TWI595392B - Transparent conductive body and touch panel - Google Patents

Transparent conductive body and touch panel Download PDF

Info

Publication number
TWI595392B
TWI595392B TW104136718A TW104136718A TWI595392B TW I595392 B TWI595392 B TW I595392B TW 104136718 A TW104136718 A TW 104136718A TW 104136718 A TW104136718 A TW 104136718A TW I595392 B TWI595392 B TW I595392B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide layer
layer
transparent conductor
metal
Prior art date
Application number
TW104136718A
Other languages
Chinese (zh)
Other versions
TW201633090A (en
Inventor
Hiroshi Shingai
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Publication of TW201633090A publication Critical patent/TW201633090A/en
Application granted granted Critical
Publication of TWI595392B publication Critical patent/TWI595392B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)

Description

透明導電體及觸控面板 Transparent conductor and touch panel

本揭示係關於一種透明導電體以及使用其之觸控面板。 The present disclosure relates to a transparent conductor and a touch panel using the same.

透明導電體被用作液晶顯示器(LCD)、電漿顯示面板(PDP)以及電致發光面板(有機EL、無機EL)等顯示器、以及太陽電池等之透明電極。另外,除了該等之外,亦被用於電磁波遮斷膜以及防紅外線膜等。作為透明導電體中之金屬氧化物層之材料,廣泛使用將錫(Sn)添加於氧化銦(In2O3)之ITO。 The transparent conductor is used as a display such as a liquid crystal display (LCD), a plasma display panel (PDP), and an electroluminescence panel (organic EL, inorganic EL), and a transparent electrode of a solar cell or the like. Further, in addition to these, it is also used for an electromagnetic wave shielding film, an infrared shielding film, and the like. As a material of the metal oxide layer in the transparent conductor, ITO in which tin (Sn) is added to indium oxide (In 2 O 3 ) is widely used.

近年來,智慧型手機以及平板終端等具備觸控面板之終端正在快速普及。該等具有於液晶面板上設置觸控感測器部並於最表面上具備覆蓋玻璃之構成。觸控感測器部係藉由將於玻璃或者薄膜基材之單面或雙面上用濺鍍法成膜ITO膜所得者貼合1片或者2片而構成。 In recent years, terminals equipped with touch panels, such as smart phones and tablet terminals, are rapidly spreading. These have a configuration in which a touch sensor portion is provided on a liquid crystal panel and a cover glass is provided on the outermost surface. The touch sensor unit is configured by laminating one or two sheets of an ITO film formed by sputtering on one side or both sides of a glass or a film substrate.

隨著觸控面板之大型化與觸控感測器功能之高精度化,尋求具有高透過率並且低電阻之透明導電體。為了降低使用ITO膜之透明導電體之電阻,必須增厚ITO膜之厚度,或者藉由熱退火(thermal annealing)來進行ITO膜之結晶化。但是,若將ITO膜實施厚膜化則透過率降低。另外,於高溫下對薄膜基材實施熱退火處理通常較為困難。因此,於設置於薄膜基材上之ITO膜之情形時,處於難以維持高透過率且降低電阻之狀況。 With the increase in the size of the touch panel and the high precision of the touch sensor function, a transparent conductor having high transmittance and low resistance has been sought. In order to lower the electric resistance of the transparent electric conductor using the ITO film, it is necessary to thicken the thickness of the ITO film or to perform crystallization of the ITO film by thermal annealing. However, when the ITO film is thickened, the transmittance is lowered. In addition, it is generally difficult to subject the film substrate to thermal annealing at a high temperature. Therefore, in the case of the ITO film provided on the film substrate, it is difficult to maintain a high transmittance and reduce the electric resistance.

於此種情況下,提出具有以氧化鋅作為主成分之金屬氧化物層與金屬層之積層構造之透明導電膜(例如,日本專利特開平9-291355 號公報)。 In this case, a transparent conductive film having a laminated structure of a metal oxide layer and a metal layer containing zinc oxide as a main component is proposed (for example, Japanese Patent Laid-Open No. Hei 9-291355 Bulletin).

於觸控面板等之用途中,將透明導電膜圖案化成導電部分與絕緣部分並檢測觸控之位置。因此,要求於具有金屬氧化物層與金屬層之積層構造之透明導電體中,金屬氧化物層與金屬層能夠藉由蝕刻一次性除去。然而,於以氧化鋅作為主成分之金屬氧化物層與金屬層之積層構造中,存在難以藉由蝕刻將金屬氧化物層與金屬層一次性除去之情況。 In the use of a touch panel or the like, the transparent conductive film is patterned into a conductive portion and an insulating portion and the position of the touch is detected. Therefore, in the transparent conductor having a laminated structure of a metal oxide layer and a metal layer, the metal oxide layer and the metal layer can be removed at one time by etching. However, in the laminated structure of the metal oxide layer and the metal layer containing zinc oxide as a main component, there is a case where it is difficult to remove the metal oxide layer and the metal layer at one time by etching.

此處,於本揭示中,提供一種透明導電體,其具有含有氧化鋅作為主成分之金屬氧化物層與金屬層之積層構造,藉由蝕刻能夠容易地除去金屬氧化物層與金屬層。另外,於本揭示中,藉由使用此種透明導電體從而提供一種能夠容易地製造之觸控面板。 Here, in the present disclosure, there is provided a transparent conductor having a laminated structure of a metal oxide layer containing a zinc oxide as a main component and a metal layer, and the metal oxide layer and the metal layer can be easily removed by etching. Further, in the present disclosure, a touch panel which can be easily manufactured is provided by using such a transparent conductor.

本發明於一態樣提供一種透明導電體,其係透明樹脂基材、第1金屬氧化物層、含有銀合金之金屬層、以及第2金屬氧化物層按照上述順序進行積層,並且第2金屬氧化物層含有ZnO作為主成分並且含有Ga2O3以及GeO2作為副成分。 The present invention provides a transparent conductor in which a transparent resin substrate, a first metal oxide layer, a metal layer containing a silver alloy, and a second metal oxide layer are laminated in the above-described order, and the second metal is provided. The oxide layer contains ZnO as a main component and contains Ga 2 O 3 and GeO 2 as a subcomponent.

此種透明導電體具有積層結構,其具備:構成最表面之含有ZnO作為主成分且含有Ga2O3以及GeO2作為副成分之第2金屬氧化物層及含有銀合金之金屬層。該第2金屬氧化物層與金屬層容易藉由蝕刻而被一次性除去。另外,可製成具有高透明性、高導電性以及優異之耐腐蝕性之透明導電體。因此,能夠適用於觸控面板等之需要蝕刻之用途。 Such a transparent conductor has a laminated structure and includes a second metal oxide layer containing ZnO as a main component and containing Ga 2 O 3 and GeO 2 as a subcomponent, and a metal layer containing a silver alloy. The second metal oxide layer and the metal layer are easily removed at one time by etching. In addition, a transparent conductor having high transparency, high electrical conductivity, and excellent corrosion resistance can be produced. Therefore, it can be applied to applications requiring etching such as a touch panel.

於幾個實施形態中,於第2金屬氧化物層中,相對於ZnO、Ga2O3以及GeO2此三種成分之合計,ZnO之含量可為70~90mol%。相對於上三種成分之合計,Ga2O3含量可為5~15mol%。相對於上述三種成分之合計,GeO2之含量可為5~20mol%。藉由以上述比例含有ZnO、 Ga2O3以及GeO2,從而能夠充分提高第2金屬氧化物層之透明性、導電性、耐腐蝕性以及蝕刻性。 In some embodiments, the content of ZnO may be 70 to 90 mol% based on the total of the three components of ZnO, Ga 2 O 3 and GeO 2 in the second metal oxide layer. The Ga 2 O 3 content may be 5 to 15 mol% with respect to the total of the above three components. The content of GeO 2 may be 5 to 20 mol% based on the total of the above three components. By containing the above ratio ZnO, Ga 2 O 3 and GeO 2, it is possible to sufficiently improve the transparency of the second metal oxide layers, conductive, corrosion resistance and etch resistance.

於幾個實施形態中,第1金屬氧化物層中,作為主成分可含有ZnO,並且作為副成分可含有Ga2O3以及GeO2。藉此,可藉由蝕刻而容易地一次性除去第1金屬氧化物層、第2金屬氧化物層以及金屬層。另外,可製成具有高透明性、高導電性以及優異之耐腐蝕性之透明導電體。 In the form of several embodiments, the first metal oxide layer as a main component may contain ZnO, and may contain a subcomponent Ga 2 O 3 and GeO 2. Thereby, the first metal oxide layer, the second metal oxide layer, and the metal layer can be easily removed at one time by etching. In addition, a transparent conductor having high transparency, high electrical conductivity, and excellent corrosion resistance can be produced.

於幾個實施形態中,金屬層之厚度可為4~11nm。能夠充分提高透明導電體之透明性且能夠降低表面電阻。於幾個實施形態中,銀合金可為Ag與選自Pd、Cu、Nd、In、Sn以及Sb所組成之群中之至少一種金屬之合金。 In several embodiments, the metal layer may have a thickness of 4 to 11 nm. The transparency of the transparent conductor can be sufficiently improved and the surface resistance can be lowered. In some embodiments, the silver alloy may be an alloy of Ag and at least one metal selected from the group consisting of Pd, Cu, Nd, In, Sn, and Sb.

本發明於另一態樣提供一種觸控面板,其於面板之上具有傳感薄膜,該傳感薄膜由上述透明導電體構成。此種觸控面板由於具有由上述透明導電體構成之傳感薄膜,故而能夠容易地製造。 In another aspect, the present invention provides a touch panel having a sensing film on the panel, the sensing film being composed of the transparent conductor. Since such a touch panel has a sensing film made of the above transparent conductor, it can be easily manufactured.

根據本揭示,可提供一種透明導電體,其係具有含有氧化鋅作為主成分之金屬氧化物層與金屬層之積層構造者,能夠由蝕刻容易地除去金屬氧化物層及金屬層。另外,於本揭示中,藉由使用此種透明導電體,可提供一種能夠容易製造之觸控面板。 According to the present disclosure, a transparent conductor having a laminated structure of a metal oxide layer containing a zinc oxide as a main component and a metal layer can be provided, and the metal oxide layer and the metal layer can be easily removed by etching. In addition, in the present disclosure, by using such a transparent conductor, a touch panel that can be easily manufactured can be provided.

10‧‧‧透明樹脂基材 10‧‧‧Transparent resin substrate

12‧‧‧第1金屬氧化物層 12‧‧‧1st metal oxide layer

14‧‧‧第2金屬氧化物層 14‧‧‧2nd metal oxide layer

15a、15b‧‧‧感測器電極 15a, 15b‧‧‧ sensor electrodes

16‧‧‧金屬層 16‧‧‧metal layer

17、18‧‧‧光學膠 17, 18‧‧‧ optical glue

19‧‧‧覆蓋玻璃 19‧‧‧ Covering glass

20‧‧‧硬塗層 20‧‧‧hard coating

22‧‧‧第1硬塗層 22‧‧‧1st hard coat

24‧‧‧第2硬塗層 24‧‧‧2nd hard coat

50‧‧‧導體線路 50‧‧‧Conductor lines

70‧‧‧面板 70‧‧‧ panel

80‧‧‧電極 80‧‧‧ electrodes

90‧‧‧接著劑 90‧‧‧Adhesive

92‧‧‧墊片 92‧‧‧shims

100、101‧‧‧透明導電體 100, 101‧‧‧ Transparent conductor

100a、100b‧‧‧傳感薄膜 100a, 100b‧‧‧ sensing film

200‧‧‧觸控面板 200‧‧‧ touch panel

S‧‧‧空隙 S‧‧‧ gap

圖1係示意性地表示透明導電體之一實施形態之剖面圖。 Fig. 1 is a cross-sectional view schematically showing an embodiment of a transparent conductor.

圖2係示意性地表示透明導電體之其他實施形態之剖面圖。 Fig. 2 is a cross-sectional view schematically showing another embodiment of a transparent conductor.

圖3係放大觸控面板之一實施形態中之剖面之一部分而表示的示意剖面圖。 Fig. 3 is a schematic cross-sectional view showing a portion of a cross section in an embodiment of the touch panel.

圖4(A)、(B)係構成觸控面板之一實施形態之傳感薄膜之平面圖。 4(A) and 4(B) are plan views showing a sensing film of an embodiment of the touch panel.

以下,一面參照附圖一面詳細地說明本發明之較佳實施形態。但是,本發明完全不限定於以下之實施形態。另外,於附圖中對相同或者同等之要素標註相同符號,根據情況不同省略重複之說明。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments at all. In the drawings, the same or equivalent components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.

圖1係表示透明導電體之一實施形態之示意剖面圖。透明導電體100具有:薄膜狀之透明樹脂基材10、第1金屬氧化物層12、金屬層16、第2金屬氧化物層14按上述順序配置之積層構造。 Fig. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductor. The transparent conductor 100 has a laminated structure in which the film-shaped transparent resin substrate 10, the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 are arranged in the above-described order.

本說明書之「透明」意指可見光透過,亦可以一定程度散射光。對於光之散射程度,根據透明導電體100之用途所要求之水平而有所不同。如一般被稱作半透明般有光散射之情況亦包含於本說明書中之「透明」之概念。光之散射程度較佳為相對較小,透明性較佳為相對較高。透明導電體100整體之全光線透過率例如為80%以上,較佳為83%以上,更佳為85%以上。該全光線透過率係使用積分球(integrating sphere)求得之包含擴散透射光之透過率,可使用市售之薄膜混濁度測量儀(hazemeter)來進行測定。 "Transparent" in this specification means that visible light is transmitted, and light can be scattered to some extent. The degree of light scattering varies depending on the level required for the use of the transparent conductor 100. The term "transparent" as used in this specification is also encompassed by what is commonly referred to as translucent light scattering. The degree of light scattering is preferably relatively small, and the transparency is preferably relatively high. The total light transmittance of the entire transparent conductor 100 is, for example, 80% or more, preferably 83% or more, and more preferably 85% or more. The total light transmittance is a transmittance including diffused transmitted light obtained by using an integrating sphere, and can be measured using a commercially available film haze meter.

作為透明樹脂基材10,並無特別之限定,可為具有可撓性之有機樹脂薄膜。有機樹脂薄膜亦可為有機樹脂薄片。作為有機樹脂薄膜,例如可列舉聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)等聚酯薄膜、聚乙烯以及聚丙烯等聚烯烴薄膜、聚碳酸酯薄膜、丙烯酸薄膜、降冰片烯(norbornene)薄膜、聚芳酯薄膜、聚醚碸薄膜、二乙醯纖維素薄膜、以及三乙醯纖維素薄膜等。該等之中,較佳為聚對苯二甲酸乙二酯(PET)及聚萘二甲酸乙二酯(PEN)等聚酯薄膜。 The transparent resin substrate 10 is not particularly limited, and may be a flexible organic resin film. The organic resin film may also be an organic resin sheet. Examples of the organic resin film include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, and polycarbonate films. An acrylic film, a norbornene film, a polyarylate film, a polyether ruthenium film, a diethyl ruthenium cellulose film, a triethylene fluorene cellulose film, or the like. Among these, a polyester film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.

就剛性之觀點而言,透明樹脂基材10較佳為較厚。另外,就將透明導電體100薄膜化之觀點而言,透明樹脂基材10較佳為較薄。就此種觀點而言,透明樹脂基材10之厚度例如為10~200μm。就製成光學特性優異之透明導電體之觀點而言,透明樹脂基材之折射率例如為1.50~1.70。另外,本說明書中之折射率係於λ=633nm,溫度20℃之 條件下測定之值。 The transparent resin substrate 10 is preferably thicker from the viewpoint of rigidity. Further, from the viewpoint of thinning the transparent conductor 100, the transparent resin substrate 10 is preferably thin. From this point of view, the thickness of the transparent resin substrate 10 is, for example, 10 to 200 μm. The refractive index of the transparent resin substrate is, for example, from 1.50 to 1.70 from the viewpoint of producing a transparent conductor excellent in optical characteristics. In addition, the refractive index in this specification is λ = 633 nm, and the temperature is 20 ° C. The value measured under the conditions.

透明樹脂基材10較佳為加熱時之尺寸穩定性較高。一般而言,可撓性之有機樹脂薄膜於薄膜製作之過程中,藉由加熱會產生由於膨脹或者收縮引起之尺寸變化。於單軸延伸或者雙軸延伸中,能夠以低成本來製作厚度較薄之透明樹脂基材10。於形成引出電極時,若加熱透明導電體100,則由於熱收縮而發生尺寸變化。此種尺寸變化可按照ASTM D1204-02或者JIS-C-2151來測定。加熱處理前後之尺寸變化率於將加熱前之尺寸設定為Lo並且將加熱後之尺寸設定為L時,可由以下之式求得。 The transparent resin substrate 10 preferably has a high dimensional stability upon heating. In general, a flexible organic resin film produces dimensional changes due to expansion or contraction by heating during film formation. In the uniaxial stretching or the biaxial stretching, the transparent resin substrate 10 having a small thickness can be produced at low cost. When the extraction electrode is formed, when the transparent conductor 100 is heated, dimensional changes occur due to heat shrinkage. Such dimensional change can be measured in accordance with ASTM D1204-02 or JIS-C-2151. The dimensional change rate before and after the heat treatment is determined by setting the size before heating to Lo and the size after heating to L.

尺寸變化率(%)=100×(L-Lo)/Lo Dimensional change rate (%) = 100 × (L-Lo) / Lo

尺寸變化率(%)為正值之情形表示藉由加熱處理而產生膨脹,負值之情形表示藉由加熱處理而產生收縮。經雙軸延伸之透明樹脂基材10之尺寸變化率可於延伸時之行進方向(MD方向)與橫向(TD方向)兩個方向上進行測定。透明樹脂基材10之尺寸變化率例如於MD方向上為-1.0~-0.3%,於TD方向上為-0.1~+0.1%。 The case where the dimensional change rate (%) is a positive value indicates that expansion is caused by heat treatment, and the case of negative value indicates that shrinkage is caused by heat treatment. The dimensional change rate of the biaxially stretched transparent resin substrate 10 can be measured in both the traveling direction (MD direction) and the lateral direction (TD direction) in the extension. The dimensional change ratio of the transparent resin substrate 10 is, for example, -1.0 to -0.3% in the MD direction and -0.1 to +0.1% in the TD direction.

透明樹脂基材10可為實施選自電暈放電處理、輝光放電處理、火焰處理、紫外線照射處理、電子束照射處理以及臭氧處理所組成之群中之至少一種表面處理。透明樹脂基材亦可為樹脂薄膜。藉由使用樹脂薄膜而能夠使透明導電體100於柔軟性方面優異。藉此,並不限定於觸控面板用途之透明導電體,亦能夠用於柔軟之有機EL照明等之透明電極用,或者電磁波遮斷物。 The transparent resin substrate 10 may be at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. The transparent resin substrate may also be a resin film. The transparent conductor 100 can be made excellent in flexibility by using a resin film. Therefore, it is not limited to the transparent conductor used for the touch panel, and can be used for a transparent electrode such as a soft organic EL illumination or an electromagnetic wave shield.

例如,於將透明導電體100作為構成觸控面板之傳感薄膜使用之情形時,透明樹脂基材10亦可使用具有可撓性之有機樹脂薄膜以使對手指以及筆等之外部輸入適度地變形。 For example, when the transparent conductive body 100 is used as a sensing film constituting a touch panel, the transparent resin substrate 10 may also use a flexible organic resin film to appropriately input externally to a finger, a pen, or the like. Deformation.

第2金屬氧化物層14為含有氧化物之透明層,作為主成分含有ZnO,並且作為副成分含有Ga2O3以及GeO2。此處所謂之主成分係指 於ZnO、Ga2O3以及GeO2三種成分中,莫耳基準之含量最多之成分。所謂副成分係指於上述三種成分中非主成分之成分。第2金屬氧化物層14由於含有ZnO作為主成分,因此於經濟性上優異。另外,可不使用ITO而形成兼備高導電性及高透明性之第2金屬氧化物層14。因此,即便不進行熱退火處理亦能夠製成具有低表面電阻之第2金屬氧化物層14。 The second metal oxide layer 14 is a transparent layer containing an oxide, and contains ZnO as a main component and Ga 2 O 3 and GeO 2 as a subcomponent. The term "main component" as used herein means a component having the highest molar content of the three components of ZnO, Ga 2 O 3 and GeO 2 . The term "subcomponent" means a component other than the above three components. Since the second metal oxide layer 14 contains ZnO as a main component, it is excellent in economic efficiency. Further, the second metal oxide layer 14 having high conductivity and high transparency can be formed without using ITO. Therefore, the second metal oxide layer 14 having a low surface resistance can be produced without performing thermal annealing treatment.

於第2金屬氧化物層14中,就充分提高透過率及導電性之觀點而言,相對於上述三種成分之合計,ZnO之含量例如為70mol%以上,較佳為75mol%以上。就充分提高保存穩定性之觀點而言,於第2金屬氧化物層14中,相對於上述三種成分之合計,ZnO之含量例如為90mol%以下,較佳為84mol%以下。若ZnO含量過多,則於高溫高濕環境下保存之情況下,會有容易產生白濁之傾向。另一方面,若ZnO含量過少,則會有透過率以及導電性降低之傾向。 In the second metal oxide layer 14 , the content of ZnO is, for example, 70 mol% or more, preferably 75 mol% or more, based on the total of the above three components, from the viewpoint of sufficiently improving the transmittance and the conductivity. In the second metal oxide layer 14, the content of ZnO is, for example, 90 mol% or less, preferably 84 mol% or less, based on the total of the above three components. When the ZnO content is too large, it tends to cause white turbidity when stored in a high-temperature and high-humidity environment. On the other hand, when the ZnO content is too small, the transmittance and the conductivity tend to be lowered.

於第2金屬氧化物層14中,就既充分降低表面電阻且充分提高透過率之觀點而言,相對於上述三種成分之合計,Ga2O3之含量例如為15mol%以下,較佳為11mol%以下。於第2金屬氧化物層14中,就充分提高保存穩定性之觀點而言,相對於上述三種成分之合計,Ga2O3之含量例如為5mol%以上,較佳為8mol%以上。若Ga2O3之含量過多,則有表面電阻變高之傾向以及透過率降低之傾向。另一方面,若Ga2O3之含量過少,則於高溫高濕環境下保存之情形,會有變得容易產生白濁並且表面電阻變高之傾向。 In the second metal oxide layer 14 , the content of Ga 2 O 3 is , for example, 15 mol% or less, preferably 11 mol, from the viewpoint of sufficiently reducing the surface resistance and sufficiently increasing the transmittance. %the following. In the second metal oxide layer 14 , the content of Ga 2 O 3 is , for example, 5 mol% or more, and preferably 8 mol% or more, from the viewpoint of sufficiently improving the storage stability. When the content of Ga 2 O 3 is too large, the surface resistance tends to increase and the transmittance tends to decrease. On the other hand, if the Ga 2 O 3 content is too small, the preservation of the environment of high temperature and humidity in the case, there will be cloudy and tends to easily generate a high electric resistance of the surface.

於第2金屬氧化物層14中,就既充分降低表面電阻且充分提高透過率之觀點而言,相對於上述三種成分之總計,GeO2之含量例如為20mol%以下,較佳為14mol%以下。於第2金屬氧化物層14中,就充分提高保存穩定性之觀點而言,相對於上述三種成分之合計,GeO2之含量例如為5mol%以上,較佳為8mol%以上。若GeO2含量過多, 則有表面電阻變高之傾向以及透過率降低之傾向。另一方面,若GeO2含量過少,則於高溫高濕環境下進行保存之情形時,會有表面電阻變高之傾向。 In the second metal oxide layer 14 , the content of GeO 2 is , for example, 20 mol% or less, preferably 14 mol% or less, from the viewpoint of sufficiently reducing the surface resistance and sufficiently increasing the transmittance. . In the second metal oxide layer 14 , the content of GeO 2 is , for example, 5 mol% or more, preferably 8 mol% or more, based on the total of the above three components, from the viewpoint of sufficiently improving the storage stability. When the content of GeO 2 is too large, the surface resistance tends to increase and the transmittance tends to decrease. On the other hand, when the content of GeO 2 is too small, the surface resistance tends to increase when it is stored in a high-temperature and high-humidity environment.

第2金屬氧化物層14兼備光學特性之調整、金屬層16之保護以及導電性之確保等功能。第2金屬氧化物層14於不大大損害其功能之範圍內,除了上述三種成分之外,亦可含有微量成分或者不可避免之成分。但是,就製成具有充分高之特性之透明導電體100之觀點而言,較佳為第2金屬氧化物層14中之該三種成分之合計之比例相對較高。該比例例如為95mol%以上,較佳為97mol%以上。另外,第2金屬氧化物層14較佳為不含有ITO。 The second metal oxide layer 14 has functions such as adjustment of optical characteristics, protection of the metal layer 16, and securing of conductivity. The second metal oxide layer 14 may contain a trace component or an unavoidable component in addition to the above three components within a range that does not greatly impair the function. However, from the viewpoint of producing the transparent conductor 100 having sufficiently high characteristics, it is preferable that the ratio of the total of the three components in the second metal oxide layer 14 is relatively high. The ratio is, for example, 95 mol% or more, preferably 97 mol% or more. Further, the second metal oxide layer 14 preferably does not contain ITO.

第1金屬氧化物層12與第2金屬氧化物層14於厚度、結構以及組成方面既可相同亦可不同。關於第2金屬氧化物層14之組成之記載亦能夠直接適用於第1金屬氧化物層12。藉由第1金屬氧化物層12具有與第2金屬氧化物層14相同之組成,而能夠藉由蝕刻來一次性除去第1金屬氧化物層12、金屬層16以及第2金屬氧化物層14。另外,能夠進一步提高透明性以及耐腐蝕性。 The first metal oxide layer 12 and the second metal oxide layer 14 may be the same or different in thickness, structure, and composition. The description of the composition of the second metal oxide layer 14 can also be directly applied to the first metal oxide layer 12. The first metal oxide layer 12 has the same composition as that of the second metal oxide layer 14, and the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 can be removed at one time by etching. . In addition, transparency and corrosion resistance can be further improved.

第1金屬氧化物層12亦可具有與第2金屬氧化物層14不同之組成。於此情形時,可藉由蝕刻除去第2金屬氧化物層14以及金屬層16,並使第1金屬氧化物層12原樣殘留。 The first metal oxide layer 12 may have a different composition from the second metal oxide layer 14. In this case, the second metal oxide layer 14 and the metal layer 16 can be removed by etching, and the first metal oxide layer 12 can be left as it is.

就作為適合於各種各樣之觸控面板之厚度之觀點而言,第1金屬氧化物層12以及第2金屬氧化物層14之厚度例如為10~70nm。 The thickness of the first metal oxide layer 12 and the second metal oxide layer 14 is, for example, 10 to 70 nm from the viewpoint of the thickness suitable for various touch panels.

第1金屬氧化物層12以及第2金屬氧化物層14可藉由真空蒸鍍法、濺鍍法、離子電鍍法或者CVD法等真空成膜法來製作。該等之中,就能夠使成膜室小型化之方面以及成膜速度快之方面而言,較佳為濺鍍法。作為濺鍍法,可列舉DC磁控濺鍍法(magnetron sputtering)。作為靶材可使用氧化物靶材、金屬或者半金屬靶材。 The first metal oxide layer 12 and the second metal oxide layer 14 can be produced by a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method. Among these, a sputtering method is preferred in terms of miniaturization of the film forming chamber and rapid film formation. As the sputtering method, magnetron sputtering is exemplified. As the target, an oxide target, a metal or a semi-metal target can be used.

亦可於第2金屬氧化物層14之上設置配線電極等。導通後述之金屬層16之電流係自設置於第2金屬氧化物層14之上之配線電極等經由第2金屬氧化物層14而被傳導。因此,第2金屬氧化物層14較佳為具有高導電性。就此種觀點而言,於第2金屬氧化物層14單膜上之表面電阻值例如較佳為1.0×10+7Ω/sq.(=1.0E+7Ω/sq.)以下,更佳為5.0×10+6Ω/sq.以下。 A wiring electrode or the like may be provided on the second metal oxide layer 14. The current of the metal layer 16 to be described later is conducted from the wiring electrode or the like provided on the second metal oxide layer 14 via the second metal oxide layer 14. Therefore, the second metal oxide layer 14 preferably has high conductivity. On such viewpoint, in the surface of the film 14 of the single resistance value of the second metal oxide layer, for example, it is preferably 1.0 × 10 +7 Ω / sq. (= 1.0E + 7Ω / sq.) Or less, more preferably 5.0 ×10 +6 Ω/sq. or less.

金屬層16係包含銀合金作為主要成分之層。藉由金屬層16具有高導電性,從而能夠充分降低透明導電體100之表面電阻。作為構成銀合金之金屬元素,可列舉Ag與選自Pd、Cu、Nd、In、Sn以及Sb中之至少一種。作為銀合金之例,可列舉Ag-Pd、Ag-Cu、Ag-Pd-Cu、Ag-Nd-Cu、Ag-In-Sn以及Ag-Sn-Sb。 The metal layer 16 is a layer containing a silver alloy as a main component. Since the metal layer 16 has high conductivity, the surface resistance of the transparent conductor 100 can be sufficiently reduced. Examples of the metal element constituting the silver alloy include Ag and at least one selected from the group consisting of Pd, Cu, Nd, In, Sn, and Sb. Examples of the silver alloy include Ag-Pd, Ag-Cu, Ag-Pd-Cu, Ag-Nd-Cu, Ag-In-Sn, and Ag-Sn-Sb.

金屬層16除了銀合金之外亦可含有添加物。添加物較佳為由蝕刻液能夠容易地除去者。金屬層16中之銀合金之含量例如可為90質量%以上,亦可為95質量%以上。金屬層16之厚度例如為1~30nm。就既充分降低透明導電體100之表面電阻且充分提高全光線透過率之觀點而言,金屬層16之厚度較佳為4~11nm。若金屬層16之厚度過大則有全光線透過率降低之傾向。另一方面,若金屬層16之厚度過小,則有表面電阻變高之傾向。 The metal layer 16 may contain additives in addition to the silver alloy. The additive is preferably one which can be easily removed by an etchant. The content of the silver alloy in the metal layer 16 can be, for example, 90% by mass or more, and may be 95% by mass or more. The thickness of the metal layer 16 is, for example, 1 to 30 nm. The thickness of the metal layer 16 is preferably 4 to 11 nm from the viewpoint of sufficiently reducing the surface resistance of the transparent conductor 100 and sufficiently increasing the total light transmittance. If the thickness of the metal layer 16 is too large, the total light transmittance tends to decrease. On the other hand, if the thickness of the metal layer 16 is too small, the surface resistance tends to be high.

金屬層16具有調整透明導電體100之全光線透過率以及表面電阻之功能。金屬層16可藉由真空蒸鍍法、濺鍍法、離子電鍍法或者CVD法等真空成膜法來製作。該等之中,就能夠使成膜室小型化之方面以及成膜速度快之方面而言,較佳為濺鍍法。作為濺鍍法,可列舉DC磁控濺鍍法。作為靶材,可使用金屬靶材。 The metal layer 16 has a function of adjusting the total light transmittance and surface resistance of the transparent conductor 100. The metal layer 16 can be produced by a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method. Among these, a sputtering method is preferred in terms of miniaturization of the film forming chamber and rapid film formation. As the sputtering method, a DC magnetron sputtering method can be cited. As the target, a metal target can be used.

透明導電體100中之第1金屬氧化物層12以及第2金屬氧化物層14之至少一部分以及金屬層16之至少一部分可藉由蝕刻等除去。 At least a portion of the first metal oxide layer 12 and the second metal oxide layer 14 and at least a portion of the metal layer 16 in the transparent conductor 100 can be removed by etching or the like.

圖2係表示透明導電體之其他實施形態之示意剖面圖。透明導電 體101於以夾著透明樹脂基材10之方式具備一對硬塗層20方面,與透明導電體100不同。其他構成與透明導電體100相同。 Fig. 2 is a schematic cross-sectional view showing another embodiment of a transparent conductor. Transparent conductive The body 101 is different from the transparent conductor 100 in that a pair of hard coat layers 20 are provided so as to sandwich the transparent resin substrate 10. The other configuration is the same as that of the transparent conductor 100.

透明導電體101中,作為一對硬塗層20,於透明樹脂基材10之第1金屬氧化物層12側之主面上具備第1硬塗層22,及於透明樹脂基材10之與第1金屬氧化物層12側相反側之主面上具備第2硬塗層24。即,透明導電體101具有第2硬塗層24、透明樹脂基材10、第1硬塗層22、第1金屬氧化物層12、金屬層16以及第2金屬氧化物層14按該順序進行積層之積層構造。第1硬塗層22與第2硬塗層24之厚度、結構以及組成既可相同亦可不相同。另外,並不一定必須具備第1硬塗層22及第2硬塗層24兩者,可僅具備任一者。 In the transparent conductor 101, as the pair of hard coat layers 20, the first hard coat layer 22 is provided on the main surface of the transparent resin substrate 10 on the side of the first metal oxide layer 12, and the transparent resin substrate 10 is bonded to the transparent resin substrate 10. The second hard coat layer 24 is provided on the main surface opposite to the side of the first metal oxide layer 12. In other words, the transparent conductor 101 has the second hard coat layer 24, the transparent resin substrate 10, the first hard coat layer 22, the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 in this order. The layered structure of the layer. The thickness, structure, and composition of the first hard coat layer 22 and the second hard coat layer 24 may be the same or different. Further, it is not always necessary to provide both the first hard coat layer 22 and the second hard coat layer 24, and only one of them may be provided.

藉由設置硬塗層20,從而可充分抑制於透明樹脂基材10上產生損傷。硬塗層20含有使樹脂組合物硬化而獲得之樹脂硬化物。樹脂組合物較佳為包含選自熱硬化性樹脂組合物、紫外線硬化性樹脂組合物以及電子束硬化性樹脂組合物中之至少一種。熱硬化性樹脂組合物可含有選自環氧樹脂、苯氧基系樹脂以及三聚氰胺系樹脂中之至少一種。 By providing the hard coat layer 20, damage to the transparent resin substrate 10 can be sufficiently suppressed. The hard coat layer 20 contains a cured resin obtained by hardening the resin composition. The resin composition preferably contains at least one selected from the group consisting of a thermosetting resin composition, an ultraviolet curable resin composition, and an electron beam curable resin composition. The thermosetting resin composition may contain at least one selected from the group consisting of an epoxy resin, a phenoxy resin, and a melamine resin.

樹脂組合物例如為含有具有(甲基)丙烯醯基、乙烯基等之能量射線反應性基之硬化性化合物之組合物。另外,(甲基)丙烯醯基之表記意指包括丙烯醯基以及甲基丙烯醯基中之至少一種之含義。硬化性化合物較佳為包含於1個分子內含有2個以上,較佳為3個以上之能量射線反應性基之多官能單體或者低聚物。 The resin composition is, for example, a composition containing a curable compound having an energy ray-reactive group such as a (meth) acrylonitrile group or a vinyl group. Further, the expression of the (meth)acryl fluorenyl group means the meaning of at least one of an acryloyl group and a methacryl group. The curable compound is preferably a polyfunctional monomer or oligomer containing two or more, preferably three or more, energy ray-reactive groups in one molecule.

硬化性化合物較佳為含有丙烯酸系單體。作為丙烯酸系單體,具體而言可列舉1,6-己二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、環氧乙烷改性雙酚A二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、三羥甲基丙烷環氧乙烷改性三(甲基)丙烯酸酯、三羥甲基丙烷環氧丙烷改性三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、 雙三羥甲基丙烷四(甲基)丙烯酸酯、雙季戊四醇五(甲基)丙烯酸酯、雙季戊四醇六(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、以及3-(甲基)丙烯醯氧基甘油單(甲基)丙烯酸酯等。但是,不一定限定於該等化合物。例如,亦可列舉胺酯改性丙烯酸酯以及環氧乙烷改性丙烯酸酯等。 The curable compound preferably contains an acrylic monomer. Specific examples of the acrylic monomer include 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, and ethylene oxide-modified bisphenol A di(A). Acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide modified tri(meth)acrylate, trimethylolpropane propylene oxide modified tris(A) Acrylate, pentaerythritol tetra(meth)acrylate, Ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa(meth) acrylate, pentaerythritol tri(meth) acrylate, and 3-(methyl) Acryloxy glycerol mono(meth)acrylate or the like. However, it is not necessarily limited to these compounds. For example, an amine ester-modified acrylate and an ethylene oxide-modified acrylate may also be mentioned.

作為硬化性化合物,亦可使用具有乙烯基之化合物。作為具有乙烯基之化合物,例如可列舉乙二醇二乙烯基醚、季戊四醇二乙烯基醚、1,6-己二醇二乙烯基醚、三羥甲基丙烷二乙烯基醚、環氧乙烷改性氫醌二乙烯基醚、環氧乙烷改性雙酚A二乙烯基醚、季戊四醇三乙烯基醚、雙季戊四醇六乙烯基醚、以及雙三羥甲基丙烷聚乙烯基醚等。但是,並不限定於該等。 As the curable compound, a compound having a vinyl group can also be used. Examples of the compound having a vinyl group include ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol divinyl ether, trimethylolpropane divinyl ether, and ethylene oxide. Modified hydroquinone divinyl ether, ethylene oxide modified bisphenol A divinyl ether, pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, and ditrimethylolpropane polyvinyl ether. However, it is not limited to these.

於藉由紫外線將硬化性化合物硬化之情形時,樹脂組合物含有光聚合起始劑。作為光聚合起始劑,可使用各種各樣之光聚合起始劑。例如,可適當選自苯乙酮系、二苯乙醇酮系、二苯甲酮系以及噻噸酮系等公知之化合物。更具體而言,可列舉Darocur1173、Irgacure651、Irgacure184、Irgacure907(以上為商品名,日本Ciba Specialty Chemicals公司製造);以及KAYACURE DETX-S(商品名,日本化藥股份有限公司製造)。 In the case where the curable compound is cured by ultraviolet rays, the resin composition contains a photopolymerization initiator. As the photopolymerization initiator, various photopolymerization initiators can be used. For example, a known compound such as an acetophenone-based, a benzophenone-based, a benzophenone-based or a thioxanthone can be suitably selected. More specifically, Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907 (above, trade name, manufactured by Ciba Specialty Chemicals, Japan); and KAYACURE DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.) can be cited.

光聚合起始劑相對於硬化性化合物之質量,可為0.01~20質量%,或者0.5~5質量%左右。樹脂組合物可為將光聚合起始劑添加至丙烯酸系單體之公知物質。作為將光聚合起始劑添加至丙烯酸系單體之物質,例如可列舉作為紫外線硬化型樹脂之SD-318(商品名,大日本油墨化學工業股份有限公司製造)以及XNR5535(商品名,長瀨產業股份有限公司製造)等。 The photopolymerization initiator may be from 0.01 to 20% by mass or from 0.5 to 5% by mass based on the mass of the curable compound. The resin composition may be a known substance in which a photopolymerization initiator is added to the acrylic monomer. The material which added the photopolymerization initiator to the acrylic monomer is, for example, SD-318 (trade name, manufactured by Dainippon Ink and Chemicals Co., Ltd.) and XNR5535 (trade name, long 濑). Manufacturing Co., Ltd.) and so on.

為了提高塗膜強度及/或調整折射率等,樹脂組合物亦可含有有機微粒及/或無機微粒。作為有機微粒,例如可列舉有機矽微粒、交 聯丙烯酸樹脂微粒以及交聯聚苯乙烯微粒等。作為無機微粒,例如可列舉氧化矽微粒、氧化鋁微粒、氧化鋯微粒、氧化鈦微粒以及氧化鐵微粒等。該等之中,較佳為氧化矽微粒。 The resin composition may contain organic fine particles and/or inorganic fine particles in order to increase the coating film strength and/or adjust the refractive index and the like. Examples of the organic fine particles include organic fine particles and cross-linking. The acrylic resin fine particles and the crosslinked polystyrene fine particles. Examples of the inorganic fine particles include cerium oxide fine particles, alumina fine particles, zirconia fine particles, titanium oxide fine particles, and iron oxide fine particles. Among these, cerium oxide microparticles are preferred.

微粒亦較佳為其表面經矽烷偶聯劑處理,並且(甲基)丙烯醯基及/或乙烯基等能量射線反應性基以膜狀存在於表面之微粒。若使用此種具有反應性之微粒,則於照射能量射線時,或微粒彼此反應,或微粒與多官能單體或者低聚物反應,從而能夠增強膜之強度。較佳使用經含有(甲基)丙烯醯基之矽烷偶聯劑處理之氧化矽微粒。 The fine particles are also preferably fine particles whose surface is treated with a decane coupling agent, and an energy ray-reactive group such as a (meth) acrylonitrile group and/or a vinyl group exists as a film on the surface. When such reactive fine particles are used, the intensity of the film can be enhanced when the energy ray is irradiated, or the fine particles react with each other, or the fine particles react with the polyfunctional monomer or oligomer. Preferably, the cerium oxide microparticles treated with a (meth)acrylonitrile-based decane coupling agent are used.

從小於硬塗層20之厚度並且確保充分之透明性之觀點而言,微粒之平均粒徑可為100nm以下,亦可為20nm以下。另一方面,就膠體溶液之製造上之觀點而言,可為5nm以上,亦可為10nm以上。於使用有機微粒及/或無機微粒之情形時,有機微粒及無機微粒之合計含量相對於硬化性化合物100質量份,例如可為5~500質量份,亦可為20~200質量份。 From the viewpoint of less than the thickness of the hard coat layer 20 and ensuring sufficient transparency, the average particle diameter of the fine particles may be 100 nm or less, or may be 20 nm or less. On the other hand, from the viewpoint of production of the colloidal solution, it may be 5 nm or more, or may be 10 nm or more. In the case of using the organic fine particles and/or the inorganic fine particles, the total content of the organic fine particles and the inorganic fine particles may be, for example, 5 to 500 parts by mass, or 20 to 200 parts by mass, per 100 parts by mass of the curable compound.

若使用以能量射線進行硬化之樹脂組合物,則藉由照射紫外線等能量射線,可使樹脂組合物硬化。因此,就製造步驟上之觀點而言,亦較佳使用此種樹脂組合物。 When a resin composition hardened by an energy ray is used, the resin composition can be cured by irradiation with an energy ray such as ultraviolet rays. Therefore, such a resin composition is also preferably used from the viewpoint of the production steps.

第1硬塗層22可藉由將樹脂組合物之溶液或者分散液塗佈於透明樹脂基材10之一面上從而乾燥,並硬化樹脂組合物來進行製作。此時之塗佈可根據公知之方法進行。作為塗佈方法,例如可列舉擠壓噴嘴法、刮刀法、刀法、棒塗佈法、接觸式塗佈法、接觸式反向塗佈法、凹版輥塗法、浸漬法、逆轉輥塗法、直接輥塗法、簾式法以及擠壓法等。第2硬塗層24亦可與第1硬塗層22同樣於透明樹脂基材10之另一面上製作。 The first hard coat layer 22 can be produced by applying a solution or dispersion of the resin composition onto one surface of the transparent resin substrate 10, drying it, and curing the resin composition. The coating at this time can be carried out according to a known method. Examples of the coating method include an extrusion nozzle method, a doctor blade method, a knife method, a bar coating method, a contact coating method, a contact reverse coating method, a gravure coating method, a dipping method, and a reverse roll coating method. , direct roll coating, curtain method and extrusion method. The second hard coat layer 24 can also be produced on the other surface of the transparent resin substrate 10 similarly to the first hard coat layer 22.

第1硬塗層22以及第2硬塗層24之厚度例如為0.5~10μm。若厚度超過10μm,則有容易產生厚度不均勻或皺紋等之傾向。另一方面, 若厚度低於0.5μm,則於透明樹脂基材10中含有相當量之塑化劑或者低聚物等低分子量成分之情形時,會出現難以充分抑制該等成分之流出之情況。另外,就抑制翹曲之觀點而言,第1硬塗層22以及第2硬塗層24之厚度較佳為製成相同之程度。 The thickness of the first hard coat layer 22 and the second hard coat layer 24 is, for example, 0.5 to 10 μm. When the thickness exceeds 10 μm, thickness unevenness, wrinkles, and the like tend to occur. on the other hand, When the thickness is less than 0.5 μm, when the transparent resin substrate 10 contains a relatively large amount of a low molecular weight component such as a plasticizer or an oligomer, it may be difficult to sufficiently suppress the outflow of the components. Further, from the viewpoint of suppressing warpage, the thicknesses of the first hard coat layer 22 and the second hard coat layer 24 are preferably made the same.

第1硬塗層22以及第2硬塗層24之折射率例如為1.40~1.60。透明樹脂基材10與第1硬塗層22之折射率之差的絕對值較佳為0.1以下。透明樹脂基材10與第2硬塗層24之折射率之差的絕對值亦較佳為0.1以下。藉由減小第1硬塗層22以及第2硬塗層24與透明樹脂基材10之折射率之差之絕對值,從而能夠抑制由於第1硬塗層22以及第2硬塗層24之厚度之不均勻而發生之干擾條紋的強度。 The refractive indices of the first hard coat layer 22 and the second hard coat layer 24 are, for example, 1.40 to 1.60. The absolute value of the difference between the refractive indices of the transparent resin substrate 10 and the first hard coat layer 22 is preferably 0.1 or less. The absolute value of the difference in refractive index between the transparent resin substrate 10 and the second hard coat layer 24 is also preferably 0.1 or less. By reducing the absolute value of the difference between the refractive indices of the first hard coat layer 22 and the second hard coat layer 24 and the transparent resin substrate 10, the first hard coat layer 22 and the second hard coat layer 24 can be suppressed. The intensity of the interference fringes that occur due to uneven thickness.

構成透明導電體100、101之各層之厚度能夠按以下之順序來進行測定。由聚焦離子束裝置(FIB,Focused Ion Beam)切斷透明導電體100、101從而獲得剖面。使用透射電子顯微鏡(TEM)來觀察該剖面,並測定各層之厚度。測定較佳為於任意選擇之10處以上之位置進行,並求出其平均值。作為獲得剖面之方法,亦可使用顯微鏡用薄片切片機(microtome)作為聚焦離子束裝置以外之裝置。作為測定厚度之方法,亦可使用掃描電子顯微鏡(SEM)。另外,亦能夠使用螢光X射線裝置來測定膜厚。 The thickness of each layer constituting the transparent conductors 100 and 101 can be measured in the following order. The transparent conductors 100, 101 were cut by a focused ion beam apparatus (FIB, Focused Ion Beam) to obtain a cross section. The cross section was observed using a transmission electron microscope (TEM), and the thickness of each layer was measured. The measurement is preferably carried out at positions of 10 or more arbitrarily selected, and the average value thereof is determined. As a method of obtaining a cross section, a microtome for a microscope can also be used as a device other than the focused ion beam device. As a method of measuring the thickness, a scanning electron microscope (SEM) can also be used. Further, the film thickness can also be measured using a fluorescent X-ray device.

透明導電體100、101之厚度可為200μm以下,亦可為150μm以下。若為此種厚度,則能夠充分滿足薄化之要求級別。透明導電體100、101之全光線透過率例如能夠製成85%以上之高值。另外,透明導電體100、101之表面電阻值(四端子法)即便不進行第1金屬氧化物層12以及第2金屬氧化物層14之熱退火處理亦能夠製成例如30Ω/sq.以下,並且亦能夠製成25Ω/sq.以下。 The thickness of the transparent conductors 100 and 101 may be 200 μm or less, or may be 150 μm or less. If it is such a thickness, the required level of thinning can be fully satisfied. The total light transmittance of the transparent conductors 100 and 101 can be made, for example, at a high value of 85% or more. In addition, the surface resistance value (four-terminal method) of the transparent conductors 100 and 101 can be, for example, 30 Ω/sq. or less without performing thermal annealing treatment on the first metal oxide layer 12 and the second metal oxide layer 14. It can also be made 25 Ω/sq. or less.

具備上述構成之透明導電體100、101具有第1金屬氧化物層12、金屬層16以及第2金屬氧化物層14積層之積層構造。該積層構造能夠 使用通常之蝕刻液容易地一次性除去。另外,具有高透過率,並且即便不進行熱退火亦具有高導電性。因此,能夠適合作為觸控面板之傳感薄膜使用。 The transparent conductors 100 and 101 having the above-described configuration have a laminated structure in which the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 are laminated. The laminated structure can It is easily removed at one time using a usual etching solution. In addition, it has high transmittance and high conductivity even without thermal annealing. Therefore, it can be suitably used as a sensing film of a touch panel.

圖3係放大具備一對傳感薄膜之觸控面板200之剖面之一部分而表示的示意剖面圖。圖4(A)以及圖4(B)係使用上述透明導電體100之傳感薄膜100a以及100b之平面圖。觸控面板200具備經由光學膠18對向配置之一對傳感薄膜100a、100b。觸控面板200係以能夠將接觸體之觸控位置作為平行於成為畫面之面板70之二維座標(X-Y座標)平面中之座標位置(橫向位置及縱向位置)而算出之方式而構成。 3 is a schematic cross-sectional view showing a portion of a cross section of the touch panel 200 having a pair of sensing films. 4(A) and 4(B) are plan views showing the sensing films 100a and 100b of the transparent conductor 100 described above. The touch panel 200 includes a pair of sensing films 100a and 100b disposed opposite each other via the optical glue 18. The touch panel 200 is configured to be capable of calculating the touch position of the contact body as a coordinate position (lateral position and vertical position) in a plane parallel to the two-dimensional coordinate (X-Y coordinate) of the panel 70 to be the screen.

具體而言,觸控面板200具備經由光學膠18貼合之縱向位置檢測用之傳感薄膜100a(以下稱為「Y用傳感薄膜」)及橫向位置檢測用之傳感薄膜100b(以下稱為「X用傳感薄膜」)。於X用傳感薄膜100b之下面側,將墊片92設置於X用傳感薄膜100b與顯示裝置之面板70之間。 Specifically, the touch panel 200 includes a sensing film 100a for longitudinal position detection (hereinafter referred to as "Y sensing film") and a sensing film 100b for lateral position detection which are bonded via the optical adhesive 18 (hereinafter referred to as It is "X sensing film"). On the lower surface side of the X sensing film 100b, a spacer 92 is provided between the X sensing film 100b and the panel 70 of the display device.

於Y用傳感薄膜100a之上面側(與面板70側相反側)經由光學膠17設置有覆蓋玻璃19。即,觸控面板200於面板70之上具有X用傳感薄膜100b、Y用傳感薄膜100a以及覆蓋玻璃19按該順序自面板70側配置之積層構造。 The cover glass 19 is provided via the optical adhesive 17 on the upper surface side (the side opposite to the panel 70 side) of the Y sensor film 100a. In other words, the touch panel 200 has a laminated structure in which the X sensing film 100b, the Y sensing film 100a, and the cover glass 19 are disposed from the panel 70 side in this order on the panel 70.

檢測縱向位置之Y用傳感薄膜100a與檢測橫向位置之X用傳感薄膜100b係由上述透明導電體100構成。Y用傳感薄膜100a以及X用傳感薄膜100b以與覆蓋玻璃19對向之方式具有作為導電部之感測器電極15a以及感測器電極15b。 The Y sensing film 100a for detecting the vertical position and the X sensing film 100b for detecting the lateral position are composed of the transparent conductor 100. The Y sensing film 100a and the X sensing film 100b have a sensor electrode 15a and a sensor electrode 15b as conductive portions so as to face the cover glass 19.

該感測器電極15a係由第1金屬氧化物層12、第2金屬氧化物層14以及金屬層16構成。如圖4(A)所示,感測器電極15a以能夠檢測縱向(y方向)之觸控位置之方式於縱向(y方向)上延伸複數根。複數根感測器電極15a沿著縱向(y方向)互相平行地排列配置。感測器電極15a之一端經由用銀漿形成之導體線路50與驅動用IC側之電極80相連接。 The sensor electrode 15a is composed of a first metal oxide layer 12, a second metal oxide layer 14, and a metal layer 16. As shown in FIG. 4(A), the sensor electrode 15a extends a plurality of roots in the longitudinal direction (y direction) in such a manner as to be able to detect the touch position in the longitudinal direction (y direction). The plurality of root sensor electrodes 15a are arranged in parallel in the longitudinal direction (y direction). One end of the sensor electrode 15a is connected to the electrode 80 on the side of the driving IC via a conductor line 50 formed of a silver paste.

檢測橫向位置之X用傳感薄膜100b於與Y用傳感薄膜100a之對向面上具有感測器電極15b。該感測器電極15b由第1金屬氧化物層12、第2金屬氧化物層14以及金屬層16構成。如圖4(B)所示,感測器電極15b以能夠檢測橫向(x方向)之觸控位置之方式於橫向(x方向)上延伸複數根。複數根感測器電極15b沿著橫向(x方向)互相平行地排列配置。感測器電極15b之一端經由用銀漿形成之導體線路50與驅動用IC側之電極80相連接。 The X sensing film 100b for detecting the lateral position has the sensor electrode 15b on the opposite surface of the Y sensing film 100a. The sensor electrode 15b is composed of a first metal oxide layer 12, a second metal oxide layer 14, and a metal layer 16. As shown in FIG. 4(B), the sensor electrode 15b extends a plurality of roots in the lateral direction (x direction) in such a manner as to be able to detect the lateral (x-direction) touch position. The plurality of root sensor electrodes 15b are arranged in parallel with each other in the lateral direction (x direction). One end of the sensor electrode 15b is connected to the electrode 80 on the side of the driving IC via a conductor line 50 formed of a silver paste.

自Y用傳感薄膜100a與X用傳感薄膜100b之積層方向觀察,Y用傳感薄膜100a與X用傳感薄膜100b以各自之感測器電極15a、15b互相垂直之方式經由光學膠18而被重合。於Y用傳感薄膜100a之與X用傳感薄膜100b側之相反側,經由光學膠17設置有覆蓋玻璃19。光學膠17、18、覆蓋玻璃19以及面板70能夠使用通常之材料。 The Y sensing film 100a and the X sensing film 100b are optically bonded to each other through the sensing film 100a and the X sensing film 100b so that the respective sensor electrodes 15a and 15b are perpendicular to each other. And they are overlapped. On the side opposite to the X sensing film 100b side of the Y sensing film 100a, a cover glass 19 is provided via the optical glue 17. The optical glues 17, 18, the cover glass 19, and the panel 70 can use a usual material.

圖4(A)、(B)中之導體線路50以及電極80由金屬(例如Ag)等導電性材料構成。導體線路50以及電極80例如係由絲網印刷按圖案形成。透明樹脂基材10亦具有作為覆蓋觸控面板200之表面之保護膜之功能。 The conductor line 50 and the electrode 80 in FIGS. 4(A) and (B) are made of a conductive material such as metal (for example, Ag). The conductor line 50 and the electrode 80 are formed, for example, in a pattern by screen printing. The transparent resin substrate 10 also has a function as a protective film covering the surface of the touch panel 200.

各傳感薄膜100a、100b中之感測器電極15a、15b之形狀以及個數並不限定於圖3、圖4(A)以及圖4(B)中所示之形態。例如,亦可藉由增加感測器電極15a、15b之個數來提高觸控位置之檢測精度。 The shape and number of the sensor electrodes 15a and 15b in each of the sensing films 100a and 100b are not limited to those shown in Figs. 3, 4(A) and 4(B). For example, the detection accuracy of the touch position can also be improved by increasing the number of the sensor electrodes 15a, 15b.

於X用傳感薄膜100b之與Y用傳感薄膜100a側之相反側,經由墊片92設置面板70。墊片92可設置於對應於感測器電極15a、15b形狀之位置及包圍感測器電極15a、15b整體之位置。墊片92可由具有透光性之材料,例如PET(聚對苯二甲酸乙二酯)樹脂形成。墊片92之一端藉由光學膠或者丙烯酸系或環氧系等具有透光性之接著劑90而被接著於X用傳感薄膜100b之下面。墊片92之另一端由接著劑90而被接著於顯示裝置之面板70。如此藉由經由墊片92將X用傳感薄膜100b與面板70 對向配置,從而能於X用傳感薄膜100b與顯示裝置之面板70之間設置空隙S。 The panel 70 is provided via the spacer 92 on the side opposite to the Y sensing film 100a side of the X sensing film 100b. The spacer 92 may be disposed at a position corresponding to the shape of the sensor electrodes 15a, 15b and a position surrounding the entirety of the sensor electrodes 15a, 15b. The spacer 92 may be formed of a light transmissive material such as PET (polyethylene terephthalate) resin. One end of the spacer 92 is attached to the underside of the X sensing film 100b by an optical adhesive or an adhesive such as an acrylic or epoxy-based adhesive. The other end of the spacer 92 is followed by a bonding agent 90 to the panel 70 of the display device. Thus, the X sensing film 100b and the panel 70 are passed through the spacer 92. The opposing direction is such that a gap S can be provided between the X sensing film 100b and the panel 70 of the display device.

於電極80上電性連接控制部(IC)。分別測定由指尖與觸控面板200之Y用傳感薄膜100a之間之靜電容量之變化所產生之各感測器電極15a、15b之容量變化。控制部能夠根據測定結果將接觸體之觸控位置作為座標位置(X軸方向之位置與Y軸方向之位置之交點)來計算。另外,感測器電極之驅動方法以及座標位置之計算方法除了上述方法之外亦可採用公知之各種方法。 The control unit (IC) is electrically connected to the electrode 80. The change in capacity of each of the sensor electrodes 15a and 15b caused by the change in electrostatic capacitance between the fingertip and the Y sensing film 100a of the touch panel 200 is measured. The control unit can calculate the touch position of the contact body as a coordinate position (the intersection of the position in the X-axis direction and the position in the Y-axis direction) based on the measurement result. Further, the method of driving the sensor electrodes and the method of calculating the coordinate position may employ various methods in addition to the above methods.

觸控面板200可按以下之順序製造。於準備透明導電體100之後,進行對第1金屬氧化物層12、金屬層16以及第2金屬氧化物層14之蝕刻,並進行圖案化。具體而言,使用光微影技術用旋轉塗佈法於第2金屬氧化物層14之表面塗佈抗蝕材料。之後,為了提高密著性亦可進行預烘烤。繼而,配置掩蔽圖案從而進行曝光,藉由用顯影液進行顯影從而形成抗蝕圖案。抗蝕圖案之形成不限定於光微影法,亦可由絲網印刷法等形成。 The touch panel 200 can be manufactured in the following order. After the transparent conductor 100 is prepared, the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 are etched and patterned. Specifically, a resist material is applied to the surface of the second metal oxide layer 14 by a spin coating method using a photolithography technique. Thereafter, prebaking can be performed in order to improve adhesion. Then, a masking pattern is disposed to perform exposure, and development is performed with a developing solution to form a resist pattern. The formation of the resist pattern is not limited to the photolithography method, and may be formed by a screen printing method or the like.

繼而,將形成抗蝕圖案之透明導電體100浸漬於酸性蝕刻液,並溶解除去未形成抗蝕圖案之部分處之第1金屬氧化物層12、第2金屬氧化物層14以及金屬層16。之後,除去抗蝕層,從而獲得形成有感測器電極15a之Y用傳感薄膜100a與形成有感測器電極15b之X用傳感薄膜100b。 Then, the transparent conductor 100 forming the resist pattern is immersed in the acidic etching liquid, and the first metal oxide layer 12, the second metal oxide layer 14, and the metal layer 16 at the portions where the resist pattern is not formed are dissolved and removed. Thereafter, the resist layer is removed, thereby obtaining the Y sensing film 100a on which the sensor electrode 15a is formed and the X sensing film 100b on which the sensor electrode 15b is formed.

將第1金屬氧化物層12與第2金屬氧化物層14設定為不同之組成,若將第1金屬氧化物層12製成不會由蝕刻除去之組成,則能夠一次性蝕刻金屬層16及第2金屬氧化物層14,並且亦能夠於蝕刻後直接殘留第1金屬氧化物層12。作為蝕刻液,可使用無機酸系之蝕刻液。例如,較佳為磷酸系之蝕刻液。 The first metal oxide layer 12 and the second metal oxide layer 14 are set to have different compositions. When the first metal oxide layer 12 is made of a composition that is not removed by etching, the metal layer 16 can be etched at one time. The second metal oxide layer 14 can also directly retain the first metal oxide layer 12 after etching. As the etching liquid, an inorganic acid-based etching liquid can be used. For example, a phosphate-based etching liquid is preferred.

繼而,例如塗佈銀合金漿料等金屬漿料從而形成導體線路50以 及電極80。如此,控制部與感測器電極15a、15b被電連接。繼而,使用光學膠18以各個感測器電極15a、15b朝著同一個方向之方式貼合Y用傳感薄膜100a與X用傳感薄膜100b。於此情形時,自Y用傳感薄膜100a與X用傳感薄膜100b之積層方向觀察,感測器電極15a、15b以互相垂直之形式進行貼合。並且,使用光學膠17來貼合覆蓋玻璃19及Y用傳感薄膜100a。如此能夠製造觸控面板200。 Then, for example, a metal paste such as a silver alloy paste is applied to form a conductor line 50. And electrode 80. In this manner, the control unit and the sensor electrodes 15a and 15b are electrically connected. Then, the Y-sensing film 100a and the X-sensor film 100b are bonded to each other with the optical glue 18 so that the respective sensor electrodes 15a and 15b are oriented in the same direction. In this case, the sensor electrodes 15a and 15b are bonded to each other in a direction perpendicular to each other when viewed in the lamination direction of the Y sensing film 100a and the X sensing film 100b. Further, the cover glass 19 and the Y sensor film 100a are bonded together using the optical glue 17. The touch panel 200 can be manufactured in this manner.

觸控面板200使用透明導電體100作為Y用傳感薄膜100a以及X用傳感薄膜100b。透明導電體100可由蝕刻一次性除去第1金屬氧化物層12、第2金屬氧化物層14以及金屬層16。因此,可簡化觸控面板200之製造製程,從而容易地製造出觸控面板200。 The touch panel 200 uses the transparent conductor 100 as the Y sensing film 100a and the X sensing film 100b. The transparent conductor 100 can remove the first metal oxide layer 12, the second metal oxide layer 14, and the metal layer 16 by etching at one time. Therefore, the manufacturing process of the touch panel 200 can be simplified, and the touch panel 200 can be easily manufactured.

另外,無需於Y用傳感薄膜100a以及X用傳感薄膜100b兩者中均使用透明導電體100,任一者均可使用其他透明導電體。即便為此種觸控面板亦能夠地使顯示充分清晰。另外,作為傳感薄膜,亦可不使用透明導電體100而使用透明導電體101。 Further, it is not necessary to use the transparent conductor 100 for both the Y sensing film 100a and the X sensing film 100b, and any other transparent conductor can be used. Even such a touch panel can make the display sufficiently clear. Further, as the sensing film, the transparent conductor 101 may be used without using the transparent conductor 100.

如此,透明導電體100、101能夠適宜地用於觸控面板。但是,其用途並不限定於觸控面板,例如藉由蝕刻將第1金屬氧化物層12、第2金屬氧化物層14以及金屬層16加工成特定形狀從而形成具有第1金屬氧化物層12、第2金屬氧化物層14及金屬層16之部分(導電部)、以及不具有第1金屬氧化物層12、第2金屬氧化物層14及金屬層16之部分(非導電部),於液晶顯示器(LCD)、電漿顯示面板(PDP)、電致發光面板(有機EL、無機EL)、電致變色元件以及電子紙等各種顯示裝置中能夠作為透明電極用、防帶電用、電磁波遮斷用來使用。另外,亦可作為天線使用。 As such, the transparent conductors 100, 101 can be suitably used for a touch panel. However, the use thereof is not limited to the touch panel. For example, the first metal oxide layer 12, the second metal oxide layer 14, and the metal layer 16 are processed into a specific shape by etching to form the first metal oxide layer 12. a portion (conductive portion) of the second metal oxide layer 14 and the metal layer 16, and a portion (non-conductive portion) not including the first metal oxide layer 12, the second metal oxide layer 14, and the metal layer 16 It can be used as a transparent electrode, anti-charge, or electromagnetic wave in various display devices such as liquid crystal display (LCD), plasma display panel (PDP), electroluminescence panel (organic EL, inorganic EL), electrochromic device, and electronic paper. Broken for use. In addition, it can also be used as an antenna.

以上,說明了本發明之較佳實施形態,但本發明並不限定於上述實施形態。例如,上述透明導電體101具有一對硬塗層20,但亦可僅具備第1硬塗層22以及第2硬塗層24中之任一者。另外,亦可於透明 樹脂基材10之一個面上設置硬塗層,並於另一個面上藉由塗佈設置複數個光學調整層。於此情形時,第1金屬氧化物層12、金屬層16以及第2金屬氧化物層14亦可設置於該光學調整層之上。進而,於透明導電體100、101中,於不會大大損害其功能之範圍內,除上述層以外亦可於任意之位置設置任意之層。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. For example, the transparent conductor 101 has a pair of hard coat layers 20, but may have only one of the first hard coat layer 22 and the second hard coat layer 24. In addition, it can also be transparent A hard coat layer is provided on one surface of the resin substrate 10, and a plurality of optical adjustment layers are provided on the other surface by coating. In this case, the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 may be provided on the optical adjustment layer. Further, in the transparent conductors 100 and 101, any layer other than the above layer may be provided at any position within a range that does not greatly impair the function.

[實施例] [Examples]

以下列舉實施例以及比較例來進一步具體說明本發明,但本發明不限定於該等實施例。 The present invention will be further specifically described by the following examples and comparative examples, but the invention is not limited to the examples.

[實施例1~18] [Examples 1 to 18]

(透明導電體101之製作) (Production of Transparent Conductor 101)

製作如圖2所示之透明導電體。透明導電體具有被夾持於一對硬塗層之透明樹脂基材、第1金屬氧化物層、金屬層以及第2金屬氧化物層按該順序積層之積層構造。並按以下所述要領製作各實施例之透明導電體。 A transparent conductor as shown in Fig. 2 was produced. The transparent conductor has a laminated structure in which a transparent resin substrate sandwiched between a pair of hard coat layers, a first metal oxide layer, a metal layer, and a second metal oxide layer are laminated in this order. The transparent conductors of the respective examples were fabricated as described below.

準備厚度為100μm之聚對苯二甲酸乙二酯薄膜(Toray Industries公司製造,產品序號:U48)。使用該PET薄膜作為透明樹脂基材。藉由DC磁控濺鍍於透明樹脂基材上依序形成第1金屬氧化物層、金屬層以及第2金屬氧化物層。第1金屬氧化物層以及第2金屬氧化物層使用具有表1所示之組成之ZnO-Ga2O3-GeO2靶材來形成。各實施例中之第1金屬氧化物層以及第2金屬氧化物層使用具有同一組成之靶材來形成。各實施例中之第1金屬氧化物層以及第2金屬氧化物層之組成如表1所示。各實施例中之第1金屬氧化物層以及第2金屬氧化物層之厚度製成50nm。 A polyethylene terephthalate film (manufactured by Toray Industries, Inc., product number: U48) having a thickness of 100 μm was prepared. This PET film was used as a transparent resin substrate. The first metal oxide layer, the metal layer, and the second metal oxide layer are sequentially formed by DC magnetron sputtering on the transparent resin substrate. The first metal oxide layer and the second metal oxide layer were formed using a ZnO-Ga 2 O 3 -GeO 2 target having the composition shown in Table 1. The first metal oxide layer and the second metal oxide layer in each of the examples were formed using targets having the same composition. The composition of the first metal oxide layer and the second metal oxide layer in each of the examples is shown in Table 1. The thickness of the first metal oxide layer and the second metal oxide layer in each of the examples was 50 nm.

於表1所示之全部實施例中,金屬層使用AgPdCu(Ag:Pd:Cu=99.0:0.5:0.5(質量%))靶材來形成。金屬層16之厚度製成5nm。 In all of the examples shown in Table 1, the metal layer was formed using an AgPdCu (Ag: Pd: Cu = 99.0: 0.5: 0.5 (% by mass)) target. The thickness of the metal layer 16 was made 5 nm.

(透明導電體101之評價) (Evaluation of Transparent Conductor 101)

按以下之程序來評價蝕刻特性。首先,準備含有磷酸、乙酸、硝酸之PAN系蝕刻液。於室溫下將各實施例之透明導電體浸漬於該蝕刻液中1分鐘從而進行蝕刻。其後,進行全光線透過率測定,並判定第1金屬氧化物層、金屬層以及第2金屬氧化物層是否被溶解。具體而言,蝕刻後之樣品之全光線透過率與僅透明樹脂基材之全光線透過率一致之情形判定為「A」,不一致之情形判定為「B」。全光線透過率(透過率)使用混濁度測量儀(商品名:NDH-7000,日本電色工業公司製)來測定。評價結果如表1所示。 The etching characteristics were evaluated by the following procedure. First, a PAN-based etching solution containing phosphoric acid, acetic acid, or nitric acid is prepared. The transparent conductor of each example was immersed in the etching solution for 1 minute at room temperature to perform etching. Thereafter, the total light transmittance was measured, and it was determined whether or not the first metal oxide layer, the metal layer, and the second metal oxide layer were dissolved. Specifically, the case where the total light transmittance of the sample after etching coincides with the total light transmittance of only the transparent resin substrate is judged as "A", and the case where the film does not match is determined as "B". The total light transmittance (transmittance) was measured using a turbidity meter (trade name: NDH-7000, manufactured by Nippon Denshoku Industries Co., Ltd.). The evaluation results are shown in Table 1.

使用四端子電阻率計(商品名:Loresta GP三菱化學股份有限公司製造)測定各實施例之表面電阻。將測定結果表示於表1中。於表1中,「表面電阻(1)」係將透明導電體於85℃、85%RH(相對濕度85%)之環境下保存50小時之前之表面電阻值,「表面電阻(2)」係於上述環境條件下保存之後之表面電阻值。 The surface resistance of each of the examples was measured using a four-terminal resistivity meter (trade name: manufactured by Loresta GP Mitsubishi Chemical Corporation). The measurement results are shown in Table 1. In Table 1, "surface resistance (1)" is a surface resistance value of a transparent conductor stored in an environment of 85 ° C and 85% RH (rel. 85% relative humidity) for 50 hours. "Surface resistance (2)" The surface resistance value after storage under the above environmental conditions.

於85℃、85%RH之環境下保存各實施例之透明導電體之後,目視進行保存穩定性之評價。於透明導電體中看見白濁之情形判定為「B」,未看到白濁之情形被判定為「A」。判定結果如表1所示。 After the transparent conductors of the respective examples were stored in an environment of 85 ° C and 85% RH, the storage stability was evaluated visually. The case where white turbidity was observed in the transparent conductor was judged as "B", and the case where white turbidity was not observed was judged as "A". The judgment results are shown in Table 1.

如表1所示,於所有實施例中蝕刻特性之評價為「A」。由此可確認實施例1~18之透明導電體中之金屬氧化物層以及金屬層能夠容易地除去。實施例10之透明導電體之全光線透過率最高,但保存穩定性之評價為B。另外,於高溫高濕環境下保存之後之表面電阻亦高。其原因在於,表面電阻之測定器之四端子接觸之第2金屬氧化物層之導電性降低。因此,於無需將配線電極安裝於第2金屬氧化物層上使之導通之用途中,即便表面電阻(2)高亦不會成為實用上之問題。另外,對於保存穩定性,若不要求那麼高級別之透明性,例如噪音片(noise sheet)等之用途(例如噪聲遮斷等)中,則為能夠充分使用之水平。 As shown in Table 1, the evaluation of the etching characteristics was "A" in all the examples. From this, it was confirmed that the metal oxide layer and the metal layer in the transparent conductors of Examples 1 to 18 can be easily removed. The transparent conductor of Example 10 had the highest total light transmittance, but the storage stability was evaluated as B. In addition, the surface resistance after storage in a high temperature and high humidity environment is also high. This is because the conductivity of the second metal oxide layer in contact with the four terminals of the surface resistance measuring device is lowered. Therefore, in the application in which the wiring electrode is not required to be electrically connected to the second metal oxide layer, even if the surface resistance (2) is high, it does not become a practical problem. Further, the storage stability is a level that can be sufficiently used if it is not required to have such a high level of transparency, for example, a noise sheet or the like (for example, noise interruption).

為了評價金屬氧化物層之特性,而與上述之順序同樣製作僅金屬氧化物層(單層)之樣品。按照與上述順序同樣進行該樣品之評價。將評價結果示於表2中。另外,表2之吸收率係使用利用分光器測定之 透過率以及反射率之測定結果,用100-透過率-反射率=吸收率之式子求得之值。該吸收率為波長380nm下之值。 In order to evaluate the characteristics of the metal oxide layer, a sample of only the metal oxide layer (single layer) was produced in the same manner as described above. The evaluation of the sample was carried out in the same manner as described above. The evaluation results are shown in Table 2. In addition, the absorption rate of Table 2 is measured using a spectroscope. The results of the measurement of the transmittance and the reflectance were obtained by the equation of 100-transmittance-reflectance = absorbance. This absorption rate is a value at a wavelength of 380 nm.

如表1所示,確認各實施例之金屬氧化物層之吸收率充分低。另外,確認即便含有ZnO作為主成分,藉由含有Ga2O3以及GeO2作為副成分亦能夠提高耐腐蝕性。 As shown in Table 1, it was confirmed that the absorption rate of the metal oxide layer of each of the examples was sufficiently low. Further, it was confirmed that even if ZnO is contained as a main component, corrosion resistance can be improved by containing Ga 2 O 3 and GeO 2 as subcomponents.

[實施例19~30] [Examples 19 to 30]

除了改變製作金屬層時之靶材組成,按表3所示變更金屬層之組成及/或變更金屬層之厚度之外,均與實施例6同樣製作透明導電體。即,於實施例19~實施例26中變更金屬層之厚度。於實施例27中使用AgNdCu(Ag:Nd:Cu=99.0:0.5:0.5(質量%))靶材來形成金屬層。於實施例28中使用AgInSn(Ag:In:Sn=99.0:0.5:0.5(質量%))靶材來形成金屬層。於實施例29中使用AgSnSb(Ag:Sn:Sb=99.0:0.5:0.5(質量%))靶材 來形成金屬層。於實施例30中使用AgCu(Ag:Cu=99.5:0.5(質量%))靶材來形成金屬層。 A transparent conductor was produced in the same manner as in Example 6 except that the target composition at the time of producing the metal layer was changed, and the composition of the metal layer was changed and/or the thickness of the metal layer was changed as shown in Table 3. That is, the thickness of the metal layer was changed in Examples 19 to 26. A target layer of AgNdCu (Ag: Nd: Cu = 99.0: 0.5: 0.5 (% by mass)) was used in Example 27 to form a metal layer. A AgInSn (Ag:In:Sn=99.0:0.5:0.5 (% by mass)) target was used in Example 28 to form a metal layer. AgSnSb (Ag:Sn:Sb=99.0:0.5:0.5 (% by mass)) target was used in Example 29. To form a metal layer. An AgCu (Ag: Cu = 99.5: 0.5 (% by mass)) target was used in Example 30 to form a metal layer.

與實施例6同樣對製作之實施例19~30之透明導電體進行評價。評價結果如同表3所示。另外,實施例19~30之金屬氧化物層之組成以及厚度與實施例6相同。另外,保存穩定性係於85℃、85%RH之環境下保存50小時之條件與於60℃、90%RH之環境下保存50小時之條件下測定。於以各條件保存之後,用目視將於透明導電體中看到白濁之情形判定為「B」,未看到白濁之情形判定為「A」。 The transparent conductors of Examples 19 to 30 produced were evaluated in the same manner as in Example 6. The evaluation results are shown in Table 3. Further, the compositions and thicknesses of the metal oxide layers of Examples 19 to 30 were the same as in Example 6. In addition, the storage stability was measured under the conditions of storage in an environment of 85 ° C and 85% RH for 50 hours and storage in an environment of 60 ° C and 90% RH for 50 hours. After storage under various conditions, the case where white turbidity was observed in the transparent conductor was visually determined as "B", and the case where white turbidity was not observed was judged as "A".

根據表3所示之結果可知,所有實施例中蝕刻特性之評價均為「A」。由此可確認,實施例19~30之透明導體中之金屬氧化物層以及金屬層能夠容易地除去。另外,確認若金屬層之厚度變大,則有表面電阻變小之傾向以及全光線透過率降低之傾向。另外,確認於銀合金含有Pd之情形於保存穩定性上特別優異。 According to the results shown in Table 3, the evaluation of the etching characteristics in all the examples was "A". From this, it was confirmed that the metal oxide layer and the metal layer in the transparent conductors of Examples 19 to 30 can be easily removed. Further, it has been confirmed that when the thickness of the metal layer is increased, the surface resistance tends to be small and the total light transmittance tends to decrease. In addition, it was confirmed that the case where the silver alloy contains Pd is particularly excellent in storage stability.

[比較例1~4] [Comparative Examples 1 to 4]

除了使用具有表4所示之組成之靶材作為形成第1金屬氧化物層以及第2金屬氧化物層時之靶材以外,均與實施例1同樣製作比較例1 ~4之透明導電體。於比較例1中,使用ZnO-TiO2-Nb2O5靶材形成第1金屬氧化物層以及第2金屬氧化物層。於比較例2中,使用ZnO-In2O3-Cr2O3靶材。於比較例3中,使用ZnO-SnO2-In2O3靶材。於比較例4中,使用ZnO-SnO2-Cr2O3靶材。於各個比較例中,第1金屬氧化物層及第2金屬氧化物層使用具有同一組成之靶材來形成。各比較例中之第1金屬氧化物層以及第2金屬氧化物層之組成如表4所示。與實施1同樣評價各比較例之透明導電體之蝕刻特性。結果如表4所示。 A transparent conductor of Comparative Examples 1 to 4 was produced in the same manner as in Example 1 except that the target having the composition shown in Table 4 was used as the target for forming the first metal oxide layer and the second metal oxide layer. In Comparative Example 1, a first metal oxide layer and a second metal oxide layer were formed using a ZnO-TiO 2 -Nb 2 O 5 target. In Comparative Example 2, a ZnO-In 2 O 3 -Cr 2 O 3 target was used. In Comparative Example 3, a ZnO-SnO 2 -In 2 O 3 target. In Comparative Example 4, a ZnO-SnO 2 -Cr 2 O 3 target was used. In each of the comparative examples, the first metal oxide layer and the second metal oxide layer were formed using targets having the same composition. The composition of the first metal oxide layer and the second metal oxide layer in each of the comparative examples is shown in Table 4. The etching characteristics of the transparent conductors of the respective comparative examples were evaluated in the same manner as in the first embodiment. The results are shown in Table 4.

如同表4所示,確認具有不含ZnO-Ga2O3-GeO2三成分之金屬氧化物層之透明導電體不能充分蝕刻。 As shown in Table 4, it was confirmed that the transparent conductor having the metal oxide layer containing no three components of ZnO-Ga 2 O 3 -GeO 2 could not be sufficiently etched.

10‧‧‧透明樹脂基材 10‧‧‧Transparent resin substrate

12‧‧‧第1金屬氧化物層 12‧‧‧1st metal oxide layer

14‧‧‧第2金屬氧化物層 14‧‧‧2nd metal oxide layer

16‧‧‧金屬層 16‧‧‧metal layer

100‧‧‧透明導電體 100‧‧‧Transparent conductor

Claims (10)

一種透明導電體,其中透明樹脂基材、第1金屬氧化物層、含有銀合金之金屬層、以及第2金屬氧化物層按該順序進行積層,上述第2金屬氧化物層含有ZnO作為主成分,並且含有Ga2O3以及GeO2作為副成分,上述第2金屬氧化物層中ZnO、Ga2O3以及GeO2三種成分之合計比例為95mol%以上。 A transparent conductor in which a transparent resin substrate, a first metal oxide layer, a metal layer containing a silver alloy, and a second metal oxide layer are laminated in this order, and the second metal oxide layer contains ZnO as a main component and contains Ga 2 O 3 and GeO 2 as a sub-component, the second metal oxide layer is ZnO, the total of the three components of Example 2 Ga 2 O 3 and GeO less than 95mol%. 如請求項1之透明導電體,其中於上述第2金屬氧化物層中,相對於ZnO、Ga2O3以及GeO2三種成分之合計,ZnO之含量為70~90mol%,相對於上述三種成分之合計,Ga2O3之含量為5~15mol%,相對於上述三種成分之合計,GeO2之含量為5~20mol%。 The transparent conductor of claim 1, wherein the content of the ZnO is 70 to 90 mol% with respect to the total of the three components of the ZnO, Ga 2 O 3 and GeO 2 in the second metal oxide layer. In total, the content of Ga 2 O 3 is 5 to 15 mol%, and the content of GeO 2 is 5 to 20 mol% based on the total of the above three components. 如請求項1或2之透明導電體,其中上述金屬層之厚度為4~11nm。 The transparent conductor of claim 1 or 2, wherein the metal layer has a thickness of 4 to 11 nm. 如請求項1或2之透明導電體,其中上述第1金屬氧化物層含有ZnO作為主成分,並且含有Ga2O3以及GeO2作為副成分。 The transparent conductor according to claim 1 or 2, wherein the first metal oxide layer contains ZnO as a main component and contains Ga 2 O 3 and GeO 2 as a subcomponent. 如請求項3之透明導電體,其中上述第1金屬氧化物層含有ZnO作為主成分,並且含有Ga2O3以及GeO2作為副成分。 The transparent conductor of claim 3, wherein the first metal oxide layer contains ZnO as a main component and contains Ga 2 O 3 and GeO 2 as an auxiliary component. 如請求項1或2之透明導電體,其中上述銀合金係Ag與選自Pd、Cu、Nd、In、Sn及Sb中之至少一種金屬之合金。 The transparent conductor of claim 1 or 2, wherein the silver alloy is an alloy of Ag and at least one metal selected from the group consisting of Pd, Cu, Nd, In, Sn, and Sb. 如請求項3之透明導電體,其中上述銀合金係Ag與選自Pd、Cu、Nd、In、Sn及Sb中之至少一種金屬之合金。 The transparent conductor of claim 3, wherein the silver alloy is an alloy of Ag and at least one metal selected from the group consisting of Pd, Cu, Nd, In, Sn, and Sb. 如請求項4之透明導電體,其中上述銀合金係Ag與選自Pd、Cu、Nd、In、Sn及Sb中之至少一種金屬之合金。 The transparent conductor of claim 4, wherein the silver alloy is an alloy of Ag and at least one metal selected from the group consisting of Pd, Cu, Nd, In, Sn, and Sb. 如請求項5之透明導電體,其中上述銀合金係Ag與選自Pd、Cu、 Nd、In、Sn及Sb中之至少一種金屬之合金。 The transparent conductor of claim 5, wherein the silver alloy is Ag and selected from the group consisting of Pd and Cu. An alloy of at least one of Nd, In, Sn, and Sb. 一種觸控面板,其係於面板之上具有傳感薄膜者,上述傳感薄膜由如請求項1至9中任一項之透明導電體構成。 A touch panel is provided with a sensing film on a panel, and the sensing film is composed of a transparent conductor according to any one of claims 1 to 9.
TW104136718A 2014-11-06 2015-11-06 Transparent conductive body and touch panel TWI595392B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226177A JP6398624B2 (en) 2014-11-06 2014-11-06 Transparent conductor and touch panel

Publications (2)

Publication Number Publication Date
TW201633090A TW201633090A (en) 2016-09-16
TWI595392B true TWI595392B (en) 2017-08-11

Family

ID=55930173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136718A TWI595392B (en) 2014-11-06 2015-11-06 Transparent conductive body and touch panel

Country Status (3)

Country Link
JP (1) JP6398624B2 (en)
CN (2) CN105590662B (en)
TW (1) TWI595392B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260647B2 (en) * 2016-06-13 2018-01-17 Tdk株式会社 Transparent conductor
TWI746603B (en) * 2016-08-09 2021-11-21 南韓商東友精細化工有限公司 Transparent electrode, touch sensor and image display device including the same
CN107357108A (en) * 2017-07-19 2017-11-17 无锡舒玛天科新能源技术有限公司 Flexible glass electrochromism device and preparation method thereof
CN115224468B (en) * 2022-09-20 2022-12-06 珠海翔翼航空技术有限公司 Wing conformal transparent microstrip antenna, preparation method and spacecraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201222385A (en) * 2010-11-22 2012-06-01 Ind Tech Res Inst Flexible resistive touch sensor structure
TW201341603A (en) * 2004-04-21 2013-10-16 Idemitsu Kosan Co Indium oxide-zinc oxide-magnesium oxide based sputtering target and transparent conductive film
TW201403436A (en) * 2012-05-31 2014-01-16 Dainippon Printing Co Ltd Capacitive touch panel substrate and display device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785675B2 (en) * 1996-04-26 2006-06-14 旭硝子株式会社 Substrate with transparent conductive film and method for producing the same
JPH10306367A (en) * 1997-05-06 1998-11-17 Sumitomo Metal Mining Co Ltd Zno-ga2o3 sintered body for sputtering target and its production
JP2001242483A (en) * 2000-02-25 2001-09-07 Hitachi Ltd Liquid crystal display device and its wiring structure
JP2002075061A (en) * 2000-08-30 2002-03-15 Uchitsugu Minami Transparent conductive film
JP2003157018A (en) * 2001-07-23 2003-05-30 Asahi Glass Co Ltd Planar display panel of high rigidity
WO2003096080A2 (en) * 2002-05-08 2003-11-20 Target Technology Company, Llc. Silver alloy thin film reflector and transparent electrical conductor
CN100549219C (en) * 2005-06-28 2009-10-14 日矿金属株式会社 The formation method and the nesa coating of gallium oxide-zinc oxide sputtering target, nesa coating
JP2007273185A (en) * 2006-03-30 2007-10-18 Mitsui Mining & Smelting Co Ltd Zinc oxide-based transparent conductive film and its patterning method
JP2010157497A (en) * 2008-12-02 2010-07-15 Geomatec Co Ltd Substrate with transparent conductive film and method of manufacturing the same
JP2012053594A (en) * 2010-08-31 2012-03-15 Sekisui Nano Coat Technology Co Ltd Transparent conductive film for touch panel
JP5766928B2 (en) * 2010-09-29 2015-08-19 株式会社ジャパンディスプレイ Display device with touch detection function and electronic device
JP5488849B2 (en) * 2011-06-24 2014-05-14 三菱マテリアル株式会社 Conductive film, method for producing the same, and sputtering target used therefor
KR20130052992A (en) * 2011-11-14 2013-05-23 주식회사 에스에스디 Touch panel and it's manufacturing method
JP2014005538A (en) * 2012-06-26 2014-01-16 Samsung Corning Precision Materials Co Ltd Zinc oxide-based sputtering target, method of manufacturing the same, and thin film transistor having shield film evaporated through the same
KR20140090876A (en) * 2013-01-10 2014-07-18 경희대학교 산학협력단 Flexible Multilayer Transparent Eletrode
JP2016511913A (en) * 2013-01-22 2016-04-21 カンブリオス テクノロジーズ コーポレイション Nanostructured transparent conductor with high thermal stability for ESD protection
WO2014167835A1 (en) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 Translucent conductor
JP2014053313A (en) * 2013-10-15 2014-03-20 Nitto Denko Corp Transparent conductive film, transparent conductive laminate, and touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201341603A (en) * 2004-04-21 2013-10-16 Idemitsu Kosan Co Indium oxide-zinc oxide-magnesium oxide based sputtering target and transparent conductive film
TW201222385A (en) * 2010-11-22 2012-06-01 Ind Tech Res Inst Flexible resistive touch sensor structure
TW201403436A (en) * 2012-05-31 2014-01-16 Dainippon Printing Co Ltd Capacitive touch panel substrate and display device

Also Published As

Publication number Publication date
CN107578840B (en) 2019-07-26
TW201633090A (en) 2016-09-16
CN105590662B (en) 2017-09-08
CN105590662A (en) 2016-05-18
CN107578840A (en) 2018-01-12
JP6398624B2 (en) 2018-10-03
JP2016087963A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
TWI570600B (en) Transparent conductor and touch panel
JP6601199B2 (en) Transparent conductor
CN107408421B (en) Transparent conductor and touch panel
CN107533402B (en) Transparent conductor, method for manufacturing same, and touch panel
TWI557615B (en) Transparent conductor and touch panel
TWI595392B (en) Transparent conductive body and touch panel
TWI597742B (en) Transparent conductive body and touch panel
JP2016012555A (en) Transparent conductive film and touch panel
JP6390395B2 (en) Transparent conductor and touch panel
KR102547456B1 (en) Transparent conductive film and image display device
JP2018022634A (en) Transparent conductor
JP2016091455A (en) Transparent conductor and touch panel