TWI585594B - The flexible element of the steady state system - Google Patents

The flexible element of the steady state system Download PDF

Info

Publication number
TWI585594B
TWI585594B TW105126707A TW105126707A TWI585594B TW I585594 B TWI585594 B TW I585594B TW 105126707 A TW105126707 A TW 105126707A TW 105126707 A TW105126707 A TW 105126707A TW I585594 B TWI585594 B TW I585594B
Authority
TW
Taiwan
Prior art keywords
control point
steady
flexible element
steady state
length range
Prior art date
Application number
TW105126707A
Other languages
Chinese (zh)
Other versions
TW201807595A (en
Inventor
Dong-An Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105126707A priority Critical patent/TWI585594B/en
Application granted granted Critical
Publication of TWI585594B publication Critical patent/TWI585594B/en
Publication of TW201807595A publication Critical patent/TW201807595A/en

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

穩態恒力系統之撓性元件 Flexible element of steady state constant force system

本發明是有關於一種撓性元件,特別是指一種穩態恒力系統之撓性元件。 The present invention relates to a flexible element, and more particularly to a flexible element of a steady state constant force system.

微機電系統(MEMS)是指尺寸小於1mm,且能夠在極小的空間內進行精密及特定作業的機械。而微機電系統中能夠在二個穩態位置中變化位置的撓性元件,常被用於開關、夾持構造、閥門...等等。 Microelectromechanical systems (MEMS) are machines that are less than 1 mm in size and capable of performing precision and specific operations in a very small space. Flexible elements in MEMS that can change position in two steady-state positions are often used for switches, clamping configurations, valves, and the like.

如中華民國專利第I515162號「主動式穩態夾持釋放系統」發明專利案、或第I465725號「具有保護機制的雙穩態恆力系統」發明專利案,主要都是藉由撓性元件可以在二個穩態位置撓動變形的特徵,達到需求的目的。 For example, the invention patent case of the "active steady-state clamp release system" of the Republic of China Patent No. I515162 or the "bistable constant force system with protection mechanism" of the I465725 is mainly made of flexible components. The characteristics of the deflection at two steady-state positions achieve the purpose of the demand.

惟,前述案件中使用的撓性元件,會因為空間環境限制、或被驅動時需求的致動力大小變化,而有不同的設計考量。然而,要在有限的空間下,根據不同條件,決定需求的曲線輪廓,在設計上是一個極大的難題。 However, the flexible components used in the foregoing cases may have different design considerations due to space environment constraints or changes in the amount of actuation force required to be driven. However, in a limited space, depending on different conditions, determining the curve profile of the demand is a great problem in design.

因此,本發明的目的,即在提供一種可以獲得效能最佳的曲線輪廓,並有效提升設計自由度的穩態恒力系統之撓性元件。 Accordingly, it is an object of the present invention to provide a flexible element of a steady-state constant force system that achieves a contour profile that is optimal in performance and that effectively enhances design freedom.

於是,一種穩態恒力系統包括一個作動元件,及連接該作動元件且彼此對稱的至少二個撓性元件,每一撓性元件承受一個致動力在一個第一穩態位置與一個第二穩態位置間撓動變形。 Thus, a steady-state constant force system includes an actuating element and at least two flexible elements coupled to the actuating element and symmetrical to each other, each flexible element bearing an actuation force at a first steady state position and a second steady state The position of the state is flexed and deformed.

本發明的每一撓性元件根據貝茲曲線之函數公式0 t 1,決定貝茲曲線輪廓,而定義出一個第一控制點PB1、一個第二控制點PB2、一個第三控制點PB3,及一個第四控制點PB4,其中,t為常數,每一撓性元件並具有一個X軸長度範圍與一個Y軸長度範圍,該X軸長度範圍包括一個最小值Xmin與一個最大值Xmax,該Y軸長度範圍包括一個最小值Ymin與一個最大值Ymax,該第一控制點PB1之座標值為(Xmin,Ymin),第四控制點PB4之座標值為(Xmax,Ymax),該第二控制點PB2與該第三控制點PB3之座標值根據位於該第一穩態位置與該第二穩態位置時所需的致動力分別為變數。 Each flexible element of the present invention is based on a function of the Bezier curve 0 t 1. Determining the Bezier curve profile, and defining a first control point P B1 , a second control point P B2 , a third control point P B3 , and a fourth control point P B4 , where t is a constant, Each flexible element has an X-axis length range and a Y-axis length range, the X-axis length range including a minimum value X min and a maximum value X max , the Y-axis length range including a minimum value Y min and a The maximum value Y max , the coordinate value of the first control point P B1 is (X min , Y min ), the coordinate value of the fourth control point P B4 is (X max , Y max ), and the second control point P B2 is The coordinate value of the third control point P B3 is a variable according to the actuation force required when the first steady state position and the second steady state position are respectively.

本發明的功效在於:利用貝茲曲線之特性,使本發明只需控制第二、第三控制點,就可以獲得效能最佳的曲線輪廓,並有 效提升設計時的自由度。 The utility model has the advantages that: by utilizing the characteristics of the Bezier curve, the invention can obtain the best performance curve profile by only controlling the second and third control points, and Improve the freedom of design.

1‧‧‧穩態恒力系統 1‧‧‧ Steady-state constant force system

11‧‧‧作動元件 11‧‧‧ actuation element

12‧‧‧撓性元件 12‧‧‧Flexible components

X‧‧‧軸 X‧‧‧ axis

Y‧‧‧軸 Y‧‧‧ axis

f‧‧‧致動力 F‧‧‧ motivation

F‧‧‧反作用力 F‧‧‧ reaction

F1‧‧‧極限值 F1‧‧‧ limit value

F2‧‧‧極限值 F2‧‧‧ limit value

a‧‧‧位置 A‧‧‧ position

b‧‧‧位置 B‧‧‧ position

c‧‧‧位置 C‧‧‧ position

PB1‧‧‧第一控制點 P B1 ‧‧‧First Control Point

PB2‧‧‧第二控制點 P B2 ‧‧‧second control point

PB3‧‧‧第三控制點 P B3 ‧‧‧ third control point

PB4‧‧‧第四控制點 P B4 ‧‧‧fourth control point

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一個俯視圖,說明本發明穩態恒力系統之撓性元件的一個實施例;圖2是該實施例分別在一個第一穩態位置與一個第二穩態位置的一個反作用力-位移量曲線圖;圖3是該實施例中一個撓性元件的一個X軸長度範圍-Y軸長度範圍示意圖;圖4是該實施例的一個流程圖;圖5是該實施例分別以一條貝茲曲線、一條餘弦曲線、一條線性曲線設計輪廓的一個X軸長度範圍-Y軸長度範圍比較圖;及圖6是該實施例分別以該貝茲曲線、該餘弦曲線、該線性曲線設計輪廓的一個反作用力-位移量曲線比較圖。 Other features and advantages of the present invention will be apparent from the embodiments of the appended drawings, wherein: Figure 1 is a top view illustration of one embodiment of a flexible element of the steady state constant force system of the present invention; This embodiment is a reaction force-displacement amount graph of a first steady state position and a second steady state position, respectively; FIG. 3 is an X-axis length range - Y-axis length range of a flexible member in this embodiment. FIG. 4 is a flow chart of the embodiment; FIG. 5 is a comparison diagram of an X-axis length range-Y-axis length range of a contour of a Bezier curve, a cosine curve, and a linear curve, respectively; FIG. 6 is a comparison diagram of a reaction force-displacement amount curve of the design contour of the Bezier curve, the cosine curve, and the linear curve, respectively, in the embodiment.

參閱圖1,一種穩態恒力系統1包括一個作動元件11,及連接該作動元件11且彼此對稱的四個撓性元件12。每一撓性元件 12承受一個致動力f在一個第一穩態位置與一個第二穩態位置間撓動變形。在本實施例中,每一撓性元件12為矽材料,在各向同性線彈性模型(linear elastic and isotropic model)中,楊氏模數E為130GPa,沿一條X軸方向之應變與沿一條Y軸方向之應變的比值(Poisson's ratio)為0.28。 Referring to Figure 1, a steady state constant force system 1 includes an actuating element 11 and four flexible elements 12 coupled to the actuating element 11 and symmetrical to one another. Each flexible element 12 is subjected to an actuation force f that is flexibly deformed between a first steady state position and a second steady state position. In this embodiment, each of the flexible elements 12 is a tantalum material. In the linear elastic and isotropic model, the Young's modulus E is 130 GPa, and the strain along a X-axis direction is along the line. The ratio of the strain in the Y-axis direction (Poisson's ratio) was 0.28.

參閱圖2,當該穩態恒力系統1的該等撓性元件12沒有受到致動力f的作用時,因為不會產生反作用力F,所以,反作用力F為0mN,而穩定於該第一穩態位置。當該等撓性元件12受到致動力f的作用而循該Y軸方向撓動變形至該第二穩態位置時,可以發現如圖中的實線所示,該等撓性元件1產生的反作用力F會隨著位移量增加而增加,由位置a到達一個極限值F1後,產生的反作用力F下降到位置b的0mN,此時,該等撓性元件12仍然處於不穩定的可彈動狀態,當位移量進一步加大時,產生的反作用力F減小,到達另一個極限值F2後,再次增加到位置c的0mN。藉此,只需停止施加致動力f,就可以使該等撓性元件12產生為常數的反作用力F(0mN),而穩定於第二穩態位置。 Referring to FIG. 2, when the flexible elements 12 of the steady-state constant force system 1 are not subjected to the actuation force f, since the reaction force F is not generated, the reaction force F is 0 mN, and is stabilized at the first Steady position. When the flexible elements 12 are subjected to the action of the actuation force f and are flexibly deformed to the second steady-state position in the Y-axis direction, it can be found that the flexible elements 1 are produced as indicated by the solid lines in the figure. The reaction force F increases as the displacement increases. After the position a reaches a limit value F1, the generated reaction force F drops to 0 mN at the position b. At this time, the flexible members 12 are still in an unstable bomb. In the moving state, when the displacement amount is further increased, the generated reaction force F is decreased, and after reaching the other limit value F2, it is again increased to 0 mN of the position c. Thereby, by simply stopping the application of the actuation force f, the flexible elements 12 can be made to have a constant reaction force F (0 mN) and stabilized at the second steady state position.

值得說明的是,本發明產生致動力f的驅動方式與動作模式,可與中華民國專利第I515162號案類同。由於本領域中具有通常知識者根據以上說明可以推知擴充細節,因此不多加說明。 It should be noted that the driving mode and the action mode of the driving force f generated by the present invention can be similar to the case of the Republic of China Patent No. I515162. Since the general knowledge in the art can infer the details of the expansion based on the above description, it will not be explained.

參閱圖3、圖4,以下結合本發明穩態恒力系統1之撓性 元件12的一實施例與設計步驟說明如後: Referring to Figures 3 and 4, the flexibility of the steady state constant force system 1 of the present invention is combined below. An embodiment of the component 12 and the design steps are as follows:

步驟21:根據貝茲曲線之函數公式,定義出一個第一控制點PB1、一個第二控制點PB2、一個第三控制點PB3,及一個第四控制點PB4Step 21: Define a first control point P B1 , a second control point P B2 , a third control point P B3 , and a fourth control point P B4 according to a function formula of the Bezier curve.

貝茲曲線之函數公式:0 t 1其中,t是常數,PB1~PB4是向量位置。 The function formula of the Bezier curve: 0 t 1 where t is a constant and P B1 ~ P B4 are vector positions.

步驟22:決定每一撓性元件12之貝茲曲線輪廓的X軸長度範圍與Y軸長度範圍。該X軸長度範圍包括一個最小值Xmin與一個最大值Xmax,該Y軸長度範圍包括一個最小值Ymin與一個最大值YmaxStep 22: Determine the range of the X-axis length and the length of the Y-axis of the Bezier profile of each of the flexible elements 12. The X-axis length range includes a minimum value Xmin and a maximum value Xmax , the Y-axis length range including a minimum value Ymin and a maximum value Ymax .

舉例來說,可以配合空間環境的限制,決定每一撓性元件12之貝茲曲線輪廓的X軸長度範圍與Y軸長度範圍,在本實施例中,Xmin、Ymin分別為0,Xmax為20um,Ymax為600um,且每一撓性元件12之沿Y軸方向之寬度為5umFor example, the X-axis length range and the Y-axis length range of the Bezier profile of each flexible element 12 can be determined in accordance with the limitation of the space environment. In this embodiment, X min and Y min are respectively 0, X. Max is 20 um , Y max is 600 um , and the width of each flexible element 12 along the Y-axis is 5 um .

步驟23:給定第一控制點PB1之座標值為(Xmin,Ymin),第四控制點PB4之座標值為(Xmax,Ymax)。 Step 23: Given that the coordinate value of the first control point P B1 is (X min , Y min ), the coordinate value of the fourth control point P B4 is (X max , Y max ).

值得說明的是,在本實施例中,每一撓性元件12包括沿Y軸方向相隔一間距的二個邊緣121,該第一控制點PB1、該第四控 制點PB4分別為同一邊緣121的二個端點。 It should be noted that, in this embodiment, each of the flexible elements 12 includes two edges 121 spaced apart by a distance along the Y-axis direction, and the first control point P B1 and the fourth control point P B4 are respectively the same edge. The two endpoints of 121.

步驟24:使該第二控制點PB2與該第三控制點PB3為變數,計算出每一撓性元件12對應之貝茲曲線輪廓,及位於該第一穩態位置與該第二穩態位置時所需的致動力F。 Step 24: The second control point P B2 and the third control point P B3 are variables, and the contour of the Bezier curve corresponding to each flexible component 12 is calculated, and the first steady state position and the second stable state are located. The actuation force F required for the position of the state.

在本實施例中,以獲得最小致動力f為最佳的效能,前述第二控制點PB2與該第三控制點PB3之變數為亂數,可以在設定世代數後,亂數的給定每一世代之複數組變數,計算出每一撓性元件12對應之貝茲曲線輪廓,及位於該第一穩態位置與該第二穩態位置時所需的最小致動力f(即相對產生的反作用力F),再依據每一世代中能夠獲得最小致動力f的變數組,決定下一世代的變數組,依此類推至計算完所有的世代數。 In this embodiment, the minimum actuation force f is obtained as the best performance, and the variables of the second control point P B2 and the third control point P B3 are random numbers, and the number of random numbers can be given after setting the generation number. Determining the complex array variable for each generation, calculating the Bezier profile corresponding to each flexible element 12, and the minimum actuation force f required at the first steady state position and the second steady state position (ie, relative The resulting reaction force F), based on the variable array of the minimum actuation force f in each generation, determines the variable array of the next generation, and so on to calculate all the generations.

步驟25:選出所需的致動力f(即相對產生的反作用力F)所對應的該組變數,及對應的貝茲曲線輪廓。在本實施例中,是選出能夠計算出最小致動力f(即相對產生之最小反作用力F)的貝茲曲線輪廓。 Step 25: Select the set of variables corresponding to the required actuation force f (ie, the relative reaction force F generated), and the corresponding Bezier curve profile. In the present embodiment, a Bezier curve profile capable of calculating the minimum actuation force f (i.e., the relatively generated minimum reaction force F) is selected.

由圖5、圖6可以清楚的看出,線性曲線的X軸長度與Y軸長度呈正比關係,餘弦曲線的X軸長度與Y軸長度也趨近正比關係,因此,一但X軸長度範圍與Y軸長度範圍決定之後,其致動力也被決定,而本發明只需控制貝茲曲線的第二控制點PB2與第三控制點PB3,就可以在需求的X軸長度範圍、Y軸長度範圍內,獲得比 餘弦曲線、線性曲線設計變化更多的樣態,但能夠獲得比線性曲線、餘弦曲線更適中的反作用力F,或更明顯的位移量等等。 It can be clearly seen from Fig. 5 and Fig. 6 that the length of the X-axis of the linear curve is proportional to the length of the Y-axis, and the length of the X-axis of the cosine curve is also proportional to the length of the Y-axis. Therefore, the length of the X-axis is limited. After the length of the Y-axis is determined, the actuation force is also determined, and the present invention only needs to control the second control point P B2 and the third control point P B3 of the Bezier curve, and can be in the required X-axis length range, Y. In the range of the length of the shaft, more changes are obtained than the cosine curve and the linear curve design, but a reaction force F which is more moderate than the linear curve and the cosine curve, or a more obvious displacement amount, and the like can be obtained.

經由以上的說明,可將前述實施例的優點歸納如下:本發明能夠利用貝茲曲線之特性,使本發明只需控制該第二控制點PB2與該第三控制點PB3,就可以獲得效能最佳的曲線輪廓,並有效提升設計時的自由度。 Through the above description, the advantages of the foregoing embodiments can be summarized as follows: The present invention can utilize the characteristics of the Bezier curve, so that the present invention can obtain only the second control point P B2 and the third control point P B3 . The most efficient curve profile and effectively enhances the freedom of design.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.

Claims (5)

一種穩態恒力系統之撓性元件,該穩態恒力系統包括一個作動元件,及連接該作動元件且彼此對稱的至少二個撓性元件,每一撓性元件承受一個致動力在一個第一穩態位置與一個第二穩態位置間撓動變形,其特徵在於:每一撓性元件根據貝茲曲線之函數公式0 t 1,決定貝茲曲線輪廓,而定義出一個第一控制點PB1、一個第二控制點PB2、一個第三控制點PB3,及一個第四控制點PB4,其中,t為常數,每一撓性元件並具有一個X軸長度範圍與一個Y軸長度範圍,該X軸長度範圍包括一個最小值Xmin與一個最大值Xmax,該Y軸長度範圍包括一個最小值Ymin與一個最大值Ymax,該第一控制點PB1之座標值為(Xmin,Ymin),該第四控制點PB4之座標值為(Xmax,Ymax),該第二控制點PB2與該第三控制點PB3之座標值根據位於該第一穩態位置與該第二穩態位置時所需的致動力分別為變數。 A flexible element of a steady-state constant force system, the steady-state constant force system comprising an actuating element, and at least two flexible elements connected to the actuating element and symmetrical to each other, each flexible element bearing an actuation force in a A flexural deformation between a steady state position and a second steady state position, characterized in that each flexible element is a function formula according to a Bezier curve 0 t 1. Determining the Bezier curve profile, and defining a first control point P B1 , a second control point P B2 , a third control point P B3 , and a fourth control point P B4 , where t is a constant, Each flexible element has an X-axis length range and a Y-axis length range, the X-axis length range including a minimum value X min and a maximum value X max , the Y-axis length range including a minimum value Y min and a The maximum value Y max , the coordinate value of the first control point P B1 is (X min , Y min ), the coordinate value of the fourth control point P B4 is (X max , Y max ), and the second control point P B2 The coordinate value with the third control point P B3 is a variable according to the actuation force required at the first steady state position and the second steady state position, respectively. 如請求項1所述的穩態恒力系統之撓性元件,其中,該變數為亂數。 The flexible element of the steady-state constant force system of claim 1, wherein the variable is a random number. 如請求項1所述的穩態恒力系統之撓性元件,其中,該第一控制點PB1的Xmin、Ymin分別為0。 The flexible element of the steady-state constant-force system of claim 1, wherein X min and Y min of the first control point P B1 are 0 respectively. 如請求項1所述的穩態恒力系統之撓性元件,包括沿Y軸方向相隔一間距的二個邊緣,其中,該第一控制點PB1、該第四控制點PB4分別為同一邊緣的二個端點。 The flexible element of the steady-state constant-force system according to claim 1, comprising two edges spaced apart by a distance along the Y-axis direction, wherein the first control point P B1 and the fourth control point P B4 are respectively the same The two endpoints of the edge. 如請求項1所述的穩態恒力系統之撓性元件,其中,該第二控制點PB2與該第三控制點PB3的座標值決定於所需最小致動力。 The flexible element of the steady-state constant force system of claim 1, wherein the coordinate value of the second control point P B2 and the third control point P B3 is determined by a required minimum actuation force.
TW105126707A 2016-08-22 2016-08-22 The flexible element of the steady state system TWI585594B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105126707A TWI585594B (en) 2016-08-22 2016-08-22 The flexible element of the steady state system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105126707A TWI585594B (en) 2016-08-22 2016-08-22 The flexible element of the steady state system

Publications (2)

Publication Number Publication Date
TWI585594B true TWI585594B (en) 2017-06-01
TW201807595A TW201807595A (en) 2018-03-01

Family

ID=59688327

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126707A TWI585594B (en) 2016-08-22 2016-08-22 The flexible element of the steady state system

Country Status (1)

Country Link
TW (1) TWI585594B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209984A1 (en) * 2010-02-26 2011-09-01 Jeffrey Birkmeyer Physical Vapor Deposition With Multi-Point Clamp
TWI465725B (en) * 2010-09-27 2014-12-21 Univ Nat Chunghsing Bistable constant force system with protection mechanism
TWI515162B (en) * 2013-10-22 2016-01-01 Nat Univ Chung Hsing Active steady state clamping release system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209984A1 (en) * 2010-02-26 2011-09-01 Jeffrey Birkmeyer Physical Vapor Deposition With Multi-Point Clamp
TWI465725B (en) * 2010-09-27 2014-12-21 Univ Nat Chunghsing Bistable constant force system with protection mechanism
TWI515162B (en) * 2013-10-22 2016-01-01 Nat Univ Chung Hsing Active steady state clamping release system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"應用貝茲曲線於撓性機構形狀設計", 鄭詠仁, http://etds.lib.ncku.edu.tw/etdservice/view_metadata?etdun=U0026-0812200915072081, 2009/02/25 *

Also Published As

Publication number Publication date
TW201807595A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US10079335B2 (en) Smart soft composite actuator
JP2022505794A (en) Structure with selectively variable hardness
EP2868923B1 (en) Variable negative stiffness actuation
US9518811B2 (en) Form measuring machine
US9200689B2 (en) Single-axis flexure bearing configurations
US10364694B2 (en) Turbomachine blade clearance control system
CN105035309B (en) Actuator system for aircraft control surfaces
US9333655B2 (en) Handling device with at least one controllably deformable elastic element
JP6793026B2 (en) Valve device and valve control device
TWI585594B (en) The flexible element of the steady state system
WO2020234654A3 (en) Actuator assembly
EP3015945B1 (en) Abstract positioning device for a remote control of a heavy duty vehicle or an agricultural vehicle
US20150160455A1 (en) comb drive including a pivotable mirror element
JP2017035769A (en) Four degree-of-freedom mechanism
JP2018179824A5 (en)
KR102572510B1 (en) Fluid control valve and fluid control device
JP6671467B2 (en) Spring unit, spring accumulator and actuator
TWI615350B (en) Steady-state clamping system with non-contact release function
Zentner et al. On the new reversal effect in monolithic compliant bending mechanisms with fluid driven actuators
JP2008139136A (en) Mechanics quantity sensor and its manufacturing method
JP2018531348A6 (en) Spring unit, spring accumulator and actuator
JP2008118850A (en) Micro-actuator
CN106812786B (en) single degree of freedom flexible hinge
JP2011058556A (en) Directional control valve device
CN107758603A (en) Micro mechanical system with stop element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees