TWI695582B - Signal processing circuit - Google Patents

Signal processing circuit Download PDF

Info

Publication number
TWI695582B
TWI695582B TW108126124A TW108126124A TWI695582B TW I695582 B TWI695582 B TW I695582B TW 108126124 A TW108126124 A TW 108126124A TW 108126124 A TW108126124 A TW 108126124A TW I695582 B TWI695582 B TW I695582B
Authority
TW
Taiwan
Prior art keywords
amplifier
output
switch
signal
feedback
Prior art date
Application number
TW108126124A
Other languages
Chinese (zh)
Other versions
TW202017313A (en
Inventor
相原康敏
Original Assignee
日商村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田製作所股份有限公司 filed Critical 日商村田製作所股份有限公司
Publication of TW202017313A publication Critical patent/TW202017313A/en
Application granted granted Critical
Publication of TWI695582B publication Critical patent/TWI695582B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34Dc amplifiers in which all stages are dc-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers

Abstract

本發明,在於抑制放大器之偏移電壓所致之影響及提高響應速度。本發明之訊號處理電路(100)所具備之電荷放大器(101),具有並聯之第1及第2系統(SYSa、SYSb),第1系統(SYSa)具有:第1放大器(AMP1a)、設置於輸出路徑之第1保持電容(Cos1a)、設置於短路路徑之第1開關(SW1a)、設置於反饋路徑之第2開關(SW2a)、及一端連接於將第1放大器(AMP1a)與基準電壓源(Vref1)連接之路徑且另一端連接於將第1保持電容(Cos1a)與增益放大器(102)連接之路徑的第3開關(SW3a)。能夠取得第1開關(SW1a)及第3開關(SW3a)關閉且第2開關(SW2a)打開之第1狀態、以及各開關之開關相反之第2狀態。第2系統(SYSb)亦相同。The invention lies in suppressing the influence of the offset voltage of the amplifier and improving the response speed. The charge amplifier (101) provided in the signal processing circuit (100) of the present invention has parallel connected first and second systems (SYSa, SYSb). The first system (SYSa) has: a first amplifier (AMP1a), which is provided in The first holding capacitor (Cos1a) of the output path, the first switch (SW1a) provided in the short-circuit path, the second switch (SW2a) provided in the feedback path, and one end are connected to connect the first amplifier (AMP1a) and the reference voltage source (Vref1) The connected path and the other end is connected to the third switch (SW3a) of the path connecting the first holding capacitor (Cos1a) and the gain amplifier (102). The first state in which the first switch (SW1a) and the third switch (SW3a) are closed and the second switch (SW2a) is open, and the second state in which the switches of the switches are reversed can be obtained. The second system (SYSb) is also the same.

Description

訊號處理電路Signal processing circuit

本發明係關於一種訊號處理電路。The invention relates to a signal processing circuit.

自壓電感測器或熱電感測器等感測器輸出之感測器訊號係微弱且不穩定之類比訊號。因此,在將感測器訊號轉換為數位訊號之前,有時必須進行感測器訊號之放大或雜訊成分之去除等訊號處理。為了進行此種訊號處理,於感測器連接稱為類比前端之訊號處理電路。Sensor signals output from sensors such as self-pressure inductance sensors or thermal inductance sensors are weak and unstable analog signals. Therefore, before converting the sensor signal into a digital signal, sometimes signal processing such as amplification of the sensor signal or removal of noise components is necessary. In order to perform such signal processing, a signal processing circuit called an analog front end is connected to the sensor.

例如,專利文獻1中揭示有一種攝像裝置,其具備:感測器陣列,其具有複數個光電轉換元件;運算放大器,其連接於各光電轉換元件;TFT開關元件,其設置於光電轉換元件與運算放大器之間;電荷儲存用積分電容,其設置於運算放大器之反饋路徑;及重設開關,其並聯連接於上述積分電容且重設積分電容。 [先前技術文獻] [專利文獻] For example, Patent Document 1 discloses an imaging device including: a sensor array having a plurality of photoelectric conversion elements; an operational amplifier connected to each photoelectric conversion element; and a TFT switching element provided on the photoelectric conversion element and Between operational amplifiers; charge storage integration capacitors, which are provided in the feedback path of the operational amplifier; and reset switches, which are connected in parallel to the above integration capacitors and reset the integration capacitors. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本特開2007-312361號公報[Patent Document 1] Japanese Unexamined Patent Publication No. 2007-312361

[發明所欲解決之課題][Problems to be solved by the invention]

於訊號處理電路利用放大器對感測器訊號進行處理之情形時,例如即便感測器訊號之輸入位準相同且各放大器之增益相同,有時亦會因各放大器之偏移電壓之不同,而導致各放大器之輸出位準不同。尤其是,於藉由多段放大器進行處理之情形時,因前段之放大器中之偏移電壓之不同而產生的訊號位準之差於後段放大,因此要求減小因前段之偏移電壓之不同而產生的訊號位準之差。When the signal processing circuit uses the amplifier to process the sensor signal, for example, even if the input level of the sensor signal is the same and the gain of each amplifier is the same, sometimes the offset voltage of each amplifier is different. As a result, the output level of each amplifier is different. In particular, in the case of processing by a multi-stage amplifier, the difference in signal level due to the difference in the offset voltage in the amplifier in the front stage is amplified in the rear stage, so it is required to reduce the difference due to the difference in the offset voltage in the front stage The difference of the signal level generated.

作為消除因放大器之偏移電壓產生之訊號位準之變動之方法,例如已知有斬波器穩定化技術。然而,若於連接於感測器之最前段設置斬波器開關,則於感測器產生回彈雜訊。作為另一方法,已知有將保持偏移電壓之保持電容設置於輸出路徑而消除偏移電壓之方法。然而,若為了切換使偏移電壓儲存於保持電容之偏移保持模式與輸出訊號之訊號輸出模式而於感測器至最前段之輸入路徑設置開關,則因該開關之電荷饋通產生之電荷流入至感測器。因此,有如下課題:需要流入至感測器之電荷之影響充分衰減為止之待機時間,響應速度變慢。As a method of eliminating the fluctuation of the signal level caused by the offset voltage of the amplifier, for example, a chopper stabilization technique is known. However, if a chopper switch is provided at the foremost stage connected to the sensor, rebound noise will be generated in the sensor. As another method, a method of eliminating the offset voltage by providing a holding capacitor that holds the offset voltage in the output path is known. However, if a switch is provided in the input path from the sensor to the foremost stage to switch the offset holding mode in which the offset voltage is stored in the holding capacitor and the signal output mode of the output signal, the charge generated by the charge feedthrough of the switch Flow into the sensor. Therefore, there is a problem that the standby time until the influence of the charge flowing into the sensor is sufficiently attenuated, and the response speed becomes slow.

本發明係鑒於此種情況而完成者,其目的在於提供一種訊號處理電路,可抑制放大器之偏移電壓所致之影響,可提高響應速度。 [解決課題之技術手段] The present invention has been completed in view of this situation, and its object is to provide a signal processing circuit that can suppress the influence of the offset voltage of the amplifier and improve the response speed. [Technical means to solve the problem]

本發明之一態樣之訊號處理電路,具備:電荷放大器,其將自感測器輸出之一對第1及第2電荷訊號之各者轉換為第1及第2電壓訊號;增益放大器,其將與第1及第2電壓訊號對應之第3及第4電壓訊號放大;及濾波器,其使與第3及第4電壓訊號對應之第5及第6電壓訊號中所包含之高頻成分衰減;且電荷放大器具有並聯之第1及第2系統,第1系統具有:第1放大器,其將所輸入之第1電荷訊號轉換為第1電壓訊號;第1保持電容,其設置於第1放大器之輸出路徑;第1開關,其設置於將第1放大器之輸出端子與輸入端子連接且將第1放大器短路之短路路徑;第2開關,其設置於第1放大器之反饋路徑且並聯連接於第1開關;及第3開關,其一端連接於將第1放大器與第1放大器之基準電壓源連接之路徑,另一端連接於將第1保持電容與增益放大器連接之路徑;第2系統具有:第2放大器,其將所輸入之第2電荷訊號轉換為第2電壓訊號;第2保持電容,其設置於第2放大器之輸出路徑;第4開關,其設置於將第2放大器之輸出端子與輸入端子連接且將第2放大器短路之短路路徑;第5開關,其設置於第2放大器之反饋路徑且並聯連接於第4開關;及第6開關,其一端連接於將第2放大器與第2放大器之基準電壓源連接之路徑,另一端連接於將第2保持電容與增益放大器連接之路徑;能夠取得第1、第3、第4及第6開關關閉且第2及第5開關打開之第1狀態、以及第1、第3、第4及第6開關打開且第2及第5開關關閉之第2狀態。 [發明之效果] A signal processing circuit of one aspect of the present invention includes: a charge amplifier that converts each of a pair of first and second charge signals output from a sensor into first and second voltage signals; and a gain amplifier, which Amplifies the third and fourth voltage signals corresponding to the first and second voltage signals; and a filter that makes the high-frequency components contained in the fifth and sixth voltage signals corresponding to the third and fourth voltage signals Attenuation; and the charge amplifier has the first and second systems connected in parallel, the first system has: a first amplifier, which converts the input first charge signal into a first voltage signal; a first holding capacitor, which is set in the first The output path of the amplifier; the first switch, which is provided in the short-circuit path connecting the output terminal of the first amplifier to the input terminal and short-circuiting the first amplifier; the second switch, which is provided in the feedback path of the first amplifier and connected in parallel The first switch; and the third switch, one end of which is connected to the path connecting the reference voltage source of the first amplifier and the first amplifier, and the other end is connected to the path of connecting the first holding capacitor to the gain amplifier; the second system has: The second amplifier converts the input second charge signal into a second voltage signal; the second holding capacitor is provided in the output path of the second amplifier; the fourth switch is provided in the output terminal of the second amplifier and A short-circuit path where the input terminal is connected and short-circuits the second amplifier; the fifth switch, which is provided in the feedback path of the second amplifier and is connected in parallel to the fourth switch; and the sixth switch, which is connected at one end to the second amplifier and the second The path where the reference voltage source of the amplifier is connected, and the other end is connected to the path connecting the second holding capacitor to the gain amplifier; the first, third, fourth and sixth switches are closed and the second and fifth switches are open State 1 and the second state where the first, third, fourth, and sixth switches are open and the second and fifth switches are closed. [Effect of invention]

根據本發明,可提供一種訊號處理電路,其可抑制放大器之偏移電壓所致之影響,可提高響應速度。According to the present invention, a signal processing circuit can be provided, which can suppress the influence of the offset voltage of the amplifier and improve the response speed.

以下,一邊參照圖式一邊對本發明之實施形態進行說明。以下之圖式之記載中,相同或類似之構成要素係以相同或類似之符號表示。圖式為例示,各部之尺寸或形狀係示意性者,不應限定於該實施形態而解釋本發明之技術範圍。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the description of the following drawings, the same or similar constituent elements are denoted by the same or similar symbols. The drawing is an illustration, and the size or shape of each part is schematic, and should not be limited to this embodiment to explain the technical scope of the present invention.

<第1實施形態> 首先,一邊參照圖1及圖2,一邊對本發明之第1實施形態之訊號處理電路100之電路構成進行說明。圖1係概略性地表示第1實施形態之訊號處理電路之電路構成之圖。圖2係概略性地表示第1實施形態之電荷放大器之電路構成之圖。 <First Embodiment> First, referring to FIGS. 1 and 2, the circuit configuration of the signal processing circuit 100 according to the first embodiment of the present invention will be described. FIG. 1 is a diagram schematically showing the circuit configuration of the signal processing circuit of the first embodiment. FIG. 2 is a diagram schematically showing the circuit configuration of the charge amplifier of the first embodiment.

(訊號處理電路100) 該訊號處理電路100係將自感測器SEN輸出之第1感測器訊號SIGa及第2感測器訊號SIGb放大之訊號處理電路。例如,感測器SEN係壓電感測器或熱電感測器,第1感測器訊號SIGa及第2感測器訊號SIGb係相互成對之差動訊號。如圖1所示,訊號處理電路100係具備串聯連接之電荷放大器101、增益放大器102、及濾波器103之多段放大電路。 (Signal processing circuit 100) The signal processing circuit 100 is a signal processing circuit that amplifies the first sensor signal SIGa and the second sensor signal SIGb output from the sensor SEN. For example, the sensor SEN is a piezoelectric sensor or a thermal sensor, and the first sensor signal SIGa and the second sensor signal SIGb are paired differential signals. As shown in FIG. 1, the signal processing circuit 100 is a multi-stage amplifier circuit including a charge amplifier 101, a gain amplifier 102, and a filter 103 connected in series.

(電荷放大器101) 電荷放大器101係將第1感測器訊號SIGa及第2感測器訊號SIGb之各者自電荷值轉換為電壓值。具體而言,電荷放大器101係將與第1感測器訊號SIGa對應之第1電荷放大器輸入訊號SIGIN1a轉換為第1電荷放大器輸出訊號SIGOUT1a,消除第1電荷放大器輸出訊號SIGOUT1a中所包含之偏移電壓Vos1a。又,電荷放大器101係將與第2感測器訊號SIGb對應之第2電荷放大器輸入訊號SIGIN1b轉換為第2電荷放大器輸出訊號SIGOUT1b,消除第2電荷放大器輸出訊號SIGOUT1b中所包含之偏移電壓Vos1b。本實施形態中,第1電荷放大器輸入訊號SIGIN1a與第1感測器訊號SIGa同等,第2電荷放大器輸入訊號SIGIN1b與第2感測器訊號SIGb同等。第1感測器訊號SIGa及第2感測器訊號SIGb相當於第1電荷訊號及第2電荷訊號。第1電荷放大器輸出訊號SIGOUT1a及第2電荷放大器輸出訊號SIGOUT1b分別相當於第1壓電訊號及第2電壓訊號。電荷放大器101具有並聯之第1系統SYSa及第2系統SYSb。第1系統SYSa對第1感測器訊號SIGa進行處理,第2系統SYSb對第2感測器訊號SIGb進行處理。 (Charge amplifier 101) The charge amplifier 101 converts each of the first sensor signal SIGa and the second sensor signal SIGb from a charge value to a voltage value. Specifically, the charge amplifier 101 converts the first charge amplifier input signal SIGIN1a corresponding to the first sensor signal SIGa into the first charge amplifier output signal SIGOUT1a to eliminate the offset contained in the first charge amplifier output signal SIGOUT1a Voltage Vos1a. In addition, the charge amplifier 101 converts the second charge amplifier input signal SIGIN1b corresponding to the second sensor signal SIGb into the second charge amplifier output signal SIGOUT1b to eliminate the offset voltage Vos1b included in the second charge amplifier output signal SIGOUT1b . In this embodiment, the first charge amplifier input signal SIGIN1a is equivalent to the first sensor signal SIGa, and the second charge amplifier input signal SIGIN1b is equivalent to the second sensor signal SIGb. The first sensor signal SIGa and the second sensor signal SIGb are equivalent to the first charge signal and the second charge signal. The first charge amplifier output signal SIGOUT1a and the second charge amplifier output signal SIGOUT1b are respectively equivalent to the first piezoelectric signal and the second voltage signal. The charge amplifier 101 has a first system SYSa and a second system SYSb connected in parallel. The first system SYSa processes the first sensor signal SIGa, and the second system SYSb processes the second sensor signal SIGb.

第1系統SYSa具有放大器AMP1a、反饋電路FB1a、保持電容Cos1a、及開關SW1a、SW2a、SW3a。第2系統SYSb具有放大器AMP1b、反饋電路FB1b、保持電容Cos1b、及開關SW1b、SW2b、SW3b。放大器AMP1a、AMP1b分別相當於第1放大器及第2放大器,反饋電路FB1a、FB1b分別相當於第1反饋電路及第2反饋電路,保持電容Cos1a、Cos1b分別相當於第1保持電容及第2保持電容。開關SW1a、SW2a、SW3a分別相當於第1開關、第2開關、及第3開關,開關SW1b、SW2b、SW3b分別相當於第4開關、第5開關、及第6開關。The first system SYSa includes an amplifier AMP1a, a feedback circuit FB1a, a storage capacitor Cos1a, and switches SW1a, SW2a, and SW3a. The second system SYSb includes an amplifier AMP1b, a feedback circuit FB1b, a storage capacitor Cos1b, and switches SW1b, SW2b, and SW3b. The amplifiers AMP1a and AMP1b respectively correspond to the first amplifier and the second amplifier, the feedback circuits FB1a and FB1b respectively correspond to the first feedback circuit and the second feedback circuit, and the holding capacitors Cos1a and Cos1b respectively correspond to the first holding capacitor and the second holding capacitor . The switches SW1a, SW2a, SW3a correspond to the first switch, the second switch, and the third switch, respectively, and the switches SW1b, SW2b, SW3b correspond to the fourth switch, the fifth switch, and the sixth switch, respectively.

於放大器AMP1a、AMP1b之各者之輸入端子連接有感測器SEN及基準電壓源Vref1。放大器AMP1a將第1電荷放大器輸入訊號SIGIN1a轉換為第1電荷放大器輸出訊號SIGOUT1a。放大器AMP1b將第2電荷放大器輸入訊號SIGIN1b轉換為第2電荷放大器輸出訊號SIGOUT1b。就減少偏移電壓之不同之觀點而言,放大器AMP1a、AMP1b之各者之輸入端子所具備之MOS(Metal-Oxide Semiconductor,金屬氧化物半導體)電晶體為共同質心(common centroid)配置。又,自減少雜訊之觀點考慮,放大器AMP1a、AMP1b之各者之輸入端子所具備之MOS電晶體的閘極電極之面積大於後述之增益放大器102之放大器AMP2之輸入端子所具備之MOS電晶體的閘極電極之面積。A sensor SEN and a reference voltage source Vref1 are connected to the input terminals of the amplifiers AMP1a and AMP1b. The amplifier AMP1a converts the first charge amplifier input signal SIGIN1a into the first charge amplifier output signal SIGOUT1a. The amplifier AMP1b converts the second charge amplifier input signal SIGIN1b to the second charge amplifier output signal SIGOUT1b. From the viewpoint of reducing the difference in offset voltage, the MOS (Metal-Oxide Semiconductor, Metal Oxide Semiconductor) transistors provided at the input terminals of each of the amplifiers AMP1a and AMP1b are arranged in a common centroid. Also, from the viewpoint of noise reduction, the area of the gate electrode of the MOS transistor provided to the input terminal of each of the amplifiers AMP1a and AMP1b is larger than the MOS transistor provided to the input terminal of the amplifier AMP2 of the gain amplifier 102 described later The area of the gate electrode.

反饋電路FB1a之一端連接於放大器AMP1a中之第1電荷放大器輸入訊號SIGIN1a輸入之輸入端子,反饋電路FB1a之另一端連接於放大器AMP1a之輸出端子。反饋電路FB1b之一端連接於放大器AMP1b中之第2電荷放大器輸入訊號SIGIN1b輸入之輸入端子,反饋電路FB1b之另一端連接於放大器AMP1b之輸出端子。One end of the feedback circuit FB1a is connected to the input terminal of the first charge amplifier input signal SIGIN1a input in the amplifier AMP1a, and the other end of the feedback circuit FB1a is connected to the output terminal of the amplifier AMP1a. One end of the feedback circuit FB1b is connected to the input terminal of the second charge amplifier input signal SIGIN1b input in the amplifier AMP1b, and the other end of the feedback circuit FB1b is connected to the output terminal of the amplifier AMP1b.

保持電容Cos1a之一端連接於放大器AMP1a之輸出端子,保持電容Cos1a之另一端連接於基準電壓源Vref1。保持電容Cos1b之一端連接於放大器AMP1b之輸出端子,保持電容Cos1b之另一端連接於基準電壓源Vref1。具體而言,保持電容Cos1a之另一端連接於將基準電壓源Vref1與放大器AMP1a連接之路徑。保持電容Cos1b之另一端連接於將基準電壓源Vref1與放大器AMP1b連接之路徑。又,保持電容Cos1a設置於放大器AMP1a之輸出路徑,保持電容Cos1b設置於放大器AMP1b之輸出路徑。One end of the holding capacitor Cos1a is connected to the output terminal of the amplifier AMP1a, and the other end of the holding capacitor Cos1a is connected to the reference voltage source Vref1. One end of the holding capacitor Cos1b is connected to the output terminal of the amplifier AMP1b, and the other end of the holding capacitor Cos1b is connected to the reference voltage source Vref1. Specifically, the other end of the holding capacitor Cos1a is connected to a path connecting the reference voltage source Vref1 and the amplifier AMP1a. The other end of the holding capacitor Cos1b is connected to a path connecting the reference voltage source Vref1 and the amplifier AMP1b. The holding capacitor Cos1a is provided in the output path of the amplifier AMP1a, and the holding capacitor Cos1b is provided in the output path of the amplifier AMP1b.

開關SW1a設置於將放大器AMP1a短路且將放大器AMP1a之輸入端子與輸出端子連接之短路路徑。開關SW1b設置於將放大器AMP1a短路且將放大器AMP1b之輸入端子與輸出端子連接之短路路徑。具體而言,開關SW1a之一端連接於將感測器SEN與放大器AMP1a連接之路徑,開關SW1a之另一端連接於將放大器AMP1a與保持電容Cos1a連接之路徑。放大器AMP1a之短路路徑不經由反饋電路FB1a而將放大器AMP1a之輸入端子與輸出端子連接。開關SW1b之一端連接於將感測器SEN與放大器AMP1b連接之路徑,開關SW1b之另一端連接於將放大器AMP1b與保持電容Cos1b連接之路徑。放大器AMP1b之短路路徑不經由反饋電路FB1b而將放大器AMP1b之輸入端子與輸出端子連接。The switch SW1a is provided in a short-circuit path that short-circuits the amplifier AMP1a and connects the input terminal and the output terminal of the amplifier AMP1a. The switch SW1b is provided in a short-circuit path that short-circuits the amplifier AMP1a and connects the input terminal and the output terminal of the amplifier AMP1b. Specifically, one end of the switch SW1a is connected to a path connecting the sensor SEN and the amplifier AMP1a, and the other end of the switch SW1a is connected to a path connecting the amplifier AMP1a and the holding capacitor Cos1a. The short-circuit path of the amplifier AMP1a connects the input terminal and the output terminal of the amplifier AMP1a without passing through the feedback circuit FB1a. One end of the switch SW1b is connected to a path connecting the sensor SEN and the amplifier AMP1b, and the other end of the switch SW1b is connected to a path connecting the amplifier AMP1b and the holding capacitor Cos1b. The short-circuit path of the amplifier AMP1b connects the input terminal and the output terminal of the amplifier AMP1b without passing through the feedback circuit FB1b.

開關SW2a設置於自放大器AMP1a之輸出端子向輸入端子之反饋路徑。於將放大器AMP1a之輸出端子與輸入端子連接之反饋路徑,設置有串聯連接之反饋電路FB1a及開關SW2a。開關SW2b設置於自放大器AMP1b之輸出端子至輸入端子之反饋路徑。於將放大器AMP1b之輸出端子與輸入端子連接之反饋路徑,設置有串聯連接之反饋電路FB1b及開關SW2b。放大器AMP1a之短路路徑與反饋路徑並聯,放大器AMP1b之短路路徑與反饋路徑並聯。具體而言,開關SW2a之一端連接於反饋電路FB1a,開關SW2a之另一端連接於放大器AMP1a之輸出端子。開關SW2b之一端連接於反饋電路FB1b,開關SW2b之另一端連接於放大器AMP1b之輸出端子。開關SW2a並聯連接於開關SW1a,開關SW2b並聯連接於開關SW1b。The switch SW2a is provided in a feedback path from the output terminal of the amplifier AMP1a to the input terminal. The feedback path connecting the output terminal and the input terminal of the amplifier AMP1a is provided with a feedback circuit FB1a and a switch SW2a connected in series. The switch SW2b is provided in the feedback path from the output terminal of the amplifier AMP1b to the input terminal. The feedback path connecting the output terminal and the input terminal of the amplifier AMP1b is provided with a feedback circuit FB1b and a switch SW2b connected in series. The short circuit path of the amplifier AMP1a is connected in parallel with the feedback path, and the short circuit path of the amplifier AMP1b is connected in parallel with the feedback path. Specifically, one end of the switch SW2a is connected to the feedback circuit FB1a, and the other end of the switch SW2a is connected to the output terminal of the amplifier AMP1a. One end of the switch SW2b is connected to the feedback circuit FB1b, and the other end of the switch SW2b is connected to the output terminal of the amplifier AMP1b. The switch SW2a is connected in parallel to the switch SW1a, and the switch SW2b is connected in parallel to the switch SW1b.

開關SW3a設置於將保持電容Cos1a與基準電壓源Vref1連接之路徑。開關SW3b設置於將保持電容Cos1b與基準電壓源Vref1連接之路徑。具體而言,開關SW3a之一端連接於將放大器AMP1a與基準電壓源Vref1連接之路徑,開關SW3a之另一端連接於將保持電容Cos1a與增益放大器102連接之路徑。開關SW3b之一端連接於將放大器AMP1b與基準電壓源Vref1連接之路徑,開關SW3b之另一端連接於將保持電容Cos1b與增益放大器102連接之路徑。The switch SW3a is provided in a path connecting the holding capacitor Cos1a and the reference voltage source Vref1. The switch SW3b is provided in a path connecting the holding capacitor Cos1b and the reference voltage source Vref1. Specifically, one end of the switch SW3a is connected to a path connecting the amplifier AMP1a and the reference voltage source Vref1, and the other end of the switch SW3a is connected to a path connecting the holding capacitor Cos1a and the gain amplifier 102. One end of the switch SW3b is connected to a path connecting the amplifier AMP1b and the reference voltage source Vref1, and the other end of the switch SW3b is connected to a path connecting the holding capacitor Cos1b and the gain amplifier 102.

(放大器AMP1a、AMP1b) 如圖2所示,放大器AMP1a具有輸入段IS1a、輸出段OS1a、OS2a、相位補償電容Cpc1a、Cpc2a、及共同模式反饋電路CMFB1a。放大器AMP1b具有輸入段IS1b、輸出段OS1b、OS2b、相位補償電容Cpc1b、Cpc2b、及共同模式反饋電路CMFB1b。 (Amplifiers AMP1a, AMP1b) As shown in FIG. 2, the amplifier AMP1a has an input section IS1a, an output section OS1a, OS2a, phase compensation capacitors Cpc1a, Cpc2a, and a common mode feedback circuit CMFB1a. The amplifier AMP1b has an input section IS1b, output sections OS1b, OS2b, phase compensation capacitors Cpc1b, Cpc2b, and a common mode feedback circuit CMFB1b.

輸入段IS1a對第1電荷放大器輸入訊號SIGIN1a進行處理,輸出段OS1a、OS2a對自輸入段IS1a輸出之訊號進行處理。輸入段IS1a具有2個輸出路徑,於一輸出路徑設置有輸出段OS1a,於另一輸出路徑設置有輸出段OS2a。輸出段OS1a、OS2a之各者之輸出端子連接於共同模式反饋電路CMFB1a。輸出段OS1a之輸出端子進而亦連接於保持電容Cos1a、及開關SW1a、SW2a。The input section IS1a processes the first charge amplifier input signal SIGIN1a, and the output sections OS1a and OS2a process the signal output from the input section IS1a. The input section IS1a has two output paths, one output path is provided with an output section OS1a, and the other output path is provided with an output section OS2a. The output terminals of the output sections OS1a and OS2a are connected to the common mode feedback circuit CMFB1a. The output terminal of the output section OS1a is further connected to the holding capacitor Cos1a and the switches SW1a and SW2a.

於輸出段OS1a之反饋路徑設置有振盪防止用之相位補償電容Cpc1a,於輸出段OS1b之反饋路徑設置有振盪防止用之相位補償電容Cpc2a。具體而言,相位補償電容Cpc1a之一端連接於將輸出段OS1a與共同模式反饋電路CMFB1a連接之路徑,相位補償電容Cpc1a之另一端連接於輸入段IS1a。相位補償電容Cpc2a之一端連接於將輸出段OS2a與共同模式反饋電路CMFB1a連接之路徑,相位補償電容Cpc2a之另一端連接於輸入段IS1a。A phase compensation capacitor Cpc1a for preventing oscillation is provided in the feedback path of the output section OS1a, and a phase compensation capacitor Cpc2a for preventing oscillation is provided in the feedback path of the output section OS1b. Specifically, one end of the phase compensation capacitor Cpc1a is connected to the path connecting the output section OS1a and the common mode feedback circuit CMFB1a, and the other end of the phase compensation capacitor Cpc1a is connected to the input section IS1a. One end of the phase compensation capacitor Cpc2a is connected to the path connecting the output section OS2a and the common mode feedback circuit CMFB1a, and the other end of the phase compensation capacitor Cpc2a is connected to the input section IS1a.

共同模式反饋電路CMFB1a係檢測輸入段IS1a之輸出共同電壓,以該輸出共同電壓成為固定之方式進行輸入段IS1a之反饋控制。共同模式反饋電路CMFB1a之輸入端子連接於輸出段OS1a、OS2a之輸出端子,共同模式反饋電路CMFB1a之輸出端子連接於輸入段IS1a之內部節點。The common mode feedback circuit CMFB1a detects the output common voltage of the input section IS1a, and performs feedback control of the input section IS1a in such a manner that the output common voltage becomes fixed. The input terminal of the common mode feedback circuit CMFB1a is connected to the output terminals of the output sections OS1a and OS2a, and the output terminal of the common mode feedback circuit CMFB1a is connected to the internal node of the input section IS1a.

放大器AMP1a、AMP1b為相互相同之構成。因此,輸入段IS1b、輸出段OS1b、OS2b、相位補償電容Cpc1b、Cpc2b、及共同模式反饋電路CMFB1b之詳細說明省略。The amplifiers AMP1a and AMP1b have the same configuration. Therefore, detailed descriptions of the input section IS1b, the output sections OS1b, OS2b, the phase compensation capacitors Cpc1b, Cpc2b, and the common mode feedback circuit CMFB1b are omitted.

(反饋電路FB1a、FB1b) 反饋電路FB1a係具備並聯連接之反饋電阻Rfb1a及反饋電容Cfb1a之RC共振電路,改善放大器AMP1a之特性。反饋電路FB1b係具備並聯連接之反饋電阻Rfb1b及反饋電容Cfb1b之RC共振電路,改善放大器AMP1b之特性。 (Feedback circuit FB1a, FB1b) The feedback circuit FB1a is an RC resonance circuit with a feedback resistor Rfb1a and a feedback capacitor Cfb1a connected in parallel, and improves the characteristics of the amplifier AMP1a. The feedback circuit FB1b is an RC resonant circuit with a feedback resistor Rfb1b and a feedback capacitor Cfb1b connected in parallel to improve the characteristics of the amplifier AMP1b.

反饋電路FB1a之RC共振電路所產生之共振頻率係由並聯連接之電阻及電容之時間常數決定之頻率,設為f fb。第1感測器訊號SIGa之截止頻率係由起因於感測器SEN內之串聯連接之電阻及電容之時間常數決定之頻率,設為f in。f in係感測器固有之值,因此藉由改變反饋電路FB1a之電阻及電容,決定2個頻率之大小關係,定義電荷放大器之訊號頻帶。例如,以成為f fb<f in之方式,將並聯連接之反饋電阻Rfb1a及反饋電容Cfb1a之各者之元件值設定為較大值。該情形時,f fb作為電荷放大器之頻帶下限發揮功能,f in作為電荷放大器之頻帶上限發揮功能。即,f fb作為高通濾波器之截止頻率發揮功能,f in作為低通濾波器之截止頻率發揮功能。 The resonance frequency generated by the RC resonance circuit of the feedback circuit FB1a is a frequency determined by the time constant of a resistor and a capacitor connected in parallel, and is set to f fb . The cut-off frequency of the first sensor signal SIGa is determined by the time constant of the resistance and capacitance of the series connection in the sensor SEN, and is set to f in . f in is the inherent value of the sensor, so by changing the resistance and capacitance of the feedback circuit FB1a, the magnitude relationship of the two frequencies is determined, and the signal frequency band of the charge amplifier is defined. For example, the element value of each of the feedback resistor Rfb1a and the feedback capacitor Cfb1a connected in parallel is set to a larger value so that f fb <f in . In this case, f fb functions as the lower band limit of the charge amplifier, and f in functions as the upper band limit of the charge amplifier. That is, f fb functions as the cut-off frequency of the high-pass filter, and f in functions as the cut-off frequency of the low-pass filter.

反饋電路FB1b具有與反饋電路FB1a相同之構成及功能。因此,反饋電路FB1b之詳細說明省略。The feedback circuit FB1b has the same configuration and function as the feedback circuit FB1a. Therefore, the detailed description of the feedback circuit FB1b is omitted.

(電荷放大器101之動作) 其次,一邊參照圖3及圖4,一邊對電荷放大器101之動作進行說明。圖3係表示第1實施形態之電荷放大器之偏移保持模式下之動作之圖。圖4係表示第1實施形態之電荷放大器之訊號輸出模式下之動作之圖。 (Operation of charge amplifier 101) Next, the operation of the charge amplifier 101 will be described while referring to FIGS. 3 and 4. FIG. 3 is a diagram showing the operation in the offset holding mode of the charge amplifier of the first embodiment. 4 is a diagram showing the operation in the signal output mode of the charge amplifier of the first embodiment.

電荷放大器101在輸出第1電荷放大器輸出訊號SIGOUT1a及第2電荷放大器輸出訊號SIGOUT1b之訊號輸出模式下之動作之前,以偏移保持模式進行動作。如圖3所示,於偏移保持模式下,開關SW1a、SW1b、SW3a、SW3b關閉,開關SW2a、SW2b打開。換言之,形成具有放大器AMP1a及保持電容Cos1a之閉路、及具有放大器AMP1b及保持電容Cos1b之閉路。因此,對保持電容Cos1a施加放大器AMP1a之偏移電壓Vos1a,對保持電容Cos1b施加放大器AMP1b之偏移電壓Vos1b。The charge amplifier 101 operates in the offset hold mode before the operation in the signal output mode that outputs the first charge amplifier output signal SIGOUT1a and the second charge amplifier output signal SIGOUT1b. As shown in FIG. 3, in the offset holding mode, the switches SW1a, SW1b, SW3a, SW3b are closed, and the switches SW2a, SW2b are opened. In other words, a closed circuit including the amplifier AMP1a and the storage capacitor Cos1a and a closed circuit including the amplifier AMP1b and the storage capacitor Cos1b are formed. Therefore, the offset voltage Vos1a of the amplifier AMP1a is applied to the storage capacitor Cos1a, and the offset voltage Vos1b of the amplifier AMP1b is applied to the storage capacitor Cos1b.

電荷放大器101於偏移保持模式下電荷完全積存於保持電容Cos1a、Cos1b之各者而保持偏移電壓Vos1a、Vos1b後,切換為訊號輸出模式。如圖4所示,於訊號輸出模式下,開關SW1a、SW1b、SW3a、SW3b打開,開關SW2a、SW2b關閉。換言之,形成具有放大器AMP1a及反饋電路Fb1a之閉路、及具有放大器AMP1b及反饋電路FB1b之閉路。利用放大器AMP1a進行過處理之第1電荷放大器輸出訊號SIGOUT1a經由反饋電路Fb1a反饋至放大器AMP1a,並且經由保持電容Cos1a輸出至增益放大器102。利用放大器AMP1b進行過處理之第2電荷放大器輸出訊號SIGOUT1b經由反饋電路Fb1b反饋至放大器AMP1b,並且經由保持電容Cos1b輸出至增益放大器102。此時,第1電荷放大器輸出訊號SIGOUT1a中所包含之偏移電壓Vos1a於保持電容Cos1a中被消除。第2電荷放大器輸出訊號SIGOUT1b中所包含之偏移電壓Vos1b於保持電容Cos1b中被消除。In the offset holding mode, the charge amplifier 101 completely accumulates charge in each of the holding capacitors Cos1a and Cos1b to maintain the offset voltages Vos1a and Vos1b, and then switches to the signal output mode. As shown in FIG. 4, in the signal output mode, the switches SW1a, SW1b, SW3a, SW3b are turned on, and the switches SW2a, SW2b are turned off. In other words, a closed circuit including the amplifier AMP1a and the feedback circuit Fb1a and a closed circuit including the amplifier AMP1b and the feedback circuit FB1b are formed. The first charge amplifier output signal SIGOUT1a processed by the amplifier AMP1a is fed back to the amplifier AMP1a through the feedback circuit Fb1a, and is output to the gain amplifier 102 through the holding capacitor Cos1a. The second charge amplifier output signal SIGOUT1b processed by the amplifier AMP1b is fed back to the amplifier AMP1b via the feedback circuit Fb1b, and is output to the gain amplifier 102 via the holding capacitor Cos1b. At this time, the offset voltage Vos1a included in the first charge amplifier output signal SIGOUT1a is eliminated in the holding capacitor Cos1a. The offset voltage Vos1b included in the second charge amplifier output signal SIGOUT1b is eliminated in the holding capacitor Cos1b.

此外,於開關開放時產生由電荷饋通引起之電荷。於電荷放大器101連接於壓電感測器或熱電感測器等感測器訊號之強度微弱之感測器SEN之情形時,若該起因於電荷饋通之電荷不放電而流入至感測器SEN,則於訊號輸出模式下使感測器SEN產生回彈雜訊。又,若於感測器SEN之輸出端子與電荷放大器101之輸入端子之間有開關,則於該開關自短路切換為開放之時間點、即剛變化為偏移保持模式之後,需要感測器SEN之輸出端子恢復至正常之電荷量為止之待機時間,響應速度降低。但是,本實施形態中,無該開關,又,於自偏移保持模式切換為訊號輸出模式時,於開關SW1a、SW1b中所產生之由電荷饋通引起之電荷經由開關SW2a、SW2b而放電。因此,可減少回彈雜訊。於自訊號輸出模式切換為偏移保持模式時,於開關SW2a、SW2b中所產生之由電荷饋通引起之電荷經由開關SW1a、SW1b而放電。因此,不等待電荷饋通所致之影響消退便切換動作模式,不產生響應速度之降低。In addition, charges caused by charge feedthrough are generated when the switch is opened. When the charge amplifier 101 is connected to a sensor SEN having a weak signal signal such as a piezoresistor or a thermal sensor, if the charge due to the charge feedthrough does not discharge and flows into the sensor SEN, in the signal output mode, causes the sensor SEN to generate rebound noise. In addition, if there is a switch between the output terminal of the sensor SEN and the input terminal of the charge amplifier 101, the sensor is required at the time point when the switch is switched from short-circuit to open, that is, immediately after changing to the offset holding mode The standby time until the output terminal of SEN returns to normal charge amount, the response speed decreases. However, in this embodiment, without the switch, when the self-offset hold mode is switched to the signal output mode, the charge generated by the charge feedthrough generated in the switches SW1a and SW1b is discharged through the switches SW2a and SW2b. Therefore, rebound noise can be reduced. When the self-signal output mode is switched to the offset hold mode, the charge generated by the charge feedthrough generated in the switches SW2a, SW2b is discharged through the switches SW1a, SW1b. Therefore, the operating mode is switched without waiting for the influence caused by the charge feedthrough to subside, and there is no decrease in response speed.

第1電荷放大器輸出訊號SIGOUT1a經由保持電容Cos1a而消除偏移電壓Vos1a後,進而經由串聯連接於保持電容Cos1a之段間電阻Rin2a而輸出至增益放大器102。同樣地,第2電荷放大器輸出訊號SIGOUT1b經由保持電容Cos1b而消除偏移電壓Vos1b後,進而經由串聯連接於保持電容Cos1b之段間電阻Rin2b而輸出至增益放大器102。The first charge amplifier output signal SIGOUT1a eliminates the offset voltage Vos1a via the holding capacitor Cos1a, and then outputs to the gain amplifier 102 via the inter-segment resistor Rin2a connected in series to the holding capacitor Cos1a. Similarly, the second charge amplifier output signal SIGOUT1b eliminates the offset voltage Vos1b through the holding capacitor Cos1b, and then outputs to the gain amplifier 102 through the inter-segment resistor Rin2b connected in series to the holding capacitor Cos1b.

(增益放大器102) 其次,一邊參照圖5,一邊對增益放大器102之構成及動作進行說明。圖5係表示第1實施形態之增益放大器之動作之圖。 (Gain amplifier 102) Next, the configuration and operation of the gain amplifier 102 will be described while referring to FIG. 5. 5 is a diagram showing the operation of the gain amplifier according to the first embodiment.

增益放大器102將與第1電荷放大器輸出訊號SIGOUT1a及第2電荷放大器輸出訊號SIGOUT1b之各者對應之第1增益放大器輸入訊號SIGIN2a及第2增益放大器輸入訊號SIGIN2b放大。增益放大器102將第1增益放大器輸入訊號SIGIN2a放大而輸出第1增益放大器輸出訊號SIGOUT2a,將第2增益放大器輸入訊號SIGIN2b放大而輸出第2增益放大器輸出訊號SIGOUT2b。第1及第2增益放大器輸入訊號SIGIN2a、SIGIN2b相當於第3電壓訊號及第4電壓訊號。增益放大器102係使用斬波器穩定化技術之放大器,具備放大器AMP2、斬波器開關SWCP1、SWCP2、及反饋電阻Rfb2a、Rfb2b。增益放大器102具有2個輸入系統S1a、S1b、2個處理系統S2a、S2b、及2個輸出系統S3a、S3b。於輸入系統S1a輸入第1增益放大器輸入訊號SIGIN2a,於輸入系統S1b輸入第2增益放大器輸入訊號SIGIN2b。輸出系統S3a之輸出訊號定義為第1增益放大器輸出訊號SIGOUT2a,輸出系統S3b之輸出訊號定義為第2增益放大器輸出訊號SIGOUT2b。The gain amplifier 102 amplifies the first gain amplifier input signal SIGIN2a and the second gain amplifier input signal SIGIN2b corresponding to each of the first charge amplifier output signal SIGOUT1a and the second charge amplifier output signal SIGOUT1b. The gain amplifier 102 amplifies the first gain amplifier input signal SIGIN2a to output the first gain amplifier output signal SIGOUT2a, and amplifies the second gain amplifier input signal SIGIN2b to output the second gain amplifier output signal SIGOUT2b. The input signals SIGIN2a and SIGIN2b of the first and second gain amplifiers are equivalent to the third voltage signal and the fourth voltage signal. The gain amplifier 102 is an amplifier using chopper stabilization technology, and includes an amplifier AMP2, chopper switches SWCP1, SWCP2, and feedback resistors Rfb2a, Rfb2b. The gain amplifier 102 has two input systems S1a, S1b, two processing systems S2a, S2b, and two output systems S3a, S3b. The first gain amplifier input signal SIGIN2a is input to the input system S1a, and the second gain amplifier input signal SIGIN2b is input to the input system S1b. The output signal of the output system S3a is defined as the first gain amplifier output signal SIGOUT2a, and the output signal of the output system S3b is defined as the second gain amplifier output signal SIGOUT2b.

於放大器AMP2連接有基準電壓源Vref2。基準電壓源Vref2亦可與基準電壓源Vref1相同。將放大器AMP2之輸入側定義為處理系統S2a、S2b。放大器AMP2具有偏移電壓Vos2,例如處理系統S2a之電壓較處理系統S2b高出偏移電壓Vos2之量。The reference voltage source Vref2 is connected to the amplifier AMP2. The reference voltage source Vref2 may also be the same as the reference voltage source Vref1. The input side of the amplifier AMP2 is defined as the processing systems S2a, S2b. The amplifier AMP2 has an offset voltage Vos2, for example, the voltage of the processing system S2a is higher than the processing system S2b by the offset voltage Vos2.

斬波器開關SWCP1設置於將電荷放大器101與放大器AMP2連接之路徑。於斬波器開關SWCP1之一端連接有2個輸入系統S1a、S1b,於斬波器開關SWCP1之另一端連接有2個處理系統S2a、S2b。斬波器開關SWCP2設置於將放大器AMP2與濾波器103連接之路徑。於斬波器開關SWCP2之一端連接有與2個處理系統S2a、S2b對應之放大器AMP2之2個輸出端子,於斬波器開關SWCP2之另一端連接有2個輸出系統S3a、S3b。斬波器開關SWCP1相當於第1斬波器開關,斬波器開關SWCP2相當於第2斬波器開關。The chopper switch SWCP1 is provided on a path connecting the charge amplifier 101 and the amplifier AMP2. Two input systems S1a, S1b are connected to one end of the chopper switch SWCP1, and two processing systems S2a, S2b are connected to the other end of the chopper switch SWCP1. The chopper switch SWCP2 is provided on a path connecting the amplifier AMP2 and the filter 103. Two output terminals of the amplifier AMP2 corresponding to the two processing systems S2a, S2b are connected to one end of the chopper switch SWCP2, and two output systems S3a, S3b are connected to the other end of the chopper switch SWCP2. The chopper switch SWCP1 corresponds to the first chopper switch, and the chopper switch SWCP2 corresponds to the second chopper switch.

反饋電阻Rfb2a之一端連接於輸入系統S1a,反饋電阻Rfb2a之另一端連接於輸出系統S3a。反饋電阻Rfb2b之一端連接於輸入系統S1b,反饋電阻Rfb2b之另一端連接於輸出系統S3b。One end of the feedback resistor Rfb2a is connected to the input system S1a, and the other end of the feedback resistor Rfb2a is connected to the output system S3a. One end of the feedback resistor Rfb2b is connected to the input system S1b, and the other end of the feedback resistor Rfb2b is connected to the output system S3b.

(增益G2) 其次,針對放大器AMP2之增益G2,使用設置於輸入系統S1a側之各元件之元件值進行說明。此外,關於與設置於輸入系統S1b側之各元件之元件值,與設置於輸入系統S1a側之各元件之元件值相同,因此省略說明。 (Gain G2) Next, the gain G2 of the amplifier AMP2 will be described using the element value of each element provided on the input system S1a side. In addition, the component value of each component provided on the input system S1b side is the same as the component value of each component provided on the input system S1a side, and therefore the description is omitted.

將保持電容Cos1a、段間電阻Rin2a、及反饋電阻Rfb2a之各者之元件值由作為各者之符號之Cos1a、Rin2a、及Rfb2a表示,將第1感測器訊號SIGa之頻率設為f,當s=2πf時,下式成立。 G2=Rfb2a/{Rin2a+1/(s×Cos1a)} 因此,Rin2a<<1/(s×Cos1a)時,可近似為G2≒s×Cos1a×Rfb2a。又,Rin2a>>1/(s×Cos1a)時,可近似為G2≒Rfb2a/Rin2a。本實施形態中,Rin2a充分小於1/(s×Cos1a),因此放G大器AMP2之增益2不依存於段間電阻Rin2a之大小,可由保持電容Cos1a與反饋電阻Rfb2a之積決定。 The element values of the holding capacitor Cos1a, the inter-segment resistance Rin2a, and the feedback resistance Rfb2a are represented by Cos1a, Rin2a, and Rfb2a as the symbols of each, and the frequency of the first sensor signal SIGa is set to f, when When s=2πf, the following formula holds. G2=Rfb2a/{Rin2a+1/(s×Cos1a)} Therefore, when Rin2a<<1/(s×Cos1a), it can be approximated as G2≒s×Cos1a×Rfb2a. In addition, when Rin2a >> 1/(s×Cos1a), it can be approximated as G2≒Rfb2a/Rin2a. In this embodiment, Rin2a is sufficiently smaller than 1/(s×Cos1a), so the gain 2 of the amplifier AMP2 does not depend on the size of the inter-segment resistor Rin2a, but can be determined by the product of the holding capacitor Cos1a and the feedback resistor Rfb2a.

(增益放大器102之動作) 斬波器開關SWCP1可斷續地更換輸入至放大器AMP2之第1增益放大器輸入訊號SIGIN2a及第2增益放大器輸入訊號SIGIN2b。斬波器開關SWCP2再次更換自放大器AMP2輸出之訊號。斬波器開關SWCP1、SWCP2基於輸入至各者之時脈,選擇放大器AMP2之入輸出訊號之路徑。時脈之頻率高於第1增益放大器輸入訊號SIGIN2a及第2增益放大器輸入訊號SIGIN2b之頻帶上限。 (Operation of gain amplifier 102) The chopper switch SWCP1 can intermittently replace the first gain amplifier input signal SIGIN2a and the second gain amplifier input signal SIGIN2b input to the amplifier AMP2. The chopper switch SWCP2 again replaces the signal output from the amplifier AMP2. The chopper switches SWCP1 and SWCP2 select the path of the input and output signals of the amplifier AMP2 based on the clock input to each. The frequency of the clock is higher than the upper limit of the frequency band of the first gain amplifier input signal SIGIN2a and the second gain amplifier input signal SIGIN2b.

於圖5所示之例中,Clock=H時,斬波器開關SWCP1將輸入系統S1a與處理系統S2a連接,將輸入系統S1b與處理系統S2b連接。又,斬波器開關SWCP2將處理系統S2a與輸出系統S3a連接,將處理系統S2b與輸出系統S3b連接。Clock=L時,斬波器開關SWCP1將輸入系統S1a與處理系統S2b連接,將輸入系統S1b與處理系統S2a連接。又,斬波器開關SWCP2將處理系統S2a與輸出系統S3b連接,將處理系統S2b與輸出系統S3a連接。換言之,Clock=H時,對輸出系統S3a施加偏移電壓Vos2,Clock=L時,對輸出系統S3b施加偏移電壓Vos2。因此,若取得輸出系統S3a與輸出系統S3b之差動電壓之時間平均,則偏移電壓Vos2消除。In the example shown in FIG. 5, when Clock=H, the chopper switch SWCP1 connects the input system S1a and the processing system S2a, and connects the input system S1b and the processing system S2b. Moreover, the chopper switch SWCP2 connects the processing system S2a and the output system S3a, and connects the processing system S2b and the output system S3b. When Clock=L, the chopper switch SWCP1 connects the input system S1a and the processing system S2b, and connects the input system S1b and the processing system S2a. Moreover, the chopper switch SWCP2 connects the processing system S2a and the output system S3b, and connects the processing system S2b and the output system S3a. In other words, when Clock=H, the offset voltage Vos2 is applied to the output system S3a, and when Clock=L, the offset voltage Vos2 is applied to the output system S3b. Therefore, if the time average of the differential voltage of the output system S3a and the output system S3b is obtained, the offset voltage Vos2 is eliminated.

圖1所示之增益放大器102中所放大之第1增益放大器輸出訊號SIGOUT2a係經由設置於將增益放大器102與濾波器103連接之路徑之段間電阻Rin3a而輸入至濾波器103。同樣地,增益放大器102中所放大之第2增益放大器輸出訊號SIGOUT2b係經由段間電阻Rin3b而輸入至濾波器103。The first gain amplifier output signal SIGOUT2a amplified in the gain amplifier 102 shown in FIG. 1 is input to the filter 103 through a resistor Rin3a provided in a path connecting the gain amplifier 102 and the filter 103. Similarly, the second gain amplifier output signal SIGOUT2b amplified by the gain amplifier 102 is input to the filter 103 through the inter-segment resistor Rin3b.

(濾波器103) 圖1所示之濾波器103使與第1增益放大器輸出訊號SIGOUT2a及第2增益放大器輸出訊號SIGOUT2b之各者對應之第1濾波器輸入訊號SIGIN3a及第2濾波器輸入訊號SIGIN3b中所包含之高頻成分衰減。濾波器103使第1濾波器輸入訊號SIGIN3a中所包含之高頻成分衰減而輸出第1濾波器輸出訊號SIGOUT3a,使第2濾波器輸入訊號SIGIN3b中所包含之高頻成分衰減而輸出第2濾波器輸出訊號SIGOUT3b。第1濾波器輸入訊號SIGIN3a及第2濾波器輸入訊號SIGIN3b係與第1增益放大器輸出訊號SIGOUT2a及第2增益放大器輸出訊號SIGOUT2b對應之訊號,第1增益放大器輸出訊號SIGOUT2a及第2增益放大器輸出訊號SIGOUT2b係與相當於第3輸入訊號及第4輸入訊號之第1增益放大器輸入訊號SIGIN2a及第2增益放大器輸入訊號SIGIN2b對應之訊號。因此,第1濾波器輸入訊號SIGIN3a及第2濾波器輸入訊號SIGIN3b相當於第5電壓訊號及第6電壓訊號。衰減之高頻成分例如為由增益放大器102之斬波器穩定化產生之時脈頻率之尖峰雜訊。濾波器103係具備放大器AMP3、反饋電阻Rfb3a、Rfb3b、及反饋電容Cfb3a、Cfb3b之主動低通濾波器。濾波器103具有2個處理系統。 (Filter 103) The filter 103 shown in FIG. 1 makes the high included in the first filter input signal SIGIN3a and the second filter input signal SIGIN3b corresponding to each of the first gain amplifier output signal SIGOUT2a and the second gain amplifier output signal SIGOUT2b Frequency components are attenuated. The filter 103 attenuates high-frequency components contained in the first filter input signal SIGIN3a to output the first filter output signal SIGOUT3a, and attenuates high-frequency components contained in the second filter input signal SIGIN3b to output the second filter Output signal SIGOUT3b. The first filter input signal SIGIN3a and the second filter input signal SIGIN3b are signals corresponding to the first gain amplifier output signal SIGOUT2a and the second gain amplifier output signal SIGOUT2b, and the first gain amplifier output signal SIGOUT2a and the second gain amplifier output signal SIGOUT2b is a signal corresponding to the first gain amplifier input signal SIGIN2a and the second gain amplifier input signal SIGIN2b corresponding to the third input signal and the fourth input signal. Therefore, the first filter input signal SIGIN3a and the second filter input signal SIGIN3b are equivalent to the fifth voltage signal and the sixth voltage signal. The attenuated high-frequency component is, for example, the peak noise of the clock frequency generated by the stabilization of the chopper of the gain amplifier 102. The filter 103 is an active low-pass filter including an amplifier AMP3, feedback resistors Rfb3a, Rfb3b, and feedback capacitors Cfb3a, Cfb3b. The filter 103 has two processing systems.

於放大器AMP3連接有基準電壓源Vref3。基準電壓源Vref3亦可與基準電壓源Vref1及基準電壓源Vref2相同。放大器AMP3設置於2個處理系統,將流經該2個處理系統之各者之第1濾波器輸入訊號SIGIN3a及第2濾波器輸入訊號SIGIN3b放大。The reference voltage source Vref3 is connected to the amplifier AMP3. The reference voltage source Vref3 may be the same as the reference voltage source Vref1 and the reference voltage source Vref2. The amplifier AMP3 is installed in two processing systems, and amplifies the first filter input signal SIGIN3a and the second filter input signal SIGIN3b flowing through each of the two processing systems.

反饋電阻Rfb3a設置於放大器AMP3中之第1濾波器輸入訊號SIGIN3a側之反饋路徑。反饋電阻Rfb3b設置於放大器AMP3中之第2濾波器輸入訊號SIGIN3b側之反饋路徑。The feedback resistor Rfb3a is provided in the feedback path on the SIGIN3a side of the first filter input signal in the amplifier AMP3. The feedback resistor Rfb3b is provided in the feedback path of the second filter input signal SIGIN3b side of the amplifier AMP3.

反饋電容Cfb3a於放大器AMP3中之第1濾波器輸入訊號SIGIN3a側之反饋路徑中並聯連接於反饋電阻Rfb3a。反饋電容Cfb3b於放大器AMP3中之第2濾波器輸入訊號SIGIN3b側之反饋路徑中並聯連接於反饋電阻Rfb3b。The feedback capacitor Cfb3a is connected in parallel to the feedback resistor Rfb3a in the feedback path on the side of the first filter input signal SIGIN3a in the amplifier AMP3. The feedback capacitor Cfb3b is connected in parallel to the feedback resistor Rfb3b in the feedback path on the side of the second filter input signal SIGIN3b in the amplifier AMP3.

(元件值) 其次,列舉訊號處理電路100中所具備之各元件之元件值之一例。 電荷放大器101之反饋電阻Rfb1a、Rfb1b分別為6.8×10 6Ω,電荷放大器101之反饋電容Cfb1a、Cfb1b分別為390×10 -12F,電荷放大器101之保持電容Cos1a、Cos1b分別為100×10 -12F。此時,電荷放大器101之截止頻率成為1/(2π×6.8×10 6×390×10 -12)=60 Hz。電荷放大器101之增益G1於將反饋電容Cfb1a、Cfb1b設為Cfb1,將省略圖示之設置於向電荷放大器101之輸入路徑之輸入電阻設為Rin1時,可近似為G1≒1/(1+s×Cfb1×Rin1)(s=2πf)。 (Component value) Next, an example of the component value of each component included in the signal processing circuit 100 will be listed. The feedback resistors Rfb1a and Rfb1b of the charge amplifier 101 are 6.8×10 6 Ω, the feedback capacitors Cfb1a and Cfb1b of the charge amplifier 101 are 390×10 -12 F, and the holding capacitors Cos1a and Cos1b of the charge amplifier 101 are 100×10 − 12 F. At this time, the cutoff frequency of the charge amplifier 101 becomes 1/(2π×6.8×10 6 ×390×10 -12 )=60 Hz. The gain G1 of the charge amplifier 101 can be approximated as G1≒1/(1+s×Cfb1 when the feedback capacitors Cfb1a and Cfb1b are set to Cfb1 and the input resistance of the input path to the charge amplifier 101, which is not shown, is set to Rin1 ×Rin1) (s=2πf).

電荷放大器101及增益放大器102之段間電阻Rin2a、Rin2b分別為100 Ω。增益放大器102之反饋電阻Rfb2a、Rfb2b分別為1×10 6Ω。增益放大器102之增益G2如已說明般,可近似為G2≒s×Cos1a×Rfb2a(s=2πf)。 The inter-segment resistances Rin2a and Rin2b of the charge amplifier 101 and the gain amplifier 102 are 100 Ω, respectively. The feedback resistors Rfb2a and Rfb2b of the gain amplifier 102 are 1×10 6 Ω, respectively. As described above, the gain G2 of the gain amplifier 102 can be approximated as G2≒s×Cos1a×Rfb2a (s=2πf).

增益放大器102及濾波器103之段間電阻Rin3a、Rin3b分別為12×10 3Ω。濾波器103之反饋電阻Rfb3a、Rfb3b分別為47×10 3Ω,濾波器103之反饋電容Cfb3a、Cfb3b分別為100×10 -12F。此時,濾波器103之截止頻率成為1/(2π×47×10 3×100×10 -12)=34×10 3Hz。濾波器103之透過頻帶之增益G3成為G3=47×10 3/12×10 3=3.9。 The inter-segment resistances Rin3a and Rin3b of the gain amplifier 102 and the filter 103 are 12×10 3 Ω, respectively. The feedback resistances Rfb3a and Rfb3b of the filter 103 are 47×10 3 Ω, respectively, and the feedback capacitances Cfb3a and Cfb3b of the filter 103 are 100×10 -12 F, respectively. At this time, the cutoff frequency of the filter 103 becomes 1/(2π×47×10 3 ×100×10 -12 )=34×10 3 Hz. The gain G3 of the transmission band of the filter 103 becomes G3=47×10 3 /12×10 3 =3.9.

如上所述,本實施形態中,電荷放大器101之第1系統SYSa及第2系統SYSb分別具有轉換第1感測器訊號SIGa及第2感測器訊號SIGb之放大器AMP1a、AMP1b、及設置於放大器AMP1a、AMP1b之輸出路徑之保持電容Cos1a、Cos1b。又,第1系統SYSa及第2系統SYSb分別具有設置於短路路徑之開關SW1a、SW1b、設置於反饋路徑之開關SW2a、SW2b、及控制對保持電容Cos1a、Cos1b之電壓之施加之開關SW3a、SW3b。如此,藉由於保持電容Cos1a、Cos1b之各者保持放大器AMP1a、AMP1b之偏移電壓Vos1a、Vos1b,可自放大器AMP1a、AMP1b之各者之輸出消除偏移電壓Vos1a、Vos1b。於放大器AMP1a、AMP1b不經由開關而輸入第1感測器訊號SIGa及第2感測器訊號SIGb,因此於偏移保持模式與訊號輸出模式之切換中,不等待電荷饋通所致之影響消退而切換動作模式。因此,電荷放大器101中,可抑制因偏移保持模式長期化導致響應速度降低。As described above, in the present embodiment, the first system SYSa and the second system SYSb of the charge amplifier 101 respectively have the amplifiers AMP1a, AMP1b that convert the first sensor signal SIGa and the second sensor signal SIGb, and are provided in the amplifier The holding capacitors Cos1a and Cos1b of the output paths of AMP1a and AMP1b. In addition, the first system SYSa and the second system SYSb have switches SW1a and SW1b provided in the short-circuit path, switches SW2a and SW2b provided in the feedback path, and switches SW3a and SW3b that control the application of voltage to the holding capacitors Cos1a and Cos1b, respectively . In this way, by holding the offset voltages Vos1a, Vos1b of the amplifiers AMP1a, AMP1b of the holding capacitors Cos1a, Cos1b, the offset voltages Vos1a, Vos1b can be eliminated from the outputs of the amplifiers AMP1a, AMP1b. The amplifiers AMP1a and AMP1b input the first sensor signal SIGa and the second sensor signal SIGb without switching, so they do not wait for the effects of charge feedthrough to subside in the switching between the offset hold mode and the signal output mode And switch the action mode. Therefore, in the charge amplifier 101, it is possible to suppress a decrease in the response speed due to the prolonged shift holding mode.

放大器AMP1a、AMP1b之各者之輸入端子所具備之MOS電晶體為共同質心配置。因此,可減小放大器AMP1a之偏移電壓Vos1a與放大器AMP1b之偏移電壓Vos1b之不同。The MOS transistors provided at the input terminals of each of the amplifiers AMP1a and AMP1b are arranged with a common centroid. Therefore, the difference between the offset voltage Vos1a of the amplifier AMP1a and the offset voltage Vos1b of the amplifier AMP1b can be reduced.

放大器AMP1a、AMP1b之各者之輸入端子所具備之MOS電晶體的閘極電極之面積大於放大器AMP2之輸入端子所具備之MOS電晶體的閘極電極之面積。多段放大電路中,藉由此種初段中之雜訊對策強化,可獲得雜訊減少之效果。The area of the gate electrode of the MOS transistor provided in the input terminal of each of the amplifiers AMP1a and AMP1b is larger than the area of the gate electrode of the MOS transistor provided in the input terminal of the amplifier AMP2. In the multi-stage amplifier circuit, by strengthening the noise countermeasures in the initial stage, the effect of noise reduction can be obtained.

於增益放大器102之放大器AMP2之前後,分別設置有斬波器開關SWCP1、SWCP2。因此,藉由斬波器穩定化,可消除放大器AMP2之偏移電壓Vos2。Before and after the amplifier AMP2 of the gain amplifier 102, chopper switches SWCP1 and SWCP2 are respectively provided. Therefore, by stabilizing the chopper, the offset voltage Vos2 of the amplifier AMP2 can be eliminated.

此外,斬波器開關SWCP1、SWCP2亦可省略。此種構成中,可消除導致多段放大器之輸出訊號之偏差較大的位於最前段之電荷放大器101之偏移電壓Vos1a、Vos1b。In addition, the chopper switches SWCP1 and SWCP2 may be omitted. In this configuration, the offset voltages Vos1a and Vos1b of the charge amplifier 101 at the forefront of the multi-segment amplifier, which causes a large deviation in the output signal, can be eliminated.

以下,對本發明之另一實施形態之訊號處理電路之電路構成進行說明。此外,下述之實施形態中,對與上述之第1實施形態共通之情況省略記述,僅對不同點進行說明。對相同之構成要素標附符號,且省略詳細之說明。對於由相同構成產生之相同作用效果不依次提及。Hereinafter, the circuit configuration of the signal processing circuit according to another embodiment of the present invention will be described. In addition, in the following embodiments, descriptions that are common to the above-described first embodiment will be omitted, and only differences will be described. Symbols are attached to the same constituent elements, and detailed explanations are omitted. The same effects produced by the same composition are not mentioned in order.

<第2實施形態> 其次,一邊參照圖6,一邊對第2實施形態之訊號處理電路中所具備之電荷放大器201之電路構成進行說明。圖6係概略性地表示第2實施形態之電荷放大器之電路構成之圖。 <Second Embodiment> Next, the circuit configuration of the charge amplifier 201 included in the signal processing circuit of the second embodiment will be described with reference to FIG. 6. FIG. 6 is a diagram schematically showing the circuit configuration of the charge amplifier of the second embodiment.

第2實施形態之電荷放大器201在輸入段ISIa、ISIb之輸出共同電壓之檢測與反饋控制藉由共通之共同模式反饋電路CMFB1進行之方面,與第1實施形態之電荷放大器101不同。具體而言,共同模式反饋電路CMFB1之輸入端子連接於第1放大器AMP1a之輸出段OS1a及第2放大器AMP1b之輸出段OS1b之各者之輸出端子。共同模式反饋電路CMFB1之輸出端子連接於第1放大器AMP1a之輸入段IS1a及第1放大器AMP1a之輸入段IS1b之各者之內部節點。此外,輸入段IS1a相當於第1輸入段,輸入段IS1b相當於第2輸入段,輸出段OS1a相當於第1輸出段,輸出段OS1b相當於第2輸出段。相位補償電容Cpc1a相當於第1相位補償電容,相位補償電容Cpc1a相當於第2相位補償電容。The charge amplifier 201 of the second embodiment differs from the charge amplifier 101 of the first embodiment in that detection and feedback control of the output common voltage of the input sections ISIa and ISIb are performed by a common common mode feedback circuit CMFB1. Specifically, the input terminal of the common mode feedback circuit CMFB1 is connected to the output terminal of each of the output section OS1a of the first amplifier AMP1a and the output section OS1b of the second amplifier AMP1b. The output terminal of the common mode feedback circuit CMFB1 is connected to the internal node of each of the input section IS1a of the first amplifier AMP1a and the input section IS1b of the first amplifier AMP1a. In addition, the input section IS1a corresponds to the first input section, the input section IS1b corresponds to the second input section, the output section OS1a corresponds to the first output section, and the output section OS1b corresponds to the second output section. The phase compensation capacitor Cpc1a corresponds to the first phase compensation capacitor, and the phase compensation capacitor Cpc1a corresponds to the second phase compensation capacitor.

根據此種實施形態,可削減零件之件數。因此,可減少耗電,又,可縮小晶片面積。According to this embodiment, the number of parts can be reduced. Therefore, power consumption can be reduced, and the wafer area can be reduced.

<第3實施形態> 其次,一邊參照圖7,一邊對第3實施形態之訊號處理電路300之電路構成進行說明。圖7係概略性地表示第3實施形態之訊號處理電路之電路構成之圖。第3實施形態之訊號處理電路300與第1實施形態同樣地,具備電荷放大器301、增益放大器302、及濾波器303。其中,增益放大器302及濾波器303之構成與第1實施形態相同。 <Third Embodiment> Next, the circuit configuration of the signal processing circuit 300 of the third embodiment will be described with reference to FIG. 7. 7 is a diagram schematically showing the circuit configuration of the signal processing circuit of the third embodiment. The signal processing circuit 300 of the third embodiment includes a charge amplifier 301, a gain amplifier 302, and a filter 303 as in the first embodiment. The configuration of the gain amplifier 302 and the filter 303 is the same as the first embodiment.

第3實施形態在省略電荷放大器301之保持電容及開關之方面,與第1實施形態不同。具體而言,第1系統SYSa具有放大器AMP1a及反饋電路FB1a,第2系統SYSb具有放大器AMP1b及反饋電路FB1b。放大器AMP1a、AMP1b中,分別地自感測器SEN輸出之第1感測器訊號SIGa及第2感測器訊號SIGb不經由開關而輸入,由電荷值轉換成電壓值之第1電荷放大器輸出訊號SIGOUT1a及第2電荷放大器輸出訊號SIGOUT1b不經由開關而輸出至增益放大器302。反饋電路FB1a之一端及另一端分別不經由開關而連接於放大器AMP1a之輸入端子及輸出端子,反饋電路FB1b之一端及另一端分別不經由開關而連接於放大器AMP1b之輸入端子及輸出端子。The third embodiment differs from the first embodiment in omitting the storage capacitor and the switch of the charge amplifier 301. Specifically, the first system SYSa includes an amplifier AMP1a and a feedback circuit FB1a, and the second system SYSb includes an amplifier AMP1b and a feedback circuit FB1b. In the amplifiers AMP1a and AMP1b, the first sensor signal SIGa and the second sensor signal SIGb output from the sensor SEN are not input through the switch, and the first charge amplifier output signal that converts the charge value into the voltage value SIGOUT1a and the second charge amplifier output signal SIGOUT1b are output to the gain amplifier 302 without a switch. One end and the other end of the feedback circuit FB1a are respectively connected to the input terminal and the output terminal of the amplifier AMP1a without a switch, and one end and the other end of the feedback circuit FB1b are respectively connected to the input terminal and the output terminal of the amplifier AMP1b without a switch.

根據此種實施形態,不產生電荷放大器301中之由電荷饋通引起之電荷。因此,可抑制回彈雜訊之產生。未消除電荷放大器301之偏移電壓,但可消除增益放大器302之偏移電壓。According to this embodiment, the charge caused by the charge feedthrough in the charge amplifier 301 is not generated. Therefore, the generation of rebound noise can be suppressed. The offset voltage of the charge amplifier 301 is not eliminated, but the offset voltage of the gain amplifier 302 can be eliminated.

<總結> 以下,附記本發明之實施形態之一部分或全部。此外,本發明並不限定於以下之構成。 <Summary> In the following, some or all of the embodiments of the present invention are appended. In addition, the present invention is not limited to the following configurations.

根據本發明之一態樣,提供一種訊號處理電路,其具備:電荷放大器,其將自感測器輸出之一對第1及第2電荷訊號之各者轉換為第1及第2電壓訊號;增益放大器,其將與第1及第2電壓訊號對應之第3及第4電壓訊號放大;及濾波器,其使與第3及第4電壓訊號對應之第5及第6電壓訊號中所包含之高頻成分衰減;且電荷放大器具有並聯之第1及第2系統,第1系統具有:第1放大器,其將所輸入之第1電荷訊號轉換為第1電壓訊號;第1保持電容,其設置於第1放大器之輸出路徑;第1開關,其設置於將第1放大器之輸出端子與輸入端子連接且將第1放大器短路之短路路徑;第2開關,其設置於第1放大器之反饋路徑且並聯連接於第1開關;及第3開關,其一端連接於將第1放大器與第1放大器之基準電壓源連接之路徑,另一端連接於將第1保持電容與增益放大器連接之路徑;第2系統具有:第2放大器,其將所輸入之第2電荷訊號轉換為第2電壓訊號;第2保持電容,其連接於第2放大器之輸出路徑;第4開關,其設置於將第2放大器之輸出端子與輸入端子連接且將第2放大器短路之短路路徑;第5開關,其設置於第2放大器之反饋路徑且並聯連接於第4開關;及第6開關,其一端連接於將第2放大器與第2放大器之基準電壓源連接之路徑,另一端連接於將第2保持電容與增益放大器連接之路徑;能夠取得第1、第3、第4及第6開關關閉且第2及第5開關打開之第1狀態、以及第1、第3、第4及第6開關打開且第2及第5開關關閉之第2狀態。 據此,藉由第1及第2保持電容之各者保持第1及第2放大器之偏移電壓,可自第1及第2放大器之各者之輸出消除偏移電壓。第1及第2感測器訊號不經由開關而輸入至第1及第2放大器,又,第1、第2、第4、第5開關之由電荷饋通引起之電荷因有放電而不流入至感測器。因此,於偏移保持模式與訊號輸出模式之切換中,不受由電荷饋通引起之影響而切換動作模式。因此,電荷放大器中,可抑制因偏移保持模式長期化導致響應速度降低。 According to one aspect of the present invention, there is provided a signal processing circuit including: a charge amplifier that converts a pair of first and second charge signals output from a sensor into first and second voltage signals; A gain amplifier that amplifies the third and fourth voltage signals corresponding to the first and second voltage signals; and a filter that includes the fifth and sixth voltage signals corresponding to the third and fourth voltage signals The high frequency component of the attenuation; and the charge amplifier has the first and second systems connected in parallel, the first system has: a first amplifier that converts the input first charge signal into a first voltage signal; the first holding capacitor, which It is provided in the output path of the first amplifier; the first switch is provided in a short-circuit path connecting the output terminal of the first amplifier to the input terminal and short-circuiting the first amplifier; the second switch is provided in the feedback path of the first amplifier And connected in parallel to the first switch; and the third switch, one end of which is connected to the path connecting the reference voltage source of the first amplifier and the first amplifier, and the other end is connected to the path of connecting the first holding capacitor and the gain amplifier; 2 The system has: a second amplifier that converts the input second charge signal into a second voltage signal; a second holding capacitor, which is connected to the output path of the second amplifier; and a fourth switch, which is provided to connect the second amplifier The output terminal is connected to the input terminal and short-circuit path that short-circuits the second amplifier; the fifth switch, which is provided in the feedback path of the second amplifier and is connected in parallel to the fourth switch; and the sixth switch, one end of which is connected to the second The path connecting the reference voltage source of the amplifier and the second amplifier, the other end is connected to the path connecting the second holding capacitor and the gain amplifier; the first, third, fourth and sixth switches can be closed and the second and fifth The first state where the switch is open, and the second state where the first, third, fourth, and sixth switches are open and the second and fifth switches are closed. According to this, by holding the offset voltages of the first and second amplifiers by each of the first and second holding capacitors, the offset voltage can be eliminated from the output of each of the first and second amplifiers. The first and second sensor signals are input to the first and second amplifiers without the switch, and the charges caused by the charge feedthrough of the first, second, fourth, and fifth switches do not flow due to discharge To the sensor. Therefore, in the switching between the offset holding mode and the signal output mode, the operation mode is switched without being affected by the charge feedthrough. Therefore, in the charge amplifier, it is possible to suppress a decrease in the response speed due to the prolonged shift holding mode.

作為一態樣,第1及第2放大器之各者之輸入端子所具備之MOS電晶體為共同質心配置。 據此,可減小第1放大器之偏移電壓與第2放大器之偏移電壓之不同。 As an aspect, the MOS transistors included in the input terminals of each of the first and second amplifiers are arranged with a common centroid. Accordingly, the difference between the offset voltage of the first amplifier and the offset voltage of the second amplifier can be reduced.

作為一態樣,第1及第2放大器之各者之輸入端子所具備之MOS電晶體的閘極電極之面積大於增益放大器之輸入端子所具備之MOS電晶體的閘極電極之面積。 多段放大電路中,藉由此種初段中之雜訊對策強化,可獲得雜訊減少之效果。 As one aspect, the area of the gate electrode of the MOS transistor provided to the input terminal of each of the first and second amplifiers is larger than the area of the gate electrode of the MOS transistor provided to the input terminal of the gain amplifier. In the multi-stage amplifier circuit, by strengthening the noise countermeasures in the initial stage, the effect of noise reduction can be obtained.

作為一態樣,第1放大器具有第1輸入段、第1輸出段、及設置於第1輸出段之反饋路徑之第1相位補償電容,第2放大器具有第2輸入段、第2輸出段、及設置於第2輸出段之反饋路徑之第2相位補償電容,電荷放大器進而具有共同模式反饋電路,其於第1及第2輸出段之各者之輸出端子連接有輸入端子,於第1及第2輸入段之內部節點連接有輸出端子。 據此,可削減零件之件數。因此,可減少耗電,又,可縮小晶片面積。 As an example, the first amplifier has a first input section, a first output section, and a first phase compensation capacitor provided in the feedback path of the first output section, and the second amplifier has a second input section, a second output section, And the second phase compensation capacitor provided in the feedback path of the second output stage, the charge amplifier further has a common mode feedback circuit, which is connected to the output terminal of each of the first and second output stages with the input terminal, and the first and second The internal node of the second input section is connected to the output terminal. Accordingly, the number of parts can be reduced. Therefore, power consumption can be reduced, and the wafer area can be reduced.

作為一態樣,第1狀態係於使第1及第2保持電容之各者保持第1及第2放大器之偏移電壓之偏移保持模式下取得,第2狀態係於偏移保持模式後且於電荷放大器輸出第1及第2電壓訊號之訊號輸出模式下取得。As one aspect, the first state is obtained in an offset holding mode in which each of the first and second holding capacitors holds the offset voltage of the first and second amplifiers, and the second state is after the offset holding mode It is obtained in the signal output mode where the charge amplifier outputs the first and second voltage signals.

作為一態樣,第1系統進而具有設置於第1放大器之反饋路徑之第1反饋電路,第2系統進而具有設置於第2放大器之反饋路徑之第2反饋電路,第1及第2反饋電路分別具有並聯連接之反饋電阻及反饋電容。As one aspect, the first system further has a first feedback circuit provided in the feedback path of the first amplifier, the second system further has a second feedback circuit provided in the feedback path of the second amplifier, and the first and second feedback circuits They have feedback resistors and feedback capacitors connected in parallel.

作為一態樣,藉由第1反饋電路設定之截止頻率小於第1電壓訊號之頻帶下限,藉由第2反饋電路設定之截止頻率小於第2電壓訊號之頻帶下限。As one aspect, the cut-off frequency set by the first feedback circuit is less than the lower band limit of the first voltage signal, and the cut-off frequency set by the second feedback circuit is less than the lower band limit of the second voltage signal.

作為一態樣,增益放大器進而具備:第3放大器,其將第3及第4電壓訊號放大;第1斬波器開關,其斷續地更換輸入至第3放大器之第3及第4電壓訊號;及第2斬波器開關,其再次更換自第3放大器輸出之第3及第4電壓訊號。 據此,可藉由斬波器穩定化而消除增益放大器之放大器之偏移電壓。 As one aspect, the gain amplifier further includes: a third amplifier that amplifies the third and fourth voltage signals; a first chopper switch that intermittently replaces the third and fourth voltage signals input to the third amplifier ; And the second chopper switch, which again replaces the third and fourth voltage signals output from the third amplifier. According to this, the offset voltage of the amplifier of the gain amplifier can be eliminated by the stabilization of the chopper.

作為一態樣,第1及第2電荷訊號係自壓電感測器或熱電感測器輸出之相互成對之差動訊號。As an aspect, the first and second charge signals are the differential signals of the pair output from the pressure sensor or the thermal sensor.

如以上所說明,根據本發明之一態樣,可提供一種訊號處理電路,其可抑制偏移電壓所致之影響而響應較快。As described above, according to one aspect of the present invention, a signal processing circuit can be provided, which can suppress the influence of the offset voltage and respond faster.

此外,以上說明之實施形態係為了易於理解本發明,並非為了限定本發明而進行解釋者。本發明可在不脫離其主旨之情況下進行變更/改良,並且本發明亦包含其等價物。即,只要具備本發明之特徵,則本技術領域中具有通常知識者對各實施形態適宜施加設計變更而成者亦包含於本發明之範圍。例如,各實施形態所具備之各要素及其配置、材料、條件、形狀、尺寸等不應限定於例示者,可適宜變更。又,各實施形態所具備之各要素可於技術上可能之範圍內組合,組合該等而成者亦只要包含本發明之特徵,則包含於本發明之範圍。In addition, the embodiments described above are for the ease of understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed/improved without departing from the gist thereof, and the present invention also includes equivalents thereof. That is, as long as the characteristics of the present invention are provided, those having ordinary knowledge in the technical field who appropriately apply design changes to each embodiment are also included in the scope of the present invention. For example, the elements included in each embodiment and their arrangement, materials, conditions, shapes, dimensions, etc. should not be limited to the exemplified ones and can be changed as appropriate. In addition, each element included in each embodiment can be combined within a technically possible range, and those who combine these are also included in the scope of the present invention as long as the features of the present invention are included.

100:訊號處理電路 SEN:感測器 SIGa:第1感測器訊號 SIGb:第2感測器訊號 SIGIN1a:第1電荷放大器輸入訊號 SIGIN1b:第2電荷放大器輸入訊號 SIGOUT1a:第1電荷放大器輸出訊號 SIGOUT1b:第2電荷放大器輸出訊號 SIGIN2a:第1增益放大器輸入訊號 SIGIN2b:第2增益放大器輸入訊號 SIGOUT2a:第1增益放大器輸出訊號 SIGOUT2b:第2增益放大器輸出訊號 SIGIN3a:第1濾波器輸入訊號 SIGIN3b:第2濾波器輸入訊號 SIGOUT3a:第1濾波器輸出訊號 SIGOUT3b:第2濾波器輸出訊號 101:電荷放大器 102:增益放大器 103:濾波器 SYSa:第1系統 SYSb:第2系統 AMP1a:放大器(第1放大器) AMP1b:放大器(第2放大器) AMP2、AMP3:放大器 FB1a:反饋電路(第1反饋電路) FB1b:反饋電路(第2反饋電路) Cos1a:保持電容(第1保持電容) Cos1b:保持電容(第2保持電容) Cfb3a、Cfb3b:反饋電容 Rfb2a、Rfb2b、Rfb3a、Rfb3b:反饋電阻 Rin2a、Rin2b、Rin3a、Rin3b:段間電阻 SW1a:開關(第1開關) SW2a:開關(第2開關) SW3a:開關(第3開關) SW1b:開關(第4開關) SW2b:開關(第5開關) SW3b:開關(第6開關) Vref1:基準電壓源 Vref2:基準電壓源 Vref3:基準電壓源 100: signal processing circuit SEN: Sensor SIGa: No. 1 sensor signal SIGb: the second sensor signal SIGIN1a: Input signal of the first charge amplifier SIGIN1b: Input signal of the second charge amplifier SIGOUT1a: output signal of the first charge amplifier SIGOUT1b: output signal of the second charge amplifier SIGIN2a: Input signal of the first gain amplifier SIGIN2b: Input signal of the second gain amplifier SIGOUT2a: Output signal of the first gain amplifier SIGOUT2b: output signal of the second gain amplifier SIGIN3a: input signal of the first filter SIGIN3b: input signal of the second filter SIGOUT3a: the first filter output signal SIGOUT3b: output signal of the second filter 101: Charge amplifier 102: gain amplifier 103: filter SYSa: The first system SYSb: the second system AMP1a: amplifier (first amplifier) AMP1b: amplifier (second amplifier) AMP2, AMP3: amplifier FB1a: Feedback circuit (first feedback circuit) FB1b: Feedback circuit (second feedback circuit) Cos1a: holding capacitor (first holding capacitor) Cos1b: holding capacitor (second holding capacitor) Cfb3a, Cfb3b: feedback capacitance Rfb2a, Rfb2b, Rfb3a, Rfb3b: feedback resistance Rin2a, Rin2b, Rin3a, Rin3b: resistance between segments SW1a: switch (first switch) SW2a: switch (second switch) SW3a: switch (third switch) SW1b: switch (4th switch) SW2b: Switch (5th switch) SW3b: Switch (6th switch) Vref1: reference voltage source Vref2: reference voltage source Vref3: reference voltage source

圖1係概略性地表示第1實施形態之訊號處理電路之電路構成之圖。 圖2係概略性地表示第1實施形態之電荷放大器之電路構成之圖。 圖3係表示第1實施形態之電荷放大器之偏移保持模式下之動作之圖。 圖4係表示第1實施形態之電荷放大器之訊號輸出模式下之動作之圖。 圖5係表示第1實施形態之增益放大器之動作之圖。 圖6係概略性地表示第2實施形態之電荷放大器之電路構成之圖。 圖7係概略性地表示第3實施形態之訊號處理電路之電路構成之圖。 FIG. 1 is a diagram schematically showing the circuit configuration of the signal processing circuit of the first embodiment. FIG. 2 is a diagram schematically showing the circuit configuration of the charge amplifier of the first embodiment. FIG. 3 is a diagram showing the operation in the offset holding mode of the charge amplifier of the first embodiment. 4 is a diagram showing the operation in the signal output mode of the charge amplifier of the first embodiment. 5 is a diagram showing the operation of the gain amplifier according to the first embodiment. FIG. 6 is a diagram schematically showing the circuit configuration of the charge amplifier of the second embodiment. 7 is a diagram schematically showing the circuit configuration of the signal processing circuit of the third embodiment.

100:訊號處理電路 101:電荷放大器 102:增益放大器 103:濾波器 AMP1a:放大器(第1放大器) AMP1b:放大器(第2放大器) AMP2、AMP3:放大器 Cos1a:保持電容(第1保持電容) Cos1b:保持電容(第2保持電容) Cfb3a、Cfb3b:反饋電容 FB1a:反饋電路(第1反饋電路) FB1b:反饋電路(第2反饋電路) Rfb2a、Rfb2b、Rfb3a、Rfb3b:反饋電阻 Rin2a、Rin2b、Rin3a、Rin3b:段間電阻 SEN:感測器 SIGa:第1感測器訊號 SIGb:第2感測器訊號 SIGIN1a:第1電荷放大器輸入訊號 SIGIN1b:第2電荷放大器輸入訊號 SIGOUT1a:第1電荷放大器輸出訊號 SIGOUT1b:第2電荷放大器輸出訊號 SIGIN2a:第1增益放大器輸入訊號 SIGIN2b:第2增益放大器輸入訊號 SIGOUT2a:第1增益放大器輸出訊號 SIGOUT2b:第2增益放大器輸出訊號 SIGIN3a:第1濾波器輸入訊號 SIGIN3b:第2濾波器輸入訊號 SIGOUT3a:第1濾波器輸出訊號 SIGOUT3b:第2濾波器輸出訊號 SW1a:開關(第1開關) SW2a:開關(第2開關) SW3a:開關(第3開關) SW1b:開關(第4開關) SW2b:開關(第5開關) SW3b:開關(第6開關) SWCP1、SWCP2:斬波器開關 SYSa:第1系統 SYSb:第2系統 Vref1:基準電壓源 Vref2:基準電壓源 Vref3:基準電壓源 100: signal processing circuit 101: Charge amplifier 102: gain amplifier 103: filter AMP1a: amplifier (first amplifier) AMP1b: amplifier (second amplifier) AMP2, AMP3: amplifier Cos1a: holding capacitor (first holding capacitor) Cos1b: holding capacitor (second holding capacitor) Cfb3a, Cfb3b: feedback capacitance FB1a: Feedback circuit (first feedback circuit) FB1b: Feedback circuit (second feedback circuit) Rfb2a, Rfb2b, Rfb3a, Rfb3b: feedback resistance Rin2a, Rin2b, Rin3a, Rin3b: resistance between segments SEN: Sensor SIGa: No. 1 sensor signal SIGb: the second sensor signal SIGIN1a: Input signal of the first charge amplifier SIGIN1b: Input signal of the second charge amplifier SIGOUT1a: output signal of the first charge amplifier SIGOUT1b: output signal of the second charge amplifier SIGIN2a: Input signal of the first gain amplifier SIGIN2b: Input signal of the second gain amplifier SIGOUT2a: Output signal of the first gain amplifier SIGOUT2b: output signal of the second gain amplifier SIGIN3a: input signal of the first filter SIGIN3b: input signal of the second filter SIGOUT3a: the first filter output signal SIGOUT3b: output signal of the second filter SW1a: switch (first switch) SW2a: switch (second switch) SW3a: switch (third switch) SW1b: switch (4th switch) SW2b: Switch (5th switch) SW3b: Switch (6th switch) SWCP1, SWCP2: chopper switch SYSa: The first system SYSb: the second system Vref1: reference voltage source Vref2: reference voltage source Vref3: reference voltage source

Claims (9)

一種訊號處理電路,具備:電荷放大器,其將自感測器輸出之一對第1及第2電荷訊號之各者轉換為第1及第2電壓訊號;增益放大器,其將與上述第1及第2電壓訊號對應之第3及第4電壓訊號放大,其輸出端子並聯連接反饋電阻及段間電阻;及濾波器,其使與上述第3及第4電壓訊號對應之第5及第6電壓訊號中所包含之高頻成分衰減;上述電荷放大器具有並聯之第1及第2系統,上述第1系統具有:第1放大器,其將所輸入之上述第1電荷訊號轉換為上述第1電壓訊號;第1保持電容,其設置於上述第1放大器之輸出路徑;第1開關,其設置於將上述第1放大器之輸出端子與輸入端子連接且將上述第1放大器短路之短路路徑;第2開關,其設置於上述第1放大器之反饋路徑且並聯連接於上述第1開關,上述反饋路徑為RC共振電路;及第3開關,其一端連接於將上述第1放大器與上述第1放大器之基準電壓源連接之路徑,另一端連接於將第1保持電容與上述增益放大器連接之路徑;上述第2系統具有:第2放大器,其將所輸入之上述第2電荷訊號轉換為上述第2電壓訊號;第2保持電容,其連接於上述第2放大器之輸出路徑;第4開關,其設置於將上述第2放大器之輸出端子與輸入端子連接且將上述第2放大器短路之短路路徑;第5開關,其設置於上述第2放大器之反饋路徑且並聯連接於上述第4開關, 上述反饋路徑為RC共振電路;及第6開關,其一端連接於將上述第2放大器與上述第2放大器之基準電壓源連接之路徑,另一端連接於將上述第2保持電容與上述增益放大器連接之路徑;能夠取得上述第1、第3、第4及第6開關關閉且上述第2及第5開關打開之第1狀態、以及上述第1、第3、第4及第6開關打開且上述第2及第5開關關閉之第2狀態。 A signal processing circuit includes: a charge amplifier that converts each of a pair of first and second charge signals output from a sensor into first and second voltage signals; and a gain amplifier, which The third and fourth voltage signals corresponding to the second voltage signal are amplified, and the output terminals are connected in parallel to the feedback resistance and the inter-segment resistance; and the filter is to make the fifth and sixth voltages corresponding to the above third and fourth voltage signals The high frequency components contained in the signal are attenuated; the charge amplifier has first and second systems connected in parallel, and the first system has: a first amplifier that converts the input first charge signal into the first voltage signal A first holding capacitor, which is provided in the output path of the first amplifier; a first switch, which is provided in a short-circuit path that connects the output terminal of the first amplifier to the input terminal and short-circuits the first amplifier; the second switch , Which is provided in the feedback path of the first amplifier and connected in parallel to the first switch, the feedback path is an RC resonance circuit; and a third switch, one end of which is connected to a reference voltage connecting the first amplifier and the first amplifier The source connection path, the other end is connected to the path connecting the first holding capacitor and the gain amplifier; the second system has: a second amplifier that converts the input second charge signal into the second voltage signal; The second holding capacitor is connected to the output path of the second amplifier; the fourth switch is provided on a short-circuit path connecting the output terminal of the second amplifier to the input terminal and short-circuiting the second amplifier; the fifth switch, It is provided in the feedback path of the second amplifier and connected in parallel to the fourth switch, The feedback path is an RC resonance circuit; and a sixth switch, one end of which is connected to a path connecting the reference voltage source of the second amplifier and the second amplifier, and the other end is connected to connect the second holding capacitor to the gain amplifier Path; the first state where the first, third, fourth, and sixth switches are closed and the second and fifth switches are open, and the first, third, fourth, and sixth switches are open and the above The second state where the second and fifth switches are closed. 如請求項1所述之訊號處理電路,其中,上述第1及第2放大器之各者之輸入端子所具備之MOS電晶體為共同質心配置。 The signal processing circuit according to claim 1, wherein the MOS transistors provided for the input terminals of each of the first and second amplifiers are arranged with a common centroid. 如請求項1或2所述之訊號處理電路,其中,上述第1及第2放大器之各者之輸入端子所具備之MOS電晶體的閘極電極之面積大於上述增益放大器之輸入端子所具備之MOS電晶體的閘極電極之面積。 The signal processing circuit according to claim 1 or 2, wherein the area of the gate electrode of the MOS transistor provided in the input terminal of each of the first and second amplifiers is larger than that provided in the input terminal of the gain amplifier The area of the gate electrode of the MOS transistor. 如請求項1或2所述之訊號處理電路,其中,上述第1放大器具有第1輸入段、第1輸出段、及設置於上述第1輸出段之反饋路徑之第1相位補償電容,上述第2放大器具有第2輸入段、第2輸出段、及設置於上述第2輸出段之反饋路徑之第2相位補償電容,上述電荷放大器進而具有共同模式反饋電路,其於上述第1及第2輸出段之各者之輸出端子連接有輸入端子,於上述第1及第2輸入段之內部節點連接有輸出端子。 The signal processing circuit according to claim 1 or 2, wherein the first amplifier has a first input stage, a first output stage, and a first phase compensation capacitor provided in the feedback path of the first output stage, the first 2 The amplifier has a second input section, a second output section, and a second phase compensation capacitor provided in the feedback path of the second output section, the charge amplifier further has a common mode feedback circuit, which is output on the first and second outputs Input terminals are connected to the output terminals of each segment, and output terminals are connected to the internal nodes of the first and second input segments. 如請求項1或2所述之訊號處理電路,其中,上述第1狀態係於使上述第1及第2保持電容之各者保持上述第1及第2放大器之偏移電壓之偏移保持模式下取得,上述第2狀態係於上述偏移保持模式後於上述電荷放大器輸出上述第1及第 2電壓訊號之訊號輸出模式下取得。 The signal processing circuit according to claim 1 or 2, wherein the first state is an offset holding mode in which each of the first and second holding capacitors holds the offset voltage of the first and second amplifiers The second state is obtained after the offset holding mode, and the first and second 2 Obtained in the signal output mode of the voltage signal. 如請求項1或2所述之訊號處理電路,其中,上述第1系統進而具有設置於上述第1放大器之反饋路徑之第1反饋電路,上述第2系統進而具有設置於上述第2放大器之反饋路徑之第2反饋電路,上述第1及第2反饋電路分別具有並聯連接之反饋電阻及反饋電容。 The signal processing circuit according to claim 1 or 2, wherein the first system further has a first feedback circuit provided in the feedback path of the first amplifier, and the second system further has feedback provided in the second amplifier In the second feedback circuit of the path, the first and second feedback circuits have feedback resistors and feedback capacitors connected in parallel, respectively. 如請求項6所述之訊號處理電路,其中,藉由上述第1反饋電路設定之截止頻率小於上述第1電壓訊號之頻帶下限,藉由上述第2反饋電路設定之截止頻率小於上述第2電壓訊號之頻帶下限。 The signal processing circuit according to claim 6, wherein the cut-off frequency set by the first feedback circuit is less than the lower limit of the frequency band of the first voltage signal, and the cut-off frequency set by the second feedback circuit is less than the second voltage The lower limit of the frequency band of the signal. 如請求項1或2所述之訊號處理電路,其中,上述增益放大器進而具備:第3放大器,其將上述第3及第4電壓訊號放大;第1斬波器開關,其斷續地更換輸入至上述第3放大器之上述第3及第4電壓訊號;及第2斬波器開關,其再次更換自上述第3放大器輸出之上述第3及第4電壓訊號。 The signal processing circuit according to claim 1 or 2, wherein the gain amplifier further includes: a third amplifier that amplifies the third and fourth voltage signals; and a first chopper switch that intermittently replaces the input The third and fourth voltage signals to the third amplifier; and the second chopper switch, which replaces the third and fourth voltage signals output from the third amplifier again. 如請求項1或2所述之訊號處理電路,其中,上述第1及第2電荷訊號係自壓電感測器或熱電感測器擷取之相互成對之差動訊號。 The signal processing circuit according to claim 1 or 2, wherein the first and second charge signals are paired differential signals acquired from a voltage sensor or a thermal sensor.
TW108126124A 2018-10-30 2019-07-24 Signal processing circuit TWI695582B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204110 2018-10-30
JPJP2018-204110 2018-10-30

Publications (2)

Publication Number Publication Date
TW202017313A TW202017313A (en) 2020-05-01
TWI695582B true TWI695582B (en) 2020-06-01

Family

ID=70462051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126124A TWI695582B (en) 2018-10-30 2019-07-24 Signal processing circuit

Country Status (2)

Country Link
TW (1) TWI695582B (en)
WO (1) WO2020090699A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191800A1 (en) * 2007-02-09 2008-08-14 Deyou Fang Dual-chopper amplifier and its usage as readout circuit for capacitive sensors
US7605647B1 (en) * 2008-04-29 2009-10-20 Allegro Microsystems, Inc. Chopper-stabilized amplifier and magnetic field sensor
US20100079204A1 (en) * 2008-09-29 2010-04-01 Detlef Ummelmann Switched-capacitor amplifier arrangement having a low input current
US7724170B2 (en) * 2007-12-02 2010-05-25 The Chinese University Of Hong Kong Sensor interface devices and amplifiers
US20130300503A1 (en) * 2012-05-10 2013-11-14 That Corporation Programmable-gain amplifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354473B2 (en) * 2006-09-07 2009-10-28 株式会社半導体理工学研究センター Capacitive feedback chopper amplifier circuit
IT1394898B1 (en) * 2009-06-03 2012-07-20 St Microelectronics Rousset MICROELETTROMECHANICAL GYROSCOPE WITH POSITION CONTROL AND METHOD FOR THE CONTROL OF A MICROELECTRANOMANICAL GYROSCOPE
JP2018085701A (en) * 2016-11-25 2018-05-31 株式会社東海理化電機製作所 Instrumentation Amplifier
JP6911449B2 (en) * 2017-03-28 2021-07-28 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity sensor, electronic device and mobile body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191800A1 (en) * 2007-02-09 2008-08-14 Deyou Fang Dual-chopper amplifier and its usage as readout circuit for capacitive sensors
US7724170B2 (en) * 2007-12-02 2010-05-25 The Chinese University Of Hong Kong Sensor interface devices and amplifiers
US7605647B1 (en) * 2008-04-29 2009-10-20 Allegro Microsystems, Inc. Chopper-stabilized amplifier and magnetic field sensor
US20100079204A1 (en) * 2008-09-29 2010-04-01 Detlef Ummelmann Switched-capacitor amplifier arrangement having a low input current
US20130300503A1 (en) * 2012-05-10 2013-11-14 That Corporation Programmable-gain amplifier

Also Published As

Publication number Publication date
WO2020090699A1 (en) 2020-05-07
TW202017313A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP5244242B2 (en) Automatic correction feedback loop for offset and ripple suppression in chopper stabilized amplifiers
KR101127891B1 (en) Output amplifier circuit and sensor device using the same
JP6823932B2 (en) Voltage detector and battery monitoring system
JP5108449B2 (en) Switched-capacitor amplifier without dependency on capacitance element variation and operation method thereof
JP6476315B2 (en) Signal amplification circuit
KR100756613B1 (en) Analog filter circuit and adjustment method thereof
JP2000266776A (en) Amplification circuit for piezoelectric type acceleration sensor
TW200306698A (en) DC offset compensation circuit of closed loop operational amplifier and method of compensating for DC offset
TWI695582B (en) Signal processing circuit
JP2015194457A (en) Current detection circuit and pile-up detection circuit
JP2011071752A (en) Operational amplifier
US20200259503A1 (en) Semiconductor device for reading and outputting signal from a sensor
JP2003258604A (en) Semiconductor integrated circuit with mounted filter
US20230188105A1 (en) Analog signal processing circuit and method for eliminating dc offset voltage
WO2013138546A1 (en) Auto-zeroed amplifier with low input leakage
JP5284875B2 (en) Offset voltage correction circuit
JP2000201038A (en) Gain variable arithmetic amplifier
JP2010279000A (en) Output circuit
JP6098244B2 (en) Amplifier circuit
JP5612501B2 (en) Chopper type amplifier circuit
CN210693873U (en) Automatic correction circuit for output offset voltage of class-D power amplifier circuit
JP2019161556A (en) Data recording device
JP2009216449A (en) Vibration detection circuit and seismometer
JP4087228B2 (en) Switched capacitor amplifier circuit and electronic device
JP2008060882A (en) Amplifier circuit