域部分;所述第一接面結構包括覆蓋所述第一區域部分的第一導電型半導體層;所述第二接面結構包括覆蓋所述第二區域部分的第二導電型半導體層;所述第二接面結構的所述第二導電型半導體層與所述第一接面結構的所述第一導電型半導體層部分地重疊,所述第二導電型半導體層的重疊部分位於所述第一導電型半導體層的部分的上方,且同時藉由所述第二導電型半導體層的所述重疊部分與所述第一導電型半導體層的所述部分之間的第一介電層將所述第二導電型半導體層的所述重疊部分與所述第一導電型半導體層的所述部分分開,且在所述第二導電型半導體層的所述重疊部分下方的所述第一導電型半導體層的所述部分直接接觸所述半導體基板的半導體表面,其中所述第二區域部分中的所述第二導電型半導體層毗鄰所 述第一區域部分中的所述第一導電型半導體層,所述第二區域部分中的所述第二導電型半導體層鄰近於所述第一導電型半導體層及所述第二導電型半導體層的重疊部分。 A solar cell comprising: a semiconductor substrate having a front side surface for receiving radiation, and a back side surface configured with a first junction in a first region portion of the semiconductor substrate a structure and a second junction structure in the second region portion of the semiconductor substrate; the second region portion is adjacent to the first region portion; the first junction structure includes a portion covering the first region portion a first conductive type semiconductor layer; the second junction structure includes a second conductive type semiconductor layer covering the second region portion; the second conductive type semiconductor layer of the second junction structure and the first The first conductive type semiconductor layer of a junction structure partially overlaps, and an overlapping portion of the second conductive type semiconductor layer is located above a portion of the first conductive type semiconductor layer, and at the same time by the second a first dielectric layer between the overlapping portion of the conductive semiconductor layer and the portion of the first conductive type semiconductor layer, the overlapping portion of the second conductive type semiconductor layer The portions of the first conductive type semiconductor layer are separated, and the portion of the first conductive type semiconductor layer under the overlapping portion of the second conductive type semiconductor layer directly contacts a semiconductor surface of the semiconductor substrate Wherein the second conductive type semiconductor layer in the second region portion is adjacent to The first conductive semiconductor layer in the first region portion, the second conductive semiconductor layer in the second region portion is adjacent to the first conductive semiconductor layer and the second conductive semiconductor The overlapping part of the layer. 如申請專利範圍第1項所述的太陽電池,其中所述第一接面結構包括第一穿隧阻障層,所述第一穿隧阻障層配置於所述第一導電型半導體層及所述半導體基板之間;及/或其中所述第二接面結構包括第二穿隧阻障層,所述第二穿隧阻障層配置於所述第二導電型半導體層與所述半導體基板之間。 The solar cell of claim 1, wherein the first junction structure comprises a first tunneling barrier layer, and the first tunneling barrier layer is disposed on the first conductive semiconductor layer and Between the semiconductor substrates; and/or wherein the second junction structure includes a second tunneling barrier layer, the second tunneling barrier layer is disposed on the second conductive semiconductor layer and the semiconductor Between the substrates. 如申請專利範圍第1項所述的太陽電池,其中所述第一接面結構及所述第二接面結構中的至少一者包括磊晶矽層,所述第一導電型半導體層為磊晶矽層及/或所述第二導電型半導體層為磊晶矽層。 The solar cell of claim 1, wherein at least one of the first junction structure and the second junction structure comprises an epitaxial layer, and the first conductive semiconductor layer is a Lei The germanium layer and/or the second conductive semiconductor layer is an epitaxial layer. 如申請專利範圍第1項所述的太陽電池,其中所述第一導電型半導體層與所述半導體基板的表面的重疊部分的界面為介電層的空隙。 The solar cell according to claim 1, wherein an interface of the overlapping portion of the first conductive semiconductor layer and the surface of the semiconductor substrate is a void of the dielectric layer. 如申請專利範圍第1項至第4項中任一項所述的太陽電池,其中所述第一導電型為p型,所述第一導電型半導體層包括p型摻雜的非晶氫化矽(p+ a-Si:H),所述第一介電層包括氫化氮化矽(SiNx:H)。 The solar cell according to any one of claims 1 to 4, wherein the first conductivity type is p-type, and the first conductivity type semiconductor layer comprises p-type doped amorphous hydrogen hydride (p+ a-Si:H), the first dielectric layer includes yttrium hydrogen hydride (SiNx:H). 如申請專利範圍第1項至第5項中任一項所述的太陽電池,其中所述第一接面結構包括在所述第一導電型半導體層的頂部上的額外第一導電層或層堆疊。 The solar cell of any one of clauses 1 to 5, wherein the first junction structure comprises an additional first conductive layer or layer on top of the first conductive semiconductor layer Stacking. 如申請專利範圍第6項所述的太陽電池,其中所述額外第一導電層為金屬層,或所述層堆疊包括導電氧化層及非晶半導體層,所述非晶半導體層配置在所述導電氧化層及所述第一導電型半導體層的頂部上。 The solar cell of claim 6, wherein the additional first conductive layer is a metal layer, or the layer stack comprises a conductive oxide layer and an amorphous semiconductor layer, the amorphous semiconductor layer being disposed in the a conductive oxide layer and a top of the first conductive semiconductor layer. 如申請專利範圍第1項至第7項所述的太陽電池,其中所述第二接面結構包括在所述第二導電型半導體層的頂部上的額外第二導電層或層堆疊。 The solar cell of any one of clauses 1 to 7, wherein the second junction structure comprises an additional second conductive layer or layer stack on top of the second conductive semiconductor layer. 如申請專利範圍第8項所述的太陽電池,其中所述額外第二導電層為金屬層,或所述層堆疊包括導電氧化層及非晶半導體層,所述非晶半導體層配置在所述導電氧化層及所述第二導電型半導體層的頂部上。 The solar cell of claim 8, wherein the additional second conductive layer is a metal layer, or the layer stack comprises a conductive oxide layer and an amorphous semiconductor layer, the amorphous semiconductor layer being disposed in the a conductive oxide layer and a top of the second conductive semiconductor layer. 如申請專利範圍第1項至第9項所述的太陽電池,其中所述第一導電型半導體層的材料包括本徵非晶矽層或穿隧阻障層、以及摻雜層;所述摻雜層選自於包括第一型摻雜非晶矽、第一型摻雜矽-碳混合物、第一型摻雜矽-鍺合金、第一型摻雜磊晶成長結晶矽、及第一型摻雜多晶矽的群組中。 The solar cell according to any one of claims 1 to 9, wherein the material of the first conductive type semiconductor layer comprises an intrinsic amorphous germanium layer or a tunneling barrier layer, and a doped layer; The impurity layer is selected from the group consisting of a first type doped amorphous germanium, a first type doped germanium-carbon mixture, a first type doped germanium-tellurium alloy, a first type doped epitaxial growth crystalline germanium, and a first type In the group doped with polysilicon. 如申請專利範圍第1項至第10項所述的太陽電池,其中所述第二導電型半導體層的材料選自於包括第二型摻雜非晶矽、第二型摻雜矽-碳混合物、第二型摻雜矽-鍺合金、第二型摻雜磊晶 成長結晶矽、第二型摻雜多晶矽、及其他半導體的群組中。 The solar cell according to any one of claims 1 to 10, wherein the material of the second conductive type semiconductor layer is selected from the group consisting of a second type doped amorphous germanium, a second type doped germanium-carbon mixture. Second type doped ytterbium-rhenium alloy, second type doped epitaxial In the group of grown crystalline germanium, second-type doped polysilicon, and other semiconductors. 如申請專利範圍第1項至第11項所述的太陽電池,其中所述第一介電層的材料選自於包括氮化矽、二氧化矽、氮氧化矽、介電有機化合物、介電金屬氧化物以及介電金屬氮化物的群組中。 The solar cell according to any one of claims 1 to 11, wherein the material of the first dielectric layer is selected from the group consisting of tantalum nitride, hafnium oxide, hafnium oxynitride, dielectric organic compound, dielectric. In the group of metal oxides and dielectric metal nitrides. 如申請專利範圍第1項至第12項所述的太陽電池,其中所述第一接面結構包括第一穿隧阻障層,所述第一穿隧阻障層配置於所述第一導電型半導體層與所述半導體基板之間;及/或其中所述第二接面結構包括第二穿隧阻障層,所述第二穿隧阻障層配置於所述第二導電型半導體層與所述半導體基板之間。 The solar cell according to any one of claims 1 to 12, wherein the first junction structure comprises a first tunneling barrier layer, and the first tunneling barrier layer is disposed on the first conductive layer Between the semiconductor layer and the semiconductor substrate; and/or wherein the second junction structure includes a second tunneling barrier layer, and the second tunneling barrier layer is disposed on the second conductive semiconductor layer Between the semiconductor substrate and the semiconductor substrate. 一種由半導體基板製造太陽電池的方法,所述半導體基板具有前側表面及背側表面,所述前側表面用於接收輻射,而所述背側表面配置有所述半導體基板的第一區域部分中的第一接面結構、以及所述半導體基板的第二區域部分中的第二接面結構,所述第二區域部分毗鄰所述第一區域部分,所述由半導體基板製造太陽電池的方法包括:至少在所述第一區域部分上方的所述半導體基板的所述背側表面上沉積第一導電型半導體層;選擇性沉積導電層;至少在所述第一導電型半導體層上方沉積第一介電層;對所述第一介電層進行圖案化,用以藉由覆蓋所述第一區域部分中的所述第一導電型半導體來定義所述第一區域部分、及用以暴露所述第二區域部分; 使用經圖案化的所述第一介電層作為罩幕對所述第一導電型半導體層進行圖案化,以在所述第一區域部分中產生所述第一接面結構、以及暴露所述第二區域部分中的所述矽基板的表面;在所述背側表面與經暴露的所述第二區域部分上沉積第二導電型半導體層,所述第二導電型半導體層在毗鄰所述第二區域部分的所述第一介電層的至少部分上方,在此方式中,所述第二接面結構的所述第二導電型半導體層與所述第一接面結構的所述第一導電型半導體層部分地重疊,所述第二導電型半導體層的重疊部分位於所述第一導電型半導體層的部分上方,同時藉由所述第二導電型半導體層的所述重疊部分與所述第一導電型半導體層的所述部分之間的所述第一介電層將所述第二導電型半導體層的所述重疊部分與所述第一導電型半導體層的所述部分分開,且所述第二導電型半導體層的所述重疊部分下方的所述第一導電型半導體層的所述部分直接接觸所述半導體基板的半導體表面。 A method of manufacturing a solar cell from a semiconductor substrate, the semiconductor substrate having a front side surface for receiving radiation, and the back side surface being disposed in a first region portion of the semiconductor substrate a first junction structure, and a second junction structure in the second region portion of the semiconductor substrate, the second region portion is adjacent to the first region portion, and the method for manufacturing a solar cell from a semiconductor substrate comprises: Depositing a first conductive type semiconductor layer on at least the back side surface of the semiconductor substrate above the first region portion; selectively depositing a conductive layer; depositing a first dielectric layer at least over the first conductive type semiconductor layer An electrical layer; the first dielectric layer is patterned to define the first region portion by covering the first conductive type semiconductor in the first region portion, and to expose the The second area portion; Patterning the first conductive semiconductor layer using the patterned first dielectric layer as a mask to create the first junction structure in the first region portion, and exposing the a surface of the germanium substrate in the second region portion; depositing a second conductive type semiconductor layer on the back side surface and the exposed second region portion, the second conductive type semiconductor layer being adjacent to the Above at least a portion of the first dielectric layer of the second region portion, in this manner, the second conductive type semiconductor layer of the second junction structure and the first portion of the first junction structure a conductive semiconductor layer partially overlapping, an overlapping portion of the second conductive semiconductor layer being over a portion of the first conductive semiconductor layer while being overlapped by the overlapping portion of the second conductive semiconductor layer The first dielectric layer between the portions of the first conductive type semiconductor layer separates the overlapping portion of the second conductive type semiconductor layer from the portion of the first conductive type semiconductor layer And the second The electrical-type semiconductor layer below the portion of the overlapping portion of the first conductive type semiconductor layer directly contacts the semiconductor surface of the semiconductor substrate. 如申請專利範圍第14項所述的由半導體基板製造太陽電池的方法,更包括:在所述第二導電型半導體層上方沉積罩幕層,所述罩幕層至少覆蓋所述第二區域部分及部分的所述第一區域部分;對所述罩幕層進行圖案化;使用經圖案化的所述罩幕層作為罩幕對所述第二導電型半導 體層進行圖案化,以在所述第二區域部分中產生所述第二接面結構,所述第二接面結構具有圖案,所述圖案使得所述第二導電型半導體層毗鄰且部分地重疊於所述第一導電型半導體層;所述第二導電型半導體層的所述重疊部分位於所述第一導電型半導體層的頂部上,且藉由所述第一介電層將所述第二導電型半導體層的所述重疊部分及所述第一導電型半導體層的所述頂部分開。 The method for manufacturing a solar cell from a semiconductor substrate according to claim 14, further comprising: depositing a mask layer over the second conductive type semiconductor layer, the mask layer covering at least the second region portion And a portion of the first region portion; patterning the mask layer; using the patterned mask layer as a mask for the second conductivity type semiconductor The bulk layer is patterned to create the second junction structure in the second region portion, the second junction structure having a pattern such that the second conductive semiconductor layer is adjacent and partially overlapping The first conductive semiconductor layer; the overlapping portion of the second conductive semiconductor layer is on top of the first conductive semiconductor layer, and the first dielectric layer The overlapping portion of the two-conductivity-type semiconductor layer and the top portion of the first-conductivity-type semiconductor layer are separated. 如申請專利範圍第14項所述的由半導體基板製造太陽電池的方法,其中所述第一接面結構配置有第一穿隧阻障層,所述第一穿隧阻障層配置於所述第一導電型半導體層與所述半導體基板之間;及/或其中所述第二接面結構配置有第二穿隧阻障層,所述第二穿隧阻障層配置於所述第二導電型半導體層與所述半導體基板之間。 The method of manufacturing a solar cell from a semiconductor substrate according to claim 14, wherein the first junction structure is provided with a first tunneling barrier layer, and the first tunneling barrier layer is disposed in the Between the first conductive semiconductor layer and the semiconductor substrate; and/or wherein the second junction structure is configured with a second tunneling barrier layer, and the second tunneling barrier layer is disposed at the second Between the conductive semiconductor layer and the semiconductor substrate. 如申請專利範圍第14項所述的由半導體基板製造太陽電池的方法,其中所述第一接面結構及所述第二接面結構中的至少一者包括磊晶矽層,所述第一導電型半導體層為磊晶矽層及所述半導體基板;及/或所述第二導電型半導體層為磊晶矽層。 The method of manufacturing a solar cell from a semiconductor substrate according to claim 14, wherein at least one of the first junction structure and the second junction structure comprises an epitaxial layer, the first The conductive semiconductor layer is an epitaxial layer and the semiconductor substrate; and/or the second conductive semiconductor layer is an epitaxial layer. 如申請專利範圍第14項所述的由半導體基板製造太陽電池的方法,其中所述第一導電型為p型,所述第一導電型半導體層包括p型摻雜的非晶氫化矽(p+ a-Si:H),且所述第一介電層包括氫化氮化矽(SiNx:H),所述SiNx:H層覆蓋所述p+ a-Si:H層。 The method of manufacturing a solar cell from a semiconductor substrate according to claim 14, wherein the first conductivity type is p-type, and the first conductivity type semiconductor layer comprises p-type doped amorphous hydrogen hydride (p+) a-Si:H), and the first dielectric layer includes yttrium hydrogen hydride (SiNx:H), and the SiNx:H layer covers the p+ a-Si:H layer.
TW103111374A 2014-03-26 2014-03-26 Solar cell and method for manufacturing such a solar cell TW201537757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103111374A TW201537757A (en) 2014-03-26 2014-03-26 Solar cell and method for manufacturing such a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103111374A TW201537757A (en) 2014-03-26 2014-03-26 Solar cell and method for manufacturing such a solar cell

Publications (1)

Publication Number Publication Date
TW201537757A true TW201537757A (en) 2015-10-01

Family

ID=54850986

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111374A TW201537757A (en) 2014-03-26 2014-03-26 Solar cell and method for manufacturing such a solar cell

Country Status (1)

Country Link
TW (1) TW201537757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772432B (en) * 2017-09-13 2022-08-01 日商鐘化股份有限公司 Solar cell, manufacturing method of solar cell, and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772432B (en) * 2017-09-13 2022-08-01 日商鐘化股份有限公司 Solar cell, manufacturing method of solar cell, and solar cell module

Similar Documents

Publication Publication Date Title
US12009449B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
EP2797124B1 (en) Method for manufacturing a solar cell
TWI559563B (en) Hybrid polysilicon heterojunction back contact cell
NL2010496C2 (en) Solar cell and method for manufacturing such a solar cell.
US20080035198A1 (en) Method for the Contact Separation of Electrically-Conducting Layers on the Back Contacts of Solar Cells and Corresponding Solar Cells
JP2011507246A (en) Back electrode type solar cell having wide backside emitter region and method for manufacturing the same
JP6388707B2 (en) Hybrid all-back contact solar cell and manufacturing method thereof
CN109716535B (en) Three-layer semiconductor stack for patterning features on solar cells
WO2014001885A1 (en) Method for fabricating a rear contact heterojunction intrinsic thin layer silicon solar cell with only two masking steps and respective solar cell
US20120312365A1 (en) Solar cell and method for manufacturing of such a solar cell
US20140373919A1 (en) Photovoltaic cell and manufacturing process
US20100236617A1 (en) Stacked Structure Solar Cell Having Backside Conductive Contacts
CN117133812A (en) Back contact battery and manufacturing method thereof
TW201537757A (en) Solar cell and method for manufacturing such a solar cell
KR20160034062A (en) Solar cell and method for manufacturing the same
CN117561613A (en) Photovoltaic device with passivated contacts and corresponding manufacturing method