JP5820304B2 - Ultrasonic flow meter and ultrasonic calorimeter - Google Patents

Ultrasonic flow meter and ultrasonic calorimeter Download PDF

Info

Publication number
JP5820304B2
JP5820304B2 JP2012041381A JP2012041381A JP5820304B2 JP 5820304 B2 JP5820304 B2 JP 5820304B2 JP 2012041381 A JP2012041381 A JP 2012041381A JP 2012041381 A JP2012041381 A JP 2012041381A JP 5820304 B2 JP5820304 B2 JP 5820304B2
Authority
JP
Japan
Prior art keywords
temperature
fluid
ultrasonic
flow rate
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041381A
Other languages
Japanese (ja)
Other versions
JP2013178127A (en
Inventor
浩司 泉
浩司 泉
知紀 新谷
知紀 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012041381A priority Critical patent/JP5820304B2/en
Publication of JP2013178127A publication Critical patent/JP2013178127A/en
Application granted granted Critical
Publication of JP5820304B2 publication Critical patent/JP5820304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

この発明は、超音波を用いて流体の流量を測定する超音波流量計およびこの超音波流量計を用いた超音波式熱量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves, and an ultrasonic calorimeter using the ultrasonic flowmeter.

従来より、超音波を用いて流体の流量を測定する超音波流量計が用いられている。この超音波流量計では、図7にその模式図を示すように、測定対象の流体が流れる測定管1の上流側の外周面に第1の超音波送受信器2を配置し、下流側の外周面に第2の超音波送受信器3を配置し、超音波送受信器2と超音波送受信器3との間の超音波の伝播時間の差に基づいて流体の流速Vを測定し、この測定した流速Vと測定管1の断面積SとからQ=V×Sとして流体の流量を求める。   Conventionally, an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves has been used. In this ultrasonic flow meter, as shown in a schematic diagram of FIG. 7, the first ultrasonic transmitter / receiver 2 is disposed on the outer peripheral surface on the upstream side of the measurement tube 1 through which the fluid to be measured flows, and the outer periphery on the downstream side. The second ultrasonic transmitter / receiver 3 is arranged on the surface, and the flow velocity V of the fluid is measured based on the difference in ultrasonic propagation time between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3, and this measurement is performed. From the flow velocity V and the cross-sectional area S of the measuring tube 1, the flow rate of the fluid is obtained as Q = V × S.

この流量Qを求める際の演算式を下記(1)〜(4)式として示す。
t1=L/(c+V・cosθ) ・・・・(1)
t2=L/(c−V・cosθ) ・・・・(2)
V=c2・(t2−t1)/(2・L・cosθ) ・・・・(3)
Q=S・V ・・・・(4)
Calculation formulas for obtaining the flow rate Q are shown as the following formulas (1) to (4).
t1 = L / (c + V · cos θ) (1)
t2 = L / (c−V · cos θ) (2)
V = c 2 · (t2−t1) / (2 · L · cos θ) (3)
Q = S · V (4)

但し、上記(1)〜(4)式において、t1は超音波送受信器2から送信された超音波が超音波送受信器3で受信されるのに要した時間、t2は超音波送受信器3から送信された超音波が超音波送受信器2で受信されるのに要した時間、cは超音波の流体中における伝播速度、Lは超音波送受信器2と超音波送受信器3との相互間の距離(超音波伝播経路(パス)の距離)、θは測定管1の管軸Oに対する超音波伝播経路の傾きである。   However, in the above formulas (1) to (4), t1 is the time required for the ultrasonic transmitter / receiver 3 to receive the ultrasonic wave transmitted from the ultrasonic transmitter / receiver 2, and t2 is from the ultrasonic transmitter / receiver 3. The time required for the transmitted ultrasonic wave to be received by the ultrasonic transmitter / receiver 2, c is the propagation velocity of the ultrasonic wave in the fluid, and L is between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3. The distance (distance of the ultrasonic propagation path (path)), θ is the inclination of the ultrasonic propagation path with respect to the tube axis O of the measuring tube 1.

この超音波流量計においては、超音波伝播経路上の平均流速V’を流速Vとして測定しているため、V’×Sにより計算される計測流量Q’は、真の流量Qと若干異なる。この超音波で計測した平均流速V’と管断面の平均流速(真の流速)Vとの比V’/V=Q’/Q=kが実流校正等で予め分かっていれば、この比を流量補正係数kとすることにより、超音波で計測された超音波伝播経路上の平均流速V’と流量補正係数kとを用いて、真の流量Qを求めることができる。   In this ultrasonic flowmeter, since the average flow velocity V ′ on the ultrasonic propagation path is measured as the flow velocity V, the measured flow rate Q ′ calculated by V ′ × S is slightly different from the true flow rate Q. If the ratio V ′ / V = Q ′ / Q = k between the average flow velocity V ′ measured by this ultrasonic wave and the average flow velocity (true flow velocity) V of the pipe cross section is known beforehand by actual flow calibration or the like, this ratio By using as the flow rate correction coefficient k, the true flow rate Q can be obtained using the average flow velocity V ′ on the ultrasonic wave propagation path measured by ultrasonic waves and the flow rate correction coefficient k.

この流量補正係数kには次のような特徴がある。測定管1内の流体の流速分布は流量に依存して変化する。すなわち、流量が少ない場合には層流となり、流量が多い場合には乱流となる。このため、超音波伝播経路上の管内の流速分布は、流量の少ない層流域においては放物状の凸型となり(図8(a)参照)、流量の多い乱流域においては比較的平坦な形となる(図8(b)参照)。   This flow rate correction coefficient k has the following characteristics. The flow velocity distribution of the fluid in the measuring tube 1 changes depending on the flow rate. That is, when the flow rate is low, the flow becomes laminar, and when the flow rate is high, the flow becomes turbulent. For this reason, the flow velocity distribution in the pipe on the ultrasonic propagation path has a parabolic convex shape in a laminar flow region with a small flow rate (see FIG. 8A), and a relatively flat shape in a turbulent flow region with a large flow rate. (See FIG. 8B).

したがって、超音波伝播経路で計測した平均流速V’と真の流速Vとの比である流量補正係数kは、層流と乱流とで同じ値とはならない。すなわち、層流域において、超音波伝播経路で計測した平均流速V’をV1’、真の流速をV1とした場合、その流量補正係数k1はk1=V1’/V1となる。乱流域において、超音波伝播経路で計測した平均流速V’をV2’、真の流速をV2とした場合、その流量補正係数k2はk2=V2’/V2となる。この場合、層流域でのV1とV1’との差を偏差ΔV1、乱流域でのV2とV2’との差を偏差ΔV2とすると、層流域での偏差ΔV1と乱流域での偏差ΔV2との差が大きいために、層流域での流量補正係数k1と乱流域での流量補正係数k2とは等しくならない(k1≠k2)。   Therefore, the flow rate correction coefficient k, which is the ratio of the average flow velocity V ′ measured with the ultrasonic propagation path and the true flow velocity V, does not become the same value for the laminar flow and the turbulent flow. That is, in the laminar flow region, when the average flow velocity V ′ measured by the ultrasonic wave propagation path is V1 ′ and the true flow velocity is V1, the flow rate correction coefficient k1 is k1 = V1 ′ / V1. In the turbulent region, when the average flow velocity V ′ measured by the ultrasonic wave propagation path is V2 ′ and the true flow velocity is V2, the flow rate correction coefficient k2 is k2 = V2 ′ / V2. In this case, if the difference between V1 and V1 ′ in the laminar flow area is a deviation ΔV1, and the difference between V2 and V2 ′ in the turbulent flow area is a deviation ΔV2, the deviation ΔV1 in the laminar flow area and the deviation ΔV2 in the turbulent flow area Since the difference is large, the flow rate correction coefficient k1 in the laminar flow region and the flow rate correction coefficient k2 in the turbulent flow region are not equal (k1 ≠ k2).

このように、超音波伝播経路で計測した平均流速V’と管断面の平均流速Vとの比である流量補正係数kは、層流と乱流とで同じ値とはならず、例えば図9に示すような層流側で急激に変化する流量依存性をもつ。この曲線を厳密に求めるためには数多くの流量測定点での実流量校正を行えばよいが、実製品の製造においては製造時間を短くしたいため、数多くの流量測定点で校正することは効率的ではない。したがって、実際の機器の校正である実流量校正においては、少なくとも2点以上の数点での流量における校正を行い、各点での流量補正係数から直線近似式または曲線近似式などを求め、その値(式)を超音波流量計のメモリに記憶させている。   Thus, the flow rate correction coefficient k, which is the ratio of the average flow velocity V ′ measured in the ultrasonic propagation path and the average flow velocity V of the pipe cross section, does not become the same value for laminar flow and turbulent flow. As shown in Fig. 4, it has a flow dependency that changes rapidly on the laminar flow side. In order to obtain this curve precisely, it is sufficient to calibrate the actual flow rate at a large number of flow measurement points. However, in manufacturing an actual product, it is efficient to calibrate at a large number of flow measurement points because it is necessary to shorten the production time. is not. Therefore, in the actual flow rate calibration, which is the calibration of the actual equipment, the flow rate is calibrated at least at two or more points, and a linear approximation equation or a curve approximation equation is obtained from the flow rate correction coefficient at each point. The value (formula) is stored in the memory of the ultrasonic flowmeter.

図9に示した流量補正係数kの変化特性において、横軸は流体のレイノルズ数Reで表現することが最も都合がよい。超音波流量計において、レイノルズ数Reは、流体の動粘度をνとした場合、この動粘度νと計測流速V’と超音波伝播経路の距離Lとから、Re=V’・L/νとして得ることができる。したがって、超音波流量計において流量の補正を行う場合、流体の動粘度νを求めることが必要となる。   In the change characteristic of the flow rate correction coefficient k shown in FIG. 9, the horizontal axis is most conveniently expressed as the Reynolds number Re of the fluid. In the ultrasonic flowmeter, when the Reynolds number Re is ν as the kinematic viscosity of the fluid, Re = V ′ · L / ν from the kinematic viscosity ν, the measured flow velocity V ′, and the distance L of the ultrasonic wave propagation path. Can be obtained. Therefore, when the flow rate is corrected in the ultrasonic flow meter, it is necessary to obtain the kinematic viscosity ν of the fluid.

そこで、特許文献1に示された超音波流量計では、例えば流体を水とした場合、音速cと水温Tとの関係を数値化したテーブル(音速−温度テーブル)と、水温Tと動粘度νとの関係を数値化したテーブル(温度−動粘度テーブル)とをメモリに記憶させておき、超音波の伝播時間から水中の超音波の伝播速度である音速cを求め、この求めた音速cに対応する水温Tを音速−温度テーブルより求め、この求めた水温Tに対応する動粘度νを温度−動粘度テーブルより求めるようにしている。   Therefore, in the ultrasonic flow meter disclosed in Patent Document 1, for example, when the fluid is water, a table (sound speed-temperature table) in which the relationship between the sound speed c and the water temperature T is quantified, the water temperature T, and the kinematic viscosity ν. And a table (temperature-kinematic viscosity table) in which the relationship between the two is numerically stored in a memory, and the speed of sound c, which is the propagation speed of ultrasonic waves in water, is obtained from the propagation time of the ultrasonic waves. The corresponding water temperature T is obtained from the sonic velocity-temperature table, and the kinematic viscosity ν corresponding to the obtained water temperature T is obtained from the temperature-dynamic viscosity table.

特開2007−051913号公報JP 2007-051913 A

しかしながら、上述した特許文献1に示された方法では、音速cと温度Tとの関係において、同じ音速で2つの温度が得られる領域がある。すなわち、水温Tが74℃のときに音速cが最高となり、それ以上の水温Tでは音速cが減少する。このため、同じ音速で2つの温度が得られる領域が生じる。例えば、55〜100℃の温度範囲において、1つの音速で2つの温度が得られる。従って、特許文献1に示された方法では、超音波流量計の使用温度範囲を0〜74℃もしくは74〜100℃の何れかに限定する必要があり、1つの超音波流量計で0〜100℃の温度範囲の水の流量を計測するができなかった。なお、この例では、流体を水としたが、他の流体でも同様の問題が生じる。   However, in the method disclosed in Patent Document 1 described above, there is a region where two temperatures can be obtained at the same sound speed in the relationship between the sound speed c and the temperature T. That is, the sound speed c is highest when the water temperature T is 74 ° C., and the sound speed c decreases at a water temperature T higher than that. For this reason, a region where two temperatures can be obtained at the same sound speed is generated. For example, in the temperature range of 55 to 100 ° C., two temperatures can be obtained with one sound speed. Therefore, in the method disclosed in Patent Document 1, it is necessary to limit the operating temperature range of the ultrasonic flowmeter to either 0 to 74 ° C. or 74 to 100 ° C., and 0 to 100 with one ultrasonic flow meter. The flow rate of water in the temperature range of ° C could not be measured. In this example, the fluid is water, but the same problem occurs with other fluids.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、使用温度範囲が限定されることのない超音波流量計および超音波式熱量計を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide an ultrasonic flowmeter and an ultrasonic calorimeter in which the operating temperature range is not limited. is there.

このような目的を達成するために本発明は、測定対象の流体が流れる測定管と、この測定管の上流側に配置された第1の超音波送受信器と、測定管の下流側に配置された第2の超音波送受信器と、第1の超音波送受信器と第2の超音波送受信器との間の超音波の伝播時間の差に基づいて流体の流量を測定する流量測定手段とを備えた超音波流量計において、超音波の伝播時間の差から流体の流速を求める流速算出手段と、超音波の伝播時間から流体中における超音波の伝播速度である音速を求める音速算出手段と、音速算出手段によって求められた音速から流体の温度を求める温度算出手段と、温度算出手段によって求められた流体の温度から流体の動粘度を求める動粘度算出手段と、流速算出手段によって求められた流体の流速と動粘度算出手段によって求められた流体の動粘度とに基づいて流量測定手段によって測定された流体の流量を補正する流量補正手段と、流体の温度を検知する温度センサとを備え、動粘度算出手段は、流体の現在の温度が所定の温度範囲に属する場合、温度算出手段によって求められた流体の温度からではなく、温度センサによって検知された流体の温度から流体の動粘度を求めることを特徴とする。   In order to achieve such an object, the present invention provides a measurement tube through which a fluid to be measured flows, a first ultrasonic transmitter / receiver disposed on the upstream side of the measurement tube, and a downstream side of the measurement tube. A second ultrasonic transmitter / receiver, and a flow rate measuring means for measuring a fluid flow rate based on a difference in propagation time of ultrasonic waves between the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver. In the ultrasonic flowmeter provided, the flow velocity calculating means for obtaining the flow velocity of the fluid from the difference in the propagation time of the ultrasonic wave, the sound velocity calculating means for obtaining the sound velocity that is the propagation velocity of the ultrasonic wave in the fluid from the propagation time of the ultrasonic wave, Temperature calculating means for obtaining the temperature of the fluid from the sound speed obtained by the sound speed calculating means, kinematic viscosity calculating means for obtaining the kinematic viscosity of the fluid from the temperature of the fluid obtained by the temperature calculating means, and the fluid obtained by the flow velocity calculating means Flow velocity and kinematic viscosity calculation The flow rate correcting means for correcting the flow rate of the fluid measured by the flow rate measuring means based on the kinematic viscosity of the fluid obtained by the means, and a temperature sensor for detecting the temperature of the fluid, When the current temperature falls within a predetermined temperature range, the kinematic viscosity of the fluid is obtained from the temperature of the fluid detected by the temperature sensor, not from the temperature of the fluid obtained by the temperature calculating means.

この発明において、動粘度算出手段は、流体の現在の温度が所定の温度範囲に属する場合、温度算出手段によって求められた流体の温度(音速から求められた流体の温度)からではなく、温度センサによって検知された流体の温度から流体の動粘度を求める。例えば、音速から求められた流体の温度をその流体の現在の温度とし、あるいは温度センサによって検知された流体の温度をその流体の現在の温度とし、この流体の現在の温度が所定の温度範囲に属しているか否かを判断するようにし、所定の温度範囲に属していれば、温度センサによって検知された流体の温度から流体の動粘度を求めるようにする。   In this invention, when the current temperature of the fluid belongs to a predetermined temperature range, the kinematic viscosity calculating means is not based on the temperature of the fluid determined by the temperature calculating means (the temperature of the fluid determined from the speed of sound) but on the temperature sensor. The kinematic viscosity of the fluid is obtained from the temperature of the fluid detected by. For example, the fluid temperature obtained from the speed of sound is set as the current temperature of the fluid, or the temperature of the fluid detected by the temperature sensor is set as the current temperature of the fluid, and the current temperature of the fluid falls within a predetermined temperature range. Whether it belongs or not is determined, and if it belongs to a predetermined temperature range, the kinematic viscosity of the fluid is obtained from the temperature of the fluid detected by the temperature sensor.

本発明において、所定の温度範囲は、例えば流体を水とした場合、55〜100℃とするなど、音速と温度との関係において同じ音速で複数の温度が得られる領域とするとよい。また、閾値を定め、この閾値よりも高い温度範囲を所定の温度範囲とするなどしてもよい。また、閾値を、常温で使用する範囲で流体が上昇し得る温度の上限より高い温度点から、音速と温度との関係において同じ音速で複数の温度が得られる領域の下限よりも低い温度点との間で、任意に設定可能とするようにしてもよい。   In the present invention, the predetermined temperature range may be a region where a plurality of temperatures can be obtained at the same sound speed in the relationship between the sound speed and the temperature, for example, when the fluid is water, for example, 55 to 100 ° C. Further, a threshold value may be set, and a temperature range higher than the threshold value may be set as a predetermined temperature range. Further, the threshold value is a temperature point lower than the lower limit of the region where a plurality of temperatures can be obtained at the same sound speed from the temperature point higher than the upper limit of the temperature at which the fluid can rise in the range used at room temperature. It may be possible to arbitrarily set between.

また、本発明の超音波流量計は、超音波式熱量計に用いることができる。超音波式熱量計は、負荷への流体の往温度を検知する第1の温度センサと、負荷から戻される流体の還温度を検知する第2の温度センサとを備え、第1の温度センサが検知する流体の往温度と第2の温度センサが検知する流体の還温度と超音波によって測定される負荷を流れる流体の流量に基づいて負荷への供給熱量を求める。この超音波式熱量計において、本発明の超音波流量計を用い、また第2の温度センサを超音波流量計の自己の温度センサとして、負荷を流れる流体の流量を測定するようにする。そして、超音波流量計によって測定される流体の流量と、第1の温度センサによって検知される流体の往温度と、第2の温度センサ(超音波流量計の自己の温度センサ)によって検知される流体の還温度とに基づいて負荷への供給熱量を演算するようにする。   Moreover, the ultrasonic flowmeter of the present invention can be used for an ultrasonic calorimeter. The ultrasonic calorimeter includes a first temperature sensor that detects a forward temperature of the fluid to the load, and a second temperature sensor that detects a return temperature of the fluid returned from the load. The amount of heat supplied to the load is obtained based on the forward temperature of the fluid to be detected, the return temperature of the fluid detected by the second temperature sensor, and the flow rate of the fluid flowing through the load measured by ultrasonic waves. In this ultrasonic calorimeter, the ultrasonic flowmeter of the present invention is used, and the flow rate of the fluid flowing through the load is measured by using the second temperature sensor as its own temperature sensor. Then, the flow rate of the fluid measured by the ultrasonic flow meter, the forward temperature of the fluid detected by the first temperature sensor, and the second temperature sensor (the temperature sensor of the ultrasonic flow meter) are detected. The amount of heat supplied to the load is calculated based on the return temperature of the fluid.

本発明によれば、流体の現在の温度が所定の温度範囲に属する場合、音速から求められた流体の温度からではなく、温度センサによって検知された流体の温度から流体の動粘度を求めるようにしたので、例えば流体を水とした場合、0〜55℃の温度範囲では音速から求められた流体の温度から流体の動粘度を求め、55〜100℃の温度範囲では温度センサによって検知された流体の温度から流体の動粘度を求めるようにして、使用温度範囲が限定されることのない超音波流量計および超音波式熱量計を提供することが可能となる。   According to the present invention, when the current temperature of the fluid belongs to a predetermined temperature range, the kinematic viscosity of the fluid is obtained from the temperature of the fluid detected by the temperature sensor, not from the temperature of the fluid obtained from the speed of sound. Therefore, for example, when the fluid is water, the kinematic viscosity of the fluid is obtained from the temperature of the fluid obtained from the speed of sound in the temperature range of 0 to 55 ° C., and the fluid detected by the temperature sensor in the temperature range of 55 to 100 ° C. By obtaining the kinematic viscosity of the fluid from the temperature, it is possible to provide an ultrasonic flow meter and an ultrasonic calorimeter that do not limit the operating temperature range.

本発明に係る超音波流量計の一実施の形態の要部を示す図である。It is a figure which shows the principal part of one Embodiment of the ultrasonic flowmeter which concerns on this invention. 音速cと水温Tとの関係を数値化したテーブル(音速−温度テーブル)を示す図である。It is a figure which shows the table (sound speed-temperature table) which digitized the relationship between the sound speed c and the water temperature. 水温Tと動粘度νとの関係を数値化したテーブル(温度−動粘度テーブル)を示す図である。It is a figure which shows the table (temperature-kinetic viscosity table) which digitized the relationship between water temperature T and kinematic viscosity (nu). 図1に示した超音波流量計における流量演算部の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the flow volume calculating part in the ultrasonic flowmeter shown in FIG. 本発明に係る超音波式熱量計の一実施の形態の使用例を示す図である。It is a figure which shows the usage example of one Embodiment of the ultrasonic calorimeter which concerns on this invention. この超音波式熱量計の実際の構成例を示す図である。It is a figure which shows the example of an actual structure of this ultrasonic calorimeter. 従来の超音波流量計の模式図である。It is a schematic diagram of the conventional ultrasonic flowmeter. 超音波伝播経路上の管内の層流である場合と乱流である場合の流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the case of the laminar flow and the turbulent flow in the pipe on the ultrasonic propagation path. この超音波流量計における流量補正係数の変化特性を示す図である。It is a figure which shows the change characteristic of the flow volume correction coefficient in this ultrasonic flowmeter.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔超音波流量計〕
図1はこの発明に係る超音波流量計の一実施の形態の要部を示す図である。同図において、図7と同一符号は図7を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Ultrasonic flow meter]
FIG. 1 is a diagram showing a main part of an embodiment of an ultrasonic flowmeter according to the present invention. In this figure, the same reference numerals as those in FIG. 7 denote the same or equivalent components as those described with reference to FIG.

この超音波流量計100は、測定管1の上流側および下流側に配置された第1の超音波送受信器2および第2の超音波送受信器3に加え、測定管1を流れる流体の温度を検知する温度センサ4を備えている。   The ultrasonic flowmeter 100 is configured to adjust the temperature of the fluid flowing through the measurement tube 1 in addition to the first ultrasonic transmitter / receiver 2 and the second ultrasonic transmitter / receiver 3 arranged on the upstream side and the downstream side of the measurement tube 1. The temperature sensor 4 to detect is provided.

また、超音波送受信器2および3からの出力と温度センサ4からの出力とを入力とし、測定管1を流れる流体の流量Qを演算する流量演算部5を備えている。なお、この実施の形態において、流体は水とする。   In addition, a flow rate calculation unit 5 that receives the outputs from the ultrasonic transceivers 2 and 3 and the output from the temperature sensor 4 and calculates the flow rate Q of the fluid flowing through the measurement tube 1 is provided. In this embodiment, the fluid is water.

流量演算部5は、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種機能を実現させるプログラムとによって実現され、伝播時間検出部501と、流速算出部502と、流量算出部503と、音速算出部504と、温度算出部505と、動粘度算出部506と、レイノルズ数算出部507と、補正係数決定部508と、流量補正部509と、流量出力部510と、現在温度比較部511と、メモリ512とを備えている。   The flow rate calculation unit 5 is realized by hardware including a processor and a storage device, and a program that realizes various functions in cooperation with these hardware, and includes a propagation time detection unit 501, a flow velocity calculation unit 502, a flow rate A calculation unit 503, a sound speed calculation unit 504, a temperature calculation unit 505, a kinematic viscosity calculation unit 506, a Reynolds number calculation unit 507, a correction coefficient determination unit 508, a flow rate correction unit 509, a flow rate output unit 510, A current temperature comparison unit 511 and a memory 512 are provided.

メモリ512には、図2に示すような音速cと水温Tとの関係を数値化したテーブル(音速−温度テーブル)TAと、図3に示すような水温Tと動粘度νとの関係を数値化したテーブル(温度−動粘度テーブル)TBと、図9に示されたようなレイノルズ数Reと流量補正係数kとの関係を数値化したテーブル(レイノルズ数−流量補正係数テーブル)TCが記憶されている。なお、音速cと水温Tとの関係は「Greenspan-Tschieggの式(1957)」として知られており、水温Tと動粘度νとの関係は理科年表に記載されている。   In the memory 512, a table (sound speed-temperature table) TA in which the relationship between the speed of sound c and the water temperature T as shown in FIG. 2 is converted into a numerical value, and the relationship between the water temperature T and the kinematic viscosity ν as shown in FIG. Table (temperature-kinematic viscosity table) TB and a table (Reynolds number-flow rate correction coefficient table) TC in which the relationship between the Reynolds number Re and the flow rate correction coefficient k as shown in FIG. ing. The relationship between the speed of sound c and the water temperature T is known as “Greenspan-Tschiegg equation (1957)”, and the relationship between the water temperature T and the kinematic viscosity ν is described in the scientific chronology.

以下、図4に示すフローチャートを参照して、流量演算部5における各部の機能を交えながらその動作について説明する。   Hereinafter, the operation will be described with reference to the flowchart shown in FIG.

伝播時間検出部501は、超音波送受信器2および3からの出力より、超音波送受信器2から送信された超音波が超音波送受信器3で受信されるのに要した時間(伝播時間)t1と、超音波送受信器3から送信された超音波が超音波送受信器2で受信されるのに要した時間(伝播時間)t2とを検出する(ステップS101)。   The propagation time detection unit 501 takes the time (propagation time) t1 required for the ultrasonic transmitter / receiver 3 to receive the ultrasonic wave transmitted from the ultrasonic transmitter / receiver 2 based on the outputs from the ultrasonic transmitters / receivers 2 and 3. And the time (propagation time) t2 required for the ultrasonic transmitter / receiver 3 to receive the ultrasonic wave transmitted from the ultrasonic transmitter / receiver 3 is detected (step S101).

音速算出部504は、伝播時間検出部5によって検出された伝播時間t1と伝播時間t2とから水中の超音波の伝播速度である音速cを求める(ステップS102)。音速cは次のようにして求められる。   The sound speed calculation unit 504 obtains the sound speed c, which is the propagation speed of ultrasonic waves in water, from the propagation time t1 and the propagation time t2 detected by the propagation time detection unit 5 (step S102). The speed of sound c is obtained as follows.

前述した式(1),(2)から伝播時間t1,t2の平均伝播時間は下記(5)式で示される。
(t1+t2)/2=L・c/(c2−V2・cos2θ) ・・・・(5)
通常では、水中の音速cは1000m/s以上、気体中の音速cは300m/s以上であって、流速Vは高々数m/sであり、cosθ<1であるから、c2 >>V2・cos2θである。従って、c2−V2・cos2θ=c2 となり、音速cは次式のように伝播時間t1,t2から求めることができる。
c=2・L/(t1+t2) ・・・・(6)
From the above equations (1) and (2), the average propagation time of propagation times t1 and t2 is expressed by the following equation (5).
(T1 + t2) / 2 = L · c / (c 2 −V 2 · cos 2 θ) (5)
Normally, the sound velocity c in water is 1000 m / s or more, the sound velocity c in gas is 300 m / s or more, the flow velocity V is at most several m / s, and cos θ <1, so c 2 >> V 2 · cos 2 θ. Therefore, c 2 −V 2 · cos 2 θ = c 2 , and the speed of sound c can be obtained from the propagation times t1 and t2 as in the following equation.
c = 2 · L / (t1 + t2) (6)

流速算出部502は、伝播時間検出部501によって検出された伝播時間t1と伝播時間t2とから伝播時間差Δtを求め(ステップS103)、この伝播時間差Δtと音速算出部504によって求められた音速cとから下記(7)式によって流体の平均流速V’を求める(ステップS104)。
V’=c2・Δt/(2・L・cosθ) ・・・・(7)
The flow velocity calculation unit 502 obtains a propagation time difference Δt from the propagation time t1 and the propagation time t2 detected by the propagation time detection unit 501 (step S103), and the propagation time difference Δt and the sound velocity c obtained by the sound velocity calculation unit 504 are obtained. From the following equation (7), an average fluid flow velocity V ′ is obtained (step S104).
V ′ = c 2 · Δt / (2 · L · cos θ) (7)

流量算出部503は、流速算出部502によって求められた流体の平均流速(計測流速)V’と測定管1の断面積Sとから、Q’=S・V’として流体の流量(計測流量)Q’を求める(ステップS105)。   The flow rate calculation unit 503 calculates the fluid flow rate (measured flow rate) as Q ′ = S · V ′ from the average flow velocity (measured flow rate) V ′ obtained by the flow rate calculation unit 502 and the cross-sectional area S of the measurement tube 1. Q ′ is obtained (step S105).

温度算出部505は、音速算出部504によって求められた音速cを入力とし、この音速cに対応する水温Tをメモリ512に記憶されている音速−温度テーブルTAより求める(ステップS106)。なお、温度算出部505は、音速cに対応する水温Tが2つ求められた場合は、高い方の温度を水温Tとする。   The temperature calculation unit 505 receives the sound speed c obtained by the sound speed calculation unit 504, and obtains the water temperature T corresponding to the sound speed c from the sound speed-temperature table TA stored in the memory 512 (step S106). The temperature calculation unit 505 sets the higher temperature as the water temperature T when two water temperatures T corresponding to the sound speed c are obtained.

現在温度比較部511は、温度算出部505によって求められた水温Tを現在の水温とし、この現在の水温Tと予め定められている閾値Tth(この例では、Tth=55℃)とを比較し(ステップS107)、その比較結果を動粘度算出部506へ送る。   The current temperature comparison unit 511 sets the water temperature T obtained by the temperature calculation unit 505 as the current water temperature, and compares the current water temperature T with a predetermined threshold value Tth (Tth = 55 ° C. in this example). (Step S107), the comparison result is sent to the kinematic viscosity calculation unit 506.

動粘度算出部506は、現在温度比較部511からT≦Tthという比較結果が送られてきている場合(ステップS107のYES)、温度算出部505によって求められた水温T、すなわち音速cから求められた水温Tを採用し、この水温Tに対応する動粘度νをメモリ512に記憶されている温度−動粘度テーブルTBより求める(ステップS108)。   When the comparison result T ≦ Tth is currently sent from the temperature comparison unit 511 (YES in step S107), the kinematic viscosity calculation unit 506 is obtained from the water temperature T obtained by the temperature calculation unit 505, that is, the speed of sound c. The water temperature T is employed, and the kinematic viscosity ν corresponding to the water temperature T is obtained from the temperature-kinematic viscosity table TB stored in the memory 512 (step S108).

これに対し、現在温度比較部511からT>Tthという結果が送られてきている場合(ステップS107のNO)、動粘度算出部506は、温度センサ4からの水温TR、すなわち実際に検知されている水温TRを採用し、この水温TRに対応する動粘度νを温度−動粘度テーブルTBより求める(ステップS109)。   On the other hand, when the result of T> Tth is sent from the current temperature comparison unit 511 (NO in step S107), the kinematic viscosity calculation unit 506 detects the water temperature TR from the temperature sensor 4, that is, actually detected. The kinematic viscosity ν corresponding to the water temperature TR is obtained from the temperature-kinematic viscosity table TB (step S109).

レイノルズ数算出部507は、動粘度算出部506からの動粘度νと、流速算出部502からの計測流速V’とから、下記(8)式によってレイノルズ数Reを計算する(ステップS110)。
Re=V’・L/ν ・・・・(8)
The Reynolds number calculation unit 507 calculates the Reynolds number Re by the following equation (8) from the kinematic viscosity ν from the kinematic viscosity calculation unit 506 and the measured flow velocity V ′ from the flow velocity calculation unit 502 (step S110).
Re = V ′ · L / ν (8)

補正係数決定部508は、レイノルズ数算出部507で求められたレイノルズ数Reを入力とし、このレイノルズ数Reに対応する流量補正係数kをメモリ512に記憶されているレイノルズ数−流量補正係数テーブルTCより求める(ステップS111)。   The correction coefficient determination unit 508 receives the Reynolds number Re obtained by the Reynolds number calculation unit 507 as an input, and the flow rate correction coefficient k corresponding to the Reynolds number Re is stored in the memory 512. The Reynolds number-flow rate correction coefficient table TC (Step S111).

流量補正部509は、補正係数決定部508で求められた流量補正係数kと流量算出部503で算出された計測流量Q’とを入力とし、Q=Q’/kとして真の流量Qを求める(ステップS112)。すなわち、計測流量Q’を流量補正係数kで補正し、真の流量Qを求める。   The flow rate correction unit 509 receives the flow rate correction coefficient k calculated by the correction coefficient determination unit 508 and the measured flow rate Q ′ calculated by the flow rate calculation unit 503, and calculates the true flow rate Q as Q = Q ′ / k. (Step S112). That is, the measured flow rate Q ′ is corrected by the flow rate correction coefficient k to obtain the true flow rate Q.

流量出力部510は、流量補正部509によって求められた真の流量Qを入力とし、この入力された真の流量Qを外部の表示器等に出力する(ステップS113)。   The flow rate output unit 510 receives the true flow rate Q obtained by the flow rate correction unit 509 and outputs the input true flow rate Q to an external display or the like (step S113).

このようにして、本実施の形態の超音波流量計100では、流体を水とした場合、0〜55℃の温度範囲では音速cから求められた水温Tから動粘度νが求められ、55〜100℃の温度範囲では温度センサ4によって検知された水温TRから動粘度νが求められ、この動粘度νから求められる流量補正係数kによって計測流量Q’が補正されるものとなり、1つの超音波流量計100で0〜100℃の温度範囲の水の流量を計測するができるようになる。   Thus, in the ultrasonic flowmeter 100 of the present embodiment, when the fluid is water, the kinematic viscosity ν is obtained from the water temperature T obtained from the sound velocity c in the temperature range of 0 to 55 ° C. In the temperature range of 100 ° C., the kinematic viscosity ν is obtained from the water temperature TR detected by the temperature sensor 4, and the measured flow rate Q ′ is corrected by the flow rate correction coefficient k obtained from the kinematic viscosity ν. The flow meter 100 can measure the flow rate of water in the temperature range of 0 to 100 ° C.

なお、この実施の形態では、温度算出部505によって求められた水温Tを現在温度比較部511で使用する現在の水温としたが、温度センサ4によって検知されている水温TRを現在温度比較部511で使用する現在の水温としてもよい。   In this embodiment, the water temperature T obtained by the temperature calculation unit 505 is the current water temperature used by the current temperature comparison unit 511. However, the water temperature TR detected by the temperature sensor 4 is the current temperature comparison unit 511. It may be the current water temperature used in

また、この実施の形態では、補正係数決定部508で求めた流量補正係数kを使用し、Q=Q’/kとして真の流量Qを求るようにしたが、V=V’/kとして真の流速Vを求め、この真の流速VからQ=V・Sとして真の流量Qを求めるようにしてもよい。   In this embodiment, the flow rate correction coefficient k obtained by the correction coefficient determination unit 508 is used and the true flow rate Q is obtained as Q = Q ′ / k. However, as V = V ′ / k. The true flow rate V may be obtained, and the true flow rate Q may be obtained from the true flow rate V as Q = V · S.

また、この実施の形態では、現在温度比較部511で使用する閾値Tthを55℃としたが、55℃〜100℃の温度範囲として定めてもよく、55℃よりも低い温度を閾値Tthとして定めてもよい。また、閾値Tthを、常温で使用する範囲で水が上昇し得る温度の上限より少し高い温度点から、音速と水温との関係において同じ音速で複数の温度が得られる領域の下限(55℃)よりも少し低い温度点との間で、任意に設定可能とするようにしてもよい。   In this embodiment, the threshold value Tth used in the current temperature comparison unit 511 is 55 ° C., but may be set as a temperature range of 55 ° C. to 100 ° C., and a temperature lower than 55 ° C. is set as the threshold value Tth. May be. Further, the lower limit (55 ° C.) of the region in which a plurality of temperatures can be obtained at the same sound speed in relation to the sound speed and the water temperature from the temperature point at which the threshold Tth is slightly higher than the upper limit of the temperature at which water can rise in the range used at room temperature. It may be possible to arbitrarily set between a temperature point slightly lower than that.

また、この実施の形態では、流体を水とした場合について説明したが、他の流体でも同様にして適用することが可能である。この場合、使用する流体に合わせて、閾値Tthの設定や温度範囲の設定を適切に行うようにする。   In this embodiment, the case where the fluid is water has been described. However, other fluids can be similarly applied. In this case, the threshold value Tth and the temperature range are appropriately set according to the fluid to be used.

〔超音波式熱量計〕
図5に本発明に係る超音波式熱量計の一実施の形態の使用例を示す。この超音波式熱量計200は、上述した超音波流量計100を用いて構成されており、ファンコイルユニット(負荷)300への供給熱量を測定する。
[Ultrasonic calorimeter]
FIG. 5 shows an example of use of an embodiment of an ultrasonic calorimeter according to the present invention. The ultrasonic calorimeter 200 is configured using the ultrasonic flow meter 100 described above, and measures the amount of heat supplied to the fan coil unit (load) 300.

この超音波式熱量計200は、ファンコイルユニット300への冷温水の温度(往温度)T1を検知する温度センサS1と、ファンコイルユニット300から戻される冷温水の温度(還温度)T2を検知する温度センサS2とを備え、温度センサS1が検知する往温度T1と温度センサS2が検知する還温度T2と超音波流量計100によって測定されるファンコイルユニット300を流れる冷温水の流量Qとに基づいて、ファンコイルユニット300への供給熱量Wを演算部21において求める。この超音波式熱量計200において、超音波流量計100は、還温度T2を検知する温度センサS2を自己の温度センサ4として、ファンコイルユニット300を流れる冷温水の流量Qを測定する。   The ultrasonic calorimeter 200 detects a temperature sensor S1 that detects the temperature (outward temperature) T1 of the cold / hot water to the fan coil unit 300, and a temperature (return temperature) T2 that returns from the fan coil unit 300. A temperature sensor S2 that detects the temperature T1 detected by the temperature sensor S1, a return temperature T2 detected by the temperature sensor S2, and a flow rate Q of cold / warm water flowing through the fan coil unit 300 measured by the ultrasonic flowmeter 100. Based on this, the calculation unit 21 obtains the amount of heat W supplied to the fan coil unit 300. In this ultrasonic calorimeter 200, the ultrasonic flow meter 100 measures the flow rate Q of the cold / hot water flowing through the fan coil unit 300 using the temperature sensor S2 that detects the return temperature T2 as its own temperature sensor 4.

なお、図5では、超音波式熱量計200において超音波流量計100が用いられていることを示すために、超音波流量計100と演算部21とを別個に示したが、実際には図6に示すように、体積計量部22と演算部23とに分けられ、流量Qの演算と熱量Wの演算とは1つの演算部23で行われる。   In FIG. 5, the ultrasonic flow meter 100 and the calculation unit 21 are separately shown in order to show that the ultrasonic flow meter 100 is used in the ultrasonic calorimeter 200. 6, the volume measurement unit 22 and the calculation unit 23 are divided, and the calculation of the flow rate Q and the calculation of the heat quantity W are performed by one calculation unit 23.

超音波式熱量計200では、熱量Wを計測するための基本構成として温度センサS1,S2を備えており、図5に示した構成では、温度センサS1,S2のうち温度センサS2を超音波流量計100の自己の温度センサ4として使用している。したがって、超音波流量計100のために専用の温度センサ4を設ける必要がなく、超音波式熱量計200の基本構成を維持したまま、使用温度範囲が限定されることのない超音波式熱量計200を提供することができる。   The ultrasonic calorimeter 200 includes temperature sensors S1 and S2 as a basic configuration for measuring the amount of heat W. In the configuration shown in FIG. 5, the temperature sensor S2 of the temperature sensors S1 and S2 is an ultrasonic flow rate. A total of 100 self-temperature sensors 4 are used. Therefore, it is not necessary to provide the dedicated temperature sensor 4 for the ultrasonic flow meter 100, and the operating temperature range is not limited while maintaining the basic configuration of the ultrasonic calorimeter 200. 200 can be provided.

また、超音波式熱量計200の実流量校正において、実流量の測定方式に合わせて、超音波の伝播時間から音速を求め、この求めた音速から流体の温度を求め、この求めた流体の温度から流体の動粘度を求めて、レイノルズ数−流量補正係数テーブルを作成するという方式を採用することが可能となるので、実流量校正の時間が大幅に短縮されるものとなる。すなわち、実流量校正において、音速から流体の温度を求めるようにすることにより、温度センサが流体の温度と平衡し安定するまで待つ必要がなくなり、実流量校正の時間が大幅に短縮され、生産効率が格段に高まる。   Further, in the actual flow rate calibration of the ultrasonic calorimeter 200, in accordance with the actual flow rate measurement method, the sound velocity is obtained from the ultrasonic propagation time, the fluid temperature is obtained from the obtained sound velocity, and the obtained fluid temperature is obtained. From this, it is possible to adopt a method of obtaining the kinematic viscosity of the fluid and creating a Reynolds number-flow rate correction coefficient table, so that the time for actual flow rate calibration is greatly shortened. In other words, by determining the fluid temperature from the speed of sound in the actual flow rate calibration, it is not necessary to wait for the temperature sensor to equilibrate and stabilize with the temperature of the fluid, and the actual flow rate calibration time is greatly reduced, resulting in production efficiency. Increases dramatically.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…測定管、2…第1の超音波送受信器、3…第2の超音波送受信器、4…温度センサ、5…流量演算部、501…伝播時間検出部、502…流速算出部、503…流量算出部、504…音速算出部、505…温度算出部、506…動粘度算出部、507…レイノルズ数算出部、508…補正係数決定部、509…流量補正部、510…流量出力部、511…現在温度比較部、512…メモリ、TA…音速−温度テーブル、TB…温度−動粘度テーブル、S1,S2…温度センサ、21…演算部、22…体積計量部、23…演算部、100…超音波流量計、200…超音波式熱量計、300…ファンコイルユニット(負荷)。   DESCRIPTION OF SYMBOLS 1 ... Measuring tube, 2 ... 1st ultrasonic transmitter / receiver, 3 ... 2nd ultrasonic transmitter / receiver, 4 ... Temperature sensor, 5 ... Flow rate calculation part, 501 ... Propagation time detection part, 502 ... Flow velocity calculation part, 503 ... Flow rate calculation unit, 504 ... Sonic velocity calculation unit, 505 ... Temperature calculation unit, 506 ... Kinematic viscosity calculation unit, 507 ... Reynolds number calculation unit, 508 ... Correction coefficient determination unit, 509 ... Flow rate correction unit, 510 ... Flow rate output unit, 511 ... Current temperature comparison unit, 512 ... Memory, TA ... Sonic velocity-temperature table, TB ... Temperature-kinematic viscosity table, S1, S2 ... Temperature sensor, 21 ... Calculation unit, 22 ... Volume measurement unit, 23 ... Calculation unit, 100 ... Ultrasonic flow meter, 200 ... Ultrasonic calorimeter, 300 ... Fan coil unit (load).

Claims (7)

測定対象の流体が流れる測定管と、この測定管の上流側に配置された第1の超音波送受信器と、前記測定管の下流側に配置された第2の超音波送受信器と、前記第1の超音波送受信器と前記第2の超音波送受信器との間の超音波の伝播時間の差に基づいて前記流体の流量を測定する流量測定手段とを備えた超音波流量計において、
前記超音波の伝播時間の差から前記流体の流速を求める流速算出手段と、
前記超音波の伝播時間から前記流体中における超音波の伝播速度である音速を求める音速算出手段と、
前記音速算出手段によって求められた音速から前記流体の温度を求める温度算出手段と、
前記温度算出手段によって求められた流体の温度から前記流体の動粘度を求める動粘度算出手段と、
前記流速算出手段によって求められた流体の流速と前記動粘度算出手段によって求められた流体の動粘度とに基づいて前記流量測定手段によって測定された流体の流量を補正する流量補正手段と、
前記流体の温度を検知する温度センサとを備え、
前記動粘度算出手段は、
前記流体の現在の温度が所定の温度範囲に属する場合、前記温度算出手段によって求められた流体の温度からではなく、前記温度センサによって検知された流体の温度から前記流体の動粘度を求める
ことを特徴とする超音波流量計。
A measurement tube through which a fluid to be measured flows, a first ultrasonic transmitter / receiver disposed upstream of the measurement tube, a second ultrasonic transmitter / receiver disposed downstream of the measurement tube, and the first An ultrasonic flowmeter comprising flow rate measuring means for measuring a flow rate of the fluid based on a difference in propagation time of ultrasonic waves between one ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver,
A flow velocity calculating means for obtaining a flow velocity of the fluid from a difference in propagation time of the ultrasonic waves;
A sound speed calculating means for obtaining a sound speed that is a propagation speed of the ultrasonic wave in the fluid from the propagation time of the ultrasonic wave;
Temperature calculating means for determining the temperature of the fluid from the sound speed determined by the sound speed calculating means;
Kinematic viscosity calculating means for determining the kinematic viscosity of the fluid from the temperature of the fluid determined by the temperature calculating means;
A flow rate correcting unit for correcting the flow rate of the fluid measured by the flow rate measuring unit based on the flow rate of the fluid determined by the flow rate calculating unit and the kinematic viscosity of the fluid determined by the kinematic viscosity calculating unit;
A temperature sensor for detecting the temperature of the fluid,
The kinematic viscosity calculating means includes
When the current temperature of the fluid belongs to a predetermined temperature range, the kinematic viscosity of the fluid is obtained from the temperature of the fluid detected by the temperature sensor, not from the temperature of the fluid obtained by the temperature calculating means. The characteristic ultrasonic flowmeter.
請求項1に記載された超音波流量計において、
前記温度算出手段によって求められた流体の温度をその流体の現在の温度とし、この流体の現在の温度が前記所定の温度範囲に属するか否かを判断する現在温度比較手段
を備えることを特徴とする超音波流量計。
The ultrasonic flowmeter according to claim 1,
Current temperature comparing means for determining whether or not the current temperature of the fluid belongs to the predetermined temperature range is the current temperature of the fluid determined by the temperature calculating means; Ultrasonic flow meter.
請求項1に記載された超音波流量計において、
前記温度センサによって検知された流体の温度をその流体の現在の温度とし、この流体の現在の温度が前記所定の温度範囲に属するか否かを判断する現在温度比較手段
を備えることを特徴とする超音波流量計。
The ultrasonic flowmeter according to claim 1,
Current temperature comparison means is provided for determining whether the current temperature of the fluid detected by the temperature sensor is the current temperature of the fluid and whether the current temperature of the fluid belongs to the predetermined temperature range. Ultrasonic flow meter.
請求項1〜3の何れか1項に記載された超音波流量計において、
前記所定の温度範囲は、
音速と温度との関係において同じ音速で複数の温度が得られる領域である
ことを特徴とする超音波流量計。
In the ultrasonic flowmeter according to any one of claims 1 to 3,
The predetermined temperature range is:
An ultrasonic flowmeter characterized in that it is a region where a plurality of temperatures can be obtained at the same sound speed in relation to the speed of sound and temperature.
請求項1〜3の何れか1項に記載された超音波流量計において、
前記所定の温度範囲は、
予め定められた閾値よりも高い温度範囲である
ことを特徴とする超音波流量計。
In the ultrasonic flowmeter according to any one of claims 1 to 3,
The predetermined temperature range is:
An ultrasonic flowmeter characterized by having a temperature range higher than a predetermined threshold.
請求項5に記載された超音波流量計において、
前記閾値は、常温で使用する範囲で前記流体が上昇し得る温度の上限より高い温度点から、音速と温度との関係において同じ音速で複数の温度が得られる領域の下限よりも低い温度点との間で、任意に設定可能とされている
ことを特徴とする超音波流量計。
In the ultrasonic flowmeter according to claim 5,
The threshold is a temperature point lower than a lower limit of a region where a plurality of temperatures can be obtained at the same sound speed in relation to the sound speed from a temperature point higher than the upper limit of the temperature at which the fluid can rise in a range used at room temperature. An ultrasonic flowmeter characterized in that it can be set arbitrarily between the two.
負荷への流体の往温度を検知する第1の温度センサと、前記負荷から戻される流体の還温度を検知する第2の温度センサとを備え、前記第1の温度センサが検知する流体の往温度と前記第2の温度センサが検知する流体の還温度と超音波によって測定される前記負荷を流れる流体の流量に基づいて前記負荷への供給熱量を求める超音波式熱量計において、
前記第2の温度センサを自己の温度センサとして前記負荷を流れる流体の流量を測定する請求項1〜6の何れか1項に記載された超音波流量計と、
前記超音波流量計によって測定される流体の流量と、前記第1の温度センサによって検知される流体の往温度と、前記超音波流量計の自己の温度センサによって検知される流体の還温度とに基づいて前記負荷への供給熱量を演算する演算部と
を備えることを特徴とする超音波式熱量計。
A first temperature sensor for detecting a fluid temperature to the load, and a second temperature sensor for detecting a return temperature of the fluid returned from the load, the fluid temperature detected by the first temperature sensor. In an ultrasonic calorimeter that obtains the amount of heat supplied to the load based on the temperature, the return temperature of the fluid detected by the second temperature sensor, and the flow rate of the fluid flowing through the load measured by ultrasonic waves,
The ultrasonic flowmeter according to any one of claims 1 to 6, wherein the flow rate of the fluid flowing through the load is measured using the second temperature sensor as its own temperature sensor,
The flow rate of the fluid measured by the ultrasonic flow meter, the forward temperature of the fluid detected by the first temperature sensor, and the return temperature of the fluid detected by its own temperature sensor of the ultrasonic flow meter An ultrasonic calorimeter, comprising: a calculation unit that calculates the amount of heat supplied to the load based on the calculation unit.
JP2012041381A 2012-02-28 2012-02-28 Ultrasonic flow meter and ultrasonic calorimeter Active JP5820304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041381A JP5820304B2 (en) 2012-02-28 2012-02-28 Ultrasonic flow meter and ultrasonic calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041381A JP5820304B2 (en) 2012-02-28 2012-02-28 Ultrasonic flow meter and ultrasonic calorimeter

Publications (2)

Publication Number Publication Date
JP2013178127A JP2013178127A (en) 2013-09-09
JP5820304B2 true JP5820304B2 (en) 2015-11-24

Family

ID=49269898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041381A Active JP5820304B2 (en) 2012-02-28 2012-02-28 Ultrasonic flow meter and ultrasonic calorimeter

Country Status (1)

Country Link
JP (1) JP5820304B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080365A1 (en) * 2011-08-03 2013-02-07 Endress + Hauser Flowtec Ag Method for determining the flow by means of ultrasound
US9556791B2 (en) * 2013-12-18 2017-01-31 Siemens Energy, Inc. Active measurement of gas flow velocity or simultaneous measurement of velocity and temperature, including in gas turbine combustors
CN103808381B (en) * 2014-03-04 2016-06-15 华南理工大学 A kind of temperature influence eliminating method of transit-time ultrasonic flow meter
KR102375623B1 (en) * 2014-12-15 2022-03-18 세메스 주식회사 Unit for measuring flowrate, Apparatus for treating substrate with the unit, and method for measuring flowrate
JP2016206147A (en) * 2015-04-28 2016-12-08 アズビル株式会社 Ultrasonic type thermal energy meter
CN105318991A (en) * 2015-11-23 2016-02-10 成都兴联宜科技有限公司 Civil ultrasonic long distance transmission calorimeter
CN110375818A (en) * 2019-04-12 2019-10-25 宁夏隆基宁光仪表股份有限公司 Total temperature range ultrasonic flow rate measuring high-precision low-power consumption compensation method
CN114485863A (en) * 2021-12-24 2022-05-13 广东艾科技术股份有限公司 Flow error correction method, system, computer and medium for ultrasonic water meter

Also Published As

Publication number Publication date
JP2013178127A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5820304B2 (en) Ultrasonic flow meter and ultrasonic calorimeter
CN104236652B (en) Method for determining at least one gas parameter of a flowing gas
US9581479B2 (en) Ultrasonic meter flow measurement monitoring system
JP6843024B2 (en) Thermal flow meter
US9816847B2 (en) Ultrasonic flowmeter and method for measuring flow
JP2019035640A (en) Thermal flow meter
JP2010169657A (en) Mass flow meter and mass flow controller
EP2954293A1 (en) Enhanced differential thermal mass flow meter assembly and methods for measuring a mass flow using said mass flow meter assembly
JP6867909B2 (en) Thermal flow meter
JP3487589B2 (en) Flow coefficient setting method and flow measurement device using the same
JP6499851B2 (en) Flow rate measurement method
JP7248455B2 (en) Thermal flow meter and flow correction method
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP6209466B2 (en) Flow measuring device and flow control valve
JP2007057452A (en) Flowmeter
Alanazi et al. Noninvasive method to measure thermal energy flow rate in a pipe
KR101522249B1 (en) a gas mass flow meter program using ultra sonic wave and the measuring device using thereof
KR101488694B1 (en) a volume perceiving ilquid flow meter program and the ilquid flow rate measuring method
JP2017111140A (en) Flow rate measurement device, fuel consumption measurement device, program for flow rate measurement device, and flow rate measuring method
KR101522243B1 (en) a gas mass flow meter program using turbine and the measuring device using thereof
CN104296817A (en) Method for improving measurement accuracy of thermal mass flowmeter by means of dynamic temperature compensation
CN206787740U (en) A kind of two-channel body for ultrasonic calorimeter
JP2016206147A (en) Ultrasonic type thermal energy meter
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JP2019082346A (en) Thermal flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250