TWI591924B - Overload Protection Circuit Of Piezoelectric Element - Google Patents

Overload Protection Circuit Of Piezoelectric Element Download PDF

Info

Publication number
TWI591924B
TWI591924B TW105117887A TW105117887A TWI591924B TW I591924 B TWI591924 B TW I591924B TW 105117887 A TW105117887 A TW 105117887A TW 105117887 A TW105117887 A TW 105117887A TW I591924 B TWI591924 B TW I591924B
Authority
TW
Taiwan
Prior art keywords
piezoelectric element
unit
signal
overload protection
protection circuit
Prior art date
Application number
TW105117887A
Other languages
Chinese (zh)
Other versions
TW201743528A (en
Inventor
李國揚
張哲維
劉宏裕
Original Assignee
盛群半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛群半導體股份有限公司 filed Critical 盛群半導體股份有限公司
Priority to TW105117887A priority Critical patent/TWI591924B/en
Priority to CN201620570734.8U priority patent/CN205681094U/en
Priority to CN201610415627.2A priority patent/CN107465165B/en
Application granted granted Critical
Publication of TWI591924B publication Critical patent/TWI591924B/en
Publication of TW201743528A publication Critical patent/TW201743528A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current

Description

壓電元件的過載保護電路 Piezoelectric element overload protection circuit

本發明提出一種過載保護電路,特別是一種壓電元件的過載保護電路。 The invention provides an overload protection circuit, in particular to an overload protection circuit for a piezoelectric element.

壓電效應為電介質材料中一種機械能與電能相互轉換的現象。其中,可產生壓電效應之電介質材料一般可稱為壓電材料。習知,壓電材料會有壓電效應是因為其晶格內之原子間的特殊排列方式所造成,而可有應力場與電場耦合的效應。因此,透過壓電材料製成之壓電元件可運用壓電效應而廣泛應用於諸多領域中。 Piezoelectric effect is a phenomenon in which a mechanical energy and electrical energy are converted into each other in a dielectric material. Among them, a dielectric material that can produce a piezoelectric effect is generally referred to as a piezoelectric material. It is known that the piezoelectric material has a piezoelectric effect due to the special arrangement between atoms in its crystal lattice, and there may be an effect of coupling the stress field and the electric field. Therefore, a piezoelectric element made of a piezoelectric material can be widely used in many fields by utilizing a piezoelectric effect.

習知,壓電效應可分為將機械能轉電能的正壓電效應以及將電能轉機械能的逆壓電效應。於逆壓電效應之應用中,一般多是藉由壓電元件振動所輸出之機械能來驅動(或振動)與之相接觸的外在負載以達到應用所需之效果。以外在負載為水作例子時,可藉由壓電元件振動所輸出之機械能來驅動水,以使水可因壓電元件之振動而被細化成細微的水珠。 Conventionally, the piezoelectric effect can be divided into a positive piezoelectric effect that converts mechanical energy into electrical energy and an inverse piezoelectric effect that converts electrical energy into mechanical energy. In the application of the inverse piezoelectric effect, the mechanical energy output by the vibration of the piezoelectric element is generally used to drive (or vibrate) the external load in contact with it to achieve the desired effect of the application. When the load is water as an example, the water can be driven by the mechanical energy output by the vibration of the piezoelectric element, so that the water can be refined into fine water droplets due to the vibration of the piezoelectric element.

壓電元件乃為一種頻率控制元件。因此,當壓電元件正常工作於固定頻率且所驅動之外在負載亦呈穩定狀態時,壓電元件之工作電流可維持於一小範圍內變動。然而,由於外在負載可能因故變動,而使得壓電元件之工作電流亦隨之變動。尤其當壓電元件之工作電流因外在負載之變動而超出壓電元件可負荷之正常變動範圍時,恐造成壓電元件的嚴重毀 損。 The piezoelectric element is a frequency control element. Therefore, when the piezoelectric element operates normally at a fixed frequency and is driven in a stable state, the operating current of the piezoelectric element can be maintained within a small range. However, since the external load may vary for some reason, the operating current of the piezoelectric element also changes. Especially when the operating current of the piezoelectric element exceeds the normal variation range of the load of the piezoelectric element due to the variation of the external load, the piezoelectric element may be seriously damaged. damage.

有鑑於此,本發明提供一種壓電元件的過載保護電路,其可於偵測到壓電元件之工作電流超出可負荷之正常變動範圍時停止壓電元件工作,以避免壓電元件毀損。 In view of the above, the present invention provides an overload protection circuit for a piezoelectric element, which can stop the operation of the piezoelectric element when it is detected that the operating current of the piezoelectric element exceeds a normal range of loadability to avoid damage of the piezoelectric element.

在一實施例中,一種壓電元件的過載保護電路,包含電流取樣單元及調控單元。電流取樣單元可依序根據複數控制碼取樣類比訊號以產生取樣訊號。調控單元可依序產生複數控制碼,且根據取樣訊號發生轉態時之控制碼取得對應之參考訊號後,比較參考訊號之電位與臨界值,並且於參考訊號之電位大於臨界值時,調控單元停止輸出脈衝調變訊號以使壓電元件停止工作。其中,類比訊號之大小相關於壓電元件之工作電流之大小。 In an embodiment, an overload protection circuit for a piezoelectric element includes a current sampling unit and a regulation unit. The current sampling unit can sequentially sample the analog signal according to the complex control code to generate a sampling signal. The control unit may sequentially generate the complex control code, and after obtaining the corresponding reference signal according to the control code when the sampling signal is changed, comparing the potential and the threshold of the reference signal, and when the potential of the reference signal is greater than the threshold, the control unit Stop outputting the pulse modulation signal to stop the piezoelectric element. The magnitude of the analog signal is related to the operating current of the piezoelectric element.

在一實施例中,一種壓電元件的過載保護方法,包含接收類比訊號、依序產生複數控制碼、依序根據控制碼取樣類比訊號以產生取樣訊號、根據取樣訊號發生轉態時之控制碼取得對應之參考訊號、比較參考訊號之電位與臨界值,以及當參考訊號之電位大於臨界值時,停止輸出脈衝調變訊號以使壓電元件停止工作。其中,類比訊號之大小相關於壓電元件之工作電流之大小。 In an embodiment, a method for overload protection of a piezoelectric element includes receiving an analog signal, sequentially generating a complex control code, sequentially sampling an analog signal according to the control code to generate a sampling signal, and controlling a code according to a sampling signal. The corresponding reference signal is obtained, the potential and the threshold of the reference signal are compared, and when the potential of the reference signal is greater than the threshold, the output of the pulse modulation signal is stopped to stop the piezoelectric element. The magnitude of the analog signal is related to the operating current of the piezoelectric element.

綜上所述,本發明實施例之壓電元件的過載保護電路及其方法,其透過取樣壓電元件之工作電流,以於檢測到壓電元件之工作電流超過臨界值時,可快速反應而停止輸出脈衝調變訊號以使壓電元件停止工作,以避免壓電元件之損毀。 In summary, the overload protection circuit of the piezoelectric element according to the embodiment of the present invention and the method thereof, by sampling the operating current of the piezoelectric element, can quickly react when detecting that the operating current of the piezoelectric element exceeds a critical value. The output of the pulse modulation signal is stopped to stop the piezoelectric element from being operated to avoid damage of the piezoelectric element.

以下在實施方式中詳細敘述本發明之詳細特徵及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 The detailed features and advantages of the present invention are described in detail in the embodiments of the present invention. The objects and advantages associated with the present invention can be readily understood by those skilled in the art.

100‧‧‧壓電元件 100‧‧‧Piezoelectric components

110‧‧‧第一驅動電極 110‧‧‧First drive electrode

120‧‧‧第二驅動電極 120‧‧‧second drive electrode

200‧‧‧過載保護電路 200‧‧‧Overload protection circuit

210‧‧‧電流取樣單元 210‧‧‧current sampling unit

211‧‧‧數位類比轉換單元 211‧‧‧Digital Analog Conversion Unit

212‧‧‧比較單元 212‧‧‧Comparative unit

220‧‧‧調控單元 220‧‧‧Control unit

240‧‧‧電流轉電壓單元 240‧‧‧current to voltage unit

250‧‧‧雜訊消除單元 250‧‧‧ Noise Elimination Unit

260‧‧‧放大單元 260‧‧‧Amplification unit

270‧‧‧諧振單元 270‧‧‧Resonance unit

271‧‧‧電容元件 271‧‧‧Capacitive components

272‧‧‧開關模組 272‧‧‧Switch Module

273‧‧‧電感元件 273‧‧‧Inductive components

A1‧‧‧類比訊號 A1‧‧‧ analog signal

C0‧‧‧靜態電容 C0‧‧‧Static capacitor

C1‧‧‧動態電容 C1‧‧‧ Dynamic Capacitance

D1-Dn‧‧‧控制碼 D1-Dn‧‧‧ control code

F1‧‧‧串聯諧振頻率 F1‧‧‧ series resonant frequency

F2‧‧‧並聯諧振頻率 F2‧‧‧ parallel resonant frequency

I1‧‧‧工作電流 I1‧‧‧ working current

L1‧‧‧動態電感 L1‧‧‧dynamic inductor

R1‧‧‧動態電阻 R1‧‧‧ dynamic resistance

R2‧‧‧電阻 R2‧‧‧ resistance

Sr1-Srn,Srx‧‧‧參考訊號 Sr1-Srn, Srx‧‧‧ reference signal

Gnd‧‧‧地電位 Gnd‧‧‧ Ground potential

Ss‧‧‧取樣訊號 Ss‧‧‧Sampling signal

Sp‧‧‧脈衝調變訊號 Sp‧‧‧ pulse modulation signal

Vcc‧‧‧電源電位 Vcc‧‧‧ power supply potential

Zmax‧‧‧最大阻抗值 Z max ‧‧‧maximum impedance value

Zmin‧‧‧最小阻抗值 Z min ‧‧‧minimum impedance value

步驟S10a‧‧‧根據工作電流產生類比訊號 Step S10a‧‧‧ generates an analog signal based on the operating current

步驟S10b‧‧‧消除類比訊號上之雜訊 Step S10b‧‧‧ Eliminate noise on the analog signal

步驟S10c‧‧‧放大類比訊號 Step S10c‧‧‧Enlarge analog signal

步驟S11‧‧‧接收類比訊號 Step S11‧‧‧ Receive analog signal

步驟S12‧‧‧依序產生複數控制碼 Step S12‧‧‧ Generate multiple control codes in sequence

步驟S13‧‧‧依序根據複數控制碼取樣類比訊號以產生取樣訊號 Step S13‧‧‧Sampling the analog signal according to the complex control code to generate the sampling signal

步驟S13a‧‧‧依序根據各控制碼產生參考訊號 Step S13a‧‧‧ sequentially generates reference signals according to each control code

步驟S13b‧‧‧根據各參考訊號與類比訊號產生取樣訊號 Step S13b‧‧‧ generates sampling signals according to each reference signal and analog signal

步驟S14‧‧‧根據取樣訊號發生轉態時之控制碼取得對應之參考訊號 Step S14‧‧‧ obtain the corresponding reference signal according to the control code when the sampling signal is changed

步驟S15‧‧‧比較參考訊號之電位與臨界值 Step S15‧‧‧Compare the potential and threshold of the reference signal

步驟S16a‧‧‧停止輸出脈衝調變訊號,以使壓電元件停止工作 Step S16a‧‧‧ Stop outputting the pulse modulation signal to stop the piezoelectric element

步驟S16b‧‧‧輸出脈衝調變訊號 Step S16b‧‧‧ Output pulse modulation signal

[圖1]為壓電元件的概要等效電路圖。 Fig. 1 is a schematic equivalent circuit diagram of a piezoelectric element.

[圖2]為壓電元件之阻抗對頻率的概要關係圖。 Fig. 2 is a schematic diagram showing the relationship between impedance versus frequency of a piezoelectric element.

[圖3]為本發明一實施例之驅動電路驅動壓電元件的概要示意圖。 Fig. 3 is a schematic view showing a driving circuit for driving a piezoelectric element according to an embodiment of the present invention.

[圖4]為本發明另一實施例之驅動電路驅動壓電元件的概要示意圖。 4 is a schematic view showing a driving circuit driving a piezoelectric element according to another embodiment of the present invention.

[圖5]為利用複數參考訊號比對類比訊號的概要關係圖。 [Fig. 5] is a schematic diagram showing the comparison of the analog signals by the complex reference signals.

[圖6]為本發明一實施例之壓電元件之過載保護方法的概要示意圖。 Fig. 6 is a schematic view showing a method of overload protection of a piezoelectric element according to an embodiment of the present invention.

一般而言,壓電元件100係應用壓電材料所製成,並藉由壓電效應來達到機械能與電能之相互轉換。於此,一般將機械能轉換成電能之效應稱為正壓電效應,且將電能轉換成機械能之效應稱為逆壓電效應。 In general, the piezoelectric element 100 is made of a piezoelectric material, and the piezoelectric effect is used to achieve mutual conversion between mechanical energy and electrical energy. Herein, the effect of generally converting mechanical energy into electrical energy is called a positive piezoelectric effect, and the effect of converting electrical energy into mechanical energy is called an inverse piezoelectric effect.

在一些實施態樣中,壓電元件100所應用之壓電材料可為但不限於壓電單晶體,例如石英、鈮酸鋰(LiNbO3)、組酸鋰(LiTaO3)等、壓電多晶體(壓電陶瓷),例如鈦酸鋇(BT)、鋯鈦酸鉛(PZT)等、壓電聚合物,例如PVDF及其共聚物、聚氟乙烯等或壓電複合材料,例如壓電陶瓷與聚合物的兩相複合材料。 In some embodiments, the piezoelectric material to which the piezoelectric element 100 is applied may be, but not limited to, a piezoelectric single crystal such as quartz, lithium niobate (LiNbO 3 ), lithium niobate (LiTaO 3 ), etc., piezoelectric polycrystal. (Piezoelectric ceramics), such as barium titanate (BT), lead zirconate titanate (PZT), etc., piezoelectric polymers such as PVDF and copolymers thereof, polyvinyl fluoride, etc. or piezoelectric composite materials such as piezoelectric ceramics and A two-phase composite of polymers.

圖1為壓電元件的概要等效電路圖。請參閱圖1,壓電元件 100具有第一驅動電極110與第二驅動電極120。於此,壓電元件100可等效成由靜態電容C0、動態電容C1、動態電感L1與動態電阻R1所組成之諧振電路。其中,動態電容C1、動態電感L1與動態電阻R1彼此相互串聯於第一驅動電極110與第二驅動電極120之間,且靜態電容C0之二端分別耦接至第一驅動電極110與第二驅動電極120,而可並聯於相互串聯之動態電容C1、動態電感L1與動態電阻R1。 1 is a schematic equivalent circuit diagram of a piezoelectric element. Please refer to Figure 1, piezoelectric element 100 has a first drive electrode 110 and a second drive electrode 120. Here, the piezoelectric element 100 can be equivalent to a resonant circuit composed of a static capacitor C0, a dynamic capacitor C1, a dynamic inductor L1, and a dynamic resistor R1. The dynamic capacitor C1, the dynamic inductor L1 and the dynamic resistor R1 are connected in series with each other between the first driving electrode 110 and the second driving electrode 120, and the two ends of the static capacitor C0 are respectively coupled to the first driving electrode 110 and the second The driving electrode 120 can be connected in parallel to the dynamic capacitor C1, the dynamic inductor L1 and the dynamic resistor R1 which are connected in series.

圖2為壓電元件之阻抗對頻率的概要關係圖。請參閱圖1與圖2,由於壓電元件100為一種頻率控制元件,故當壓電元件100工作於不同頻率時,其阻抗將隨之變動。於此,當壓電元件100工作於串聯諧振頻率F1時,壓電元件100之等效電路呈電阻性,且壓電元件100之阻抗大小約略等同於動態電阻R1之大小而可具有最小阻抗值Zmin;而當壓電元件100工作於並聯諧振頻率F2時,壓電元件100之等效電路呈電感性,且壓電元件100之阻抗可具有最大阻抗值Zmax。因此,於一般應用中,壓電元件100多工作於串聯諧振頻率F1,以使壓電元件100之阻抗可最小並使得流經壓電元件100之工作電流I1可具有最大值,進而可獲取壓電元件100之最大機械能輸出。 Fig. 2 is a schematic diagram showing the relationship between the impedance of the piezoelectric element and the frequency. Referring to FIG. 1 and FIG. 2, since the piezoelectric element 100 is a frequency control element, when the piezoelectric element 100 operates at different frequencies, its impedance will change accordingly. Here, when the piezoelectric element 100 operates at the series resonance frequency F1, the equivalent circuit of the piezoelectric element 100 is resistive, and the impedance of the piezoelectric element 100 is approximately equal to the size of the dynamic resistance R1 and has the minimum impedance value. Z min ; and when the piezoelectric element 100 operates at the parallel resonance frequency F2, the equivalent circuit of the piezoelectric element 100 is inductive, and the impedance of the piezoelectric element 100 may have a maximum impedance value Z max . Therefore, in a general application, the piezoelectric element 100 operates at the series resonance frequency F1 so that the impedance of the piezoelectric element 100 can be minimized and the operating current I1 flowing through the piezoelectric element 100 can have a maximum value, thereby obtaining the pressure. The maximum mechanical energy output of the electrical component 100.

圖3為本發明一實施例之保護壓電元件之過載保護電路的概要示意圖,圖4為本發明另一實施例之保護壓電元件之過載保護電路的概要示意圖。請參閱圖3與圖4,壓電元件100可根據脈衝調變訊號Sp作動,以將電能轉為對應之機械能並輸出對應之機械能至外在負載(圖未示)。在一實施態樣中,脈衝調變訊號Sp之頻率大致上可與壓電元件100之串聯諧振頻率F1相同。其中,過載保護電路200可利用追頻技術來找到相當於 壓電元件100之串聯諧振頻率F1之頻率的脈衝調變訊號Sp。 3 is a schematic diagram of an overload protection circuit for protecting a piezoelectric element according to an embodiment of the present invention, and FIG. 4 is a schematic diagram of an overload protection circuit for protecting a piezoelectric element according to another embodiment of the present invention. Referring to FIG. 3 and FIG. 4, the piezoelectric element 100 can be actuated according to the pulse modulation signal Sp to convert electrical energy into corresponding mechanical energy and output corresponding mechanical energy to an external load (not shown). In one embodiment, the frequency of the pulse modulation signal Sp is substantially the same as the series resonant frequency F1 of the piezoelectric element 100. Wherein, the overload protection circuit 200 can use the frequency chasing technology to find the equivalent The pulse modulation signal Sp of the frequency of the series resonance frequency F1 of the piezoelectric element 100.

在一些實施例中,過載保護電路200可產生固定頻率(相當於壓電元件100之串聯諧振頻率F1)的脈衝調變訊號Sp。在另一些實施例中,脈衝調變訊號Sp亦可由其他的電路,如訊號產生電路(圖未示)來產生,且過載保護電路200可輸出一控制訊號至此訊號產生電路,以使此訊號產生電路可根據控制訊號輸出具有對應頻率之脈衝調變訊號Sp或停止輸出脈衝調變訊號Sp。 In some embodiments, the overload protection circuit 200 can generate a pulse modulation signal Sp at a fixed frequency (corresponding to the series resonant frequency F1 of the piezoelectric element 100). In other embodiments, the pulse modulation signal Sp can also be generated by other circuits, such as a signal generating circuit (not shown), and the overload protection circuit 200 can output a control signal to the signal generating circuit to generate the signal. The circuit can output a pulse modulation signal Sp having a corresponding frequency or stop outputting the pulse modulation signal Sp according to the control signal.

於此,於壓電元件100的外在負載無變動之情況下,壓電元件100之工作電流I1可趨於定值(或維持於一小範圍內變動)。 Here, in the case where the external load of the piezoelectric element 100 is not changed, the operating current I1 of the piezoelectric element 100 may tend to be constant (or maintained within a small range).

於過載保護電路200確定脈衝調變訊號Sp的頻率(完成追頻)後,過載保護電路200還能取樣壓電元件100之工作電流I1,以檢測壓電元件100是否過載。 After the overload protection circuit 200 determines the frequency of the pulse modulation signal Sp (completes the frequency chasing), the overload protection circuit 200 can also sample the operating current I1 of the piezoelectric element 100 to detect whether the piezoelectric element 100 is overloaded.

過載保護電路200包含電流取樣單元210以及調控單元220。電流取樣單元210耦接壓電元件100,且調控單元220耦接電流取樣單元210以及壓電元件100。電流取樣單元210可執行多次取樣程序,並且在每一次取樣程序中依據調控單元220所產生之複數控制碼D1-Dn取樣壓電元件100之工作電流I1,以根據取樣之結果輸出取樣訊號Ss。調控單元220可根據取樣訊號Ss發生轉態時之控制碼取得對應之參考訊號,之後根據參考訊號之電位與預設之臨界值進行比對,並且於比對之結果為參考訊號之電位大於臨界值時,可快速反應而停止輸出脈衝調變訊號Sp,以使壓電元件100停止工作。於此,取樣訊號Ss發生轉態是指取樣訊號Ss之準位由邏輯“0”轉變至邏輯“1”,或由邏輯“1”轉變至邏輯“0”之期間。 The overload protection circuit 200 includes a current sampling unit 210 and a regulation unit 220. The current sampling unit 210 is coupled to the piezoelectric element 100 , and the regulating unit 220 is coupled to the current sampling unit 210 and the piezoelectric element 100 . The current sampling unit 210 can perform a plurality of sampling procedures, and samples the operating current I1 of the piezoelectric element 100 according to the complex control codes D1-Dn generated by the regulating unit 220 in each sampling process to output the sampling signal Ss according to the sampling result. . The control unit 220 can obtain the corresponding reference signal according to the control code when the sampling signal Ss is in the transition state, and then compare the potential of the reference signal with the preset threshold value, and the result of the comparison is that the potential of the reference signal is greater than the critical value. At the time of the value, the output pulse modulation signal Sp is stopped to be quickly reacted to stop the piezoelectric element 100 from operating. Here, the transition of the sampling signal Ss refers to a period in which the level of the sampling signal Ss transitions from a logic "0" to a logic "1" or a logic "1" to a logic "0".

在一些實施例中,電流取樣單元210可包含數位類比轉換單元211以及比較單元212。數位類比轉換單元211之輸入端耦接至調控單元220。比較單元212之二輸入端分別耦接至壓電元件100與數位類比轉換單元211之輸出端。 In some embodiments, the current sampling unit 210 can include a digital analog conversion unit 211 and a comparison unit 212. The input end of the digital analog conversion unit 211 is coupled to the control unit 220. The two input ends of the comparison unit 212 are respectively coupled to the output ends of the piezoelectric element 100 and the digital analog conversion unit 211.

數位類比轉換單元211可用以根據數位式訊號的數值轉換出對應之類比式訊號輸出。於此,數位類比轉換單元211可根據多個控制碼D1-Dn產生多個參考訊號Sr1-Srn。 The digital analog conversion unit 211 can be used to convert the corresponding analog signal output according to the value of the digital signal. Here, the digital analog conversion unit 211 can generate a plurality of reference signals Sr1 - Srn according to the plurality of control codes D1 - Dn.

在一些實施例中,多個控制碼D1-Dn可由調控單元220以降序方式依序產生,亦即,調控單元220所產生之控制碼D1將具有最大數值,且調控單元220所產生之控制碼Dn將具有最小數值。但本發明並非以此為限,多個控制碼D1-Dn亦可由調控單元220以升序方式依序產生,或者由調控單元220以使用者所定義之順序依序產生亦可。 In some embodiments, the plurality of control codes D1-Dn may be sequentially generated by the control unit 220 in a descending manner, that is, the control code D1 generated by the control unit 220 will have the largest value, and the control code generated by the control unit 220 Dn will have the smallest value. However, the present invention is not limited thereto. The plurality of control codes D1-Dn may also be sequentially generated by the control unit 220 in an ascending order, or may be sequentially generated by the control unit 220 in the order defined by the user.

以降序方式依序產生之多個控制碼D1-Dn為例,數位類比轉換單元211依據第一個控制碼D1所轉換出之第一個參考訊號Sr1是大於依據第二個控制碼D2所轉換出之第二個參考訊號Sr2,且數位類比轉換單元211依據第二個控制碼D2所轉換出之第二個參考訊號Sr2是大於依據第三個控制碼D3所轉換出之第三個參考訊號Sr3,以此類推至最後一個參考訊號Srn。 Taking a plurality of control codes D1-Dn sequentially generated in descending order as an example, the first reference signal Sr1 converted by the digital analog conversion unit 211 according to the first control code D1 is greater than that converted according to the second control code D2. The second reference signal Sr2 is output, and the second reference signal Sr2 converted by the digital analog conversion unit 211 according to the second control code D2 is greater than the third reference signal converted according to the third control code D3. Sr3, and so on to the last reference signal Srn.

在一些實施態樣中,數位類比轉換單元211可為主要由被動元件所構成的數位類比轉換器(Digital to Analog Converter,DAC),例如,電阻式數位類比轉換器或切換電容式數位類比轉換器,或主要由主動元件所構成的數位類比轉換器,例如加權電流源式數位類比轉換器或矩 陣電流源式數位類比轉換器。然而,本發明並不以此為限。於此,數位類比轉換單元211可以具有簡單架構之R-2R型數位類比轉換器來實現,以降低過載保護電路200之整體成本耗費。 In some implementations, the digital analog conversion unit 211 can be a digital to analog converter (DAC) mainly composed of passive components, such as a resistive digital analog converter or a switched capacitive digital analog converter. , or a digital analog converter composed mainly of active components, such as a weighted current source digital analog converter or a moment Array current source digital analog converter. However, the invention is not limited thereto. Here, the digital analog conversion unit 211 can be implemented with a simple architecture R-2R type digital analog converter to reduce the overall cost of the overload protection circuit 200.

比較單元212具有二輸入端,此二輸入端可分別稱之為反相輸入端與非反相輸入端。其中,比較單元212之反相輸入端耦接至數位類比轉換單元211,且比較單元212之非反相輸入端耦接至壓電元件100。 The comparison unit 212 has two inputs, which can be referred to as an inverting input and a non-inverting input, respectively. The inverting input terminal of the comparing unit 212 is coupled to the digital analog converting unit 211 , and the non-inverting input terminal of the comparing unit 212 is coupled to the piezoelectric element 100 .

在一些實施例中,過載保護電路200更可包含電流轉電壓單元240,且電流轉電壓單元240耦接於壓電元件100與比較單元212之非反相輸入端間。電流轉電壓單元240可將工作電流I1轉換成對應之類比訊號A1後再輸出至比較單元212。其中,電流轉電壓單元240所產生之類比訊號A1的大小是相關於壓電元件100之工作電流I1的大小。於此,類比訊號A1是正相關於工作電流I1。換言之,壓電元件100之工作電流I1越大,則電流轉電壓單元240所產生之類比訊號A1亦越大。 In some embodiments, the overload protection circuit 200 further includes a current-to-voltage unit 240, and the current-to-voltage unit 240 is coupled between the piezoelectric element 100 and the non-inverting input of the comparison unit 212. The current-to-voltage unit 240 can convert the operating current I1 into a corresponding analog signal A1 and then output it to the comparing unit 212. The magnitude of the analog signal A1 generated by the current-to-voltage unit 240 is related to the magnitude of the operating current I1 of the piezoelectric element 100. Here, the analog signal A1 is positively related to the operating current I1. In other words, the larger the operating current I1 of the piezoelectric element 100 is, the larger the analog signal A1 generated by the current converting voltage unit 240 is.

此外,壓電元件100之工作電流I1的大小亦相關於壓電元件100之阻抗大小以及其驅動之外在負載的阻抗大小,且工作電流I1是負相關於壓電元件100之阻抗大小以及外在負載的阻抗大小。因此,電流轉電壓單元240所產生之類比訊號A11的大小亦相關於壓電元件100之阻抗大小以及外在負載的阻抗大小,且類比訊號A1是負相關於壓電元件100之阻抗大小以及外在負載的阻抗大小。換言之,電流轉電壓單元240所產生之類比訊號A1越大,則代表壓電元件100之阻抗以及外在負載之阻抗越小,且流經壓電元件100之工作電流I1越大。 In addition, the magnitude of the operating current I1 of the piezoelectric element 100 is also related to the magnitude of the impedance of the piezoelectric element 100 and the magnitude of the impedance of the load outside the driving thereof, and the operating current I1 is negatively related to the impedance of the piezoelectric element 100 and The magnitude of the impedance at the load. Therefore, the magnitude of the analog signal A11 generated by the current-to-voltage unit 240 is also related to the impedance of the piezoelectric element 100 and the impedance of the external load, and the analog signal A1 is negatively related to the impedance of the piezoelectric element 100 and The magnitude of the impedance at the load. In other words, the larger the analog signal A1 generated by the current-to-voltage unit 240, the smaller the impedance of the piezoelectric element 100 and the impedance of the external load, and the larger the operating current I1 flowing through the piezoelectric element 100.

於此,壓電元件100之阻抗大小相關於脈衝調變訊號Sp之頻 率。當時,壓電元件100之阻抗亦為固定阻抗。因此,當脈衝調變訊號Sp之頻率為固定頻率時,類比訊號A1可僅相關於外在負載之阻抗,而類比訊號A1越大,則代表外在負載之阻抗越小,且流經壓電元件100之工作電流I1越大。換言之,過載保護電路200可藉此根據類比訊號A1之大小變化來判定外在負載是否穩定。 Here, the impedance of the piezoelectric element 100 is related to the frequency of the pulse modulation signal Sp. rate. At that time, the impedance of the piezoelectric element 100 was also a fixed impedance. Therefore, when the frequency of the pulse modulation signal Sp is a fixed frequency, the analog signal A1 can only be related to the impedance of the external load, and the larger the analog signal A1, the smaller the impedance representing the external load and flowing through the piezoelectric The operating current I1 of the component 100 is larger. In other words, the overload protection circuit 200 can thereby determine whether the external load is stable according to the magnitude change of the analog signal A1.

在一些實施態樣中,電流轉電壓單元240可為電阻R2,一端耦接至地電位Gnd,例如零電位,且另一端耦接至壓電元件100與比較單元212之非反相輸入端,以使工作電流I1於電阻R2上形成相應之跨壓,而可轉換出對應之類比訊號A1至比較單元212。其中,類比訊號A1為一種電壓訊號,且電阻R2可為定電阻。 In some implementations, the current-to-voltage unit 240 can be a resistor R2 having one end coupled to the ground potential Gnd, such as a zero potential, and the other end coupled to the non-inverting input of the piezoelectric element 100 and the comparison unit 212. In order to make the working current I1 form a corresponding voltage across the resistor R2, the corresponding analog signal A1 to the comparison unit 212 can be converted. The analog signal A1 is a voltage signal, and the resistor R2 can be a fixed resistor.

於此,比較單元212是將電流轉電壓單元240所轉換出之類比訊號A1與多個參考訊號Sr1-Srn依序逐一比對來產生取樣訊號Ss。 Here, the comparison unit 212 sequentially compares the analog signal A1 converted by the current-to-voltage unit 240 with the plurality of reference signals Sr1-Srn one by one to generate the sampling signal Ss.

在一些實施態中,比較單元212可為由運算放大器(operational amplifier)所構成之比較電路,但本發明並非以此為限。 In some implementations, the comparison unit 212 can be a comparison circuit composed of an operational amplifier, but the invention is not limited thereto.

在一些實施例中,過載保護電路200更包含雜訊消除單元250,且雜訊消除單元250耦接於壓電元件100與比較單元212之間。於此,雜訊消除單元250可耦接於電壓轉換單元240與比較單元212之間,以消除經由電壓轉換單元240所產生之類比訊號A1上之雜訊後,再輸出至比較單元212進行比較。 In some embodiments, the overload protection circuit 200 further includes a noise cancellation unit 250 , and the noise cancellation unit 250 is coupled between the piezoelectric element 100 and the comparison unit 212 . The noise cancellation unit 250 can be coupled between the voltage conversion unit 240 and the comparison unit 212 to eliminate the noise on the analog signal A1 generated by the voltage conversion unit 240, and then output to the comparison unit 212 for comparison. .

在一些實施態樣中,雜訊消除單元250可為由電容所組成之濾波器,以濾除類比訊號A1上之雜訊,但本發明並非以此為限。 In some implementations, the noise cancellation unit 250 can be a filter composed of capacitors to filter out noise on the analog signal A1, but the invention is not limited thereto.

在一些實施例中,過載保護電路200更包含放大單元260, 且放大單元260耦接於壓電元件100與比較單元212之間。於此,放大單元260可耦接於電壓轉換單元240與比較單元212之間,以放大電壓轉換單元240所產生之類比訊號A1後,再輸出至比較單元212進行比較。此外,放大單元260亦可耦接於雜訊消除單元250與比較單元212之間,以使類比訊號A1可先經由雜訊消除單元250消除雜訊後再經由放大單元260放大,之後才輸出至比較單元212進行比較。 In some embodiments, the overload protection circuit 200 further includes an amplification unit 260, The amplification unit 260 is coupled between the piezoelectric element 100 and the comparison unit 212. The amplification unit 260 can be coupled between the voltage conversion unit 240 and the comparison unit 212 to amplify the analog signal A1 generated by the voltage conversion unit 240, and then output to the comparison unit 212 for comparison. In addition, the amplifying unit 260 can also be coupled between the noise canceling unit 250 and the comparing unit 212, so that the analog signal A1 can be cancelled by the noise canceling unit 250 before being amplified by the amplifying unit 260, and then output to the analog signal 260. Comparison unit 212 performs the comparison.

因此,過載保護電路200之調控單元220可依序產生控制碼D1-Dn至數位類比轉換單元211,以使比較單元212可將類比訊號A1與數位類比轉換單元211根據第一控制碼D1-Dn所產生之參考訊號Sr1-Srn依序進行比較,並產生取樣訊號Ss至調控單元220,進而使得調控單元220可根據取樣訊號Ss是否發生轉態來決定是否繼續依序輸出控制碼D1-Dn。 Therefore, the control unit 220 of the overload protection circuit 200 can sequentially generate the control code D1-Dn to the digital analog conversion unit 211, so that the comparison unit 212 can classify the analog signal A1 and the digital analog conversion unit 211 according to the first control code D1-Dn. The generated reference signals Sr1-Srn are sequentially compared, and the sampling signal Ss is generated to the control unit 220, so that the control unit 220 can decide whether to continue to output the control codes D1-Dn sequentially according to whether the sampling signal Ss is in a transition state.

在調控單元220以降序方式產生控制碼D1-Dn的一實施態樣中,如圖5所示,於每一取樣程序中,首先,數位類比轉換單元211依據第一個控制碼D1產生第一個參考訊號Sr1,且比較單元212可將第一個參考訊號Sr1與類比訊號A1進行比較。由於此時第一個參考訊號Sr1之電位大於類比訊號A1之電位,因此,比較單元212所產生之取樣訊號Ss的準位可為邏輯“0”。直至數位類比轉換單元211依據第x個控制碼產生第x個參考訊號Srx,且比較單元212將第x個參考訊號Srx與類比訊號A1進行比較後,比較單元212可因判斷第x個參考訊號Srx之電位小於類比訊號A1之電位而使得取樣訊號Ss的準位由邏輯“0”轉態至邏輯“1”。而當取樣訊號Ss發生轉態時,調控單元220便可停止輸出下一個第一控制碼,且根據當前之控制碼取得經由數位類比轉換單元211對應產生之參考訊號Srx的電 位,並將此參考訊號Srx的電位作為壓電元件100於驅動外在負載時,電流轉電壓單元240根據壓電元件100之工作電流I1所能轉換出之類比訊號A1的最大電位。 In an embodiment in which the control unit 220 generates the control codes D1-Dn in descending order, as shown in FIG. 5, in each sampling program, first, the digital analog conversion unit 211 generates the first according to the first control code D1. The reference signal Sr1, and the comparing unit 212 can compare the first reference signal Sr1 with the analog signal A1. Since the potential of the first reference signal Sr1 is greater than the potential of the analog signal A1, the level of the sampling signal Ss generated by the comparing unit 212 can be logic "0". Until the digital analog conversion unit 211 generates the xth reference signal Srx according to the xth control code, and the comparing unit 212 compares the xth reference signal Srx with the analog signal A1, the comparing unit 212 can determine the xth reference signal. The potential of Srx is less than the potential of the analog signal A1 such that the level of the sampling signal Ss is shifted from a logic "0" to a logic "1". When the sampling signal Ss transitions, the control unit 220 stops outputting the next first control code, and obtains the reference signal Srx generated by the digital analog conversion unit 211 according to the current control code. When the potential of the reference signal Srx is used as the piezoelectric element 100 to drive the external load, the current-to-voltage unit 240 can convert the maximum potential of the analog signal A1 according to the operating current I1 of the piezoelectric element 100.

而在調控單元220以升序方式產生控制碼D1-Dn的一實施態樣中,於每一取樣程序中,當取樣訊號Ss發生轉態時,調控單元220便可停止輸出下一個控制碼,且根據當前之控制碼取得經由數位類比轉換單元211對應產生之參考訊號Srx的電位,並將此參考訊號Srx的電位作為壓電元件100於驅動外在負載時,電流轉電壓單元240根據壓電元件100之工作電流I1所能轉換出之類比訊號A1的最小電位。 In an embodiment in which the control unit 220 generates the control codes D1-Dn in an ascending order, in each sampling procedure, when the sampling signal Ss is in a transition state, the control unit 220 stops outputting the next control code, and Obtaining the potential of the reference signal Srx generated correspondingly by the digital analog conversion unit 211 according to the current control code, and using the potential of the reference signal Srx as the piezoelectric element 100 to drive the external load, the current-to-voltage unit 240 according to the piezoelectric element The minimum potential of the analog signal A1 can be converted by the operating current I1 of 100.

而在調控單元220以使用者所定義之順序之一實施態樣中,於每一取樣程序中,調控單元220則可依據取樣訊號Ss之轉態,將所有對應於樣訊號Ss之轉態的各參考訊號的電位進行均值運算,並以此得到之平均值作為壓電元件100在脈衝調變訊號Sp當前的頻率調控下,電流轉電壓單元240根據壓電元件100之工作電流I1所能轉換出之轉換出之類比訊號A1的平均電位。 In the implementation manner of the control unit 220 in the order defined by the user, in each sampling procedure, the control unit 220 can perform all the transition states corresponding to the sample signal Ss according to the transition state of the sampling signal Ss. The potential of each reference signal is averaged, and the average value obtained is used as the piezoelectric element 100 under the current frequency control of the pulse modulation signal Sp. The current-to-voltage unit 240 can be converted according to the operating current I1 of the piezoelectric element 100. The average potential of the analog signal A1 is converted out.

因此,調控單元220可將每次取樣程序中所得之參考訊號之電位分別與預設之臨界值進行比較,並根據比較之結果進行相應之作動。當比較之結果為參考訊號之電位小於或等於預設之臨界值時,表示外在負載之變動仍在穩定範圍內,且流經壓電元件100之工作電流11仍介於壓電元件100可負荷之範圍內。因此,調控單元220可正常輸出脈衝調變訊號Sp以使壓電元件100繼續工作。 Therefore, the control unit 220 can compare the potential of the reference signal obtained in each sampling procedure with a preset threshold value, and perform corresponding actions according to the comparison result. When the result of the comparison is that the potential of the reference signal is less than or equal to the preset threshold, it indicates that the variation of the external load is still within the stable range, and the operating current 11 flowing through the piezoelectric element 100 is still interposed between the piezoelectric element 100. Within the load range. Therefore, the control unit 220 can normally output the pulse modulation signal Sp to continue the operation of the piezoelectric element 100.

而當比較之結果為參考訊號之電位大於預設之臨界值時,則 表示外在負載之變動已超出穩定範圍,且流經壓電元件100之工作電流I1已超出壓電元件100可負荷之範圍(即,過載)。因此,調控單元220可快速反應並停止輸出脈衝調變訊號Sp以使壓電元件100停止工作,藉以來保護壓電元件100,以避免壓電元件100因過高之工作電流I1而損毀。 When the result of the comparison is that the potential of the reference signal is greater than a preset threshold, then It is indicated that the variation of the external load has exceeded the stable range, and the operating current I1 flowing through the piezoelectric element 100 has exceeded the range (ie, overload) at which the piezoelectric element 100 can be loaded. Therefore, the control unit 220 can quickly react and stop outputting the pulse modulation signal Sp to stop the piezoelectric element 100, thereby protecting the piezoelectric element 100 from being damaged by the excessive operating current I1.

在一些實施例中,過載保護電路200更可包含諧振單元270,且諧振單元270耦接於壓電元件100、調控單元220以及比較單元212之間。諧振單元270可用以根據調控單元220所輸出之脈衝調變訊號Sp作動,進而控制壓電元件100之工作電流11。 In some embodiments, the overload protection circuit 200 further includes a resonance unit 270 , and the resonance unit 270 is coupled between the piezoelectric element 100 , the regulation unit 220 , and the comparison unit 212 . The resonant unit 270 can be used to actuate according to the pulse modulation signal Sp outputted by the control unit 220, thereby controlling the operating current 11 of the piezoelectric element 100.

在一些實施態樣中,諧振單元270可包含電容元件271、開關模組272以及電感元件273。其中,電容元件271之一端可耦接至壓電元件100之第一驅動電極110。電感元件273可耦接於電容元件271之另一端與一電源電位Vcc之間。開關模組272之一端可耦接至比較單元212之非反相輸入端,開關模組272之另一端可耦接至電容元件271之另一端與電感元件273之一端,且開關模組272之控制端耦接至調控單元220之輸出端。因此,開關模組272可根據脈衝調變訊號Sp來控制電容元件271與比較單元212之間的電性連結。 In some implementations, the resonant unit 270 can include a capacitive element 271, a switch module 272, and an inductive element 273. The one end of the capacitive element 271 can be coupled to the first driving electrode 110 of the piezoelectric element 100. The inductive component 273 can be coupled between the other end of the capacitive component 271 and a power supply potential Vcc. One end of the switch module 272 can be coupled to the non-inverting input end of the comparison unit 212, and the other end of the switch module 272 can be coupled to the other end of the capacitive element 271 and one end of the inductive element 273, and the switch module 272 The control end is coupled to the output end of the control unit 220. Therefore, the switch module 272 can control the electrical connection between the capacitive element 271 and the comparison unit 212 according to the pulse modulation signal Sp.

在一實施態樣中,壓電元件100之第二驅動電極120可耦接至比較單元212之非反相輸入端,如圖3所示。然而本發明並非以此為限,在另一實施態樣中,如圖4所示,壓電元件100之第二驅動電極120則可耦接至地電位Gnd。 In one embodiment, the second driving electrode 120 of the piezoelectric element 100 can be coupled to the non-inverting input of the comparing unit 212, as shown in FIG. However, the present invention is not limited thereto. In another embodiment, as shown in FIG. 4, the second driving electrode 120 of the piezoelectric element 100 can be coupled to the ground potential Gnd.

在一些實態樣中,過載保護電路200之數位類比轉換單元211、比較單元212與調控單元220可以積體電路製作於同一晶片(IC)中, 且其餘之電流轉電壓單元240、雜訊消除單元250、放大單元260及/或諧振單元270則可為外部設置之電子零件。然而本發明並非以此為限,電流轉電壓單元240、雜訊消除單元250、放大單元260及/或諧振單元270亦可與數位類比轉換單元211、比較單元212與調控單元220以積體電路製作於同一晶片之中。 In some implementations, the digital analog conversion unit 211, the comparison unit 212, and the control unit 220 of the overload protection circuit 200 can be fabricated in the same chip (IC). The remaining current-to-voltage unit 240, the noise cancellation unit 250, the amplification unit 260, and/or the resonance unit 270 may be externally disposed electronic components. However, the present invention is not limited thereto, and the current-to-voltage unit 240, the noise canceling unit 250, the amplifying unit 260, and/or the resonating unit 270 may also be integrated with the digital analog converting unit 211, the comparing unit 212, and the regulating unit 220. Made in the same wafer.

圖6為本發明一實施例之壓電元件之過載保護方法的概要示意圖。請參閱圖3至圖6,壓電元件100之過載保護方法包含接收類比訊號A1(步驟S11)、依序產生複數控制碼D1-Dn(步驟S12)、依序根據複數控制碼D1-Dn取樣類比訊號A1以產生取樣訊號Ss(步驟S13)、根據取樣訊號發生轉態時之控制碼取得對應之參考訊號(步驟S14)、比較參考訊號之電位與臨界值(步驟S15),以及當參考訊號之電位大於臨界值時,停止輸出脈衝調變訊號Sp以使壓電元件100停止工作(步驟S16a)。此外,當工作電壓小於或等於臨界值時,輸出脈衝調變訊號Sp(步驟S16b),以控制壓電元件100之工作電流I1。 Fig. 6 is a schematic view showing a method of overload protection of a piezoelectric element according to an embodiment of the present invention. Referring to FIG. 3 to FIG. 6, the overload protection method of the piezoelectric element 100 includes receiving the analog signal A1 (step S11), sequentially generating the complex control codes D1-Dn (step S12), and sequentially sampling according to the complex control codes D1-Dn. The analog signal A1 generates the sampling signal Ss (step S13), obtains the corresponding reference signal according to the control code when the sampling signal is changed (step S14), compares the potential of the reference signal with the threshold (step S15), and when the reference signal When the potential is greater than the threshold value, the output of the pulse modulation signal Sp is stopped to stop the piezoelectric element 100 (step S16a). Further, when the operating voltage is less than or equal to the critical value, the pulse modulation signal Sp is output (step S16b) to control the operating current I1 of the piezoelectric element 100.

於此,脈衝調變訊號Sp之頻率可為固定頻率,如固定於壓電元件100之串聯諧振頻率F1以獲取最大機械能輸出。由於壓電元件100為頻率控制元件,當脈衝調變訊號Sp之頻率為固定頻率時,壓電元件100之阻抗可為固定阻抗,而使得工作電流I1可僅相關於壓電元件100所驅動之外在負載的阻抗。 Here, the frequency of the pulse modulation signal Sp may be a fixed frequency, such as a series resonance frequency F1 fixed to the piezoelectric element 100 to obtain a maximum mechanical energy output. Since the piezoelectric element 100 is a frequency control element, when the frequency of the pulse modulation signal Sp is a fixed frequency, the impedance of the piezoelectric element 100 can be a fixed impedance, so that the operating current I1 can be driven only by the piezoelectric element 100. The impedance of the external load.

此外,類比訊號A1之大小相關於壓電元件100之工作電流I1之大小。於此,類比訊號A1是正相關於壓電元件100之工作電流I1,且負相關於外在負載之阻抗。 Further, the magnitude of the analog signal A1 is related to the magnitude of the operating current I1 of the piezoelectric element 100. Here, the analog signal A1 is positively related to the operating current I1 of the piezoelectric element 100 and negatively related to the impedance of the external load.

在一些實施例中,於步驟S11前,過載保護方法更可包含根據工作電流I1產生類比訊號A1(步驟S10a)。於此,過載保護電路200可藉由電流轉電壓單元240根據壓電元件100之工作電流I1的大小轉換出對應之類比訊號A1。 In some embodiments, before the step S11, the overload protection method may further include generating the analog signal A1 according to the operating current I1 (step S10a). In this case, the overload protection circuit 200 can convert the corresponding analog signal A1 according to the magnitude of the operating current I1 of the piezoelectric element 100 by the current-to-voltage unit 240.

在步驟S10a之後,過載保護方法更可包含藉由雜訊消除單元250來消除類比訊號A1上之雜訊(步驟S10b)。此外,過載保護方法更可包含藉由放大單元260放大類比訊號A1(步驟S10c)。於此,步驟S10b與步驟S10c可依序執行,以先消除類比訊號A1上之雜訊後,再放大類比訊號A1。然而,本發明並非以此為限,過載保護方法亦可僅執行步驟S10b或步驟S10c。 After the step S10a, the overload protection method may further include canceling the noise on the analog signal A1 by the noise cancellation unit 250 (step S10b). In addition, the overload protection method may further include amplifying the analog signal A1 by the amplifying unit 260 (step S10c). In this case, step S10b and step S10c may be sequentially performed to first cancel the noise on the analog signal A1, and then amplify the analog signal A1. However, the present invention is not limited thereto, and the overload protection method may also perform only step S10b or step S10c.

在步驟S11之一實施態樣中,過載保護電路200可藉由電流取樣單元210之比較單元212接收類比訊號A1。於此,比較單元212是以其非反相輸入端接收類比訊號A1。 In an implementation of step S11, the overload protection circuit 200 can receive the analog signal A1 by the comparison unit 212 of the current sampling unit 210. Here, the comparison unit 212 receives the analog signal A1 with its non-inverting input.

在步驟S12的一實施態樣中,過載保護電路200之調控單元220可採用降序方式、升序方式或是使用者自定義之順序來依序產生多個控制碼D1-Dn。 In an implementation of step S12, the control unit 220 of the overload protection circuit 200 may sequentially generate a plurality of control codes D1-Dn in a descending order, an ascending order, or a user-defined sequence.

在步驟S13的一實施態樣中,可藉由電流取樣單元210之數位類比轉換單元211依序根據各控制碼D1-Dn產生參考訊號Sr1-Srn(步驟S13a),且藉由電流取樣單元210之比較單元212根據各參考訊號Sr1-Srn與類比訊號A1產生取樣訊號Ss(步驟S13b)。 In an implementation of the step S13, the digital analog conversion unit 211 of the current sampling unit 210 sequentially generates the reference signals Sr1-Srn according to the control codes D1-Dn (step S13a), and the current sampling unit 210 The comparing unit 212 generates the sampling signal Ss according to each of the reference signals Sr1-Srn and the analog signal A1 (step S13b).

於此,當比較單元212判定類比訊號A1大於與之相比之參考訊號時,比較單元212所產生之取樣訊號Ss之位準可為邏輯“1”。而當比較 單元212判定類比訊號A1小於與之相比之參考訊號時,比較單元212所產生之取樣訊號Ss之位準則可為邏輯“0”。此外,步驟S11到步驟S13可稱為一個取樣程序。 Here, when the comparing unit 212 determines that the analog signal A1 is greater than the reference signal compared thereto, the level of the sampling signal Ss generated by the comparing unit 212 may be logic "1". And when comparing When the unit 212 determines that the analog signal A1 is smaller than the reference signal, the bit criterion of the sampling signal Ss generated by the comparing unit 212 may be logic “0”. Further, step S11 to step S13 may be referred to as a sampling procedure.

在步驟S14的一實施態樣中,過載保護電路200之調控單元220可於此次取樣程序中根據取樣訊號Ss發生轉態時之控制碼取得經由數位類比轉換單元211所對應產生之參考訊號Srx。接續,執行步驟S15,過載保護電路200可透過調控單元220將參考訊號Srx之電位與預設之臨界值進行比較。 In an implementation of the step S14, the control unit 220 of the overload protection circuit 200 can obtain the reference signal Srx generated by the digital analog conversion unit 211 according to the control code when the sampling signal Ss is in the sampling process. . Next, in step S15, the overload protection circuit 200 can compare the potential of the reference signal Srx with a preset threshold through the control unit 220.

當比較之結果為參考訊號Srx之電位大於臨界值時,表示外在負載之變動已超出穩定範圍,且使得流經壓電元件100之工作電流I1已超出壓電元件100可負荷之範圍(即,過載)。因此,可執行步驟S16a,過載保護電路200之調控單元220便可停止輸出脈衝調變訊號Sp,以停止諧振電路270之作動,進而使得壓電元件100可停止工作,以避免壓電元件100因過高之工作電流I1而損毀。 When the result of the comparison is that the potential of the reference signal Srx is greater than the threshold value, it indicates that the variation of the external load has exceeded the stable range, and the operating current I1 flowing through the piezoelectric element 100 has exceeded the loadable range of the piezoelectric element 100 (ie, ,overload). Therefore, in step S16a, the control unit 220 of the overload protection circuit 200 can stop outputting the pulse modulation signal Sp to stop the operation of the resonance circuit 270, so that the piezoelectric element 100 can be stopped to avoid the piezoelectric element 100. Excessive operating current I1 is destroyed.

反之,當比較之結果為參考訊號Srx之電位小於或等於預設之臨界值時,表示外在負載之變動仍在穩定範圍內,且流經壓電元件100之工作電流I1仍介於壓電元件100可負荷之範圍內。因此,則可執行步驟S16b,過載保護電路200之調控單元220可正常輸出脈衝調變訊號Sp以使壓電元件100繼續工作。 On the other hand, when the result of the comparison is that the potential of the reference signal Srx is less than or equal to the preset threshold, it indicates that the variation of the external load is still in the stable range, and the operating current I1 flowing through the piezoelectric element 100 is still in the piezoelectric state. The component 100 can be loaded within the range. Therefore, step S16b can be performed, and the control unit 220 of the overload protection circuit 200 can normally output the pulse modulation signal Sp to continue the operation of the piezoelectric element 100.

在一些實施例中,於步驟S16b之後,可重頭執行上述之流程步驟,以重新取樣壓電元件100之工作電流I1,藉以即時監察壓電元件100是否發生過載情形。 In some embodiments, after step S16b, the above-described flow steps may be performed repeatedly to resample the operating current I1 of the piezoelectric element 100, thereby immediately monitoring whether the piezoelectric element 100 is overloaded.

在一些實施例中,於步驟S16a之後,過載保護電路200之調控單元220更可輸出警示訊號(圖未示),以警示使用者有異常狀態發生。 In some embodiments, after step S16a, the control unit 220 of the overload protection circuit 200 can further output an alert signal (not shown) to alert the user that an abnormal state has occurred.

綜上所述,本發明實施例之壓電元件的過載保護電路及其方法,其透過取樣壓電元件之工作電流,以於檢測到壓電元件之工作電流超過臨界值時,可快速反應而停止輸出脈衝調變訊號以使壓電元件停止工作,以避免壓電元件之損毀。 In summary, the overload protection circuit of the piezoelectric element according to the embodiment of the present invention and the method thereof, by sampling the operating current of the piezoelectric element, can quickly react when detecting that the operating current of the piezoelectric element exceeds a critical value. The output of the pulse modulation signal is stopped to stop the piezoelectric element from being operated to avoid damage of the piezoelectric element.

本發明之技術內容已以較佳實施例揭示如上述,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所做些許之更動與潤飾,皆應涵蓋於本發明之範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The technical contents of the present invention have been disclosed in the preferred embodiments as described above, and are not intended to limit the present invention. Any modifications and refinements made by those skilled in the art without departing from the spirit of the present invention should be The scope of the invention is therefore defined by the scope of the appended claims.

100‧‧‧壓電元件 100‧‧‧Piezoelectric components

110‧‧‧第一驅動電極 110‧‧‧First drive electrode

120‧‧‧第二驅動電極 120‧‧‧second drive electrode

200‧‧‧驅動電路 200‧‧‧ drive circuit

210‧‧‧電流取樣單元 210‧‧‧current sampling unit

211‧‧‧數位類比轉換單元 211‧‧‧Digital Analog Conversion Unit

212‧‧‧比較單元 212‧‧‧Comparative unit

220‧‧‧調控單元 220‧‧‧Control unit

240‧‧‧電流轉電壓單元 240‧‧‧current to voltage unit

250‧‧‧雜訊消除單元 250‧‧‧ Noise Elimination Unit

260‧‧‧放大單元 260‧‧‧Amplification unit

270‧‧‧諧振單元 270‧‧‧Resonance unit

271‧‧‧電容元件 271‧‧‧Capacitive components

272‧‧‧開關模組 272‧‧‧Switch Module

273‧‧‧電感元件 273‧‧‧Inductive components

A1‧‧‧類比訊號 A1‧‧‧ analog signal

D1-Dn‧‧‧控制碼 D1-Dn‧‧‧ control code

R2‧‧‧電阻 R2‧‧‧ resistance

Sr1-Srn‧‧‧參考訊號 Sr1-Srn‧‧‧ reference signal

Ss‧‧‧取樣訊號 Ss‧‧‧Sampling signal

Sp‧‧‧脈衝調變訊號 Sp‧‧‧ pulse modulation signal

Vcc‧‧‧電源電位 Vcc‧‧‧ power supply potential

Gnd‧‧‧地電位 Gnd‧‧‧ Ground potential

Claims (9)

一種壓電元件的過載保護電路,包含:一諧振單元,根據一脈衝調變訊號之頻率控制一壓電元件之工作電流;一電流取樣單元,依序根據複數控制碼取樣一類比訊號以產生一取樣訊號,其中該類比訊號之大小相關於該壓電元件之該工作電流之大小;及一調控單元,依序產生該複數控制碼,根據該取樣訊號發生轉態時之該控制碼取得對應之一參考訊號後,比較該參考訊號之電位與一臨界值,並於該參考訊號之該電位大於該臨界值時,停止輸出該脈衝調變訊號以使該壓電元件停止工作。 An overload protection circuit for a piezoelectric element includes: a resonance unit that controls an operating current of a piezoelectric element according to a frequency of a pulse modulation signal; and a current sampling unit that sequentially samples an analog signal according to the complex control code to generate a a sampling signal, wherein the magnitude of the analog signal is related to the magnitude of the operating current of the piezoelectric element; and a control unit sequentially generates the complex control code, and the control code is obtained according to the sampling signal when the sampling signal is changed. After a reference signal, the potential of the reference signal is compared with a threshold, and when the potential of the reference signal is greater than the threshold, the output of the pulse modulation signal is stopped to stop the piezoelectric element. 如請求項1所述的壓電元件的過載保護電路,其中該電流取樣單元包含:一數位類比轉換單元,根據該複數控制碼產生該複數參考訊號;及一比較單元,根據各該參考訊號與該類比訊號產生該取樣訊號。 The overload protection circuit of the piezoelectric element according to claim 1, wherein the current sampling unit comprises: a digital analog conversion unit, generating the complex reference signal according to the complex control code; and a comparison unit, according to each of the reference signals The analog signal produces the sampled signal. 如請求項1所述的壓電元件的過載保護電路,其中當該參考訊號之該電壓小於或等於該臨界值時,該調控單元輸出該脈衝調變訊號以控制該壓電元件之該工作電流。 The overload protection circuit of the piezoelectric element according to claim 1, wherein when the voltage of the reference signal is less than or equal to the threshold, the control unit outputs the pulse modulation signal to control the operating current of the piezoelectric element. . 如請求項1所述的壓電元件的過載保護電路,更包含:一電流轉電壓單元,根據該壓電元件之該工作電流產生對應之該類比訊號。 The overload protection circuit of the piezoelectric element according to claim 1, further comprising: a current-to-voltage unit, wherein the analog signal is generated according to the operating current of the piezoelectric element. 如請求項1所述的壓電元件的過載保護電路,更包含: 一放大單元,放大該類比訊號,其中該電流取樣單元係依序根據該複數控制碼取樣放大後之該類比訊號以產生該取樣訊號。 The overload protection circuit of the piezoelectric element according to claim 1, further comprising: An amplifying unit amplifies the analog signal, wherein the current sampling unit sequentially samples the amplified analog signal according to the complex control code to generate the sampling signal. 如請求項5所述的壓電元件的過載保護電路,更包含:一雜訊消除單元,消除該類比訊號上之雜訊,其中該放大單元係放大經由該雜訊消除單元消除該類比訊號上之該雜訊後之該類比訊號。 The overload protection circuit of the piezoelectric element according to claim 5, further comprising: a noise canceling unit for canceling the noise on the analog signal, wherein the amplifying unit amplifies the analog signal by using the noise canceling unit The analog signal after the noise. 如請求項1所述的壓電元件的過載保護電路,其中該諧振單元包含:一電容元件,一端耦接至該壓電元件之一端;一開關模組,耦接於該電容元件之另一端與該電流取樣單元之間,且根據該脈衝調變訊號控制該電容元件與該電流取樣單元的電性連結;以及一電感元件,耦接於該電容元件之該另一端與一電源電位之間。 The overload protection circuit of the piezoelectric element of claim 1, wherein the resonant unit comprises: a capacitive element, one end coupled to one end of the piezoelectric element; and a switch module coupled to the other end of the capacitive element And the current sampling unit, and the electrical connection between the capacitive element and the current sampling unit is controlled according to the pulse modulation signal; and an inductive component coupled between the other end of the capacitive element and a power supply potential . 如請求項7所述的壓電元件的過載保護電路,其中該壓電元件之另一端耦接至一地電位。 The overload protection circuit of the piezoelectric element according to claim 7, wherein the other end of the piezoelectric element is coupled to a ground potential. 如請求項7所述的壓電元件的過載保護電路,其中該壓電元件之另一端耦接至該電流取樣單元。 The overload protection circuit of the piezoelectric element according to claim 7, wherein the other end of the piezoelectric element is coupled to the current sampling unit.
TW105117887A 2016-06-06 2016-06-06 Overload Protection Circuit Of Piezoelectric Element TWI591924B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105117887A TWI591924B (en) 2016-06-06 2016-06-06 Overload Protection Circuit Of Piezoelectric Element
CN201620570734.8U CN205681094U (en) 2016-06-06 2016-06-14 Overload protection circuit for piezoelectric element
CN201610415627.2A CN107465165B (en) 2016-06-06 2016-06-14 Overload protection circuit of piezoelectric element and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105117887A TWI591924B (en) 2016-06-06 2016-06-06 Overload Protection Circuit Of Piezoelectric Element

Publications (2)

Publication Number Publication Date
TWI591924B true TWI591924B (en) 2017-07-11
TW201743528A TW201743528A (en) 2017-12-16

Family

ID=57431916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105117887A TWI591924B (en) 2016-06-06 2016-06-06 Overload Protection Circuit Of Piezoelectric Element

Country Status (2)

Country Link
CN (2) CN205681094U (en)
TW (1) TWI591924B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591924B (en) * 2016-06-06 2017-07-11 盛群半導體股份有限公司 Overload Protection Circuit Of Piezoelectric Element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122761A (en) * 1985-11-23 1987-06-04 Nec Corp Piezoelectric printing head drive circuit
CN101728973A (en) * 2008-10-31 2010-06-09 鸿富锦精密工业(深圳)有限公司 Driving device and overload protection method thereof
US9344002B2 (en) * 2012-01-17 2016-05-17 System General Corp. Adaptive sampling circuit for detecting the demagnetized voltage of the transformer
CN102832941B (en) * 2012-10-07 2016-03-30 复旦大学 A kind of can the gradual approaching A/D converter of pre-detection comparator input range
TWI591924B (en) * 2016-06-06 2017-07-11 盛群半導體股份有限公司 Overload Protection Circuit Of Piezoelectric Element

Also Published As

Publication number Publication date
CN107465165B (en) 2019-06-04
TW201743528A (en) 2017-12-16
CN205681094U (en) 2016-11-09
CN107465165A (en) 2017-12-12

Similar Documents

Publication Publication Date Title
US10924069B2 (en) System and method for low distortion capacitive signal source amplifier
US9337722B2 (en) Fast power-up bias voltage circuit
JP5157959B2 (en) Class D amplifier
US20120014025A1 (en) Overcurrent protection circuit and semiconductor device
JP5716843B2 (en) Piezoelectric drive circuit
CN113270999B (en) Current-limiting configuration chip and switching power supply system
US20130064397A1 (en) Microphone amplifier
ITTO20090482A1 (en) GENERATION SYSTEM OF A REFERENCE SIGNAL FOR A / D CONVERTER OF A MICROELETTROMECHANICAL ACOUSTIC TRANSDUCER AND RELATIVE METHOD
TWI591924B (en) Overload Protection Circuit Of Piezoelectric Element
WO2016009869A1 (en) Piezoelectric element driving circuit and suction device
WO2009087853A1 (en) Oscillation frequency control circuit, dc -dc converter including the oscillation frequency control circuit, and semiconductor device
WO2017069123A1 (en) Piezoelectric actuator drive circuit
US11644521B1 (en) Circuitry for compensating for gain and/or phase mismatch between voltage and current monitoring paths
TWI584570B (en) Driving Circuit Of Piezoelectric Element And Driving Method Thereof
JP4231846B2 (en) Resonator equipped with a device for operating a vibrating part
JP5499431B2 (en) Triangular wave generation circuit
TWI695582B (en) Signal processing circuit
US10601403B1 (en) Super scale capacitor for integrated circuit
US11959472B2 (en) Piezoelectric pump device
US10756709B1 (en) Controlling edge rate of a switched output stage based on a measured physical quantity
US11140493B2 (en) Input current-tolerant amplifier input stage for MEMS sensors and other devices
US20200318631A1 (en) Pump device
US20160061633A1 (en) Startup circuit, capacitive sensor amplification device having startup circuit, and startup method for amplification device
JP4147069B2 (en) Piezoelectric element control device
JP2019129616A (en) Overvoltage protection circuit and physical quantity detection device