TWI586095B - Solar tracking energy system and method thereof - Google Patents

Solar tracking energy system and method thereof Download PDF

Info

Publication number
TWI586095B
TWI586095B TW105108120A TW105108120A TWI586095B TW I586095 B TWI586095 B TW I586095B TW 105108120 A TW105108120 A TW 105108120A TW 105108120 A TW105108120 A TW 105108120A TW I586095 B TWI586095 B TW I586095B
Authority
TW
Taiwan
Prior art keywords
solar
detecting device
signal
control unit
photovoltaic panel
Prior art date
Application number
TW105108120A
Other languages
Chinese (zh)
Other versions
TW201735524A (en
Inventor
陳貴光
林賜海
Original Assignee
向陽優能電力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 向陽優能電力股份有限公司 filed Critical 向陽優能電力股份有限公司
Priority to TW105108120A priority Critical patent/TWI586095B/en
Application granted granted Critical
Publication of TWI586095B publication Critical patent/TWI586095B/en
Publication of TW201735524A publication Critical patent/TW201735524A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

追日型太陽能發電系統及其方法 Solar tracking solar power generation system and method thereof

本發明有關於一種太陽能發電系統,且特別是有關於一種追日型太陽能發電系統。 The present invention relates to a solar power generation system, and more particularly to a solar tracking type solar power generation system.

太陽能發電是一種新興的可再生能源。太陽能資源豐富,且無需運輸,對環境污染低。太陽能為人類創造了一種新的生活形態,使社會及人類進入一個節約能源減少污染的時代。 Solar power is an emerging renewable energy source. Solar energy is abundant, no transportation is required, and environmental pollution is low. Solar energy has created a new form of life for human beings, enabling society and humanity to enter an era of energy conservation and pollution reduction.

太陽能是指主要用於實際目的利用太陽光輻射。然而,除了地熱能和潮汐能以外,所有其他的可再生能源都是來源自太陽的能量。太陽能技術被廣泛定意為被動的或主動的方式來捕獲,轉換和分配太陽光。主動式太陽能技術,利用太陽能光電板,泵,風機將陽光轉換為有用的輸出。被動式太陽能技術,包括選擇材料具有良好的熱性能,設計,自然空氣流通的空間,並按照太陽來安排的建築物的位置。主動式太陽能技術,增加能源供應,被認為是供應端的技術;而被動式太陽能技術,減少替代資源的需要,通常被認為是需求端的技術。 Solar energy refers to the use of solar radiation primarily for practical purposes. However, in addition to geothermal energy and tidal energy, all other renewable energy sources are derived from the sun's energy. Solar technology is widely defined as a passive or active way to capture, convert and distribute sunlight. Active solar technology uses solar panels, pumps, and fans to convert sunlight into useful output. Passive solar technology includes the selection of materials with good thermal properties, design, natural air circulation, and the location of the building in accordance with the sun. Active solar technology, which increases energy supply, is considered a supply-side technology; passive solar technology, which reduces the need for alternative resources, is often considered a demand-side technology.

太陽能技術分為有源(主動式)及無源(被動式)兩種。有源的例子有太陽能光電及光熱轉換,使用電力或機械設備作太陽能收集,而這些設備是依靠外部能源運作的,因此稱為有源。無源的例子有在建築物引入太陽光作照明等,當中是利用建築物的設計、選擇所使用物料等達至利用太陽能的目的,由於當中的運作無需由外部提供能源,因此稱為無源。 Solar technology is divided into active (active) and passive (passive). Examples of active sources are solar photovoltaic and photothermal conversion, using electricity or mechanical equipment for solar energy collection, and these devices operate on external energy sources and are therefore called active. Examples of passives include the introduction of sunlight into buildings, etc., in which the use of buildings is designed and the materials used are selected to achieve the purpose of using solar energy. Since the operation does not require external energy supply, it is called passive. .

直到近期,太陽能還只能小規模使用,利用太陽能發電還存在成本高、轉換效率低的問題。因此需要新穎的太陽能追日系統的發明。本發明人潛心研究並配合學理之運用,終於提出一種有效改善上述缺失之本發明。 Until recently, solar energy can only be used on a small scale. The use of solar power generation also has the problems of high cost and low conversion efficiency. Therefore, the invention of a novel solar chasing system is required. The present inventors have diligently studied and cooperated with the application of the theory, and finally proposed a present invention which effectively improves the above-mentioned deficiency.

鑒於以上之問題,本發明之一目的為提供一種追日型太陽能發電系統,其組裝相當簡便,可於任何位置(例如屋頂或地面上)設置追日之太陽能陣列系統。 In view of the above problems, it is an object of the present invention to provide a solar-powered solar power generation system that is relatively simple to assemble and that can be used to set up a solar array system in any location (e.g., on a roof or on the ground).

本發明的一實施例提供一種追日型太陽能發電系統,其包括:太陽偵測裝置,配置於太陽能光電板上,用以偵測太陽的位置。傾角偵測裝置,配置於該太陽能光電板上,用以偵測太陽能光電板的傾斜角度。驅動裝置,連動該太陽能光電板,用以控制該太陽能光電板的旋轉動作。控制單元,與太陽偵測裝置、傾角偵測裝置、驅動裝置電性連接。控制單元依據太陽偵測裝置、傾角偵測裝置所提供的信號,對驅動裝置發出一動作命令,使驅動裝置調整太陽能光電板的旋轉角度。 An embodiment of the present invention provides a solar tracking solar power generation system including: a solar detecting device disposed on a solar photovoltaic panel for detecting a position of the sun. The tilt detecting device is disposed on the solar photovoltaic panel to detect the tilt angle of the solar photovoltaic panel. The driving device interlocks the solar photovoltaic panel to control the rotating action of the solar photovoltaic panel. The control unit is electrically connected to the sun detecting device, the tilt detecting device and the driving device. The control unit sends an action command to the driving device according to the signal provided by the sun detecting device and the tilt detecting device, so that the driving device adjusts the rotation angle of the solar photovoltaic panel.

本發明的一實施例提供一種追日型太陽能發電方法,包括有下列步驟。使用太陽偵測裝置偵測太陽的位置,生成位置信號。使用傾角偵測裝置偵測太陽能光電板的傾斜角度,生成角度信號。傳送位置信號以及角度信號到控制單元,控制單元生成動作命令。傳送動作命令至驅動裝置,驅動裝置根據動作命令,調整太陽能光電板的旋轉角度。 An embodiment of the present invention provides a solar tracking solar power generation method including the following steps. Use the sun detection device to detect the position of the sun and generate a position signal. The tilt angle detecting device detects the tilt angle of the solar photovoltaic panel to generate an angle signal. The position signal and the angle signal are transmitted to the control unit, and the control unit generates an action command. The motion command is transmitted to the driving device, and the driving device adjusts the rotation angle of the solar photovoltaic panel according to the motion command.

本發明的追日型太陽能發電系統,進一步包括:一太陽偵測裝置;一驅動裝置,與太陽偵測裝置連接;一連動桿,與驅動裝置連接;數個橫桿,與連動桿垂直方向延伸,其中每一橫桿以數個支柱支撐,且每一橫桿以一連動臂與連動桿連接,每一橫桿上架設數個與橫桿垂直的橫臂;數個太陽能光電板,架設於上述橫桿和橫臂上,其中驅動裝置根據太陽偵測裝置偵測太陽的位置, 驅動連動桿,使上述橫桿和上述橫臂上之太陽能光電板隨太陽移動之軌跡做角度變化。 The solar-powered solar power generation system of the present invention further comprises: a solar detecting device; a driving device connected to the solar detecting device; a linkage rod connected to the driving device; and a plurality of cross bars extending perpendicularly to the linking rod Each of the crossbars is supported by a plurality of pillars, and each of the crossbars is connected to the linkage rod by a linkage arm, and each crossbar is provided with a plurality of cross arms perpendicular to the crossbar; and several solar photovoltaic panels are mounted on On the above crossbar and cross arm, wherein the driving device detects the position of the sun according to the solar detecting device, The linkage rod is driven to cause an angle change between the crossbar and the solar photovoltaic panel on the cross arm as the sun moves.

本發明具有以下技術功效:本發明依據太陽偵測裝置以及傾角偵測裝置所發出的信號,動態的調整太陽能光電板的旋轉角度,使得太陽能光電板面向太陽,得到較佳的太陽光線照射角度。本發明可以簡易組裝的方式於地面或屋頂上形成一陣列型態之追日型太陽能發電系統,驅動裝置根據太陽偵測裝置偵測太陽的位置,驅動連動桿,使橫桿和橫臂上之太陽能光電板隨太陽移動之軌跡做角度變化。本發明一實施例之基樁可以為一在工廠事先製作好之水泥塊,當要進行組裝追日型太陽能發電系統時,可將製作好之水泥塊帶至現場進行組裝,可省去灌水泥冗長的製作時間,也使得追日型太陽能發電系統之組裝變得更簡便。再者,根據本實施例支柱和橫臂的設計方式,可在現場以H型鋼鎖合L型鋼的製作方式,使得L型鋼與H型鋼固定,再將軸承鎖固於L型鋼上。事後將半圓形之第一組件和半圓形之第二組件穿過連座軸承再進行固鎖,以組裝成橫臂。根據上述,本發明可以簡便的方式組裝成陣列型態之追日型太陽能發電系統,且置放追日型太陽能發電系統之位置也較不受到限制,追日型太陽能發電系統之位置可在屋頂上或地面上裝配完成。 The invention has the following technical effects: the invention dynamically adjusts the rotation angle of the solar photovoltaic panel according to the signals emitted by the solar detecting device and the tilt detecting device, so that the solar photovoltaic panel faces the sun and obtains a better angle of sunlight illumination. The invention can form an array type solar tracking solar power generation system on the ground or the roof in a simple assembly manner, and the driving device detects the position of the sun according to the solar detecting device, drives the linkage rod, and makes the crossbar and the cross arm The solar photovoltaic panel changes its angle with the trajectory of the sun's movement. The foundation pile according to an embodiment of the present invention may be a cement block which is prepared in advance in the factory. When assembling the solar power generation system, the cement block can be assembled to the site for assembly, and the cement can be omitted. The lengthy production time also makes the assembly of the solar-powered solar system easier. Furthermore, according to the design method of the pillar and the cross arm of the embodiment, the L-shaped steel and the H-shaped steel can be fixed by the H-shaped steel locking L-shaped steel in the field, and the bearing is locked on the L-shaped steel. The semi-circular first component and the semi-circular second component are then passed through the shoe and then locked to assemble the cross arm. According to the above, the present invention can be assembled into an array type of solar-powered solar power generation system in a simple manner, and the position of the solar-powered solar power generation system is also relatively unrestricted, and the position of the solar-powered solar power generation system can be on the roof. The assembly on the ground or on the ground is completed.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

100‧‧‧追日型太陽能發電系統 100‧‧‧Chasing Solar Power System

101‧‧‧傾角偵測裝置 101‧‧‧Dip angle detecting device

102‧‧‧太陽偵測裝置 102‧‧‧Sun detection device

103‧‧‧驅動裝置 103‧‧‧ drive

104‧‧‧連動桿 104‧‧‧ linkage rod

105‧‧‧風速偵測裝置 105‧‧‧Wind speed detecting device

106‧‧‧橫桿 106‧‧‧crossbar

108‧‧‧橫臂 108‧‧‧ cross arm

110‧‧‧支柱 110‧‧‧ pillar

112‧‧‧太陽能光電板 112‧‧‧Solar photovoltaic panels

114‧‧‧搖臂 114‧‧‧ rocker arm

115‧‧‧連動臂 115‧‧‧ linkage arm

116‧‧‧H型鋼 116‧‧‧H-beam

118‧‧‧基樁 118‧‧‧ foundation pile

120‧‧‧螺栓 120‧‧‧ bolt

122‧‧‧部件 122‧‧‧ Parts

124‧‧‧連接件 124‧‧‧Connecting parts

126a‧‧‧第一槽鐵 126a‧‧‧first trough iron

126b‧‧‧第二槽鐵 126b‧‧‧second trough iron

128‧‧‧第一螺栓 128‧‧‧First bolt

130‧‧‧第二螺栓 130‧‧‧Second bolt

132‧‧‧第一螺孔 132‧‧‧First screw hole

134‧‧‧第二螺孔 134‧‧‧Second screw hole

136‧‧‧L型鋼 136‧‧‧L steel

138‧‧‧軸承 138‧‧‧ bearing

140‧‧‧連座軸承 140‧‧‧Seat bearing

142‧‧‧第一組件 142‧‧‧First component

144‧‧‧第二組件 144‧‧‧ second component

200‧‧‧連接件 200‧‧‧Connecting parts

201‧‧‧穿孔 201‧‧‧Perforation

300‧‧‧固定螺絲 300‧‧‧ fixing screws

400‧‧‧墊片 400‧‧‧shims

500‧‧‧螺帽 500‧‧‧ nuts

1000‧‧‧控制單元 1000‧‧‧Control unit

1100‧‧‧太陽偵測裝置 1100‧‧‧Sun detection device

1200‧‧‧傾角偵測裝置 1200‧‧‧Dip angle detection device

1300‧‧‧風速偵測裝置 1300‧‧‧Wind speed detection device

1400‧‧‧驅動裝置 1400‧‧‧ drive

S100~S400‧‧‧流程步驟 S100~S400‧‧‧ Process steps

圖1顯示本實施例追日型太陽能發電系統之立體圖。 Fig. 1 is a perspective view showing a solar power generation system of the present embodiment.

圖2顯示本實施例追日型太陽能發電系統之局部放大圖。 Fig. 2 is a partially enlarged view showing the solar power generation system of the present embodiment.

圖3顯示本實施例追日型太陽能發電系統另一視角之立體圖。 Fig. 3 is a perspective view showing another perspective of the solar power generation system of the present embodiment.

圖4顯示本實施例追日型太陽能發電系統支柱底部之局部放大圖。 Fig. 4 is a partially enlarged view showing the bottom of the pillar of the solar power generation system of the present embodiment.

圖5A顯示本實施例追日型太陽能發電系統連動桿之第一局部放大圖。 Fig. 5A is a first partial enlarged view of the interlocking rod of the solar power generation system of the present embodiment.

圖5B顯示本實施例追日型太陽能發電系統連動桿之第二局部放大圖。 Fig. 5B is a second partial enlarged view of the linkage rod of the solar power generation system of the present embodiment.

圖6顯示本實施例追日型太陽能發電系統支柱頂部和橫臂之局部分解圖。 Fig. 6 is a partially exploded view showing the top and cross arms of the pillar of the solar power generation system of the present embodiment.

圖7顯示另一實施例追日型太陽能發電系統支柱頂部和橫臂之局部分解圖。 Figure 7 is a partial exploded view of the top and cross arms of a pillar of a solar power generation system of another embodiment.

圖8為本發明追日型太陽能發電系統的系統架構圖。 FIG. 8 is a system architecture diagram of a solar-powered solar power generation system according to the present invention.

圖9為本發明追日型太陽能發電方法的流程圖。 9 is a flow chart of a solar energy generation method according to the present invention.

以下是藉由特定的具體實例來說明本發明所揭露有關“追日型太陽能發電系統”的實施方式,以下的實施方式將進一步詳細說明本發明的相關技術內容,但所揭示的內容並非用以限制本發明的技術範疇。 The following is a specific embodiment to illustrate the implementation of the "sun-type solar power generation system" disclosed in the present invention. The following embodiments will further explain the related technical content of the present invention, but the disclosed content is not used. The technical scope of the present invention is limited.

〔第一實施例〕 [First Embodiment]

圖1顯示本實施例追日型太陽能發電系統之立體圖,圖2顯示本實施例追日型太陽能發電系統之局部放大圖。請參照圖1、圖2和圖3,其中圖3顯示本實施例追日型太陽能發電系統另一視角之立體圖。本實施例提供一種追日型太陽能發電系統100,其中設置有一太陽偵測裝置102、一驅動裝置103、一連動桿104、數個橫桿106、數個橫臂108、數個支柱110和數個太陽能光電板112。在本實施例中,驅動裝置103與太陽偵測裝置102相連接,其中驅動裝置103可以為一馬達,或是馬達搭配減速機,且驅動裝置103下方設有一搖臂114。本實施例之追日型太陽能發電系統可根據太陽偵測裝置102所偵測到太陽日照之軌跡,調整搖臂114的位置,且搖臂114連接連動桿104,使得驅動裝置103可根據太陽偵測裝置102所得到之資料驅動連動桿104。更詳細來說,驅動裝 置103可以根據太陽的位置,透過搖臂114使得連動桿104沿其縱長方向往前或往後移動。本實施例中,進一步包含傾角偵測裝置101以及風速偵測裝置105。其中,傾角偵測裝置101與太陽偵測裝置102配置於太陽能光電板112上,會隨着太陽能光電板112旋轉。傾角偵測裝置101用以偵測太陽能光電板112的傾斜旋轉角度,風速偵測裝置105用以偵測風速。本實施例之追日型太陽能發電系統可根據傾角偵測裝置101、太陽偵測裝置102,以及風速偵測裝置105,使驅動裝置103調整太陽能光電板112的旋轉動作。 1 is a perspective view showing a solar power generation system of the present embodiment, and FIG. 2 is a partial enlarged view of the solar power generation system of the present embodiment. Please refer to FIG. 1, FIG. 2 and FIG. 3, wherein FIG. 3 is a perspective view showing another perspective of the solar power generation system of the present embodiment. The embodiment provides a solar-powered solar power generation system 100, wherein a solar detecting device 102, a driving device 103, a linkage rod 104, a plurality of cross bars 106, a plurality of cross arms 108, a plurality of pillars 110, and a number are provided. Solar photovoltaic panels 112. In this embodiment, the driving device 103 is connected to the solar detecting device 102. The driving device 103 can be a motor or a motor coupled with a speed reducer, and a rocker arm 114 is disposed under the driving device 103. The solar tracking system of the present embodiment can adjust the position of the rocker arm 114 according to the trajectory of the sun detected by the solar detecting device 102, and the rocker arm 114 is connected to the linkage rod 104, so that the driving device 103 can be based on the solar ray. The data obtained by the measuring device 102 drives the linkage rod 104. In more detail, the drive is loaded The setting 103 can move the linkage rod 104 forward or backward along its longitudinal direction by the rocker arm 114 according to the position of the sun. In this embodiment, the tilt detecting device 101 and the wind speed detecting device 105 are further included. The tilt detecting device 101 and the solar detecting device 102 are disposed on the solar photovoltaic panel 112 and rotate with the solar photovoltaic panel 112. The tilt detecting device 101 is configured to detect a tilting rotation angle of the solar photovoltaic panel 112, and the wind speed detecting device 105 is configured to detect the wind speed. The solar tracking system of the present embodiment can adjust the rotation operation of the solar photovoltaic panel 112 according to the inclination detecting device 101, the solar detecting device 102, and the wind speed detecting device 105.

補充說明,本發明圖式中的傾角偵測裝置101、太陽偵測裝置102,以及風速偵測裝置105並未按實際比例繪製,圖式僅為示意,並未用以限制本發明專利範圍的範疇。關於傾角偵測裝置101、太陽偵測裝置102,以及風速偵測裝置105的進一步作用容後說明。 In addition, the tilt detecting device 101, the sun detecting device 102, and the wind speed detecting device 105 in the drawings of the present invention are not drawn to actual scales, and the drawings are only schematic and are not intended to limit the scope of the present invention. category. Further explanation of the tilt detecting device 101, the sun detecting device 102, and the wind speed detecting device 105 will be described later.

此外,如圖2所示,本實施例追日型太陽能發電系統100之數個橫桿106與連動桿104交錯,且各橫桿106與連動桿104呈垂直方向延伸,其中每一個橫桿106以數個支柱110支撐,支柱110上部之位置設有軸承,使得橫桿106可進行轉動。雖然圖示中顯示各橫桿以6個支柱110支撐,但本發明不限於此,支柱110的數量可依橫桿106的長度增加或減少,而橫桿106的長度係依據對應的太陽能光電板112數量而決定,因此,本發明支柱110的數量與同一列太陽能光電板112數量呈正相關。 In addition, as shown in FIG. 2, the plurality of crossbars 106 of the solar-powered solar power generation system 100 of the present embodiment are interlaced with the linkage rods 104, and the crossbars 106 and the linkage rods 104 extend in a vertical direction, wherein each of the crossbars 106 Supported by a plurality of struts 110, a bearing is provided at an upper portion of the struts 110 so that the crossbar 106 can be rotated. Although the crossbars are shown as being supported by six struts 110, the present invention is not limited thereto, and the number of struts 110 may be increased or decreased depending on the length of the crossbar 106, and the length of the crossbar 106 is based on the corresponding solar photovoltaic panel. The number of 112 is determined, and therefore, the number of pillars 110 of the present invention is positively correlated with the number of photovoltaic panels 112 in the same column.

請參照圖3,每一橫桿106以一連動臂115與連動桿104連接。如此一來,根據上述連動桿104的移動可藉由連動臂115使得橫桿106產生轉動。每一橫桿106上架設數個與橫桿106垂直的橫臂108,且數個太陽能光電板112,架設於各橫桿106和橫臂108上。更詳細來說,每一個太陽能光電板112是以一個橫桿106和兩個橫臂108支撐,且太陽能光電板112可隨著橫桿106之轉動而產生角度變化。特別是,驅動裝置103根據太陽偵測裝置102 偵測太陽的位置,驅動連動桿104,使橫桿106和橫臂108上之太陽能光電板112隨太陽移動之軌跡做角度變化,使得太陽能光電板112之表面正對太陽,讓太陽照射之能量可最直接的傳送至太陽能光電板112,以提高太陽能光電板112的發電量。 Referring to FIG. 3, each crossbar 106 is coupled to the linkage rod 104 by a linkage arm 115. In this way, according to the movement of the linkage rod 104, the crossbar 106 can be rotated by the linkage arm 115. A plurality of cross arms 108 perpendicular to the crossbar 106 are mounted on each of the crossbars 106, and a plurality of solar photovoltaic panels 112 are mounted on the crossbars 106 and the cross arms 108. In more detail, each of the solar photovoltaic panels 112 is supported by a crossbar 106 and two cross arms 108, and the solar photovoltaic panel 112 can vary in angle with the rotation of the crossbar 106. In particular, the driving device 103 is based on the solar detecting device 102. The position of the sun is detected, and the linkage rod 104 is driven to make the solar photovoltaic panel 112 on the crossbar 106 and the cross arm 108 change angle with the movement of the sun, so that the surface of the solar photovoltaic panel 112 faces the sun, and the energy of the sun is irradiated. It can be most directly transmitted to the solar photovoltaic panel 112 to increase the amount of power generated by the solar photovoltaic panel 112.

圖4顯示本實施例追日型太陽能發電系統支柱底部之局部放大圖。如圖4所示,本實施例之支柱110可以為一H型鋼116,且支柱110底部固鎖一基樁118,特別是基樁118可以是事先製作好的水泥塊,且H型鋼116以螺栓120固鎖水泥塊。本實施例此設計之用意為,水泥塊之基樁118可事先在工廠製作好,當要組裝追日型太陽能發電系統100時,將基樁118搬移至現場(例如地面上或屋頂上),即可進行H型鋼116和基樁118之固鎖,可省去灌水泥冗長的製作時間,也使得追日型太陽能發電系統100之組裝變得更簡便。 Fig. 4 is a partially enlarged view showing the bottom of the pillar of the solar power generation system of the present embodiment. As shown in FIG. 4, the pillar 110 of the embodiment may be an H-shaped steel 116, and the bottom of the pillar 110 is fixed to a foundation pile 118. In particular, the foundation pile 118 may be a cement block prepared in advance, and the H-shaped steel 116 is bolted. 120 solid lock cement block. The design of this embodiment is intended to mean that the foundation pile 118 of the cement block can be prepared in advance at the factory, and when the solar-powered solar power generation system 100 is to be assembled, the pile 118 is moved to the site (for example, on the ground or on the roof). The locking of the H-beam 116 and the pile 118 can be performed, which can save the long production time of the grouting and make the assembly of the solar-powered solar power system 100 easier.

圖5A顯示本實施例追日型太陽能發電系統連動桿之第一局部放大圖。如圖5A所示,本實施例之連動桿104包括數個長條形之部件122,且兩個相鄰之部件122間以一連接件124固接,其中連接件包括兩個槽鐵126a、126b和數個第一螺栓128和數個第二螺栓130,藉由第一螺栓128鎖合位於上部之第一槽鐵126a和位於下部之第二槽鐵126b,使得第一、第二槽鐵126a、126b以夾合的方式固定連動桿104之部件122,且第一槽鐵126a和第二槽鐵126b之中央部位包括第一螺孔132,部件中包括第二螺孔134,藉由第二螺栓130穿過第一槽鐵126a和第二槽鐵126b之第一螺孔132和部件之第二螺孔134,將第一槽鐵126a、第二槽鐵126b和部件122彼此緊固。本發明藉由此鎖合之部件122,且更近一步可鎖合更多的部件,以形成本實施例之連動桿104。本發明不特別限定連動桿104結合部件122之數量,其可依行方向太陽能光電板112的數量而改變。 Fig. 5A is a first partial enlarged view of the interlocking rod of the solar power generation system of the present embodiment. As shown in FIG. 5A, the linkage rod 104 of the present embodiment includes a plurality of elongated members 122, and two adjacent members 122 are fixed by a connecting member 124. The connecting member includes two slot irons 126a. 126b and a plurality of first bolts 128 and a plurality of second bolts 130, and the first and second troughs 126a are locked by the first bolts 128 and the second troughs 126b at the lower portion, so that the first and second troughs are 126a, 126b fix the component 122 of the linkage rod 104 in a sandwiching manner, and the central portion of the first slot iron 126a and the second slot iron 126b includes a first screw hole 132, and the second screw hole 134 is included in the component. The second bolt 130 passes through the first screw hole 132 of the first slot iron 126a and the second slot iron 126b and the second screw hole 134 of the component to fasten the first slot iron 126a, the second slot iron 126b and the member 122 to each other. The present invention utilizes the thus-locked component 122 and more closely locks more components to form the linkage bar 104 of the present embodiment. The present invention does not particularly limit the number of the coupling members 104 of the interlocking members 104, which may vary depending on the number of solar photovoltaic panels 112 in the row direction.

圖5B顯示本實施例追日型太陽能發電系統連動桿之第二局部 放大圖。兩個相鄰的部件122之間透過連接件200彼此固定在一起。進一步說,固定螺絲300穿過墊片400,進入連接件200的穿孔201,進入部件122的第二螺孔134後向外穿出,最後利用螺帽500鎖合,防止固定螺絲300脫離部件122。連接件200可以先行固定在其中一個部件122上,後續再跟另一個部件122結合。 FIG. 5B shows the second part of the linkage rod of the solar power generation system of the present embodiment. Enlarged image. The two adjacent members 122 are fixed to each other through the connecting member 200. Further, the fixing screw 300 passes through the spacer 400, enters the through hole 201 of the connecting member 200, enters the second screw hole 134 of the component 122, and then passes outwardly, and finally is locked by the nut 500 to prevent the fixing screw 300 from coming off the component 122. . The connector 200 can be first secured to one of the components 122 and subsequently joined to the other component 122.

圖6顯示本實施例追日型太陽能發電系統支柱頂部和橫臂之局部分解圖。如圖6所示,各支柱110為一H型鋼116結合L型鋼136,L型鋼136上固鎖一軸承138,且橫桿106穿過軸承138,其中橫桿106可進行旋轉。在一實施例中,軸承138可以為塑膠軸承。 Fig. 6 is a partially exploded view showing the top and cross arms of the pillar of the solar power generation system of the present embodiment. As shown in FIG. 6, each of the struts 110 is an H-shaped steel 116 joined to an L-shaped steel 136. The L-shaped steel 136 is fixed to a bearing 138, and the crossbar 106 passes through the bearing 138, wherein the crossbar 106 is rotatable. In an embodiment, the bearing 138 can be a plastic bearing.

圖7顯示另一實施例追日型太陽能發電系統支柱頂部和橫臂之局部分解圖。如圖7所示,各支柱為一H型鋼116結合L型鋼136,L型鋼136上固鎖一連座軸承140,且為了組裝方便,本實施例之橫桿106包括半圓形之第一組件142和半圓形之第二組件144,如此一來,半圓形之第一組件142和半圓形之第二組件144可在穿過連座軸承140再進行固鎖,以組裝成橫桿106。根據本實施例支柱和橫臂的設計方式,可在現場以H型鋼116鎖合L型鋼136的製作方式,使得L型鋼136與H型鋼116固定,再將軸承140鎖固於L型鋼136上。事後將半圓形之第一組件142和半圓形之第二組件144穿過連座軸承140再進行固鎖,以組裝成橫桿106。 Figure 7 is a partial exploded view of the top and cross arms of a pillar of a solar power generation system of another embodiment. As shown in FIG. 7, each of the pillars is an H-shaped steel 116 combined with an L-shaped steel 136. The L-shaped steel 136 is fixed to a joint bearing 140, and for ease of assembly, the crossbar 106 of the present embodiment includes a semi-circular first component 142. And the semi-circular second component 144, such that the semi-circular first component 142 and the semi-circular second component 144 can be re-locked through the header bearing 140 to assemble the crossbar 106. According to the design method of the pillar and the cross arm of the embodiment, the L-shaped steel 136 and the H-shaped steel 116 can be fixed by the H-shaped steel 116 locking L-shaped steel 136 in the field, and the bearing 140 is locked on the L-shaped steel 136. The semi-circular first component 142 and the semi-circular second component 144 are then re-locked through the shoe bearing 140 to assemble the crossbar 106.

關於本發明太陽能發電系統的系統架構,請參考圖8。如圖所示,系統架構包含了控制單元1000,、太陽偵測裝置1100、傾角偵測裝置1200、風速偵測裝置1300,以及驅動裝置1400。其中,太陽偵測裝置1100、傾角偵測裝置1200、風速偵測裝置1300,以及驅動裝置1400電性連接於控制單元1000。 Regarding the system architecture of the solar power generation system of the present invention, please refer to FIG. As shown, the system architecture includes a control unit 1000, a solar detecting device 1100, a tilt detecting device 1200, a wind speed detecting device 1300, and a driving device 1400. The solar detecting device 1100, the tilt detecting device 1200, the wind speed detecting device 1300, and the driving device 1400 are electrically connected to the control unit 1000.

太陽偵測裝置1000配置在太陽能光電板上,用以偵測太陽的位置。傾角偵測裝置1200用以偵測太陽能光電板的傾斜角度。驅動裝置連動於太陽能光電板,驅動裝置用以控制太陽能光電板的 旋轉動作。 The solar detecting device 1000 is disposed on the solar photovoltaic panel to detect the position of the sun. The tilt detecting device 1200 is configured to detect the tilt angle of the solar photovoltaic panel. The driving device is linked to the solar photovoltaic panel, and the driving device is used to control the solar photovoltaic panel Rotate the action.

控制單元1000依據太陽偵測裝置1100、傾角偵測裝置1200所提供的信號,對驅動裝置1400發出一動作命令,使驅動裝置1400調整太陽能光電板的旋轉角度。太陽能光電板一般是順時針或反時針30度的旋轉區間。假如傾角偵測裝置1200偵測到太陽能光電板旋轉超出預定的範圍時,控制中心1000就會發出命令,調整太陽能光電板,從而起到保護太陽能光電板的作用。 The control unit 1000 issues an operation command to the driving device 1400 according to the signals provided by the solar detecting device 1100 and the tilt detecting device 1200, so that the driving device 1400 adjusts the rotation angle of the solar photovoltaic panel. Solar photovoltaic panels are typically rotated 30 degrees clockwise or counterclockwise. If the tilt detecting device 1200 detects that the solar photovoltaic panel rotates beyond a predetermined range, the control center 1000 issues a command to adjust the solar photovoltaic panel to protect the solar photovoltaic panel.

在本發明的實施例中,進一步包含風速偵測裝置1300,電性相接於控制單元1000。風速偵測裝置1300用以偵測風速,並傳遞信號給控制單元1000。進一步說,當風速偵測裝置1300偵測到風速過大時,控制系統1000就會發出命令給驅動裝置,使太陽能光電板旋轉至水平狀態,從而起到保護太陽能光電板的作用,避免大風吹壞太陽能光電板。 In the embodiment of the present invention, the wind speed detecting device 1300 is further included, and is electrically connected to the control unit 1000. The wind speed detecting device 1300 is configured to detect the wind speed and transmit a signal to the control unit 1000. Further, when the wind speed detecting device 1300 detects that the wind speed is too large, the control system 1000 issues a command to the driving device to rotate the solar photovoltaic panel to a horizontal state, thereby protecting the solar photovoltaic panel and preventing the wind from blowing. Solar photovoltaic panels.

在本發明的實施例中,進一步包含資料顯示單元,電性相接於控制單元1000。資料顯示單元根據控制單元1000所提供的運作參數,並顯示運作參數於顯示器上。關於運作參數容後說明。 In an embodiment of the present invention, the data display unit is further included, and is electrically connected to the control unit 1000. The data display unit displays the operational parameters on the display according to the operational parameters provided by the control unit 1000. Description of the operational parameters.

在本發明的實施例中,進一步包含連動桿104以及多數個橫桿106。請配合參考前述實施例以及圖1至圖7。其中連動桿104連接於驅動裝置103(如圖1),多數個橫桿106垂直於連動桿104,每一橫桿106以多數個支柱110支撐,且每一該橫桿106以連動臂115於連動桿104連接,每一橫桿106上架設多數個與橫桿垂直的橫臂108。 In an embodiment of the invention, a linkage rod 104 and a plurality of crossbars 106 are further included. Please refer to the foregoing embodiment and FIG. 1 to FIG. The linkage rod 104 is connected to the driving device 103 (as shown in FIG. 1), and the plurality of rails 106 are perpendicular to the linkage rod 104. Each of the rails 106 is supported by a plurality of pillars 110, and each of the rails 106 is connected by a linkage arm 115. The linkage rods 104 are connected, and each of the cross bars 106 is provided with a plurality of cross arms 108 perpendicular to the crossbars.

在本發明的實施例中,太陽能光電板112設置有多個,且多數個太陽能光電板112架設於橫桿106以及橫臂108上。 In the embodiment of the present invention, a plurality of solar photovoltaic panels 112 are disposed, and a plurality of solar photovoltaic panels 112 are mounted on the crossbar 106 and the cross arm 108.

本發明還提供追日型太陽能發電方法,請參考圖9。如圖所示,步驟S100:使用太陽偵測裝置偵測太陽的位置,生成位置信號。 The present invention also provides a solar energy generation method, please refer to FIG. As shown in the figure, step S100: detecting the position of the sun using a solar detecting device to generate a position signal.

然後,步驟S200:使用傾角偵測裝置偵測太陽能光電板的傾斜角度,生成角度信號。傳送偵測太陽能光電板的傾斜角度,生成 角度信號。 Then, in step S200, the tilt angle of the solar photovoltaic panel is detected by using the tilt detecting device to generate an angle signal. Transmitting and detecting the tilt angle of the solar photovoltaic panel, generating Angle signal.

步驟S300:傳送位置信號以及角度信號到控制單元,控制單元生成動作命令。 Step S300: transmitting the position signal and the angle signal to the control unit, and the control unit generates an action command.

步驟S400:傳送動作命令到驅動裝置,驅動裝置根據動作命令,調整太陽能光電板的旋轉角度。 Step S400: transmitting a motion command to the driving device, and the driving device adjusts the rotation angle of the solar photovoltaic panel according to the motion command.

在本發明的實施例中,進一步包含有下列步驟:使用風速偵測裝置偵測風速,生成風速信號。傳送風速信號到控制單元,控制單元根據風速信號,生成動作命令。 In an embodiment of the invention, the method further includes the steps of: detecting a wind speed using a wind speed detecting device to generate a wind speed signal. The wind speed signal is transmitted to the control unit, and the control unit generates an action command according to the wind speed signal.

在本發明的實施例中,進一步包含有下列步驟:控制單元根據位置信號以及角度信號,生成運作參數。傳送運作參數到資料顯示單元,使資料顯示單元顯示運作參數。 In an embodiment of the present invention, the method further includes the following steps: the control unit generates an operation parameter according to the position signal and the angle signal. The operating parameters are transmitted to the data display unit, so that the data display unit displays the operating parameters.

在本發明的實施例中,運作參數包含有位置信號及角度信號的數值。 In an embodiment of the invention, the operational parameters include values of the position signal and the angle signal.

在本發明的實施例中,步驟S100:使用太陽偵測裝置偵測太陽的位置步驟,還包括有下列步驟:使用第一偵測器量測太陽的光線強度,生成第一強度信號。使用第二偵測器量測太陽的光線強度,生成第二強度信號,生成第二強度信號。根據第一強度信號以及第二強度信號,生成位置信號。 In the embodiment of the present invention, step S100: the step of detecting the position of the sun by using the sun detecting device further comprises the steps of: measuring the light intensity of the sun using the first detector to generate a first intensity signal. A second detector is used to measure the intensity of the sun's light to generate a second intensity signal to generate a second intensity signal. A position signal is generated based on the first intensity signal and the second intensity signal.

進一步說,控制單元會比較第一強度信號以及第二強度信號,比較第一強度信號的數值以及第二強度信號的數值,就能確認太陽照射偏斜的角度,若兩者相同時,就代表太陽基本直射太陽能光電板。 Further, the control unit compares the first intensity signal with the second intensity signal, compares the value of the first intensity signal with the value of the second intensity signal, and can confirm the angle of the solar illumination deflection. If the two are the same, it represents The sun is basically directly exposed to solar photovoltaic panels.

〔實施例的可能功效〕 [Possible effects of the examples]

根據上述實施例,本發明具有以下技術功效: 本發明依據太陽偵測裝置以及傾角偵測裝置所發出的信號,動態的調整太陽能光電板的旋轉角度,使得太陽能光電板面向太陽,得到較佳的太陽光線照射角度。本發明的一實施例提供了一種可以簡易組裝的方式於地面或屋頂上形成一陣列型態之追日型 太陽能發電系統,驅動裝置根據太陽偵測裝置偵測太陽的位置,驅動連動桿,使橫桿和橫臂上之太陽能光電板隨太陽移動之軌跡做角度變化。此外,本發明一實施例之基樁可以為一在工廠事先製作好之水泥塊,當要進行組裝追日型太陽能發電系統時,可將製作好之水泥塊帶至現場進行組裝,可省去灌水泥冗長的製作時間,也使得追日型太陽能發電系統之組裝變得更簡便。再者,根據本實施例支柱和橫臂的設計方式,可在現場以H型鋼鎖合L型鋼的製作方式,使得L型鋼與H型鋼固定,再將軸承鎖固於L型鋼上。事後將半圓形之第一組件和半圓形之第二組件穿過連座軸承再進行固鎖,以組裝成橫臂。根據上述,本發明可以簡便的方式組裝成陣列型態之追日型太陽能發電系統,且置放追日型太陽能發電系統之位置也較不受到限制,追日型太陽能發電系統之位置可在屋頂上或地面上裝配完成。 According to the above embodiment, the present invention has the following technical effects: According to the signal emitted by the solar detecting device and the tilt detecting device, the invention dynamically adjusts the rotation angle of the solar photovoltaic panel, so that the solar photovoltaic panel faces the sun and obtains a better angle of sunlight. An embodiment of the present invention provides a solar tracking type that can form an array pattern on the ground or on the roof in a simple assembly manner. In the solar power generation system, the driving device detects the position of the sun according to the solar detecting device, drives the interlocking rod, and makes the solar photovoltaic panel on the crossbar and the cross arm change angle with the trajectory of the sun moving. In addition, the foundation pile according to an embodiment of the present invention may be a cement block which is prepared in advance in the factory. When assembling the solar power generation system, the cement block can be assembled to the site for assembly, and the utility model can be omitted. The lengthy production time of the grouting cement also makes the assembly of the solar-powered solar power generation system easier. Furthermore, according to the design method of the pillar and the cross arm of the embodiment, the L-shaped steel and the H-shaped steel can be fixed by the H-shaped steel locking L-shaped steel in the field, and the bearing is locked on the L-shaped steel. The semi-circular first component and the semi-circular second component are then passed through the shoe and then locked to assemble the cross arm. According to the above, the present invention can be assembled into an array type of solar-powered solar power generation system in a simple manner, and the position of the solar-powered solar power generation system is also relatively unrestricted, and the position of the solar-powered solar power generation system can be on the roof. The assembly on the ground or on the ground is completed.

以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, equivalent technical changes made by using the present specification and the contents of the drawings are included in the protection scope of the present invention. .

1000‧‧‧控制單元 1000‧‧‧Control unit

1100‧‧‧太陽偵測裝置 1100‧‧‧Sun detection device

1200‧‧‧傾角偵測裝置 1200‧‧‧Dip angle detection device

1300‧‧‧風速偵測裝置 1300‧‧‧Wind speed detection device

1400‧‧‧驅動裝置 1400‧‧‧ drive

Claims (8)

一種追日型太陽能發電系統,其包括:一太陽偵測裝置,配置於一太陽能光電板上,用以偵測太陽的位置;一傾角偵測裝置,配置於該太陽能光電板上,用以偵測該太陽能光電板的傾斜角度;一驅動裝置,連動該太陽能光電板,該驅動裝置用以控制該太陽能光電板的旋轉動作;以及一控制單元,與該太陽偵測裝置、該傾角偵測裝置、該驅動裝置電性連接,該控制單元依據該太陽偵測裝置、該傾角偵測裝置所提供的信號,對該驅動裝置發出一動作命令,使該驅動裝置調整該太陽能光電板的旋轉角度;其中更包含有一連動桿以及多數個橫桿,其中該連動桿連接於該驅動裝置,該多數個橫桿垂直於該連動桿,每一該橫桿以多數個支柱支撐,且每一該橫桿以一連動臂與該連動桿連接,每一該橫桿上架設多數個與該橫桿垂直的橫臂。 A solar-powered solar power generation system comprising: a solar detecting device disposed on a solar photovoltaic panel for detecting a position of the sun; and a tilt detecting device disposed on the solar photovoltaic panel for detecting Measuring a tilt angle of the solar photovoltaic panel; a driving device for interlocking the solar photovoltaic panel, the driving device for controlling a rotating motion of the solar photovoltaic panel; and a control unit, the solar detecting device, and the tilt detecting device The driving device is electrically connected, and the control unit sends an action command to the driving device according to the signal provided by the sun detecting device and the tilt detecting device, so that the driving device adjusts the rotation angle of the solar photovoltaic panel; The utility model further includes a linkage rod and a plurality of cross rods, wherein the linkage rod is connected to the driving device, the plurality of cross rods are perpendicular to the linkage rod, each of the cross rods is supported by a plurality of pillars, and each of the cross rods A linkage arm is coupled to the linkage rod, and each of the crossbars is provided with a plurality of cross arms perpendicular to the crossbar. 如請求項1所述之追日型太陽能發電系統,其中更包含一風速偵測裝置,電性連接於該控制單元,該風速偵測裝置用以偵測風速,並傳遞信號給該控制單元。 The solar-powered solar power generation system of claim 1, further comprising a wind speed detecting device electrically connected to the control unit, wherein the wind speed detecting device is configured to detect a wind speed and transmit a signal to the control unit. 如請求項1所述之追日型太陽能發電系統,其中更包含一資料顯示單元,電性連接於該控制單元,該資料顯示單元根據該控制單元所提供的一運作參數,顯示該運作參數於一顯示器上。 The solar energy generating system of claim 1, further comprising a data display unit electrically connected to the control unit, the data display unit displaying the operating parameter according to an operating parameter provided by the control unit On a display. 如請求項3所述之追日型太陽能發電系統,其中該太陽能光電板設置有多數個,該多數個太陽能光電板架設於該橫桿及該橫臂上。 The solar-powered solar power generation system according to claim 3, wherein the solar photovoltaic panel is provided with a plurality of solar photovoltaic panels mounted on the crossbar and the cross arm. 一種追日型太陽能發電方法,其包括有下列步驟:使用一太陽偵測裝置偵測太陽的位置,生成一位置信 號;使用一傾角偵測裝置偵測一太陽能光電板的傾斜角度,生成一角度信號;其中該使用該太陽偵測裝置偵測太陽的位置的步驟,還包括有下列步驟:使用一第一偵測器量測太陽的光線強度,生成一第一強度信號;使用一第二偵測器量測太陽的光線強度,生成一第二強度信號;以及根據該第一強度信號以及該第二強度信號,生成該位置信號;傳送該位置信號以及該角度信號到一控制單元,該控制單元生成一動作命令;以及傳送該動作命令至一驅動裝置,該驅動裝置根據該動作命令,調整該太陽能光電板的旋轉角度。 A solar-powered solar power generation method includes the following steps: detecting a position of the sun using a solar detecting device to generate a positional letter Using a tilt detecting device to detect the tilt angle of a solar photovoltaic panel to generate an angle signal; wherein the step of detecting the position of the sun using the solar detecting device further includes the following steps: using a first detecting The detector measures the light intensity of the sun to generate a first intensity signal; uses a second detector to measure the light intensity of the sun to generate a second intensity signal; and according to the first intensity signal and the second intensity signal Generating the position signal; transmitting the position signal and the angle signal to a control unit, the control unit generates an action command; and transmitting the action command to a driving device, the driving device adjusting the solar photovoltaic panel according to the action command The angle of rotation. 如請求項5所述的追日型太陽能發電方法,其中更包含有下列步驟:使用一風速偵測裝置偵測風速,生成一風速信號;以及傳送該風速信號到該控制單元,該控制單元根據該風速信號,生成該動作命令。 The solar energy generation method according to claim 5, further comprising the steps of: detecting a wind speed using a wind speed detecting device to generate a wind speed signal; and transmitting the wind speed signal to the control unit, the control unit according to The wind speed signal generates the motion command. 如請求項5所述的追日型太陽能發電方法,其中更包含有下列步驟:該控制單元根據該位置信號以及該角度信號,生成一運作參數;以及傳送該運作參數到一資料顯示單元,使該資料顯示單元顯示該運作參數。 The solar energy generation method according to claim 5, further comprising the steps of: generating, by the control unit, an operational parameter according to the position signal and the angle signal; and transmitting the operational parameter to a data display unit, The data display unit displays the operational parameters. 如請求項7所述的追日型太陽能發電方法,其中該運作參數包含有該位置信號以及該角度信號的數值。 The solar energy generation method according to claim 7, wherein the operation parameter includes the position signal and a value of the angle signal.
TW105108120A 2016-03-16 2016-03-16 Solar tracking energy system and method thereof TWI586095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105108120A TWI586095B (en) 2016-03-16 2016-03-16 Solar tracking energy system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105108120A TWI586095B (en) 2016-03-16 2016-03-16 Solar tracking energy system and method thereof

Publications (2)

Publication Number Publication Date
TWI586095B true TWI586095B (en) 2017-06-01
TW201735524A TW201735524A (en) 2017-10-01

Family

ID=59688055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108120A TWI586095B (en) 2016-03-16 2016-03-16 Solar tracking energy system and method thereof

Country Status (1)

Country Link
TW (1) TWI586095B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833348B (en) * 2022-09-12 2024-02-21 賴彥光 Tree-shaped solar device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186040A1 (en) * 2010-02-02 2011-08-04 Liao Henry H One-Axis Solar Tracker System and Apparatus with Wind Lock Devices
TW201413194A (en) * 2012-09-18 2014-04-01 Inst Nuclear Energy Res Atomic Energy Council System for monitoring operating angle of solar tracker in real time
TW201518754A (en) * 2013-11-15 2015-05-16 Dong-Zhang Yang Sun-chasing method of solar power generating device and system thereof
TWM503027U (en) * 2014-12-26 2015-06-11 Univ China Technology Construction material module with solar sun-tracking structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186040A1 (en) * 2010-02-02 2011-08-04 Liao Henry H One-Axis Solar Tracker System and Apparatus with Wind Lock Devices
TW201413194A (en) * 2012-09-18 2014-04-01 Inst Nuclear Energy Res Atomic Energy Council System for monitoring operating angle of solar tracker in real time
TW201518754A (en) * 2013-11-15 2015-05-16 Dong-Zhang Yang Sun-chasing method of solar power generating device and system thereof
TWM503027U (en) * 2014-12-26 2015-06-11 Univ China Technology Construction material module with solar sun-tracking structure

Also Published As

Publication number Publication date
TW201735524A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
US11264942B2 (en) Actuator driven single-axis trackers
KR101403129B1 (en) Solar generating apparatus with solar tracker
Huang et al. Long-term field test of solar PV power generation using one-axis 3-position sun tracker
CN101908840B (en) Apparatus for tracking and concentrating sunlight of sliding type
JP6040242B2 (en) Self-stabilizing solar tracking device
JP2020534805A (en) Photovoltaic power plant that can be installed in agricultural facilities
KR100760043B1 (en) Solar power plant having angle adjustment device
CN105471377A (en) Horizontal single axis sun-tracking support apparatus
TW201432119A (en) Building with solar-energy sun tracking device
CN107659253A (en) A kind of device of solar generating for automatically adjusting angle
KR101175662B1 (en) Sun location tracking type solar generation apparatus
TWI586095B (en) Solar tracking energy system and method thereof
KR100927283B1 (en) Tilt Angle Control Device of Solar Panel
CN103207623A (en) Dual-axis tracking photovoltaic power generator
CN104777852A (en) Rotary driving device for solar panel
CN109343575B (en) Active intelligent tracking bracket system for double-sided power generation of photovoltaic module
KR20130020410A (en) Linear sloped dual axis solar tracker supported with two end truss columns
CN219436927U (en) Single-column photovoltaic tracking device supported by multiple points
KR100751040B1 (en) Solar cell street-lamp with top of pole mounting structure
KR20200016430A (en) Solar tracking apparatus
CN202502411U (en) Solar energy three-shaft parallel-connection tracker
CN209299203U (en) Photovoltaic tracking bracket with stroke protection column
CN102638194A (en) Three-shaft parallel solar tracker
KR102143959B1 (en) Solar tracking device
CN216146280U (en) Supporting structure and multipoint-supporting tracking type photovoltaic system