TWI591328B - A method for measuring the curing temperature in the process of slag heating - Google Patents

A method for measuring the curing temperature in the process of slag heating Download PDF

Info

Publication number
TWI591328B
TWI591328B TW105126695A TW105126695A TWI591328B TW I591328 B TWI591328 B TW I591328B TW 105126695 A TW105126695 A TW 105126695A TW 105126695 A TW105126695 A TW 105126695A TW I591328 B TWI591328 B TW I591328B
Authority
TW
Taiwan
Prior art keywords
slag
temperature
sample
powder
sub
Prior art date
Application number
TW105126695A
Other languages
English (en)
Other versions
TW201807408A (zh
Inventor
jia-xian Xiao
shi-xian Liu
Cong-Yan Huang
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW105126695A priority Critical patent/TWI591328B/zh
Application granted granted Critical
Publication of TWI591328B publication Critical patent/TWI591328B/zh
Publication of TW201807408A publication Critical patent/TW201807408A/zh

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

一種測定爐渣升溫過程中固化溫度的方法
本發明是有關於一種爐渣流動性的量測方法,特別是指一種以觀察法直接觀察爐渣在升溫過程中的形態變化得到爐渣的固化溫度,繼而準確地得知爐渣流動性的量測方法。
爐渣是各種火法冶金工藝中礦石及原燃料中的雜質成分經過冶煉及高溫後與金屬分離得到的產物。爐渣在高溫下的流動性是非常重要的性質,爐渣具有良好的流動性就能夠與金屬順利的分離,同時為去除金屬中雜質的反應提供良好的動力學條件。因此如何準確地控制爐渣的流動性,是冶金領域中極為重要的課題。
現有控制爐渣流動性的方法是以量測爐渣的熔化溫度來進行,該熔化溫度是以降溫方式進行,並以黏度分析法得到。熔化溫度為黏度突然急遽上升的溫度點,就降溫過程的材料結構而言,應是接近完全固化,黏度計的轉子扭力方會突然增大。熔化性溫度在冶金科學中尚未標準規範定義,沒有給定量測黏度和溫度的範圍,目前主要利用定斜率法、定黏度法及兩切線相交法三種方式來定義。但是,上述三種方法皆無法準確定義熔化溫度,導致依所定義熔化溫度進行爐渣流動性控制時產生無法準確控制流動性的問題。
由以上說明可知,透過量測熔化溫度無法準確控制爐渣的流動性,因此仍有需要開發出一種能夠更簡便又準確地控制爐渣流動性的方法。
因此,本發明之目的,即在提供一種測定爐渣升溫過程中固化溫度的方法,包含以下步驟:
於是,本發明測定爐渣升溫過程中固化溫度的方法,包含以下步驟: 將爐渣粉末及一含有氧化鎂、氧化鋁、氧化鈣、二氧化矽及二氧化鈦的氧化物組成物粉末混合後加熱熔融,再使熔融得到的產物冷卻成型為一爐渣塊,再將該爐渣塊研磨成粉以製得一粉末樣品; 將該粉末樣品、水及黏結劑混合後造塊成型,得到一柱體樣品;及 加熱該柱體樣品,同時觀察在加熱過程中該柱體樣品的形狀變化,將該柱體樣品的形狀開始變化時的變形溫度做為爐渣的固化溫度。
本發明之功效在於:該測定爐渣升溫過程中固化溫度的方法透過將爐渣造塊成型並直接觀察其受熱於升溫過程中的形態變化得到爐渣的固化溫度,所得到的固化溫度能夠較準確地呈現爐渣的流動性,更利於控制爐渣的流動性。
以下將就本發明內容進行詳細說明:
較佳地,將在加熱過程中該柱體樣品的形狀變為半圓體時的溫度做為爐渣的液化溫度。
較佳地,將在加熱過程中該柱體樣品開始流動時的溫度做為爐渣的流動溫度。
較佳地,該加熱的方式是以10℃/min的速度升溫至1500℃。
較佳地,該粉末樣品的平均粒徑範圍為50μm至100μm 。
較佳地,該爐渣粉末的平均粒徑範圍為50μm至100μm 。
較佳地,該氧化物組成物粉末的平均粒徑範圍為50μm至75μm 。
較佳地,該爐渣是高爐的最終渣。該高爐的最終渣含有CaO、SiO 2、Al 2O 3、MgO、TiO 2
透過添加該氧化物組成物配置出所需之化學組成的爐渣。較佳地,該氧化物組成物含有氧化鎂、氧化鋁、氧化鈣、二氧化矽及二氧化鈦。以該氧化物組成物的總量為100 wt%,該氧化鎂的含量範圍為3至11wt%。以該氧化物組成物的總量為100 wt%,該氧化鋁的含量範圍為10至18wt%。以該氧化物組成物的總量為100 wt%,該氧化鈣的含量範圍為39至46 wt%。以該氧化物的總量為100 wt%,該二氧化矽的含量範圍為32至41 wt%。以該氧化物的總量為100 wt%,該二氧化鈦的含量範圍為0.3至4.5 wt%。
較佳地,該柱體樣品是一直徑3.5釐米及高度3.5釐米的圓柱體樣品。
較佳地,該黏結劑是澱粉。較佳地,以該粉末樣品、水及澱粉的總量為100wt%,該粉末樣品的用量範圍為70至77 wt%,該水的用量範圍為20至25 wt%,該澱粉的用量範圍為3至5 wt%。
本發明將就以下實施例來作進一步說明,但應瞭解的是,該實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。
[實施例1]
將煉鋼現場取得的高爐最終渣(final slag)先磨成平均粒徑範圍為50μm至100μm 的細粉,再與平均粒徑範圍為50μm至75μm的氧化物組成物粉末(含有39至46wt%的CaO、3至11 wt%的MgO、10至18 wt%的Al 2O 3、32至41wt%的SiO 2及0.3至4.5wt%的TiO 2)混合後放入一高溫爐內以1550℃加熱熔融,將熔融後的產物從該高溫爐中取出以冷卻成塊,得到一爐渣塊。將該爐渣塊敲碎並研磨成粉,得到一平均粒徑範圍為75μm的粉末樣品,並以感應耦合電漿原子發射光譜分析儀(ICP-AES)的方式對該待測粉末樣品進行成份分析。將該粉末樣品、水及澱粉(粉末樣品70至77 wt%,水:20至25 wt%,澱粉:3至5 wt%)混合後加壓成塊,製成一圓柱體樣品(直徑3.5釐米,高度3.5釐米)。將該圓柱體樣品置於一高溫爐(德國dataphysis公司,型號:OCA 15LHT plus)的爐管內加熱,加熱方式為10℃/min的速度升溫至1500℃,並在加熱升溫過程中使用一高溫光學影像拍攝器(德國dataphysis公司,型號:OCA 15LHT plus)拍攝該圓柱體樣品隨著溫度上升而產生的形狀變化。其中,圖1A是還未開始加熱時該圓柱體的照片;圖2A是在加熱過程中該圓柱體樣品的形狀剛開始變化時的照片,此時的溫度稱為變形溫度(deformation temperature);圖3A是在加熱過程中該圓柱體樣品的形狀變為半圓體時的照片,此時的溫度稱為液化溫度(liquidus temperature);圖4A是在加熱過程中該圓柱體樣品開始流動時的照片,此時的溫度稱為流動溫度(flow temperature)
[實施例2至31]
以與實施例1相同的步驟流程進行實施例2至31,差別在於使用不同的氧化物組成物粉末。
實施例1至31的變形溫度的量測結果如表1至表5中所示。
[利用已知黏度分析法量測熔化溫度]
將實施例1至31的粉末樣品進行黏度分析法,得到一黏度隨溫度變化的曲線,取該曲線的兩端的切線,並將兩條切線的相交點做為熔化溫度(為爐渣熔化後能自由流動的溫度,黏度突然急遽上升的溫度點),將得到的熔化性溫度與實施例1至31得到的變形溫度做比較。其中,黏度分析法的步驟如下所述:將110克的粉末樣品倒入一石墨坩堝內,再將該石墨坩堝放在一高溫爐渣黏度量測儀(廠商:BROOKFIELD,型號:MODEL DV-II)的樣品支架上,以升降裝置將坩堝上升至直立式高溫爐內進行加熱,直到坩堝內的粉末樣品完全熔融後,再以升降裝置將扭力式黏度計下降至定位,進行隨溫度下降的黏度量測,並同時獲得扭力隨時間上升以及溫度隨時間下降的數據,對照扭力與黏度的校正曲線得到該黏度隨溫度變化的曲線。測得的實施例1至31的熔化溫度如表1至表5中所示。
表1 <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td>   </td><td> 實施例 </td></tr><tr><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td></tr><tr><td> CaO(wt%) </td><td> 39.18 </td><td> 40.67 </td><td> 39.99 </td><td> 41.91 </td><td> 41.09 </td><td> 41.57 </td><td> 40.78 </td></tr><tr><td> MgO(wt%) </td><td> 4.20 </td><td> 5.67 </td><td> 6.57 </td><td> 3.29 </td><td> 6.93 </td><td> 5.88 </td><td> 7.01 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub>(wt%) </td><td> 15.39 </td><td> 15.40 </td><td> 14.28 </td><td> 15.88 </td><td> 14.06 </td><td> 14.63 </td><td> 14.07 </td></tr><tr><td> SiO<sub>2</sub>(wt%) </td><td> 40.36 </td><td> 37.02 </td><td> 36.25 </td><td> 38.06 </td><td> 36.20 </td><td> 36.25 </td><td> 35.42 </td></tr><tr><td> TiO<sub>2</sub>(wt%) </td><td> 0.34 </td><td> 0.47 </td><td> 0.42 </td><td> 0.30 </td><td> 0.53 </td><td> 0.48 </td><td> 0.49 </td></tr><tr><td> CaO/SiO<sub>2</sub></td><td> 0.97 </td><td> 1.10 </td><td> 1.10 </td><td> 1.10 </td><td> 1.14 </td><td> 1.15 </td><td> 1.15 </td></tr><tr><td> 變形溫度(℃) </td><td> 1283 </td><td> 1328 </td><td> 1333 </td><td> 1354 </td><td> 1348 </td><td> 1344 </td><td> 1370 </td></tr><tr><td> 熔化溫度(℃) </td><td> 1305 </td><td> 1345 </td><td> 1360 </td><td> 1330 </td><td> 1345 </td><td> 1345 </td><td> 1374 </td></tr><tr><td> 溫度差 </td><td> 22 </td><td> 17 </td><td> 27 </td><td> 24 </td><td> 3 </td><td> 1 </td><td> 4 </td></tr></TBODY></TABLE>
表2 <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td>   </td><td> 實施例 </td></tr><tr><td> 8 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td></tr><tr><td> CaO(wt%) </td><td> 44.96 </td><td> 42.77 </td><td> 43.88 </td><td> 42.24 </td><td> 42.59 </td><td> 42.84 </td><td> 40.16 </td></tr><tr><td> MgO(wt%) </td><td> 5.89 </td><td> 4.24 </td><td> 5.91 </td><td> 5.42 </td><td> 5.03 </td><td> 4.59 </td><td> 9.01 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub>(wt%) </td><td> 10.48 </td><td> 15.45 </td><td> 13.79 </td><td> 15.52 </td><td> 15.47 </td><td> 15.50 </td><td> 15.55 </td></tr><tr><td> SiO<sub>2</sub>(wt%) </td><td> 38.85 </td><td> 36.70 </td><td> 37.29 </td><td> 35.71 </td><td> 35.97 </td><td> 36.14 </td><td> 33.87 </td></tr><tr><td> TiO<sub>2</sub>(wt%) </td><td> 0.42 </td><td> 0.34 </td><td> 0.55 </td><td> 0.44 </td><td> 0.42 </td><td> 0.77 </td><td> 0.55 </td></tr><tr><td> CaO/SiO<sub>2</sub></td><td> 1.16 </td><td> 1.17 </td><td> 1.18 </td><td> 1.18 </td><td> 1.18 </td><td> 1.19 </td><td> 1.19 </td></tr><tr><td> 變形溫度(℃) </td><td> 1340 </td><td> 1350 </td><td> 1353 </td><td> 1356 </td><td> 1348 </td><td> 1347 </td><td> 1404 </td></tr><tr><td> 熔化溫度(℃) </td><td> 1313 </td><td> 1350 </td><td> 1331 </td><td> 1360 </td><td> 1370 </td><td> 1360 </td><td> 1400 </td></tr><tr><td> 溫度差 </td><td> 27 </td><td> 0 </td><td> 22 </td><td> 4 </td><td> 22 </td><td> 13 </td><td> 4 </td></tr></TBODY></TABLE>
表3 <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td>   </td><td> 實施例 </td></tr><tr><td> 15 </td><td> 16 </td><td> 17 </td><td> 18 </td><td> 19 </td><td> 20 </td><td> 21 </td></tr><tr><td> CaO(wt%) </td><td> 41.16 </td><td> 41.60 </td><td> 42.33 </td><td> 41.63 </td><td> 41.99 </td><td> 42.87 </td><td> 41.49 </td></tr><tr><td> MgO(wt%) </td><td> 10.36 </td><td> 5.81 </td><td> 5.73 </td><td> 7.35 </td><td> 6.78 </td><td> 5.19 </td><td> 7.49 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub>(wt%) </td><td> 16.11 </td><td> 17.62 </td><td> 15.37 </td><td> 15.27 </td><td> 15.32 </td><td> 15.34 </td><td> 13.65 </td></tr><tr><td> SiO<sub>2</sub>(wt%) </td><td> 34.66 </td><td> 34.79 </td><td> 35.31 </td><td> 34.55 </td><td> 34.84 </td><td> 35.54 </td><td> 34.37 </td></tr><tr><td> TiO<sub>2</sub>(wt%) </td><td> 0.58 </td><td> 0.55 </td><td> 0.48 </td><td> 0.49 </td><td> 0.49 </td><td> 0.45 </td><td> 0.45 </td></tr><tr><td> CaO/SiO<sub>2</sub></td><td> 1.19 </td><td> 1.20 </td><td> 1.20 </td><td> 1.20 </td><td> 1.21 </td><td> 1.21 </td><td> 1.21 </td></tr><tr><td> 變形溫度(℃) </td><td> 1402 </td><td> 1381 </td><td> 1371 </td><td> 1399 </td><td> 1375 </td><td> 1336 </td><td> 1390 </td></tr><tr><td> 熔化溫度(℃) </td><td> 1375 </td><td> 1410 </td><td> 1370 </td><td> 1395 </td><td> 1380 </td><td> 1370 </td><td> 1360 </td></tr><tr><td> 溫度差 </td><td> 27 </td><td> 29 </td><td> 1 </td><td> 4 </td><td> 5 </td><td> 34 </td><td> 30 </td></tr></TBODY></TABLE>
表4 <TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td>   </td><td> 實施例 </td></tr><tr><td> 22 </td><td> 23 </td><td> 24 </td><td> 25 </td><td> 26 </td><td> 27 </td><td> 28 </td></tr><tr><td> CaO(wt%) </td><td> 42.22 </td><td> 42.63 </td><td> 41.14 </td><td> 39.69 </td><td> 41.89 </td><td> 40.77 </td><td> 42.49 </td></tr><tr><td> MgO(wt%) </td><td> 5.47 </td><td> 5.88 </td><td> 6.87 </td><td> 6.62 </td><td> 6.97 </td><td> 6.77 </td><td> 6.41 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub>(wt%) </td><td> 14.32 </td><td> 15.96 </td><td> 17.78 </td><td> 17.11 </td><td> 14.49 </td><td> 17.54 </td><td> 14.78 </td></tr><tr><td> SiO<sub>2</sub>(wt%) </td><td> 34.62 </td><td> 34.92 </td><td> 33.38 </td><td> 32.20 </td><td> 33.85 </td><td> 32.92 </td><td> 33.77 </td></tr><tr><td> TiO<sub>2</sub>(wt%) </td><td> 0.60 </td><td> 0.50 </td><td> 1.04 </td><td> 4.15 </td><td> 0.49 </td><td> 2.07 </td><td> 0.56 </td></tr><tr><td> CaO/SiO<sub>2</sub></td><td> 1.22 </td><td> 1.22 </td><td> 1.23 </td><td> 1.23 </td><td> 1.24 </td><td> 1.24 </td><td> 1.26 </td></tr><tr><td> 變形溫度(℃) </td><td> 1404 </td><td> 1376 </td><td> 1408 </td><td> 1390 </td><td> 1405 </td><td> 1396 </td><td> 1405 </td></tr><tr><td> 熔化溫度(℃) </td><td> 1370 </td><td> 1412 </td><td> 1430 </td><td> 1402 </td><td> 1415 </td><td> 1422 </td><td> 1415 </td></tr><tr><td> 溫度差 </td><td> 34 </td><td> 36 </td><td> 22 </td><td> 12 </td><td> 10 </td><td> 26 </td><td> 5 </td></tr></TBODY></TABLE>
表5 <TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td>   </td><td> 實施例 </td></tr><tr><td> 29 </td><td> 30 </td><td> 31 </td></tr><tr><td> CaO(wt%) </td><td> 43.85 </td><td> 43.85 </td><td> 45.95 </td></tr><tr><td> MgO(wt%) </td><td> 5.51 </td><td> 5.72 </td><td> 4.32 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub>(wt%) </td><td> 15.40 </td><td> 15.41 </td><td> 15.44 </td></tr><tr><td> SiO<sub>2</sub>(wt%) </td><td> 34.24 </td><td> 33.83 </td><td> 33.54 </td></tr><tr><td> TiO<sub>2</sub>(wt%) </td><td> 0.46 </td><td> 0.47 </td><td> 0.34 </td></tr><tr><td> CaO/SiO<sub>2</sub></td><td> 1.28 </td><td> 1.30 </td><td> 1.37 </td></tr><tr><td> 變形溫度(℃) </td><td> 1384 </td><td> 1403 </td><td> 1406 </td></tr><tr><td> 熔化溫度(℃) </td><td> 1397 </td><td> 1404 </td><td> 1432 </td></tr><tr><td> 溫度差 </td><td> 13 </td><td> 1 </td><td> 26 </td></tr></TBODY></TABLE>
從表1至表5可知,實施例1至31的變形溫度與熔化溫度的差值在0至36℃間,因此可將變形溫度視為爐渣的固化溫度。
綜上所述,本發明爐渣流動性的量測方法透過將爐渣造塊成型,直接觀察其受熱於升溫過程中的形態變化得到爐渣的固化溫度,所得到的固化溫度能夠較準確地呈現爐渣的流動性,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: [圖1A]是本發明爐渣流動性的量測方法的實施例1的圓柱體樣品的照片; [圖1B]是圖1A照片對應的方格圖; [圖2A]是該實施例1的圓柱體樣品在加熱過程中形狀剛開始變化時的照片; [圖2B]是圖2A照片對應的方格圖; [圖3A]是該實施例1的圓柱體樣品在加熱過程中形狀變為半圓體時的照片 [圖3B]是圖3A照片對應的方格圖; [圖4A]是該實施例1的圓柱體樣品在加熱過程中開始流動時的照片;及 [圖4B]是圖4A照片對應的方格圖。

Claims (3)

  1. 一種測定爐渣升溫過程中固化溫度的方法,包含以下步驟:將爐渣粉末及一含有氧化鎂、氧化鋁、氧化鈣、二氧化矽及二氧化鈦的氧化物組成物粉末混合後加熱熔融,再使加熱熔融得到的產物冷卻成型為一爐渣塊,再將該爐渣塊研磨成粉以製得一粉末樣品,其中,該爐渣粉末的平均粒徑範圍為50μm至100μm,該氧化物組成物粉末的平均粒徑範圍為50μm至75μm,以及該粉末樣品的平均粒徑範圍為50μm至100μm;將該粉末樣品、水及黏結劑混合後造塊成型,得到一柱體樣品;及加熱該柱體樣品,同時觀察在加熱過程中該柱體樣品的形狀變化,將該柱體樣品的形狀開始變化時的變形溫度做為爐渣的固化溫度,其中,該加熱的方式是以10℃/min的速度升溫至1500℃。
  2. 如請求項1所述的測定爐渣升溫過程中固化溫度的方法,其中,該爐渣是高爐的最終渣。
  3. 如請求項1所述的測定爐渣升溫過程中固化溫度的方法,其中,該柱體樣品是一直徑3.5釐米及高度3.5釐米的圓柱體樣品。
TW105126695A 2016-08-22 2016-08-22 A method for measuring the curing temperature in the process of slag heating TWI591328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105126695A TWI591328B (zh) 2016-08-22 2016-08-22 A method for measuring the curing temperature in the process of slag heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105126695A TWI591328B (zh) 2016-08-22 2016-08-22 A method for measuring the curing temperature in the process of slag heating

Publications (2)

Publication Number Publication Date
TWI591328B true TWI591328B (zh) 2017-07-11
TW201807408A TW201807408A (zh) 2018-03-01

Family

ID=60048581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126695A TWI591328B (zh) 2016-08-22 2016-08-22 A method for measuring the curing temperature in the process of slag heating

Country Status (1)

Country Link
TW (1) TWI591328B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111957917B (zh) * 2020-09-17 2022-05-03 贵州理工学院 一种获取连铸保护渣凝固渣膜的装置及其方法

Also Published As

Publication number Publication date
TW201807408A (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
Kim et al. Structure-viscosity relationship of low-silica calcium aluminosilicate melts
Gao et al. Effect of alkaline earth metal oxides on the viscosity and structure of the CaO-Al2O3 based mold flux for casting high-al steels
Sasai Direct measurement of agglomeration force exerted between alumina particles in molten steel
Shi et al. Effect of TiO 2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels
Li et al. Effect of TiO2 addition on crystallization characteristics of CaO-Al2O3-based mould fluxes for high Al steel casting
TWI593658B (zh) High zirconia electroformed refractory
JP2007223892A (ja) アルミア−酸化チタン−ジルコニア溶融粒子
US9828481B2 (en) Method of manufacturing porous ceramic body and composition for porous ceramic body
Shu et al. Effect of Na2O on dissolution rate of alumina in CaO–Al2O3–MgO–SiO2 slag
CN108137412B (zh) 氧化锆-尖晶石熔融颗粒和由所述颗粒获得的耐火产品
Shiau et al. Effect of magnesium and aluminum oxides on fluidity of final blast furnace slag and its application
CN100417627C (zh) 不定型耐火材料
TWI591328B (zh) A method for measuring the curing temperature in the process of slag heating
CN104278176A (zh) 一种高质量Al-5Ti-1B中间合金的制备方法
JP2018530509A (ja) マグネシウムに富んでいる溶融アルミン酸マグネシウム粒子
CN110214130B (zh) 基于锆石的烧结混凝土
Jung et al. Thermophysical properties of continuous casting mold flux for advanced steel developments
Janovszky et al. Stable miscibility gap in liquid Cu–Zr–Ag ternary alloy
Xu et al. Effects of MgO content and CaO/Al2O3 ratio on surface tension of calcium aluminate refining slag
JP5773891B2 (ja) 下注ぎ造塊方法
RU2410349C1 (ru) Способ получения плавленолитого материала комсилит стс для футеровки тепловых агрегатов цветной металлургии
Xie et al. Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions
Mergen Production of sintered high alumina refractories from Turkish bauxite ore
Chen et al. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material
KR20160136346A (ko) 마그네슘-풍부 마그네슘 알루미네이트의 용융 입자