TWI587623B - Synchronous motor control circuit and control method - Google Patents
Synchronous motor control circuit and control method Download PDFInfo
- Publication number
- TWI587623B TWI587623B TW105133635A TW105133635A TWI587623B TW I587623 B TWI587623 B TW I587623B TW 105133635 A TW105133635 A TW 105133635A TW 105133635 A TW105133635 A TW 105133635A TW I587623 B TWI587623 B TW I587623B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- command
- voltage
- axis
- unit
- Prior art date
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本案係關於一種同步電機控制方法,且特別係關於一種進行弱磁控制的同步電機控制方法。This case relates to a synchronous motor control method, and in particular to a synchronous motor control method for performing field weakening control.
永磁同步電機具備功率密度高、電機效率佳等節能特性。隨著環保節能意識高漲,永磁同步電機逐漸取代傳統馬達,應用在各種設備應用中。Permanent magnet synchronous motors have energy-saving features such as high power density and good motor efficiency. With the awareness of environmental protection and energy conservation, permanent magnet synchronous motors have gradually replaced traditional motors and are used in various equipment applications.
在永磁同步電機的驅動控制中,可以藉由弱磁電流擴大永磁同步電機的運轉範圍。然而,弱磁電流過多時易導致電機輸出扭力不足、運行效率不佳等問題。相對地,弱磁電流不足時易導致轉速無法提升、控制不穩定等問題。因此,如何改善弱磁控制策略,以提升同步電機的控制穩定度,為本領域重要的研究課題。In the drive control of the permanent magnet synchronous motor, the operating range of the permanent magnet synchronous motor can be expanded by the field weakening current. However, when the weak magnetic current is too much, the motor output torque is insufficient and the operating efficiency is not good. In contrast, when the weak magnetic current is insufficient, the speed cannot be increased, and the control is unstable. Therefore, how to improve the weak magnetic control strategy to improve the control stability of synchronous motors is an important research topic in the field.
本揭示內容的一態樣為一種控制方法。控制方法用於控制一同步電機,其中該控制方法包含:由一最大轉矩電流比控制單元根據一頻率命令與該同步電機的一電氣頻率計算一第一直軸電流命令以及一交軸電流命令;當該同步電機的一回授輸出電壓大於一電壓控制準位時,由一電壓控制單元輸出一弱磁電流命令;由一前饋控制單元根據該電氣頻率、一電壓目標準位,以及該交軸電流命令計算一弱磁電流前饋項;當該弱磁電流命令與該弱磁電流前饋項之和小於該第一直軸電流命令時,以該弱磁電流命令與該弱磁電流前饋項之和調整該第一直軸電流命令以輸出一第二直軸電流命令;以及由一電壓命令輸出單元分別根據該第二直軸電流命令與該交軸電流命令輸出一直軸電壓命令與一交軸電壓命令,以控制該同步電機。One aspect of the present disclosure is a control method. The control method is for controlling a synchronous motor, wherein the control method comprises: calculating, by a maximum torque current ratio control unit, a first direct axis current command and an intersecting current command according to a frequency command and an electrical frequency of the synchronous motor When a feedback output voltage of the synchronous motor is greater than a voltage control level, a voltage weakening current command is output by a voltage control unit; and a feedforward control unit is based on the electrical frequency, a voltage standard level, and the The cross-axis current command calculates a weak magnetic current feedforward term; when the sum of the weak magnetic current command and the weak magnetic current feedforward term is less than the first direct-axis current command, the weak magnetic current command and the weak magnetic current are a sum of the feedforward terms to adjust the first direct axis current command to output a second direct axis current command; and a voltage command output unit to output a constant axis voltage command according to the second straight axis current command and the intersecting current command respectively With a cross-axis voltage command to control the synchronous motor.
在部分實施例中,由前饋控制單元計算該弱磁電流前饋項包含:根據該同步電機的一磁交鏈參數取得一參考模型;以及藉由該參考模型根據該電氣頻率、該電壓目標準位以及該交軸電流命令計算該弱磁電流前饋項。In some embodiments, calculating the field weakening current feedforward by the feedforward control unit includes: obtaining a reference model according to a magnetic flux linkage parameter of the synchronous motor; and using the reference model according to the electrical frequency, the voltage target The standard bit and the quadrature current command calculate the field weakening current feedforward term.
在部分實施例中,控制方法更包含:由一電壓飽和調節單元根據一直軸電流誤差值與一交軸電流誤差值計算一頻率命令修正項,其中該直軸電流誤差值為該第二直軸電流命令與一直軸回授電流之差,該交軸電流誤差值為該交軸電流命令與一交軸回授電流之差;以及由該電壓飽和調節單元根據該頻率命令修正項調整該頻率命令。In some embodiments, the control method further includes: calculating, by a voltage saturation adjustment unit, a frequency command correction term according to the quadrature current error value and an quadrature current error value, wherein the direct axis current error value is the second straight axis a difference between the current command and the constant-axis feedback current, the offset current error value being a difference between the cross-axis current command and a quadrature feedback current; and the voltage saturation adjustment unit adjusting the frequency command according to the frequency command correction term .
在部分實施例中,控制方法更包含:由一第一運算單元計算該弱磁電流命令與該弱磁電流前饋項之和與該第一直軸電流命令之差以得到一弱磁電流補償量;由一限幅單元對該弱磁電流補償量進行限幅,其中當該弱磁電流補償量大於零時,該限幅單元輸出的該弱磁電流補償量為零;以及由一第二運算單元根據經限幅後的該弱磁電流補償量修正該第一直軸電流命令以輸出該第二直軸電流命令。In some embodiments, the control method further includes: calculating, by a first computing unit, a difference between the weak magnetic current command and the weak magnetic current feedforward term and the first direct current command to obtain a field weakening current compensation The amount of the field weakening current compensation is limited by a limiting unit, wherein when the field weakening current compensation amount is greater than zero, the weakening current compensation amount output by the limiting unit is zero; The arithmetic unit corrects the first direct axis current command according to the limited field weak current compensation amount to output the second straight axis current command.
在部分實施例中,由該電壓命令輸出單元輸出該直軸電壓命令與該交軸電壓命令包含:由一第三運算單元根據該第二直軸電流命令與該同步電機的一直軸回授電流計算一直軸電流誤差值;由該電壓命令輸出單元的一直軸電流控制器根據該直軸電流誤差值輸出該直軸電壓命令;由一第四運算單元根據該交軸電流命令與該同步電機的一交軸回授電流計算一交軸電流誤差值;以及由該電壓命令輸出單元的一交軸電流控制器根據該交軸電流誤差值輸出該交軸電壓命令。In some embodiments, the outputting the direct-axis voltage command and the cross-axis voltage command by the voltage command output unit includes: returning a current from the linear axis of the synchronous motor according to the second straight-axis current command by a third arithmetic unit Calculating a linear current error value; the constant axis current controller of the voltage command output unit outputs the direct axis voltage command according to the straight axis current error value; and the fourth arithmetic unit commands the synchronous motor according to the intersecting current command A quadrature axis feedback current calculates an axis current error value; and an on-axis current controller of the voltage command output unit outputs the cross-axis voltage command according to the cross-axis current error value.
在部分實施例中,控制方法更包含:由該電壓控制單元中的一第一比例控制器接收一直流母線電壓以輸出該電壓控制準位;以及由該前饋控制單元中的一第二比例控制器接收該直流母線電壓以輸出該電壓目標準位。In some embodiments, the control method further includes: receiving, by a first proportional controller of the voltage control unit, a DC bus voltage to output the voltage control level; and a second ratio of the feedforward control unit The controller receives the DC bus voltage to output the voltage standard bit.
本揭示內容的另一態樣為一種同步電機控制電路。同步電機控制電路包含:一最大轉矩電流比控制單元,用以根據一頻率命令與一同步電機的一電氣頻率計算一第一直軸電流命令以及一交軸電流命令;一電壓控制單元,用以根據該同步電機的一回授輸出電壓與一電壓控制準位輸出一弱磁電流命令;一前饋控制單元,用以根據該電氣頻率、一電壓目標準位,以及該交軸電流命令計算一弱磁電流前饋項;一電流命令補償單元,電性耦接於該最大轉矩電流比控制單元、該電壓控制單元與該前饋控制單元,用以根據該弱磁電流命令與該弱磁電流前饋項調整該第一直軸電流命令以輸出一第二直軸電流命令;以及一電壓命令輸出單元,電性耦接於該電流命令補償單元與該最大轉矩電流比控制單元,用以根據該第二直軸電流命令與該交軸電流命令分別輸出一直軸電壓命令與一交軸電壓命令,以控制該同步電機。Another aspect of the present disclosure is a synchronous motor control circuit. The synchronous motor control circuit includes: a maximum torque current ratio control unit configured to calculate a first direct current command and a cross current command according to a frequency command and an electrical frequency of a synchronous motor; and a voltage control unit Outputting a weak magnetic current command according to a feedback output voltage of the synchronous motor and a voltage control level; a feedforward control unit for calculating according to the electrical frequency, a voltage standard bit, and the cross current command a weak current current feedforward term; a current command compensation unit electrically coupled to the maximum torque current ratio control unit, the voltage control unit and the feedforward control unit for commanding the weak current command and the weak a magnetic current feedforward term adjusts the first direct current command to output a second direct current command; and a voltage command output unit electrically coupled to the current command compensation unit and the maximum torque current ratio control unit, And outputting a constant axis voltage command and a cross-axis voltage command respectively according to the second straight-axis current command and the cross-axis current command to control the synchronous motor.
在部分實施例中,同步電機控制電路更包含一電壓飽和調節單元,該電壓飽和調節單元包含:一電壓飽和調節器,用以根據該第二直軸電流命令與一直軸回授電流之差,以及該交軸電流命令與一交軸回授電流之差計算一頻率命令修正項;以及一頻率命令運算單元,用以根據頻率命令修正項調整該頻率命令。In some embodiments, the synchronous motor control circuit further includes a voltage saturation adjustment unit, and the voltage saturation adjustment unit includes: a voltage saturation regulator for determining a difference between the second direct current command and the constant current feedback current. And calculating a frequency command correction term by the difference between the quadrature current command and a quadrature feedback current; and a frequency command operation unit for adjusting the frequency command according to the frequency command correction term.
在部分實施例中,該電流命令補償單元包含:一第一運算單元,用以計算該弱磁電流命令與該弱磁電流前饋項之和與該第一直軸電流命令之差以得到一弱磁電流補償量;一限幅單元,用以對該弱磁電流補償量進行限幅,當該弱磁電流補償量大於零時,該限幅單元輸出的該弱磁電流補償量為零;以及一第二運算單元,用以根據該限幅單元輸出的該弱磁電流補償量修正該最大轉矩電流比控制單元輸出的該第一直軸電流命令以輸出該第二直軸電流命令。In some embodiments, the current command compensation unit includes: a first operation unit, configured to calculate a difference between the weak magnetic current command and the weak magnetic current feed forward term and the first straight axis current command to obtain a a weak magnetic current compensation amount; a limiting unit configured to limit the weak magnetic current compensation amount, and when the weak magnetic current compensation amount is greater than zero, the weak magnetic current compensation amount output by the limiting unit is zero; And a second operation unit, configured to correct the first direct-axis current command output by the maximum torque-current ratio control unit according to the weak magnetic current compensation amount output by the limiting unit to output the second direct-axis current command.
在部分實施例中,該前饋控制單元包含根據該同步電機的一磁交鏈參數取得之一參考模型,該前饋控制單元係藉由該參考模型計算該弱磁電流前饋項。In some embodiments, the feedforward control unit includes a reference model obtained from a magnetic flux linkage parameter of the synchronous motor, and the feedforward control unit calculates the field weakening current feed term by the reference model.
綜上所述,本案的同步電機控制電路藉由結合電壓控制單元以及電機參考模型的前饋控制提供弱磁電流,可兼顧控制器的快速響應與穩定操作。In summary, the synchronous motor control circuit of the present invention provides the weak magnetic current by the feedforward control combined with the voltage control unit and the motor reference model, which can take into account the fast response and stable operation of the controller.
請參考第1圖。第1圖為根據本案部分實施例所繪示的同步電機控制電路100的示意圖。在部分實施例中,同步電機控制電路100可輸出直軸(d-axis)電壓命令Vd*與交軸(q-axis)電壓命令Vq*,以控制永磁同步電機(Permanent Magnet Synchronous Motor,PMSM)。舉例來說,同步電機控制電路100所輸出直軸電壓命令Vd*與交軸電壓命令Vq*可進一步經由逆帕克變換(Park's Transformation)轉換為同步電機的三相電壓命令,再透過相應的驅動電路輸出驅動訊號(如:脈寬調變訊號等等)以驅動同步電機。換言之,同步電機控制電路100可透過調整其輸出的直軸電壓命令Vd*與交軸電壓命令Vq*對同步電機的輸出電壓、輸出電流及轉速等等進行控制。Please refer to Figure 1. FIG. 1 is a schematic diagram of a synchronous motor control circuit 100 according to some embodiments of the present disclosure. In some embodiments, the synchronous motor control circuit 100 can output a d-axis voltage command Vd* and a q-axis voltage command Vq* to control a permanent magnet synchronous motor (PMSM). ). For example, the direct-axis voltage command Vd* and the cross-axis voltage command Vq* output by the synchronous motor control circuit 100 can be further converted into a three-phase voltage command of the synchronous motor via a Park's Transformation, and then transmitted through the corresponding driving circuit. Output drive signals (such as pulse width modulation signals, etc.) to drive the synchronous motor. In other words, the synchronous motor control circuit 100 can control the output voltage, the output current, the rotational speed, and the like of the synchronous motor by adjusting the direct-axis voltage command Vd* and the cross-axis voltage command Vq* of the output.
如第1圖所示,在部分實施例中,同步電機控制電路100包含最大轉矩電流比(maximum torque per ampere,MTPA)控制單元110、電壓控制單元120、前饋控制單元130、電流命令補償單元140以及電壓命令輸出單元150。As shown in FIG. 1, in some embodiments, the synchronous motor control circuit 100 includes a maximum torque per ampere (MTPA) control unit 110, a voltage control unit 120, a feedforward control unit 130, and current command compensation. Unit 140 and voltage command output unit 150.
具體來說,在部分實施例中,最大轉矩電流比控制單元110可根據頻率命令ω cmd以及同步電機的電氣頻率ω r計算同步電機所需的轉矩,並透過最大轉矩電流比控制策略計算第一直軸電流命令Id mtp以及交軸電流命令Iq cmd,以提供最大轉矩輸出,進行對同步電機的轉矩控制。 Specifically, in some embodiments, the maximum torque current ratio control unit 110 can calculate the torque required by the synchronous motor according to the frequency command ω cmd and the electrical frequency ω r of the synchronous motor, and pass the maximum torque current ratio control strategy. The first straight-axis current command Id mtp and the cross-axis current command Iq cmd are calculated to provide a maximum torque output for torque control of the synchronous motor.
在部分實施例中,隨著同步電機的轉速或負載增加,同步電機之端電壓也會隨之增加。為避免驅動電路輸出電壓飽和導致轉速無法提升或控制不穩定的現象,同步電機控制電路100可相應進行弱磁控制,以增加同步電機的運作範圍,使得同步電機運作在高於額定頻率以上。In some embodiments, as the speed or load of the synchronous motor increases, the terminal voltage of the synchronous motor also increases. In order to avoid the phenomenon that the output voltage of the driving circuit is saturated and the speed cannot be improved or the control is unstable, the synchronous motor control circuit 100 can perform the field weakening control correspondingly to increase the operating range of the synchronous motor, so that the synchronous motor operates above the rated frequency.
具體來說,同步電機控制電路100可透過電壓控制單元120以及前饋控制單元130計算運作在弱磁控制區時所需的電流命令。如第1圖所示,電壓控制單元120用以根據同步電機的回授輸出電壓V fbk與電壓控制準位Vc輸出弱磁電流命令Id vc。舉例來說,在部分實施例中,回授輸出電壓V fbk可由直軸電壓命令Vd*與交軸電壓命令Vq*平方和開根號計算而得。當回授輸出電壓V fbk高於電壓控制準位Vc時,電壓控制單元120輸出弱磁電流命令Id vc。 Specifically, the synchronous motor control circuit 100 can calculate the current command required to operate in the field weakening control region through the voltage control unit 120 and the feedforward control unit 130. As shown in FIG. 1, the voltage control unit 120 is configured to output the field weakening current command Id vc according to the feedback output voltage V fbk of the synchronous motor and the voltage control level Vc. For example, in some embodiments, the feedback output voltage V fbk can be calculated from the straight-axis voltage command Vd* and the cross-axis voltage command Vq* squared opening number. When the feedback output voltage V fbk is higher than the voltage control level Vc, the voltage control unit 120 outputs the field weakening current command Id vc .
前饋控制單元130用以根據同步電機的電氣頻率ω r、電壓目標準位Vt,以及交軸電流命令Iq cmd計算弱磁電流前饋項Id ffd。具體來說,前饋控制單元130係透過同步電機的參考模型計算目前狀態下同步電機的直軸電流。如此一來,透過相加弱磁電流前饋項Id ffd以及弱磁電流命令Id vc,便可得到在弱磁控制區時所需的電流命令。前饋控制單元130計算弱磁電流前饋項Id ffd的具體操作將在後續段落中搭配圖示進行詳細說明。 The feedforward control unit 130 is configured to calculate the field weakening current feedforward term Id ffd according to the electrical frequency ω r of the synchronous motor, the voltage standard bit Vt, and the intersecting current command Iq cmd . Specifically, the feedforward control unit 130 calculates the direct current of the synchronous motor in the current state through the reference model of the synchronous motor. In this way, by adding the weak magnetic current feedforward term Id ffd and the weak magnetic current command Id vc , the current command required in the field weakening control region can be obtained. The specific operation of the feedforward control unit 130 to calculate the field weakening current feedforward term Id ffd will be described in detail in the following paragraphs with the drawings.
在部分實施例中,同步電機控制電路100可由電流命令補償單元140判斷同步電機操作在MTPA控制區或是弱磁控制區。在結構上,電流命令補償單元140電性耦接於最大轉矩電流比控制單元110、電壓控制單元120,以及前饋控制單元130。電流命令補償單元140用以根據電壓控制單元120輸出的弱磁電流命令Id vc與前饋控制單元130輸出的弱磁電流前饋項Id ffd調整第一直軸電流命令Id mtp。藉此,電流命令補償單元140便可輸出經調整後的第二直軸電流命令Id cmd。如此一來,第二直軸電流命令Id cmd以及交軸電流命令Iq cmd便可輸出至電壓命令輸出單元150。 In some embodiments, the synchronous motor control circuit 100 can be judged by the current command compensation unit 140 to operate the synchronous motor in the MTPA control region or the field weakening control region. Structurally, the current command compensation unit 140 is electrically coupled to the maximum torque current ratio control unit 110, the voltage control unit 120, and the feedforward control unit 130. The current command compensation unit 140 is configured to adjust the first direct axis current command Id mtp according to the field weakening current command Id vc output by the voltage control unit 120 and the field weakening current feed term Id ffd output by the feedforward control unit 130. Thereby, the current command compensation unit 140 can output the adjusted second straight-axis current command Id cmd . In this way, the second straight-axis current command Id cmd and the cross-axis current command Iq cmd can be output to the voltage command output unit 150.
換言之,最大轉矩電流比控制單元110、電壓控制單元120、前饋控制單元130、電流命令補償單元140組成一電流命令輸出單元,在協同操作下根據同步電機的操作狀態選擇性地輸出第二直軸電流命令Id cmd以及交軸電流命令Iq cmd。在MTPA控制下,第二直軸電流命令Id cmd以及交軸電流命令Iq cmd可為提供最大轉矩電流比的電流命令。另一方面,在弱磁控制下,第二直軸電流命令Id cmd係根據弱磁電流前饋項Id ffd以及弱磁電流命令Id vc修正,以抑制同步電機的輸出電壓增加。如此一來,同步電機便可運作在額定頻率以上。 In other words, the maximum torque current ratio control unit 110, the voltage control unit 120, the feedforward control unit 130, and the current command compensation unit 140 constitute a current command output unit that selectively outputs the second according to the operating state of the synchronous motor under cooperative operation. Straight axis current command Id cmd and cross axis current command Iq cmd . Under MTPA control, the second direct axis current command Id cmd and the quadrature current command Iq cmd may be current commands that provide a maximum torque to current ratio. On the other hand, under the field weakening control, the second direct-axis current command Id cmd is corrected based on the field weakening current feedforward term Id ffd and the field weakening current command Id vc to suppress an increase in the output voltage of the synchronous motor. In this way, the synchronous motor can operate above the rated frequency.
在結構上,電壓命令輸出單元150電性耦接於電流命令補償單元140與最大轉矩電流比控制單元110。電壓命令輸出單元150用以根據第二直軸電流命令Id cmd以及交軸電流命令Iq cmd分別輸出直軸電壓命令Vd*與交軸電壓命令Vq*,以驅動同步電機。 Structurally, the voltage command output unit 150 is electrically coupled to the current command compensation unit 140 and the maximum torque current ratio control unit 110. The voltage command output unit 150 is configured to output a direct-axis voltage command Vd* and a cross-axis voltage command Vq* according to the second straight-axis current command Id cmd and the cross-axis current command Iq cmd to drive the synchronous motor.
如此一來,透過以上電路單元的協同操作,同步電機控制電路100便可輸出直軸電壓命令Vd*與交軸電壓命令Vq*,以控制同步電機,並在欲進行弱磁控制時產生相應的電流命令。In this way, through the cooperative operation of the above circuit unit, the synchronous motor control circuit 100 can output the direct-axis voltage command Vd* and the cross-axis voltage command Vq* to control the synchronous motor, and generate corresponding when the field weakening control is to be performed. Current command.
為便於說明起見,以下段落將以實施例配合圖式,針對同步電機控制電路100的各個功能單元的實現方式進行詳細說明。請參考第2圖。第2圖為根據本案部分實施例所繪示的同步電機控制電路100的示意圖。For convenience of explanation, the following paragraphs will be described in detail with reference to the embodiments, and the implementation manners of the respective functional units of the synchronous motor control circuit 100 will be described in detail. Please refer to Figure 2. FIG. 2 is a schematic diagram of a synchronous motor control circuit 100 according to some embodiments of the present disclosure.
如第2圖所示,在部分實施例中,最大轉矩電流比控制單元110包含運算單元112、速度控制器114、直軸電流命令計算單元116以及交軸電流命令計算單元118。舉例來說,運算單元112可包含減法器,用以計算頻率命令ω cmd以及同步電機的電氣頻率ω r之間的頻率誤差值ω err。速度控制器114可接收頻率誤差值ω err,並相應計算並輸出轉矩命令T cmd。如此一來,直軸電流命令計算單元116與交軸電流命令計算單元118便可分別根據最大轉矩電流比控制策略輸出相應的第一直軸電流命令Id mtp以及交軸電流命令Iq cmd。 As shown in FIG. 2, in some embodiments, the maximum torque current ratio control unit 110 includes an arithmetic unit 112, a speed controller 114, a direct current command calculation unit 116, and an intersecting current command calculation unit 118. For example, the arithmetic unit 112 may include a subtractor for calculating the frequency error value ω err between the frequency command ω cmd and the electrical frequency ω r of the synchronous motor. The speed controller 114 can receive the frequency error value ω err and calculate and output the torque command T cmd accordingly . In this way, the direct-axis current command calculation unit 116 and the cross-axis current command calculation unit 118 can output the corresponding first direct- axis current command Id mtp and the cross-axis current command Iq cmd according to the maximum torque-current ratio control strategy, respectively.
此外,在部分實施例中,電壓控制單元120包含比例控制器122、運算單元124以及電壓控制器126。比例控制器122用以自系統直流母線上接收直流母線電壓Vbus後輸出電壓控制準位Vc。運算單元124用以計算電壓控制準位Vc以及回授輸出電壓V fbk之差(即:電壓誤差值V err),以判斷回授輸出電壓V fbk是否大於電壓控制準位Vc。藉此,電壓控制器126便能根據電壓控制準位Vc以及回授輸出電壓V fbk之差(即:電壓誤差值V err)輸出相應的弱磁電流命令Id vc,以控制同步電機的輸出電壓。 Moreover, in some embodiments, voltage control unit 120 includes a proportional controller 122, an arithmetic unit 124, and a voltage controller 126. The proportional controller 122 is configured to receive the DC bus voltage Vbus from the system DC bus and output the voltage control level Vc. The operation unit 124 is configured to calculate a difference between the voltage control level Vc and the feedback output voltage V fbk (ie, the voltage error value V err ) to determine whether the feedback output voltage V fbk is greater than the voltage control level Vc. Thereby, the voltage controller 126 can output the corresponding field weak current command Id vc according to the difference between the voltage control level Vc and the feedback output voltage V fbk (ie, the voltage error value V err ) to control the output voltage of the synchronous motor. .
此外,在部分實施例中,前饋控制單元130包含比例控制器132以及參考模型134。與電壓控制單元120中的比例控制器122操作相似,比例控制器132亦可用以自系統直流母線上接收直流母線電壓Vbus後輸出電壓目標準位Vt。Moreover, in some embodiments, feedforward control unit 130 includes a proportional controller 132 and a reference model 134. Similar to the operation of the proportional controller 122 in the voltage control unit 120, the proportional controller 132 can also be used to receive the DC bus voltage Vbus from the system DC bus and output the voltage standard bit Vt.
前饋控制單元130中的參考模型134係根據同步電機的磁交鏈參數所取得的電機模型。藉此,前饋控制單元130便可藉由參考模型134,根據同步電機的電氣頻率ω r、電壓目標準位Vt以及當前的交軸電流命令Iq cmd,計算弱磁電流前饋項Id ffd。 The reference model 134 in the feedforward control unit 130 is a motor model obtained from the magnetic interlinking parameters of the synchronous machine. Thereby, the feedforward control unit 130 can calculate the field weakening current feedforward term Id ffd by the reference model 134 according to the electrical frequency ω r of the synchronous motor, the voltage standard bit Vt and the current intersecting current command Iq cmd .
具體來說,在部分實施例中,根據同步電機於穩態模型的同步軸電壓方程組,弱磁電流前饋項Id ffd可表示為: 其中ω r為電氣頻率, 為同步電機的磁交鏈參數, 為最大相電壓, 為直軸電感, 為交軸電感。換言之,在給定同步電機的相關電感參數、磁交鏈參數的條件下,將相應於最大相電壓 的電壓目標準位Vt與電氣頻率ω r、交軸電流命令Iq cmd代入參考模型134中,便可計算出相應的弱磁電流前饋項Id ffd。藉此,在本案中弱磁控制結合電壓控制單元120的電壓控制器126輸出之弱磁電流命令Id vc以及前饋控制單元130中的參考模型134輸出之弱磁電流前饋項Id ffd,可使得弱磁控制更為準確,降低穩態時的誤差並滿足同步電機的系統穩態特性。 Specifically, in some embodiments, the field weakening current feedforward term Idffd can be expressed as: according to the synchronous axis voltage equation of the synchronous motor in the steady state model: Where ω r is the electrical frequency, For the magnetic flux linkage parameters of the synchronous motor, For the maximum phase voltage, For the direct axis inductance, For the axis of inductance. In other words, given the relevant inductance parameters and magnetic flux linkage parameters of the synchronous motor, it will correspond to the maximum phase voltage. The voltage source standard bit Vt and the electric frequency ω r and the cross-axis current command Iq cmd are substituted into the reference model 134, and the corresponding field weak current feedforward term Id ffd can be calculated. Thereby, in the present case, the field weakening control combined with the field weakening current command Id vc output by the voltage controller 126 of the voltage control unit 120 and the weak magnetic current feedforward term Id ffd output by the reference model 134 in the feedforward control unit 130 can be The field weakening control is more accurate, the error in steady state is reduced and the steady state characteristics of the synchronous motor system are satisfied.
在部分實施例中,電流命令補償單元140包含運算單元142、限幅單元144以及運算單元146。如圖中所示,運算單元142可分別接收弱磁電流命令Id vc、弱磁電流前饋項Id ffd,以及最大轉矩電流比控制單元110輸出的第一直軸電流命令Id mtp,並相應計算弱磁電流命令Id vc與弱磁電流前饋項Id ffd之和與第一直軸電流命令Id mtp之差以得到弱磁電流補償量。 In some embodiments, the current command compensation unit 140 includes an operation unit 142, a limiter unit 144, and an operation unit 146. As shown in the figure, the operation unit 142 may receive the field weakening current command Id vc , the field weakening current feedforward term Id ffd , and the first direct axis current command Id mtp output by the maximum torque current ratio control unit 110, respectively, and correspondingly The difference between the sum of the field weakening current command Id vc and the field weakening current feedforward term Id ffd and the first direct axis current command Id mtp is calculated to obtain a field weakening current compensation amount.
限幅單元144可接收運算單元142輸出的弱磁電流補償量,並對弱磁電流補償量進行限幅。具體來說,在部分實施例中,當弱磁電流補償量大於零時,限幅單元144輸出的弱磁電流補償量Id comp為零。換言之,當弱磁電流補償量為正時,電流命令補償單元140可判斷不需對最大轉矩電流比控制單元110輸出的第一直軸電流命令Id mtp進行調整,維持在最大轉矩電流比控制策略下輸出電流命令。相對地,當弱磁電流補償量為負時,電流命令補償單元140可判斷需進行弱磁控制,並輸出弱磁電流補償量Id comp補償第一直軸電流命令Id mtp以切換至弱磁電流操作區。 The clipping unit 144 can receive the weak magnetic current compensation amount output by the arithmetic unit 142 and limit the weak magnetic current compensation amount. Specifically, in some embodiments, when the field weakening current compensation amount is greater than zero, the field weakening current compensation amount Id comp output by the limiting unit 144 is zero. In other words, when the field weakening current compensation amount is positive, the current command compensation unit 140 can determine that the first direct axis current command Id mtp output from the maximum torque current ratio control unit 110 is not required to be adjusted, and maintain the maximum torque current ratio. Output current command under control strategy. In contrast, when the field weakening current compensation amount is negative, the current command compensation unit 140 may determine that the field weakening control is required, and output the field weakening current compensation amount Id comp to compensate the first straight axis current command Id mtp to switch to the weak magnetic current. Operating area.
如此一來,運算單元146便可將弱磁電流補償量Id comp與第一直軸電流命令Id mtp相加,以得到新的第二直軸電流命令Id cmd,以實現根據限幅單元144輸出的弱磁電流補償量Id comp修正原本的第一直軸電流命令Id mtp。 In this way, the arithmetic unit 146 can add the weak magnetic current compensation amount Id comp and the first direct-axis current command Id mtp to obtain a new second direct-axis current command Id cmd to realize output according to the limiting unit 144. The field weak current compensation amount Id comp corrects the original first direct axis current command Id mtp .
在部分實施例中,電壓命令輸出單元150包含運算單元152、直軸電流控制器154、運算單元156,以及交軸電流控制器158。運算單元152可根據第二直軸電流命令Id cmd與同步電機的直軸回授電流Id fbk計算直軸電流誤差值Id err。藉此,直軸電流控制器154便可根據直軸電流誤差值Id err輸出相應的直軸電壓命令Vd*。相似地,運算單元156可根據交軸電流命令Iq cmd與同步電機的交軸回授電流Iq fbk計算交軸電流誤差值Iq err。藉此,交軸電流控制器158便可根據交軸電流誤差值Iq err輸出相應的交軸電壓命令Vq*。 In some embodiments, the voltage command output unit 150 includes an arithmetic unit 152, a direct current controller 154, an arithmetic unit 156, and a cross current controller 158. Calculation unit 152 may calculate feedback current Id fbk axis current Id err error value according to the second straight axis the direct axis current command Id cmd synchronous motor. Thereby, the direct-axis current controller 154 can output the corresponding direct-axis voltage command Vd* according to the direct-axis current error value Iderr . Similarly, the arithmetic unit 156 can calculate the cross-axis current error value Iq err according to the cross-axis current command Iq cmd and the cross-axis feedback current Iq fbk of the synchronous motor. Thereby, the cross-axis current controller 158 can output the corresponding cross-axis voltage command Vq* according to the cross-axis current error value Iq err .
請參考第3圖。第3圖為根據本揭示內容部分實施例所繪示的控制方法300的流程圖。控制方法300可用於控制同步電機。為方便及清楚說明起見,下述控制方法300是配合第1圖、第2圖所示實施例進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第3圖所示,控制方法300包含步驟S310、S320、S330、S340以及S350。Please refer to Figure 3. FIG. 3 is a flow chart of a control method 300 in accordance with some embodiments of the present disclosure. Control method 300 can be used to control a synchronous machine. For convenience and clarity of description, the following control method 300 is described with reference to the embodiments shown in FIGS. 1 and 2, but it is not limited thereto, and any person skilled in the art can avoid the spirit and scope of the present invention. Inside, when you can make a variety of changes and retouching. As shown in FIG. 3, the control method 300 includes steps S310, S320, S330, S340, and S350.
首先,在步驟S310中,由最大轉矩電流比控制單元110根據頻率命令ω cmd以及同步電機的電氣頻率ω r計算第一直軸電流命令Id mtp以及交軸電流命令Iq cmd。 First, in step S310, the first direct- axis current command Id mtp and the cross-axis current command Iq cmd are calculated by the maximum torque-current ratio control unit 110 based on the frequency command ω cmd and the electric frequency ω r of the synchronous motor.
接著,在步驟S320中,當同步電機的回授輸出電壓V fbk大於電壓控制準位Vc時,由電壓控制單元120輸出弱磁電流命令Id vc。在部分實施例中,在步驟S320中係由電壓控制單元120中的比例控制器122接收直流母線電壓Vbus以輸出電壓控制準位Vc。 Next, in step S320, when the feedback output voltage V fbk of the synchronous motor is greater than the voltage control level Vc, the field weakening current command Id vc is output by the voltage control unit 120. In some embodiments, the DC bus voltage Vbus is received by the proportional controller 122 in the voltage control unit 120 to output the voltage control level Vc in step S320.
接著,在步驟S330中,由前饋控制單元130根據同步電機的電氣頻率ω r、電壓目標準位Vt,以及交軸電流命令Iq cmd計算弱磁電流前饋項Id ffd。在部分實施例中,在步驟S330中係由前饋控制單元130中的比例控制器132接收直流母線電壓Vbus以輸出電壓目標準位Vt。 Next, in step S330, the field weakening current feedforward term Idffd is calculated by the feedforward control unit 130 based on the electric frequency ω r of the synchronous motor, the voltage standard bit Vt, and the intersecting current command Iq cmd . In some embodiments, the DC bus voltage Vbus is received by the proportional controller 132 in the feedforward control unit 130 to output a voltage target standard bit Vt in step S330.
具體來說,在步驟S330中包含根據同步電機的磁交鏈參數取得參考模型134;以及藉由參考模型134根據同步電機的電氣頻率ω r、電壓目標準位Vt以及交軸電流命令Iq cmd計算弱磁電流前饋項Id ffd。 Specifically, in step S330, the reference model 134 is obtained according to the magnetic flux linkage parameter of the synchronous motor; and the reference model 134 is calculated according to the electrical frequency ω r of the synchronous motor, the voltage standard bit Vt, and the intersecting current command Iq cmd . Field weakening current feedforward term Id ffd .
接著,在步驟S340中,當弱磁電流命令Id vc與弱磁電流前饋項Id ffd之和小於第一直軸電流命令Id mtp時,由電流命令補償單元140以弱磁電流命令Id vc與弱磁電流前饋項Id ffd之和調整第一直軸電流命令Id mtp。 Next, in step S340, when the sum of the field weakening current command Id vc and the field weakening current feedforward term Id ffd is smaller than the first straight axis current command Id mtp , the current command compensation unit 140 commands the weak magnetic current Id vc with The sum of the field weakening current feedforward terms Id ffd adjusts the first straight axis current command Id mtp .
具體來說,電流命令補償單元140調整第一直軸電流命令Id mtp的步驟包含:由運算單元142計算弱磁電流命令Id vc與弱磁電流前饋項Id ffd之和與第一直軸電流命令Id mtp之差以得到弱磁電流補償量;由限幅單元144對弱磁電流補償量進行限幅,當弱磁電流補償量大於零時,限幅單元144輸出的弱磁電流補償量Id comp為零;以及由運算單元146根據經限幅後的弱磁電流補償量Id comp修正第一直軸電流命令Id mtp,以輸出新的第二直軸電流命令Id cmd。 Specifically, the step of adjusting the first direct- axis current command Id mtp by the current command compensation unit 140 includes: calculating, by the operation unit 142, the sum of the weak magnetic current command Id vc and the weak magnetic current feedforward term Id ffd and the first direct- axis current The difference between the commands Id mtp is obtained to obtain the weak magnetic current compensation amount; the limiting unit 144 limits the weak magnetic current compensation amount, and when the weak magnetic current compensation amount is greater than zero, the weakening current compensation amount Id output by the limiting unit 144 Comp is zero; and the first straight-axis current command Id mtp is corrected by the arithmetic unit 146 according to the clipped field weak current compensation amount Id comp to output a new second straight-axis current command Id cmd .
最後,在步驟S350中,由電壓命令輸出單元150分別根據第二直軸電流命令Id cmd與交軸電流命令Iq cmd輸出直軸電壓命令Vd*與交軸電壓命令Vq*,以驅動同步電機。 Finally, in step S350, the voltage command output unit 150 outputs the straight-axis voltage command Vd* and the cross-axis voltage command Vq* according to the second straight-axis current command Id cmd and the cross-axis current command Iq cmd , respectively, to drive the synchronous motor.
具體來說,步驟S350更包含,由運算單元152根據第二直軸電流命令Id cmd與同步電機的直軸回授電流Id fbk計算直軸電流誤差值Id err。接著,由直軸電流控制器154根據直軸電流誤差值Id err輸出直軸電壓命令Vd*。接著,由運算單元156根據交軸電流命令Iq cmd與同步電機的交軸回授電流Iq fbk計算交軸電流誤差值Iq err。最後,由交軸電流控制器158根據交軸電流誤差值Iq err輸出交軸電壓命令Vq*。 Specifically, further comprising the step S350, the direct axis Id cmd command and the synchronous motor by the arithmetic unit 152 according to the second straight axis current Id fbk feedback current Id err calculating the direct axis current error value. Next, the straight-axis current command 154 outputs a straight-axis voltage command Vd* from the straight-axis current error value Iderr . Next, the arithmetic unit 156 calculates the cross-axis current error value Iq err based on the cross-axis current command Iq cmd and the synchronous-axis feedback current Iq fbk of the synchronous motor. Finally, the cross-axis current command 158 outputs the cross-axis voltage command Vq* based on the cross-axis current error value Iq err .
所屬技術領域具有通常知識者可直接瞭解此控制方法300如何基於上述多個不同實施例中的同步電機控制電路100以執行該等操作及功能,故不再此贅述。Those skilled in the art can directly understand how this control method 300 is based on the synchronous motor control circuit 100 of the various different embodiments described above to perform such operations and functions, and thus will not be described again.
請參考第4圖。第4圖為根據本案其他部分實施例所繪示的同步電機控制電路100的示意圖。於第4圖中,與第1圖、第2圖之實施例有關的相似元件係以相同的參考標號表示以便於理解,且相似元件之具體原理已於先前段落中詳細說明,若非與第4圖之元件間具有協同運作關係而必要介紹者,於此不再贅述。Please refer to Figure 4. FIG. 4 is a schematic diagram of a synchronous motor control circuit 100 according to other embodiments of the present invention. In FIG. 4, similar elements related to the embodiment of FIG. 1 and FIG. 2 are denoted by the same reference numerals for easy understanding, and the specific principles of similar elements have been described in detail in the previous paragraph, if not with the fourth The elements of the diagram have a cooperative relationship and are necessary to introduce them, and will not be described here.
如第4圖所示,在部分實施例中,同步電機控制電路100更包含電壓飽和調節單元160,用以於電壓飽和時調整輸出至最大轉矩電流比控制單元110的頻率命令ω cmd。具體來說,電壓飽和調節單元160包含電壓飽和調節器162以及頻率命令運算單元164。電壓飽和調節器162,用以根據第二直軸電流命令Id cmd與直軸回授電流Id fbk之差(即:直軸電流誤差值Id err),以及交軸電流命令Iq cmd與交軸回授電流Iq fbk之差(即:交軸電流誤差值Iq err)計算頻率命令修正項Δω。頻率命令運算單元164電性耦接於電壓飽和調節器162,用以根據頻率命令修正項Δω調整原本的頻率命令ω temp,以輸出新的頻率命令ω cmd至最大轉矩電流比控制單元110。 As shown in FIG. 4, in some embodiments, the synchronous motor control circuit 100 further includes a voltage saturation adjustment unit 160 for adjusting the frequency command ω cmd output to the maximum torque current ratio control unit 110 when the voltage is saturated. Specifically, the voltage saturation adjustment unit 160 includes a voltage saturation regulator 162 and a frequency command operation unit 164. The voltage saturation regulator 162 is configured to perform a difference between the second direct-axis current command Id cmd and the direct-axis feedback current Id fbk (ie, the direct-axis current error value Id err ), and the cross-axis current command Iq cmd and the cross-axis back The frequency command correction term Δω is calculated by the difference between the current Iq fbk (ie, the cross-axis current error value Iq err ). The frequency command operation unit 164 is electrically coupled to the voltage saturation regulator 162 for adjusting the original frequency command ω temp according to the frequency command correction term Δω to output a new frequency command ω cmd to the maximum torque current ratio control unit 110.
如此一來,當發生輸出電壓飽和之暫態過程中,同步電機控制電路100可透過電壓飽和調節單元160即時調整頻率命令ω cmd,以減緩飽和現象。藉此,同步電機控制電路100控制同步電機切換至弱磁操作區時,可有效提升暫態過程的穩定度,確保速度控制器114以及直軸電流控制器154、交軸電流控制器158等控制器件的正常操作,避免失速或過電流等故障發生。 In this way, during the transient process in which the output voltage is saturated, the synchronous motor control circuit 100 can instantly adjust the frequency command ω cmd through the voltage saturation adjusting unit 160 to slow down the saturation phenomenon. Thereby, when the synchronous motor control circuit 100 controls the synchronous motor to switch to the field weakening operation region, the stability of the transient process can be effectively improved, and the speed controller 114 and the direct-axis current controller 154 and the cross-axis current controller 158 are controlled. Normal operation of the device to avoid malfunctions such as stall or overcurrent.
此外,如第4圖所示,在部分實施例中,同步電機控制電路100更包含限幅單元170以及限幅單元180。在結構上,限幅單元170耦接於電流命令補償單元140與電壓命令輸出單元150之間,限幅單元180耦接於最大轉矩電流比控制單元110與電壓命令輸出單元150之間。在第4圖所繪示實施例中,和第2圖所示實施例相比,電流命令補償單元140所輸出的經修正後的直軸電流命令Id temp,和最大轉矩電流比控制單元110輸出的交軸電流命令Iq temp,會分別由限幅單元170與限幅單元180進行限幅,以避免電壓命令輸出單元150接收到過大的電流命令導致操作異常或事故發生。限幅單元170與限幅單元180分別對直軸電流命令Id temp與交軸電流命令Iq temp進行限幅後,分別輸出新的第二直軸電流命令Id cmd與交軸電流命令Iq cmd至電壓命令輸出單元150以供其進行後續控制、運算。 In addition, as shown in FIG. 4, in some embodiments, the synchronous motor control circuit 100 further includes a limiting unit 170 and a limiting unit 180. The limiting unit 170 is coupled between the current command compensation unit 140 and the voltage command output unit 150. The limiting unit 180 is coupled between the maximum torque current ratio control unit 110 and the voltage command output unit 150. In the embodiment illustrated in FIG. 4, the corrected direct-axis current command Id temp and the maximum torque-current ratio control unit 110 output by the current command compensation unit 140 are compared with the embodiment shown in FIG. The output cross-axis current command Iq temp will be clipped by the limiter unit 170 and the limiter unit 180, respectively, to prevent the voltage command output unit 150 from receiving an excessive current command, resulting in an abnormal operation or an accident. The limiting unit 170 and the limiting unit 180 respectively limit the direct-axis current command Id temp and the intersecting current command Iq temp , and respectively output a new second direct-axis current command Id cmd and an intersecting current command Iq cmd to the voltage. The command output unit 150 is provided for subsequent control and calculation.
請一併參考第5圖。第5圖為根據本揭示內容部分實施例所繪示的控制方法500的流程圖。為方便及清楚說明起見,下述控制方法500是配合第4圖所示實施例進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第5圖所示,和第3圖中的控制方法300相比,在第5圖所示的控制方法500中更包含步驟S510以及步驟S520。Please refer to Figure 5 together. FIG. 5 is a flow chart of a control method 500 in accordance with some embodiments of the present disclosure. For convenience and clarity of description, the following control method 500 is described in conjunction with the embodiment shown in FIG. 4, but it is not limited thereto, and any person skilled in the art can, without departing from the spirit and scope of the present invention, Make a variety of changes and retouching. As shown in FIG. 5, in comparison with the control method 300 in FIG. 3, the control method 500 shown in FIG. 5 further includes steps S510 and S520.
首先,在步驟S510中,由電壓飽和調節單元160中的電壓飽和調節器162根據直軸電流誤差值Id err與交軸電流誤差值Iq err計算頻率命令修正項Δω。具體來說,直軸電流誤差值Id err為第二直軸電流命令Id cmd與直軸回授電流Id fbk之差,交軸電流誤差值Iq err為交軸電流命令Id cmd與交軸回授電流Id fbk之差。 First, at step S510, the saturation voltage adjusting unit 160 from the voltage regulator 162 saturation value Id err and quadrature axis current value Iq err error correction term calculating frequency command in accordance with the direct axis current error Δω. Specifically, the straight-axis current error value Id err is the difference between the second straight-axis current command Id cmd and the direct-axis feedback current Id fbk , and the cross-axis current error value Iq err is the cross-axis current command Id cmd and the cross-axis feedback The difference between the currents Id fbk .
接著,在步驟S520中,由電壓飽和調節單元160中的頻率命令運算單元164根據頻率命令修正項Δω調整頻率命令ω temp,以輸出新的頻率命令ω cmd至最大轉矩電流比控制單元110。 Next, in step S520, the frequency command operation unit 164 in the voltage saturation adjustment unit 160 adjusts the frequency command ω temp according to the frequency command correction term Δω to output a new frequency command ω cmd to the maximum torque current ratio control unit 110.
控制方法500中其餘的步驟S310~S350與第3圖所示實施例中相似,且已於先前段落中詳細說明,故不再於此贅述。所屬技術領域具有通常知識者可直接瞭解此控制方法500如何基於上述多個不同實施例中的同步電機控制電路100以執行該等操作及功能,故不再此贅述。The remaining steps S310-S350 in the control method 500 are similar to those in the embodiment shown in FIG. 3, and have been described in detail in the previous paragraphs, and thus will not be described again. Those skilled in the art can directly understand how this control method 500 is based on the synchronous motor control circuit 100 of the various different embodiments described above to perform such operations and functions, and thus will not be described again.
雖然本文將所公開的方法示出和描述為一系列的步驟或事件,但是應當理解,所示出的這些步驟或事件的順序不應解釋為限制意義。例如,部分步驟可以以不同順序發生和/或與除了本文所示和/或所描述之步驟或事件以外的其他步驟或事件同時發生。另外,實施本文所描述的一個或多個態樣或實施例時,並非所有於此示出的步驟皆為必需。此外,本文中的一個或多個步驟亦可能在一個或多個分離的步驟和/或階段中執行。While the methods disclosed are shown and described herein as a series of steps or events, it is understood that the order of the steps or events shown should not be construed as limiting. For example, some of the steps may occur in a different order and/or concurrently with other steps or events other than those illustrated or/or described herein. In addition, not all of the steps shown herein are required in the practice of one or more aspects or embodiments described herein. Moreover, one or more steps herein may also be performed in one or more separate steps and/or stages.
綜上所述,透過應用本案的多個實施例,本案的同步電機控制電路藉由結合電壓控制單元以及電機參考模型的前饋控制提供弱磁電流,可兼顧控制器的快速響應與穩定操作。此外,在部分實施例中,藉由加入電壓飽和調節單元,可在電機直交軸電感變異、磁通變動或負載急遽變化等等情況下,即時調整頻率命令,改善電壓或電流的飽和現象,提升暫態穩定度。In summary, by applying various embodiments of the present invention, the synchronous motor control circuit of the present invention provides a weak magnetic current by combining the voltage control unit and the feedforward control of the motor reference model, and can simultaneously take into account the fast response and stable operation of the controller. In addition, in some embodiments, by adding a voltage saturation adjustment unit, the frequency command can be instantly adjusted to improve the saturation of the voltage or current, and the saturation phenomenon of the voltage or current can be improved in the case of the variation of the motor orthogonal axis inductance, the change of the magnetic flux or the sudden change of the load. Transient stability.
需要說明的是,在不衝突的情況下,在本揭示內容各個圖式、實施例及實施例中的特徵與電路可以相互組合。圖式中所繪示的電路僅為示例之用,係簡化以使說明簡潔並便於理解,並非用以限制本案。It should be noted that the features and circuits in the various drawings, embodiments, and embodiments of the present disclosure may be combined with each other without conflict. The circuits illustrated in the drawings are for illustrative purposes only and are simplified for simplicity and ease of understanding and are not intended to limit the present invention.
此外,上述各實施例中的各個電路單元可以由各種類型的數位或類比電路實現,亦可分別由不同的積體電路晶片實現。各個元件亦可整合至單一的數位控制晶片,或是由微控制器(Microcontroller Unit,MCU)、複雜型可編程邏輯元件(Complex Programmable Logic Device,CPLD)、現場可程式化閘陣列(Field-programmable gate array,FPGA)或各種處理器或其他積體電路晶片等不同方式實現,上述僅為例示,本揭示內容並不以此為限。In addition, each of the circuit units in the above embodiments may be implemented by various types of digital or analog circuits, or may be implemented by different integrated circuit chips. Each component can also be integrated into a single digital control chip, or by a microcontroller (MCU), a Complex Programmable Logic Device (CPLD), or a field programmable gate array (Field-programmable). The gate array (FPGA) or various processors or other integrated circuit chips are implemented in different manners, and the above is merely an example, and the disclosure is not limited thereto.
雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure, and the present disclosure may be variously modified and retouched without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application.
100‧‧‧同步電機控制電路
110‧‧‧最大轉矩電流比控制單元
112‧‧‧運算單元
114‧‧‧速度控制器
116‧‧‧直軸電流命令計算單元
118‧‧‧交軸電流命令計算單元
120‧‧‧電壓控制單元
122‧‧‧比例控制器
124‧‧‧運算單元
126‧‧‧電壓控制器
130‧‧‧前饋控制單元
132‧‧‧比例控制器
134‧‧‧參考模型
140‧‧‧電流命令補償單元
142、146‧‧‧運算單元
144‧‧‧限幅單元
150‧‧‧電壓命令輸出單元
152、156‧‧‧運算單元
154‧‧‧直軸電流控制器
158‧‧‧交軸電流控制器
160‧‧‧電壓飽和調節單元
162‧‧‧電壓飽和調節器
164‧‧‧頻率命令運算單元
170、180‧‧‧限幅單元
300、500‧‧‧控制方法
S310~S350、S510、S520‧‧‧步驟
Vd*、Vq*‧‧‧電壓命令
Vbus‧‧‧直流母線電壓
Vc‧‧‧電壓控制準位
Vt‧‧‧電壓目標準位
Vfbk‧‧‧回授輸出電壓
Verr‧‧‧電壓誤差值
Idmtp、Idtemp、Idcmd、Iqtemp、Iqcmd‧‧‧電流命令
Idfbk、Iqfbk‧‧‧回授電流
Iderr、Iqerr‧‧‧電流誤差值
Idvc‧‧‧弱磁電流命令
Idffd‧‧‧弱磁電流前饋項
Idcomp‧‧‧弱磁電流補償量
Tcmd‧‧‧轉矩命令
ωtemp、ωcmd‧‧‧頻率命令
ωerr‧‧‧頻率誤差值
Δω‧‧‧頻率命令修正項
ωr‧‧‧電氣頻率100‧‧‧Synchronous motor control circuit
110‧‧‧Maximum torque current ratio control unit
112‧‧‧ arithmetic unit
114‧‧‧Speed controller
116‧‧‧Direct axis current command calculation unit
118‧‧‧Axis current command calculation unit
120‧‧‧Voltage control unit
122‧‧‧Proportional controller
124‧‧‧ arithmetic unit
126‧‧‧Voltage controller
130‧‧‧Feed-for-control unit
132‧‧‧Proportional controller
134‧‧‧ reference model
140‧‧‧current command compensation unit
142, 146‧‧‧ arithmetic unit
144‧‧‧Limiting unit
150‧‧‧Voltage command output unit
152, 156‧‧‧ arithmetic unit
154‧‧‧Direct shaft current controller
158‧‧‧cross shaft current controller
160‧‧‧Voltage saturation adjustment unit
162‧‧‧Voltage saturation regulator
164‧‧‧frequency command arithmetic unit
170, 180‧‧‧ Limiting unit
300, 500‧‧‧ control methods
S310~S350, S510, S520‧‧‧ steps
Vd*, Vq*‧‧‧ voltage commands
Vbus‧‧‧ DC bus voltage
Vc‧‧‧ voltage control level
Vt‧‧‧ voltage standard position
V fbk ‧‧‧reported output voltage
V err ‧‧‧ voltage error value
Id mtp , Id temp , Id cmd , Iq temp , Iq cmd ‧ ‧ current command
Id fbk , Iq fbk ‧‧‧Responsive current
Id err , Iq err ‧‧‧ current error value
Id vc ‧‧‧field weak current command
Id ffd ‧‧‧field weak current feedforward
Id comp ‧‧‧ weak magnetic current compensation
T cmd ‧‧‧Torque command ω temp , ω cmd ‧‧‧frequency command ω err ‧‧‧frequency error value Δω‧‧‧frequency command correction term ω r ‧‧‧electric frequency
第1圖為根據本案部分實施例所繪示的同步電機控制電路的示意圖。 第2圖為根據本案部分實施例所繪示的同步電機控制電路的示意圖。 第3圖為根據本揭示內容部分實施例所繪示的控制方法的流程圖。 第4圖為根據本案其他部分實施例所繪示的同步電機控制電路的示意圖。 第5圖為根據本揭示內容部分實施例所繪示的控制方法的流程圖。FIG. 1 is a schematic diagram of a synchronous motor control circuit according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of a synchronous motor control circuit according to some embodiments of the present invention. FIG. 3 is a flow chart of a control method according to some embodiments of the present disclosure. FIG. 4 is a schematic diagram of a synchronous motor control circuit according to other embodiments of the present invention. FIG. 5 is a flow chart of a control method according to some embodiments of the present disclosure.
300‧‧‧控制方法 300‧‧‧Control method
S310~S350‧‧‧步驟 S310~S350‧‧‧Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105133635A TWI587623B (en) | 2016-10-19 | 2016-10-19 | Synchronous motor control circuit and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105133635A TWI587623B (en) | 2016-10-19 | 2016-10-19 | Synchronous motor control circuit and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI587623B true TWI587623B (en) | 2017-06-11 |
TW201817153A TW201817153A (en) | 2018-05-01 |
Family
ID=59687971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105133635A TWI587623B (en) | 2016-10-19 | 2016-10-19 | Synchronous motor control circuit and control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI587623B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI695575B (en) * | 2019-06-27 | 2020-06-01 | 國立成功大學 | Device for controlling power matching of energy storage system |
CN113595459A (en) * | 2021-08-05 | 2021-11-02 | 四川虹美智能科技有限公司 | Weak magnetic current control method and device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI820894B (en) * | 2022-09-06 | 2023-11-01 | 台達電子工業股份有限公司 | Motor driving system and torque distribution method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI323078B (en) * | 2006-10-20 | 2010-04-01 | Univ Minghsin Sci & Tech | |
CN103124158A (en) * | 2012-12-06 | 2013-05-29 | 华中科技大学 | Method for self-adjusting control parameters of speed ring of permanent magnet synchronous motor based on fractional orders |
CN103701371A (en) * | 2013-12-13 | 2014-04-02 | 青岛大学 | Control method of driving system of permanent magnet synchronous motor of electrical automobile considering iron loss |
CN104201941A (en) * | 2014-06-30 | 2014-12-10 | 浙江工业大学 | Permanent magnet synchronous motor chaos control method based on nonlinear expanded state observer |
-
2016
- 2016-10-19 TW TW105133635A patent/TWI587623B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI323078B (en) * | 2006-10-20 | 2010-04-01 | Univ Minghsin Sci & Tech | |
CN103124158A (en) * | 2012-12-06 | 2013-05-29 | 华中科技大学 | Method for self-adjusting control parameters of speed ring of permanent magnet synchronous motor based on fractional orders |
CN103701371A (en) * | 2013-12-13 | 2014-04-02 | 青岛大学 | Control method of driving system of permanent magnet synchronous motor of electrical automobile considering iron loss |
CN104201941A (en) * | 2014-06-30 | 2014-12-10 | 浙江工业大学 | Permanent magnet synchronous motor chaos control method based on nonlinear expanded state observer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI695575B (en) * | 2019-06-27 | 2020-06-01 | 國立成功大學 | Device for controlling power matching of energy storage system |
CN113595459A (en) * | 2021-08-05 | 2021-11-02 | 四川虹美智能科技有限公司 | Weak magnetic current control method and device |
CN113595459B (en) * | 2021-08-05 | 2023-07-25 | 合肥长虹美菱生活电器有限公司 | Weak current control method and device |
Also Published As
Publication number | Publication date |
---|---|
TW201817153A (en) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107968611B (en) | Synchronous motor control circuit and control method | |
JP5964391B2 (en) | Motor control device for controlling current phase of dq three-phase coordinate | |
RU2407140C1 (en) | Vector controller for synchronous electric motor with permanent magnets | |
JP3840905B2 (en) | Synchronous motor drive device | |
US6407531B1 (en) | Method and system for controlling a synchronous machine over full operating range | |
JP4531751B2 (en) | Synchronous machine controller | |
Pellegrino et al. | Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range | |
Karamanakos et al. | Model predictive torque and flux control minimizing current distortions | |
CN106208866B (en) | Motor control anti-windup saturation and voltage saturation design for electric power steering | |
JP2001339998A (en) | Method and device for controlling induction motor | |
JP2002095300A (en) | Method of controlling permanent magnet synchronous motor | |
US6876169B2 (en) | Method and controller for field weakening operation of AC machines | |
TWI587623B (en) | Synchronous motor control circuit and control method | |
CN111277182A (en) | Depth flux weakening system of permanent magnet synchronous motor for vehicle and control method thereof | |
CN107395078A (en) | Permagnetic synchronous motor field weakening control method | |
Zhao | Virtual square-wave current injection based maximum torque per ampere control for interior permanent-magnet synchronous machines | |
Guo et al. | Coupling and digital control delays affected stability analysis of permanent magnet synchronous motor current loop control | |
JP4605254B2 (en) | Rotating machine control device | |
JP2013187931A (en) | Motor control device | |
JP2014017924A (en) | Motor control device | |
WO2015156003A1 (en) | Vector control device, inverter embedding same, and inverter-motor set device embedding same | |
Dong et al. | Optimized anti-windup coordinating strategy for torque-maximized high-speed flux-weakening operation of constrained induction motor drives | |
JP6391096B2 (en) | AC motor current control device | |
JP3933348B2 (en) | Control device for embedded magnet type synchronous motor | |
JP3824159B2 (en) | Control device for synchronous motor |