TWI583951B - Ultrasonic fluid measurement apparatus and correcting method thereof - Google Patents

Ultrasonic fluid measurement apparatus and correcting method thereof Download PDF

Info

Publication number
TWI583951B
TWI583951B TW104132652A TW104132652A TWI583951B TW I583951 B TWI583951 B TW I583951B TW 104132652 A TW104132652 A TW 104132652A TW 104132652 A TW104132652 A TW 104132652A TW I583951 B TWI583951 B TW I583951B
Authority
TW
Taiwan
Prior art keywords
fluid
phase difference
ultrasonic
flow rate
measurement
Prior art date
Application number
TW104132652A
Other languages
Chinese (zh)
Other versions
TW201713944A (en
Inventor
林郁凱
張示蓉
李昭法
Original Assignee
大同股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同股份有限公司 filed Critical 大同股份有限公司
Priority to TW104132652A priority Critical patent/TWI583951B/en
Publication of TW201713944A publication Critical patent/TW201713944A/en
Application granted granted Critical
Publication of TWI583951B publication Critical patent/TWI583951B/en

Links

Description

超音波流體量測裝置及其校正方法Ultrasonic fluid measuring device and correction method thereof

本發明是有關於一種量測裝置,且特別是有關於一種超音波流體量測裝置及其校正方法。The present invention relates to a measuring device, and more particularly to an ultrasonic fluid measuring device and a method of correcting the same.

藉由超音波透過介質來傳遞聲波的特性,可廣泛應用在各種不同的探測領域,例如偵測流體流量和濃度的技術即為廣泛的應用之一。習知技術可於流體中發射超音波信號並偵測其於流體中的相位偏移,由於流體的濃度或流速改變會使射入的超音波信號產生相位差,因此藉由量測其相位偏移即可推測流體在濃度或流速上的改變。然而,量測環境的變化,例如量測電子元件特性的差異、超音波管的差異、溫度差異、濕度以及大氣壓力的差異…等等,皆可能造成流量及濃度的量測誤差。Ultrasonic transmission of sound waves through the medium can be widely used in a variety of different detection fields, such as the detection of fluid flow and concentration technology is one of a wide range of applications. Conventional techniques can emit an ultrasonic signal in a fluid and detect its phase shift in the fluid. The phase difference of the injected ultrasonic signal is caused by a change in the concentration or flow rate of the fluid. The shift can be used to predict the change in fluid concentration or flow rate. However, measuring changes in the environment, such as differences in characteristics of measuring electronic components, differences in ultrasonic tubes, temperature differences, humidity, and differences in atmospheric pressure, etc., may cause measurement errors in flow and concentration.

本發明提供一種超音波流體量測裝置及其校正方法,可有效地降低流體的量測誤差,提高流體量測的準確性。The invention provides an ultrasonic fluid measuring device and a calibration method thereof, which can effectively reduce the measurement error of the fluid and improve the accuracy of the fluid measurement.

本發明的超音波流體量測裝置,包括相位偵測單元、儲存單元以及處理單元。其中相位偵測單元於一量測條件下偵測第一超音波信號與第二超音波信號於流體管內傳遞時產生的相位差,以分別得到第一相位差與第二相位差。儲存單元儲存流體管中的流體在不同量測條件下的流體特性資料。處理單元耦接相位偵測單元與儲存單元,依據第一相位差與第二相位差計算流體的流體特性,將流體的流體特性與對應量測條件的流體特性資料進行比對,依據比對結果校正流體特性資料。The ultrasonic fluid measuring device of the present invention comprises a phase detecting unit, a storage unit and a processing unit. The phase detecting unit detects a phase difference generated when the first ultrasonic signal and the second ultrasonic signal are transmitted in the fluid tube under a measurement condition to obtain a first phase difference and a second phase difference, respectively. The storage unit stores fluid characteristic data of the fluid in the fluid tube under different measurement conditions. The processing unit is coupled to the phase detecting unit and the storage unit, and calculates a fluid characteristic of the fluid according to the first phase difference and the second phase difference, and compares the fluid characteristic of the fluid with the fluid characteristic data of the corresponding measuring condition, according to the comparison result. Correct fluid characteristics data.

在本發明的一實施例中,上述的超音波流體量測裝置更包括壓縮機以及溫度感測單元。壓縮機控制流體的流量。溫度感測單元耦接處理單元,感測流體管內的目前溫度,處理單元於壓縮機控制流體處於特定流量與特定濃度時,將在目前溫度以及特定流量下所計算出的流體的流體特性與對應目前溫度、特定流量以及特定濃度的流體特性資料進行比對,並依據比對結果校正對應該目前溫度、特定流量以及特定濃度的流體特性資料。In an embodiment of the invention, the ultrasonic fluid measuring device further includes a compressor and a temperature sensing unit. The compressor controls the flow of fluid. The temperature sensing unit is coupled to the processing unit to sense the current temperature in the fluid tube, and the processing unit calculates the fluid characteristics of the fluid at the current temperature and the specific flow rate when the compressor control fluid is at a specific flow rate and a specific concentration. The current temperature, the specific flow rate, and the specific concentration of the fluid characteristic data are compared, and the current characteristic, the specific flow rate, and the specific concentration of the fluid characteristic data are corrected according to the comparison result.

在本發明的一實施例中,上述的特定流量為零或壓縮機可控制的最大流量。In an embodiment of the invention, the specific flow rate described above is zero or the maximum flow rate controllable by the compressor.

在本發明的一實施例中,上述的第一超音波信號與第二超音波信號的傳遞方向相反。In an embodiment of the invention, the first ultrasonic signal and the second ultrasonic signal are transmitted in opposite directions.

在本發明的一實施例中,上述的流體的流體特性包括第一相位差與第二相位差的差值或和值,處理單元更依據第一相位差與第二相位差的差值或和值校正流體特性資料。In an embodiment of the invention, the fluid characteristic of the fluid includes a difference or a sum of the first phase difference and the second phase difference, and the processing unit further determines the difference or sum of the first phase difference and the second phase difference. Value corrected fluid characteristics data.

在本發明的一實施例中,上述的量測條件包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力。In an embodiment of the invention, the above measurement conditions include temperature, humidity, concentration, pressure, fluid tube shape size, and atmospheric pressure.

本發明的超音波流體量測校正方法包括下列步驟。於一量測條件下偵測第一超音波信號與第二超音波信號於流體管內傳遞時產生的相位差,以分別得到第一相位差與第二相位差。依據第一相位差與第二相位差計算流體的流體特性。將流體的流體特性與對應量測條件的流體特性資料進行比對。依據比對結果校正流體特性資料。The ultrasonic fluid measurement correction method of the present invention comprises the following steps. The phase difference generated when the first ultrasonic signal and the second ultrasonic signal are transmitted in the fluid tube is detected under a measurement condition to obtain a first phase difference and a second phase difference, respectively. A fluid characteristic of the fluid is calculated based on the first phase difference and the second phase difference. The fluid properties of the fluid are compared to the fluid properties of the corresponding measurement conditions. The fluid property data is corrected based on the comparison results.

在本發明的一實施例中,上述的超音波流體量測校正方法更包括下步驟。於流體處於特定流量與特定濃度時,將在目前溫度、特定流量以及特定濃度下所計算出的流體的流體特性與對應目前溫度、特定流量以及特定濃度的流體特性資料進行比對。依據比對結果校正對應目前溫度、特定流量以及特定濃度的流體特性資料。In an embodiment of the invention, the ultrasonic fluid measurement correction method further includes the following steps. When the fluid is at a specific flow rate and a specific concentration, the fluid characteristics of the fluid calculated at the current temperature, the specific flow rate, and the specific concentration are compared with the current characteristic temperature, the specific flow rate, and the fluid characteristic data of the specific concentration. The fluid properties corresponding to the current temperature, the specific flow rate, and the specific concentration are corrected based on the comparison results.

在本發明的一實施例中,上述的特定流量為零或壓縮機可控制的最大流量。In an embodiment of the invention, the specific flow rate described above is zero or the maximum flow rate controllable by the compressor.

在本發明的一實施例中,上述的第一超音波信號與第二超音波信號的傳遞方向相反。In an embodiment of the invention, the first ultrasonic signal and the second ultrasonic signal are transmitted in opposite directions.

在本發明的一實施例中,上述的流體的流體特性包括第一相位差與第二相位差的差值或和值,超音波流體量測校正方法包括,依據第一相位差與第二相位差的差值或和值校正該流體特性資料。In an embodiment of the invention, the fluid characteristic of the fluid includes a difference or a sum of a first phase difference and a second phase difference, and the ultrasonic fluid measurement correction method comprises: according to the first phase difference and the second phase The difference or sum value of the difference corrects the fluid property data.

在本發明的一實施例中,上述的量測條件包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力。In an embodiment of the invention, the above measurement conditions include temperature, humidity, concentration, pressure, fluid tube shape size, and atmospheric pressure.

基於上述,本發明的實施例將依據計算得到的流體的流體特性與對應相同量測條件的流體特性資料進行比對,並依據比對結果校正流體特性資料,以降低流體的量測誤差,提高流體量測的準確性。Based on the above, the embodiment of the present invention compares the fluid characteristics of the calculated fluid with the fluid property data corresponding to the same measurement condition, and corrects the fluid property data according to the comparison result to reduce the fluid measurement error and improve The accuracy of fluid measurement.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是依照本發明一實施例的一種超音波流體量測裝置的示意圖,請參照圖1。超音波流體量測裝置100包括相位偵測單元102、儲存單元104、處理單元106、溫度感測單元108以及壓縮機110,其中相位偵測單元102連接流體管112,以偵測在流體管112內傳遞的超音波信號的相位差。流體管112可包括信號收發端T1以及信號收發端T2、流入口P1以及流出口P2,信號收發端T1以及信號收發端T2耦接處理單元106,信號收發端T1以及信號收發端T2皆可用以發射及接收超音波信號。在本實施例中流入口P1及流出口P2分別供流體流入及流出,流體的流動方向為由信號收發端T1流向信號收發端T2。其中,流體佈滿於流體管112之中,流體之流速或流量可由壓縮機110控制,流體可例如為氣體或液體。1 is a schematic diagram of an ultrasonic fluid measuring device according to an embodiment of the present invention. Please refer to FIG. The ultrasonic fluid measuring device 100 includes a phase detecting unit 102, a storage unit 104, a processing unit 106, a temperature sensing unit 108, and a compressor 110. The phase detecting unit 102 is connected to the fluid tube 112 to detect the fluid tube 112. The phase difference of the ultrasonic signal transmitted inside. The fluid tube 112 can include a signal transceiving end T1 and a signal transceiving end T2, an inflow port P1, and an outflow port P2. The signal transceiving end T1 and the signal transceiving end T2 are coupled to the processing unit 106, and the signal transceiving end T1 and the signal transceiving end T2 can be used. Transmit and receive ultrasonic signals. In the present embodiment, the inflow port P1 and the outflow port P2 respectively supply and flow out the fluid, and the flow direction of the fluid flows from the signal transmitting and receiving end T1 to the signal transmitting and receiving end T2. Wherein the fluid is filled in the fluid tube 112, the flow rate or flow rate of the fluid may be controlled by the compressor 110, which may be, for example, a gas or a liquid.

處理單元106可分別控制信號收發端T1以及信號收發端T2用以發射或接收超音波信號,其中當信號收發端T1為超音波信號的發射端時,信號收發端T2為超音波信號的接收端,相反地,當信號收發端T2為超音波信號的發射端時,信號收發端T1為超音波信號的接收端。由於流體管112中流體的存在,發射端所發射的超音波信號與接收端所接收到的超音波信號會產生相位差,相位偵測單元102可偵測超音波信號於流體管112中傳遞時產生的相位差。在本實施例中,當信號收發端T1為超音波信號的發射端而信號收發端T2為超音波信號的接收端時,相位偵測單元102所量測到的相位差為順向相位差(亦即超音波信號的傳遞方向與流體的流向相同時相位偵測單元102所量測到的相位差),而當信號收發端T2為超音波信號的發射端而信號收發端T1為超音波信號的接收端時,相位偵測單元102所量測到的相位差為逆向相位差(亦即超音波信號的傳遞方向與流體的流向相反時相位偵測單元102所量測到的相位差)。The processing unit 106 can respectively control the signal transceiver terminal T1 and the signal transceiver terminal T2 for transmitting or receiving an ultrasonic signal. When the signal transceiver terminal T1 is the transmitting end of the ultrasonic signal, the signal transceiver terminal T2 is the receiving end of the ultrasonic signal. Conversely, when the signal transmitting and receiving end T2 is the transmitting end of the ultrasonic signal, the signal transmitting and receiving end T1 is the receiving end of the ultrasonic signal. Due to the presence of fluid in the fluid tube 112, the ultrasonic signal emitted by the transmitting end and the ultrasonic signal received by the receiving end generate a phase difference, and the phase detecting unit 102 can detect the ultrasonic signal transmitted through the fluid tube 112. The phase difference produced. In this embodiment, when the signal transmitting and receiving end T1 is the transmitting end of the ultrasonic signal and the signal transmitting end T2 is the receiving end of the ultrasonic signal, the phase difference measured by the phase detecting unit 102 is the forward phase difference ( That is, when the transmission direction of the ultrasonic signal is the same as the flow direction of the fluid, the phase difference detected by the phase detecting unit 102), and when the signal transmitting and receiving end T2 is the transmitting end of the ultrasonic signal and the signal transmitting and receiving end T1 is the ultrasonic signal. At the receiving end, the phase difference measured by the phase detecting unit 102 is a reverse phase difference (that is, the phase difference measured by the phase detecting unit 102 when the direction of transmission of the ultrasonic signal is opposite to the flow direction of the fluid).

儲存單元104可儲存流體管112中的流體在不同量測條件下的流體特性資料,此處的量測條件可例如包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力…等等環境或量測裝置的條件。處理單元106可依據順向相位差與逆向相位差計算流體管112中流體的流量及濃度,並依據相位偵測單元102偵測順向相位差與逆向相位差時的量測條件在儲存單元104中找出對應此量測條件的流體特性資料,將計算得到的流體的流體特性與此流體特性資料進行比對,以依據比對結果校正流體特性資料。如此一來,便可有效地將影響超音波流體量測裝置的量測結果的因素去除,進而降低流體的量測誤差,提高流體量測的準確性。The storage unit 104 can store fluid property data of the fluid in the fluid tube 112 under different measurement conditions, and the measurement conditions herein can include, for example, temperature, humidity, concentration, pressure, fluid tube shape size, atmospheric pressure, etc. Or the condition of the measuring device. The processing unit 106 can calculate the flow rate and concentration of the fluid in the fluid tube 112 according to the forward phase difference and the reverse phase difference, and according to the measurement condition when the phase detecting unit 102 detects the forward phase difference and the reverse phase difference in the storage unit 104. The fluid property data corresponding to the measurement condition is found, and the fluid property of the calculated fluid is compared with the fluid property data to correct the fluid property data according to the comparison result. In this way, the factors affecting the measurement result of the ultrasonic fluid measuring device can be effectively removed, thereby reducing the measurement error of the fluid and improving the accuracy of the fluid measurement.

舉例來說,溫度感測單元108可感測流體管112內的目前溫度,處理單元106則於壓縮機110控制流體管112內的流體處於特定流量與特定濃度時(例如流量為零或壓縮機110可控制的最大流量),將在目前溫度、此特定流量以及此特定濃度下所得到的流體的流體特性與對應目前溫度、此特定流量以及此特定濃度的流體特性資料進行比對,並依據比對結果校正儲存單元104中對應目前溫度、此特定流量以及此特定濃度的流體特性資料。For example, the temperature sensing unit 108 can sense the current temperature within the fluid tube 112, and the processing unit 106 then controls the fluid within the fluid tube 112 at a particular flow rate and a particular concentration (eg, zero flow or compressor). 110 controllable maximum flow rate), comparing the fluid characteristics of the fluid obtained at the current temperature, the specific flow rate, and the specific concentration with the current temperature, the specific flow rate, and the fluid characteristic data of the specific concentration, and The comparison result corrects the current characteristic temperature in the storage unit 104, the specific flow rate, and the fluid characteristic data of the specific concentration.

詳細來說,處理單元106可依據順向相位差與逆向相位差的和值或差值來校正流體特性資料。其中順向相位差與逆向相位差的和值與溫度感測單元108感測到的溫度以及流體的濃度有關,亦即當溫度與濃度相同時,順向相位差與逆向相位差的和值亦應相同。因此,可透過調整儲存單元104中相位差與逆向相位差的和值的方式來校正流體特性資料。舉例來說,假設流體管112中的流體為氧氣,在相同溫度、相同流量、不同濃度的氧氣下相位偵測單元102所偵測到的順向相位差與逆向相位差的和值可如下表一所示: <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> 氧氣濃度 </td><td> 21% </td><td> 70% </td><td> 82% </td><td> 100% </td></tr><tr><td> 原和值 </td><td> 921 </td><td> 1505 </td><td> 1569 </td><td> 1712 </td></tr><tr><td> 修正和值 </td><td> 950 </td><td> 1534 </td><td> 1598 </td><td> 1741 </td></tr></TBODY></TABLE>表一 In detail, processing unit 106 may correct the fluid property data based on the sum or difference of the forward phase difference and the reverse phase difference. The sum of the forward phase difference and the reverse phase difference is related to the temperature sensed by the temperature sensing unit 108 and the concentration of the fluid, that is, when the temperature and the concentration are the same, the sum of the forward phase difference and the reverse phase difference is also It should be the same. Therefore, the fluid property data can be corrected by adjusting the sum of the phase difference and the reverse phase difference in the storage unit 104. For example, assuming that the fluid in the fluid tube 112 is oxygen, the sum of the forward phase difference and the reverse phase difference detected by the phase detecting unit 102 at the same temperature, the same flow rate, and different concentrations of oxygen can be as follows. One:         <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> Oxygen concentration</td><td> 21% </td><td> 70% </ Td><td> 82% </td><td> 100% </td></tr><tr><td> original sum value</td><td> 921 </td><td> 1505 < /td><td> 1569 </td><td> 1712 </td></tr><tr><td> Correction and Value</td><td> 950 </td><td> 1534 </ Td><td> 1598 </td><td> 1741 </td></tr></TBODY></TABLE> Table 1       

其中,原和值代表原本儲存單元104所儲存的順向相位差與逆向相位差的和值,在本實施例中,相位偵測單元102為在溫度20℃、氧氣濃度佔21%,且流量為零的量測條件下進行順向相位差與逆向相位差的量測。量測的結果為順向相位差與逆向相位差的和值為950,其與原本儲存單元104所儲存的順向相位差與逆向相位差的和值相差29(950-921=29),因此處理單元106便可將儲存單元104中其他溫度在20℃且流量為0的情形下不同氧氣濃度所對應的順向相位差與逆向相位差的和值皆加上29。以此類推,對應不同溫度、不同濃度以及不同流體的順向相位差與逆向相位差的和值亦可以此方式校正。如此一來,處理單元106依據修正後的順向相位差與逆向相位差的和值計算所得到的流體的濃度以及流量可更接近實際值,而有效地降低流體的量測誤差,提高流體量測的準確性。The original sum value represents the sum of the forward phase difference and the reverse phase difference stored in the original storage unit 104. In this embodiment, the phase detecting unit 102 has a temperature of 20 ° C, an oxygen concentration of 21%, and a flow rate. The measurement of the forward phase difference and the reverse phase difference is performed under a measurement condition of zero. As a result of the measurement, the sum of the forward phase difference and the reverse phase difference is 950, which is different from the sum of the forward phase difference and the reverse phase difference stored in the original storage unit 104 by 29 (950-921=29), The processing unit 106 can add 29 to the sum of the forward phase difference and the reverse phase difference corresponding to different oxygen concentrations in the case where the other temperature in the storage unit 104 is 20 ° C and the flow rate is 0. By analogy, the sum of the forward phase difference and the reverse phase difference corresponding to different temperatures, different concentrations, and different fluids can also be corrected in this manner. In this way, the processing unit 106 calculates the concentration and flow rate of the obtained fluid according to the sum of the corrected forward phase difference and the reverse phase difference to be closer to the actual value, thereby effectively reducing the measurement error of the fluid and increasing the fluid amount. The accuracy of the measurement.

又例如,假設流體管112中的流體為氧氣,在相同溫度、相同濃度、不同流量的氧氣下相位偵測單元102所偵測到的逆向相位差減去順向相位差的差值可如下表二所示: <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 流量(升/分) </td><td> 0 </td><td> 0.5 </td><td> 5 </td><td> 10 </td></tr><tr><td> 原差值 </td><td> -22.4 </td><td> -12 </td><td> 80.8 </td><td> 169 </td></tr><tr><td> 修正差值 </td><td> -20 </td><td> -9.6 </td><td> 83.2 </td><td> 171.4 </td></tr></TBODY></TABLE>表二 For another example, if the fluid in the fluid tube 112 is oxygen, the difference between the reverse phase difference detected by the phase detecting unit 102 and the forward phase difference at the same temperature, the same concentration, and different flow rates of oxygen can be as follows. Second:         <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> Flow (L/min) </td><td> 0 </td><td> 0.5 </td><td> 5 </td><td> 10 </td></tr><tr><td> original difference </td><td> -22.4 </td><td> - 12 </td><td> 80.8 </td><td> 169 </td></tr><tr><td> Corrected difference</td><td> -20 </td><td> -9.6 </td><td> 83.2 </td><td> 171.4 </td></tr></TBODY></TABLE> Table 2       

其中,原差值代表原本儲存單元104所儲存的逆向相位差減去順向相位差的差值,在本實施例中,相位偵測單元102為在溫度30℃、氧氣濃度佔21%,且流量為零的量測條件下進行順向相位差與逆向相位差的量測。量測的結果為逆向相位差減去順向相位差的差值為-20,其與原本儲存單元104所儲存的逆向相位差減去順向相位差的差值相差2.4(-20-(-22.4)=2.4),因此處理單元106便可將儲存單元104中其他溫度在20℃且氧氣濃度為21%的情形下不同流量所對應的逆向相位差減去順向相位差的差值皆加上2.4。以此類推,對應不同溫度、濃度以及不同流體的逆向相位差減去順向相位差的差值亦可以此方式校正。如此,處理單元106依據修正後的逆向相位差減去順向相位差的差值計算所得到的流體的濃度以及流量可更接近實際值,而有效地降低流體的量測誤差,提高流體量測的準確性。The original difference value represents the difference between the reverse phase difference and the forward phase difference stored in the original storage unit 104. In this embodiment, the phase detecting unit 102 has a temperature of 30 ° C and an oxygen concentration of 21%, and The measurement of the forward phase difference and the reverse phase difference is performed under the measurement condition that the flow rate is zero. The result of the measurement is that the difference between the reverse phase difference minus the forward phase difference is -20, which is different from the difference between the reverse phase difference stored by the original storage unit 104 minus the forward phase difference by 2.4 (-20-(- 22.4) = 2.4), so the processing unit 106 can add the difference between the reverse phase difference corresponding to the different flow rates and the forward phase difference in the case where the other temperature in the storage unit 104 is 20 ° C and the oxygen concentration is 21%. On 2.4. By analogy, the difference between the reverse phase difference of different temperatures, concentrations, and different fluids minus the forward phase difference can also be corrected in this way. In this way, the processing unit 106 calculates the concentration of the fluid and the flow rate according to the corrected reverse phase difference minus the difference of the forward phase difference, and the flow rate can be closer to the actual value, thereby effectively reducing the measurement error of the fluid and improving the fluid measurement. The accuracy.

圖2是依照本發明一實施例的一種超音波流體量測校正方法的流程示意圖,請參照圖2。由上述實施例可知,超音波流體量測裝置的校正方法可包括下列步驟。首先,於一量測條件下偵測第一超音波信號與第二超音波信號於流體管內傳遞時產生的相位差,以分別得到第一相位差與第二相位差(步驟S202),其中第一超音波信號與第二超音波信號的傳遞方向相反,第一超音波信號的傳遞方向可例如與流體管內流體的量相同,第二超音波信號的傳遞方向則可例如與流體管內流體的量相反,另外量測條件可例如包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力…等等。接著,依據第一相位差與第二相位差計算流體的流體特性(步驟S204),其中流體的流體特性可例如為第一相位差與第二相位差的差值或和值。然後,將流體的流體特性與對應上述量測條件的流體特性資料進行比對(步驟S206),舉例來說,可於流體管內的流體處於特定流量與特定濃度時,將在目前溫度、特定流量以及特定濃度下所計算出的流體的流體特性與對應目前溫度、特定流量以及特定濃度的流體特性資料進行比對。最後再依據比對結果校正流體特性資料(步驟S208),例如依據比對結果校正對應目前溫度、特定流量以及特定濃度的流體特性資料,其中特定流量可例如為零或壓縮機可控制的最大流量,而流體特性資料可例如依據第一相位差與第二相位差的差值或和值進行校正。2 is a schematic flow chart of a method for correcting ultrasonic fluid measurement according to an embodiment of the present invention. Please refer to FIG. 2 . As can be seen from the above embodiments, the correction method of the ultrasonic fluid measuring device may include the following steps. First, detecting a phase difference generated when the first ultrasonic signal and the second ultrasonic signal are transmitted in the fluid tube under a measurement condition to obtain a first phase difference and a second phase difference, respectively (step S202), wherein The first ultrasonic signal is opposite to the second ultrasonic signal, and the first ultrasonic signal can be transmitted in the same direction as the fluid in the fluid tube, and the second ultrasonic signal can be transmitted, for example, in the fluid tube. The amount of fluid is reversed, and the additional measurement conditions may include, for example, temperature, humidity, concentration, pressure, fluid tube shape size, and atmospheric pressure, and the like. Next, the fluid characteristics of the fluid are calculated according to the first phase difference and the second phase difference (step S204), wherein the fluid property of the fluid may be, for example, a difference or sum of the first phase difference and the second phase difference. Then, the fluid characteristics of the fluid are compared with the fluid property data corresponding to the above-mentioned measurement conditions (step S206). For example, when the fluid in the fluid tube is at a specific flow rate and a specific concentration, it will be at the current temperature, specific. The flow rate and the fluid characteristics of the fluid calculated at a particular concentration are compared to the current characteristic temperature, the specific flow rate, and the fluid properties of the particular concentration. Finally, the fluid property data is corrected according to the comparison result (step S208), for example, according to the comparison result, the current characteristic, the specific flow rate, and the specific concentration of the fluid characteristic data are corrected, wherein the specific flow rate can be, for example, zero or a compressor-controllable maximum flow rate. And the fluid property data can be corrected, for example, based on a difference or sum of the first phase difference and the second phase difference.

綜上所述,本發明的實施例將依據計算得到的流體的流體特性與對應相同量測條件的流體特性資料進行比對,並依據比對結果校正流體特性資料,以降低流體的量測誤差,提高流體量測的準確性。In summary, the embodiment of the present invention compares the fluid characteristics of the calculated fluid with the fluid property data corresponding to the same measurement condition, and corrects the fluid property data according to the comparison result to reduce the measurement error of the fluid. Improve the accuracy of fluid measurement.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100:超音波流體量測裝置 102:相位偵測單元 104:儲存單元 106:處理單元 108:溫度感測單元 110:壓縮機 112:流體管 T1、T2:信號收發端 P1:流入口 P2:流出口 S202~S208:超音波流體量測校正方法的流程步驟100: Ultrasonic fluid measuring device 102: Phase detecting unit 104: Storage unit 106: Processing unit 108: Temperature sensing unit 110: Compressor 112: Fluid tube T1, T2: Signal transmitting and receiving end P1: Inflow port P2: Flow Exit S202~S208: Process steps of the ultrasonic fluid measurement calibration method

圖1是依照本發明一實施例的一種超音波流體量測裝置的示意圖。 圖2是依照本發明一實施例的一種超音波流體量測校正方法的流程示意圖。1 is a schematic diagram of an ultrasonic fluid measuring device in accordance with an embodiment of the present invention. 2 is a schematic flow chart of a method for correcting ultrasonic fluid measurement according to an embodiment of the invention.

S202~S208:超音波流體量測校正方法的流程步驟S202~S208: Process steps of the ultrasonic fluid measurement calibration method

Claims (10)

一種超音波流體量測裝置,包括:一相位偵測單元,於一量測條件下偵測一第一超音波信號與一第二超音波信號於一流體管內傳遞時產生的相位差,以分別得到一第一相位差與一第二相位差,其中該第一超音波信號與該第二超音波信號的傳遞方向相反;一儲存單元,儲存該流體管中的流體在不同量測條件下的流體特性資料;以及一處理單元,耦接該相位偵測單元與該儲存單元,依據該第一相位差與該第二相位差計算該流體的流體特性,將該流體的流體特性與對應該量測條件的該流體特性資料進行比對,依據比對結果校正該流體特性資料。 An ultrasonic fluid measuring device comprises: a phase detecting unit for detecting a phase difference generated when a first ultrasonic signal and a second ultrasonic signal are transmitted in a fluid tube under a measuring condition, Obtaining a first phase difference and a second phase difference respectively, wherein the first ultrasonic signal is opposite to the direction of transmission of the second ultrasonic signal; and a storage unit stores the fluid in the fluid tube under different measurement conditions And a processing unit coupled to the phase detecting unit and the storage unit, calculating a fluid characteristic of the fluid according to the first phase difference and the second phase difference, and correspondingly selecting a fluid characteristic of the fluid The fluid property data of the measurement conditions are compared, and the fluid property data is corrected based on the comparison result. 如申請專利範圍第1項所述的超音波流體量測裝置,更包括:一壓縮機,控制該流體的流量;以及一溫度感測單元,耦接該處理單元,感測該流體管內的一目前溫度,該處理單元於該壓縮機控制該流體處於一特定流量與一特定濃度時,將在該目前溫度以及該特定流量下所計算出的該流體的流體特性與對應該目前溫度、該特定流量以及該特定濃度的該流體特性資料進行比對,並依據比對結果校正對應該目前溫度、該特定流量以及該特定濃度的該流體特性資料。 The ultrasonic fluid measuring device according to claim 1, further comprising: a compressor for controlling the flow rate of the fluid; and a temperature sensing unit coupled to the processing unit for sensing the inside of the fluid tube a current temperature, when the compressor controls the fluid to be at a specific flow rate and a specific concentration, the fluid characteristic of the fluid calculated at the current temperature and the specific flow rate corresponds to the current temperature, The specific flow rate and the fluid property data of the specific concentration are compared, and the current temperature, the specific flow rate, and the fluid property data of the specific concentration are corrected according to the comparison result. 如申請專利範圍第2項所述的超音波流體量測裝置, 其中該特定流量為零或該壓縮機可控制的最大流量。 The ultrasonic fluid measuring device according to claim 2, Where the specific flow rate is zero or the maximum flow that the compressor can control. 如申請專利範圍第1項所述的超音波流體量測裝置,其中該流體的流體特性包括該第一相位差與該第二相位差的差值或和值,該處理單元更依據該第一相位差與該第二相位差的差值或和值校正該流體特性資料。 The ultrasonic fluid measuring device according to claim 1, wherein the fluid characteristic of the fluid comprises a difference or a sum of the first phase difference and the second phase difference, and the processing unit is further based on the first The difference or sum of the phase difference and the second phase difference corrects the fluid property data. 如申請專利範圍第1項所述的超音波流體量測裝置,其中該量測條件包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力。 The ultrasonic fluid measuring device according to claim 1, wherein the measuring conditions include temperature, humidity, concentration, pressure, fluid tube shape size, and atmospheric pressure. 一種超音波流體量測校正方法,包括:於一量測條件下偵測一第一超音波信號與一第二超音波信號於一流體管內傳遞時產生的相位差,以分別得到一第一相位差與一第二相位差,其中該第一超音波信號與該第二超音波信號的傳遞方向相反;依據該第一相位差與該第二相位差計算該流體的流體特性;將該流體的流體特性與對應該量測條件的該流體特性資料進行比對;以及依據比對結果校正該流體特性資料。 A method for correcting ultrasonic fluid measurement includes: detecting a phase difference generated when a first ultrasonic signal and a second ultrasonic signal are transmitted in a fluid tube under a measurement condition to obtain a first a phase difference and a second phase difference, wherein the first ultrasonic signal is opposite to a direction in which the second ultrasonic signal is transmitted; calculating a fluid characteristic of the fluid according to the first phase difference and the second phase difference; The fluid characteristics are compared with the fluid property data corresponding to the measurement conditions; and the fluid property data is corrected based on the comparison results. 如申請專利範圍第6項所述的超音波流體量測校正方法,更包括:於該流體處於一特定流量與一特定濃度時,將在目前溫度、該特定流量以及該特定濃度下所計算出的該流體的流體特性與對應該自前溫度、該特定流量以及該特定濃度的該流體特性資料進 行比對;以及依據比對結果校正對應該目前溫度、該特定流量以及該特定濃度的該流體特性資料。 The method for correcting ultrasonic fluid according to claim 6, further comprising: calculating the current temperature, the specific flow rate, and the specific concentration when the fluid is at a specific flow rate and a specific concentration The fluid characteristics of the fluid and the characteristics of the fluid corresponding to the previous temperature, the specific flow rate, and the specific concentration Line alignment; and correcting the current temperature, the specific flow rate, and the fluid characteristic data for the specific concentration based on the comparison result. 如申請專利範圍第7項所述的超音波流體量測校正方法,其中該特定流量為零或壓縮機可控制的最大流量。 The ultrasonic fluid measurement calibration method according to claim 7, wherein the specific flow rate is zero or the maximum flow rate controllable by the compressor. 如申請專利範圍第6項所述的超音波流體量測校正方法,其中該流體的流體特性包括該第一相位差與該第二相位差的差值或和值,該超音波流體量測校正方法包括,依據該第一相位差與該第二相位差的差值或和值校正該流體特性資料。 The ultrasonic fluid measurement correction method according to claim 6, wherein the fluid characteristic of the fluid includes a difference or a sum of the first phase difference and the second phase difference, and the ultrasonic fluid measurement correction The method includes correcting the fluid property data based on a difference or sum of the first phase difference and the second phase difference. 如申請專利範圍第6項所述的超音波流體量測校正方法,其中該量測條件包括溫度、溼度、濃度、壓力、流體管形狀大小以及大氣壓力。 The ultrasonic fluid measurement calibration method according to claim 6, wherein the measurement conditions include temperature, humidity, concentration, pressure, fluid tube shape size, and atmospheric pressure.
TW104132652A 2015-10-02 2015-10-02 Ultrasonic fluid measurement apparatus and correcting method thereof TWI583951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104132652A TWI583951B (en) 2015-10-02 2015-10-02 Ultrasonic fluid measurement apparatus and correcting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104132652A TWI583951B (en) 2015-10-02 2015-10-02 Ultrasonic fluid measurement apparatus and correcting method thereof

Publications (2)

Publication Number Publication Date
TW201713944A TW201713944A (en) 2017-04-16
TWI583951B true TWI583951B (en) 2017-05-21

Family

ID=59256566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132652A TWI583951B (en) 2015-10-02 2015-10-02 Ultrasonic fluid measurement apparatus and correcting method thereof

Country Status (1)

Country Link
TW (1) TWI583951B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730729B (en) * 2020-04-21 2021-06-11 高昌生醫股份有限公司 Ultrasonic power detection device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255313A (en) * 2000-03-09 2001-09-21 Youth Engineering Co Ltd Gas composition measuring instrument
US20060185443A1 (en) * 2003-04-21 2006-08-24 Naotoshi Fujimoto Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
TW201207385A (en) * 2010-08-13 2012-02-16 Tatung Co Ultrasonic phase-shift detection device
TW201219780A (en) * 2010-11-12 2012-05-16 Tatung Co Ultrasonic gas flow measurement device
TW201231966A (en) * 2011-01-21 2012-08-01 Tatung Co Adjustable ultrasonic gas flow measurement device
TW201350845A (en) * 2012-05-24 2013-12-16 Air Prod & Chem Method of, and apparatus for, measuring the physical properties of two-phase fluids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255313A (en) * 2000-03-09 2001-09-21 Youth Engineering Co Ltd Gas composition measuring instrument
US20060185443A1 (en) * 2003-04-21 2006-08-24 Naotoshi Fujimoto Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
TW201207385A (en) * 2010-08-13 2012-02-16 Tatung Co Ultrasonic phase-shift detection device
TW201219780A (en) * 2010-11-12 2012-05-16 Tatung Co Ultrasonic gas flow measurement device
TW201231966A (en) * 2011-01-21 2012-08-01 Tatung Co Adjustable ultrasonic gas flow measurement device
TW201350845A (en) * 2012-05-24 2013-12-16 Air Prod & Chem Method of, and apparatus for, measuring the physical properties of two-phase fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730729B (en) * 2020-04-21 2021-06-11 高昌生醫股份有限公司 Ultrasonic power detection device and method

Also Published As

Publication number Publication date
TW201713944A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
CN102483344B (en) Upstream volume mass flow verification system and method
JP6112119B2 (en) Adaptive pressure insensitive mass flow controller and method capable of using multiple types of gases
CN108351240B (en) Method and apparatus for pressure-based flow control under non-critical flow conditions
US20190049278A1 (en) Thermal type flowmeter
JP2008170410A (en) Mass flow rate controller, assay method therefor, and semiconductor manufacturing equipment
JP2007256231A (en) Connecting pipe clogging detector and connecting pipe clogging detection method
US10330519B2 (en) Flow rate sensor correction device, program for correction device, and correction method
TW201506567A (en) Mass flow controller and method for improved performance across fluid types
US10788346B2 (en) Thermal type flowmeter using quadratic function of logarithm of flow rate
US20130081477A1 (en) Flow meter device
JP2019159687A (en) Flow controller, flow control method, and program for flow controllers
JP2007507713A (en) Process pressure sensor calibration
JP5820304B2 (en) Ultrasonic flow meter and ultrasonic calorimeter
TWI583951B (en) Ultrasonic fluid measurement apparatus and correcting method thereof
KR102596165B1 (en) Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
JP5891138B2 (en) Impulse tube clogging diagnosis device and clogging diagnosis method
US20210303007A1 (en) Flow Rate Control System, Control Method of FlowRate Control System, and Control Program of FlowRate Control System
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP2007017157A (en) Ultrasonic flowmeter
US20150135850A1 (en) Flow rate measuring device
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
US20150052969A1 (en) Calibrating a Device
JP2010256075A (en) Flowmeter and method of measuring flow rate
US20230236051A1 (en) Thermal flow meter, flow rate control device, thermal flow rate measurement method, and program for thermal flow meter
JP5005404B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees