TWI580175B - 堆疊式偏壓電流-電壓調整技術 - Google Patents

堆疊式偏壓電流-電壓調整技術 Download PDF

Info

Publication number
TWI580175B
TWI580175B TW104125430A TW104125430A TWI580175B TW I580175 B TWI580175 B TW I580175B TW 104125430 A TW104125430 A TW 104125430A TW 104125430 A TW104125430 A TW 104125430A TW I580175 B TWI580175 B TW I580175B
Authority
TW
Taiwan
Prior art keywords
terminal
fet
source
voltage
electrically coupled
Prior art date
Application number
TW104125430A
Other languages
English (en)
Other versions
TW201626713A (zh
Inventor
丹尼爾 謝勒
Original Assignee
諾斯拉普葛蘭門系統公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 諾斯拉普葛蘭門系統公司 filed Critical 諾斯拉普葛蘭門系統公司
Publication of TW201626713A publication Critical patent/TW201626713A/zh
Application granted granted Critical
Publication of TWI580175B publication Critical patent/TWI580175B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0283Reducing the number of DC-current paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45116Feedback coupled to the input of the differential amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Description

堆疊式偏壓電流-電壓調整技術
本發明係大致有關一種基於堆疊式場效電晶體(Field Effect Transistor;簡稱FET)之射頻(Radio Frequency;簡稱RF)放大器電路,且尤係有關一種在每一FET中包含一運算放大器的基於堆疊式FET之RF放大器電路,該運算放大器將來自該FET的源極之回饋用於將源極電壓修正為一分壓器(voltage divider)提供的一參考電壓位準,而修正該堆疊中之每一FET的閘極偏壓,以便將所需之汲極電流以及汲極至源極電壓提供給每一FET,而獲得最佳性能。
此項技術中習知一或多個FET裝置用於放大RF信號之放大器。此種類型的RF放大器有其中包括但不限於低雜訊放大器(Low Noise Amplifier;簡稱LNA)、中頻(Intermediate Frequency;簡稱IF)放大器、本地振盪器(Local Oscillator;簡稱LO)等的許多應用。將被放大的該特定RF信號提供給該FET裝置的閘極端,其中 該被放大的RF信號是該裝置的汲極端上之輸出。這些類型的RF放大器通常採用堆疊式FET裝置,其中該等FET裝置共用相同的汲極至源極電流Ids以及用於調整該電流的一源極電阻。
為了提供RF信號放大,該FET裝置需要兩個直流偏壓,其中在一典型的FET RF放大器電路中,該等直流偏壓係獨立於該RF信號,且其中該等偏壓包括可讓電荷流經該裝置之一汲極至源極偏壓Vds以及用於控制通道的寬度之一閘極至源極偏壓Vgs,其中該閘極至源極偏壓Vgs調節經由通道的電流。藉由將一參考電位施加到該FET裝置之該閘極端,而控制該閘極至源極偏壓Vgs。此外,藉由提供在本說明書中有時被稱為汲極電流的一受控汲極至源極電流Ids,而控制該汲極至源極偏壓Vds。該FET汲極電流Ids之目標尤其在於將該汲極至源極電位Vds界定於一所需值。針對特定的所需應用及性能而將這些偏壓最佳化。例如,針對一LNA而將該等偏壓選擇成提供一低雜訊指數(noise figure)。
此項技術中已知有一些用於控制經由RF放大器電路中之FET裝置的汲極至源極電流Ids而控制所需的汲極至源極偏壓Vds之技術。這些技術包括提供雙偏壓(dual-bias)、自給偏壓(self-bias)、及經由汲極電流回饋的電流調整之FET電路。然而,用於控制RF放大器中之FET裝置的偏壓的這些已知技術的克服諸如溫度變化及溫度值陣列(temperature array)梯度、裝置漂移 (device drift)、以及製程變異等的環境因素之能力受到限制。
10,50,70,90,110,130‧‧‧射頻放大器電路
12,52,72,74,92,112,132,134‧‧‧場效電晶體裝置
14,20‧‧‧節點
16,22‧‧‧電容
18,24‧‧‧電感
40,42,60,86,104,124,144‧‧‧電壓源
34,54,78,94,114,136‧‧‧分壓器
36,38,56,58,80,82,84,96,98,116,118,138,140,142‧‧‧電阻
62,122‧‧‧源極電阻
100,120,146,148‧‧‧運算放大器
102,150‧‧‧感測電阻
第1圖是一習知雙偏壓RF放大器電路之一示意圖;第2圖是一習知自給偏壓RF放大器電路之一示意圖;第3圖是一習知共堆疊式偏壓RF放大器電路之一示意圖;第4圖是一習知電流調整器RF放大器電路之一示意圖;第5圖是一源極回饋電流調整器RF放大器電路之一示意圖;以及第6圖是一堆疊式電壓/電流調整器RF放大器電路之一示意圖。
【發明內容及實施方式】
下文中對有關採用一堆疊式電壓調整器的一基於堆疊式FET的RF放大器電路的本發明實施例之討論在本質上只是例示性的,且決不意圖限制本發明或其應用或用途。例如,下文所述之方法亦可被用於並非FET裝置的雙極型裝置之堆疊。
第1圖是一習知雙偏壓RF放大器電路10之 一示意圖,該RF放大器電路10包含一FET裝置12,該FET裝置12有一源極端、一閘極端、及一汲極端。將要被放大的RF信號被施加到電路10中之一節點14,該節點14經由一電容16及一電感18界定的一RC電路而被耦合到FET裝置12之該閘極端。該RF信號被FET裝置12放大,且自電路10經由一電容22及一電感24界定的一LC電路而在一節點20上輸出該被放大之RF信號。一電壓源40在電氣上被耦合到一分壓器34的兩端,該分壓器34包含電阻36及38,用以將來自電壓源40的電壓分壓,且將一所需之參考電壓Vg提供給FET裝置12之該閘極端,以便提供閘極至源極偏壓Vgs。例如,電壓源40可以是5伏特,該電壓源提供了-0.5伏特的一分壓後之閘極參考電壓Vg。一電壓源42在電氣上被耦合到FET裝置12的源極端及汲極端,且提供了電位Vds及汲極至源極電流Ids
電路10的該雙偏壓方法之優點在於其簡單,然而,該方法是一種不監視該汲極電流Ids且不將用於控制該偏壓Vgs之回饋提供給FET裝置12的該閘極端之開環(open loop)方法。因此,電路10容易受到製程變異的影響,其中各個裝置的閘極參考電壓Vg及汲極電流Ids可能不是理想的。此外,諸如Vgs變化、閘極電流、溫度、及RF驅動等的製造及環境因素可能導致偏壓在FET裝置12生命週期的開始或終止時的不準確。
第2圖是一習知自給偏壓RF放大器電路50 之一示意圖,該RF放大器電路50包含一FET裝置52,該FET裝置52有一源極端、一閘極端、及一汲極端。電路50中並未示出用於被放大之RF信號的輸入及輸出組件。FET裝置52之該閘極端自包含電阻56及58之一分壓器54接收一固定的參考電壓Vg,其中該分壓器54將來自一電壓源60的電壓分壓,而提供該閘極至源極偏壓Vgs。電壓源60也將電位提供給汲極電流Ids,以便提供該汲極至源極偏壓Vds。一源極電阻62在電氣上被耦合到FET裝置52之該源極端,而協助控制該偏壓Vds。源極電阻62藉由設定該閘極至源極偏壓Vgs,而提供該汲極電流Ids之穩定。然而,該設計有下列缺點:需要較大的功率,以便提供額外的源極電壓。
此項技術中已知為了提供較高的效率或較大的頻寬而堆疊一RF放大器電路中之各FET裝置。第3圖是一習知共堆疊式偏壓RF放大器電路70之一示意圖。電路70中並未示出用於被放大之RF信號的輸入及輸出組件。電路70包含由分別包含一源極端、一閘極端、及一汲極端之FET裝置72及74構成的一堆疊,其中FET裝置72之該源極端以一種電氣串聯組態而在電氣上被耦合到FET裝置74之該汲極端。FET裝置72及74之該等閘極端自包含電阻80、82及84之一分壓器78接收一固定的參考閘極電壓Vg,其中分壓器78在電氣上被並聯地耦合到一電壓源86,以便提供被分壓的電壓。FET裝置74之該汲極端經由一源極電阻76而被耦合到接地點,其中 該源極電阻76穩定了流經FET裝置72及74之該汲極電流Ids
因為該偏壓Vgs設定流經由FET裝置72及74構成的堆疊之該汲極電流Ids,所以各個裝置的該偏壓需要為了特定應用而保持一致。然而,加入該設計的此種偏壓電路之製程限制了提供製程一致性的能力。此外,電路70之偏壓設計容易受到夾止電壓(pinch off voltage)的影響,且閘極電流耗用了過量的直流功率。因此,如果各個裝置之汲極電流Ids顯著地變化,則無法實現特定應用之最佳汲極電流。例如,如果該汲極電流Ids太大,則該汲極電流可能容易受到溫度變化的影響,且如果該汲極電流Ids太小,則可能無法提供所需的增益或所需的雜訊指數。
第4圖是一習知電流調整器偏壓RF放大器電路90之一示意圖,該RF放大器電路90包含一FET裝置92,該FET裝置92有一源極端、一閘極端、及一汲極端。電路90中並未示出用於被放大之RF信號的輸入及輸出組件。FET裝置92之該閘極端經由一運算放大器(op-amp)100自包含電阻96及98之一分壓器94接收一參考電壓Vg,其中分壓器94在電氣上被並聯地耦合到一電壓源104,而提供被分壓的電壓。一感測電阻102在電氣上被耦合到FET裝置92之該汲極端,且電阻102感測的電壓被耦合到運算放大器100之正端,該電壓增加了被提供給FET裝置92的該閘極端的參考電壓Vg之增益。感測電 阻102監視FET裝置92之汲極電流Ids,且經由運算放大器100提供回饋,而提供該閘極至源極偏壓Vgs。運算放大器100提供給一較強健的回饋,但是利用較低的消耗電壓(overhead voltage)。尤其只需0.2伏特,即可提供電流調整。然而,此種偏壓技術需要額外的組件,且在開機狀況中之強健性不如自給偏壓技術。
第5圖是一源極回饋電流調整器偏壓RF放大器電路110之一示意圖,該RF放大器電路110包含一FET裝置112,該FET裝置112有一源極端、一閘極端、及一汲極端。電路110中並未示出用於被放大之RF信號的輸入及輸出組件。電路110包含一具有電阻116及118之分壓器114,該分壓器114將來自一電壓源124之電壓分壓,且將一參考電壓Vg提供給一運算放大器120之一正端。電路110亦包含一源極電阻122,該源極電阻122在電氣上被耦合到FET裝置112之該源極端及接地點,其中運算放大器120之負端在電氣上被耦合到源極電阻122。在該組態中,汲極電流Ids通過源極電阻122,且將回饋提供給運算放大器120,而運算放大器120調整該閘極至源極偏壓Vgs,以便得到所需之汲極電流Ids。源極電阻122感測該汲極電流Ids,因而可在低消耗下得到高準確度的偏壓,且提供具有一源極電阻之強健性。電路110是自給偏壓及電流調整器偏壓方法之一組合,且提供了用於設定該偏壓Vgs之回饋。此種偏壓技術具有電流調整器方法之優點,但仍然維持了自給偏壓方法在開機期間的某 些強健性。
第6圖是一堆疊式電壓/電流調整器RF放大器電路130之一示意圖,該RF放大器電路130包含由FET裝置132及134構成一堆疊,每一F汲極包含一源極端、一閘極端、及一汲極端。電路130中並未示出用於被放大之RF信號的輸入及輸出組件。雖然該放大器電路130包含兩個FET裝置,但是作為非限制性實施例,該電路130可包含諸如四個堆疊式FET裝置等的更多的FET裝置。電路130亦包含一具有電阻138、140及142之分壓器136,該分壓器136將來自一電壓源144之電位分壓,且將需要成為每一FET裝置132及134的源極電壓Vs之一參考電壓提供給運算放大器146及148之正端。運算放大器146之負端被耦合到FET裝置132之該源極端,且運算放大器146將用於修正電壓的一回饋信號提供給FET裝置132之該閘極端。同樣地,運算放大器148之負端在電氣上被耦合到FET裝置134之該源極端,且運算放大器148修正FET裝置134之該閘極端上的電壓。流經該堆疊的汲極電流在一感測電阻150的兩端上提供了一電壓,且該電壓被回饋而調整FET裝置132及134之閘極電壓Vg。如前文所述,運算放大器146及148提供了來自根據分壓器136而被提供該偏壓Vds的特定FET裝置的源極端之一更強健的回饋,以便準確地控制每一偏壓Vds以及汲極至源極電流Ids
電壓源144之電位以及被施加到運算放大器 146及148的正端之參考電壓Vg可以是針對特定應用之任何適當的電壓。在一非限制性實施例中,電壓源144提供了6.2伏特,被提供給運算放大器146的正端之參考電壓Vg是3.2伏特,提供給運算放大器148的正端之參考電壓Vg是0.2伏特,FET裝置132兩端上的偏壓Vds是3伏特,且FET裝置134兩端上的偏壓Vds是3伏特。
所揭露的前文中之討論只是說明了本發明之實施例。熟悉此項技術者自該討論及各圖式以及申請專利範圍將可易於了解:可在不脫離最後的申請專利範圍界定的本發明之精神及範圍下,對該等實施例作出各種改變、修改、及變形。
130‧‧‧射頻放大器電路
132,134‧‧‧場效電晶體裝置
136‧‧‧分壓器
138,140,142‧‧‧電阻
144‧‧‧電壓源
146,148‧‧‧運算放大器
150‧‧‧感測電阻

Claims (15)

  1. 一種RF放大器電路,包含:複數個堆疊式場效電晶體(FET)裝置,每一FET裝置包含一汲極端、一閘極端、及一源極端,其中該堆疊中之該等FET裝置的至少一FET裝置之源極端係電性地被耦合到該堆疊中之另一FET裝置之汲極端,且其中該堆疊中的該等FET裝置中之一底部FET裝置係電性地被耦合到接地點;一分壓器網路,該分壓器網路包含複數個電阻;複數個運算放大器,其中將該等運算放大器中之個別的運算放大器提供給該堆疊中之每一FET裝置,每一運算放大器包含一正輸入端、一負輸入端、及一輸出端,其中一特定運算放大器之輸出端係電性地被耦合到一特定FET裝置之閘極端,每一運算放大器之負輸入端係電性地被耦合到該特定FET裝置之源極端,且每一運算放大器之正輸入端係電性地被耦合到該分壓器網路中之不同的位置,因而該源極端將一回饋電壓提供給該運算放大器,用於控制被施加到該特定FET裝置的閘極端的電壓;一源極電阻,該源極電阻係電性地被耦合到該底部FET裝置之源極端及接地點;以及一電壓源,該電壓源係電性地被耦合到該分壓器網路的兩端,且提供被分壓的電壓。
  2. 如申請專利範圍第1項之電路,其中該複數個FET裝置是兩個FET裝置。
  3. 如申請專利範圍第2項之電路,其中該電壓源提供大約6.2伏特。
  4. 如申請專利範圍第2項之電路,其中該分壓器網路包含三個電阻。
  5. 如申請專利範圍第2項之電路,其中自該分壓器網路提供給該堆疊中之一頂部FET裝置的運算放大器的正端之電壓是大約3.2伏特,且被提供給被耦合到該底部FET裝置的運算放大器的正端之電壓是大約0.2伏特。
  6. 如申請專利範圍第5項之電路,其中該頂部FET裝置及該底部FET裝置之間之汲極至源極電壓是大約3伏特。
  7. 如申請專利範圍第1項之電路,其中該複數個FET裝置是四個FET裝置。
  8. 一種RF放大器電路,包含:至少一場效電晶體(FET)裝置,每一FET裝置包含一汲極端、一閘極端、及一源極端;一分壓器網路,該分壓器網路包含複數個電阻;被提供給該至少一FET裝置之至少一運算放大器,其中該運算放大器包含一第一輸入端、一第二輸入端、及一輸出端,且其中該輸出端係電性地被耦合到該FET裝置之閘極端,該第一輸入端係電性地被耦合到該FET裝置之源極端,且該第二輸入端係電性地被耦合到該分壓器網路,因而該源極端將一回饋電壓提供給該運算放大器,用於控制被施加到該FET裝置的閘極端的電壓; 一源極電阻,該源極電阻係電性地被耦合到該FET裝置之該源極端;以及一電壓源,該電壓源係電性地被耦合到該分壓器網路的兩端,且提供被分壓的電壓,其中該至少一FET裝置是複數個堆疊式FET裝置,其中該堆疊中之該等FET裝置的至少一FET裝置之源極端係電性地被耦合到該堆疊中之另一FET裝置之汲極端,且其中該至少一運算放大器是複數個運算放大器,其中每一FET裝置被提供了一運算放大器。
  9. 如申請專利範圍第8項之電路,其中該複數個FET裝置是兩個FET裝置。
  10. 如申請專利範圍第8項之電路,其中該第一輸入端是一負端,且該第二輸入端是一正端。
  11. 一種RF放大器電路,包含:複數個堆疊式場效電晶體(FET)裝置,每一FET裝置包含一汲極端、一閘極端、及一源極端;一分壓器網路,該分壓器網路包含複數個電阻;複數個運算放大器,其中將該等運算放大器中之個別的運算放大器提供給該堆疊中之每一FET裝置,每一運算放大器包含一第一輸入端、一第二輸入端、及一輸出端,其中一特定運算放大器之輸出端係電性地被耦合到一特定FET裝置之閘極端,每一運算放大器之第一輸入端係電性地被耦合到該特定FET裝置之源極端,且每一運算放大器之第二輸入端係電性地被耦合到該分壓器網路; 一源極電阻,該源極電阻係電性地被耦合到該堆疊中之底部FET裝置之源極端;以及一電壓源,該電壓源係電性地被耦合到該分壓器網路的兩端,且提供被分壓的電壓。
  12. 如申請專利範圍第11項之電路,其中該複數個FET裝置是兩個FET裝置。
  13. 如申請專利範圍第12項之電路,其中該分壓器網路包含三個電阻。
  14. 如申請專利範圍第11項之電路,其中該複數個FET裝置是四個FET裝置。
  15. 如申請專利範圍第11項之電路,其中該第一輸入端是一負端,且該第二輸入端是一正端。
TW104125430A 2014-08-13 2015-08-05 堆疊式偏壓電流-電壓調整技術 TWI580175B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/458,996 US9287830B2 (en) 2014-08-13 2014-08-13 Stacked bias I-V regulation

Publications (2)

Publication Number Publication Date
TW201626713A TW201626713A (zh) 2016-07-16
TWI580175B true TWI580175B (zh) 2017-04-21

Family

ID=53785777

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125430A TWI580175B (zh) 2014-08-13 2015-08-05 堆疊式偏壓電流-電壓調整技術

Country Status (5)

Country Link
US (1) US9287830B2 (zh)
EP (1) EP3180854A1 (zh)
JP (1) JP2017524307A (zh)
TW (1) TWI580175B (zh)
WO (1) WO2016025177A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412536A (zh) * 2018-09-19 2019-03-01 天津大学 一种应用于5g系统的高效率高输出功率的功率放大器
US11211703B2 (en) 2019-03-12 2021-12-28 Epirus, Inc. Systems and methods for dynamic biasing of microwave amplifier
US11658410B2 (en) 2019-03-12 2023-05-23 Epirus, Inc. Apparatus and method for synchronizing power circuits with coherent RF signals to form a steered composite RF signal
US11616295B2 (en) 2019-03-12 2023-03-28 Epirus, Inc. Systems and methods for adaptive generation of high power electromagnetic radiation and their applications
WO2022169715A1 (en) * 2021-02-02 2022-08-11 Epirus, Inc. Systems and methods for adaptive generation of high power electromagnetic generation and their applications
US11303252B2 (en) * 2019-09-25 2022-04-12 Analog Devices International Unlimited Company Breakdown protection circuit for power amplifier
US12003223B2 (en) 2020-06-22 2024-06-04 Epirus, Inc. Systems and methods for modular power amplifiers
US12068618B2 (en) 2021-07-01 2024-08-20 Epirus, Inc. Systems and methods for compact directed energy systems
US11469722B2 (en) 2020-06-22 2022-10-11 Epirus, Inc. Systems and methods for modular power amplifiers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551020B2 (en) * 2007-05-31 2009-06-23 Agere Systems Inc. Enhanced output impedance compensation
US20120319738A1 (en) * 2010-02-19 2012-12-20 Renesas Electronics Corporation Semiconductor integrated circuit device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887880A (en) 1973-05-24 1975-06-03 Rca Corp Bias circuitry for stacked transistor power amplifier stages
US3886466A (en) 1973-05-24 1975-05-27 Rca Corp Bias circuitry for stacked transistor power amplifier stages
US4361785A (en) * 1979-10-01 1982-11-30 K&R Engineering Sales Corporation Versatile video CRT display
US5210505A (en) 1990-12-19 1993-05-11 Apex Microtechnology Corporation Apparatus and method for an input stage of an operational amplifier
US5233289A (en) 1991-04-23 1993-08-03 Harris Corporation Voltage divider and use as bias network for stacked transistors
US5231316A (en) * 1991-10-29 1993-07-27 Lattice Semiconductor Corporation Temperature compensated cmos voltage to current converter
US5451909A (en) 1993-02-22 1995-09-19 Texas Instruments Incorporated Feedback amplifier for regulated cascode gain enhancement
US5798723A (en) 1996-07-19 1998-08-25 National Semiconductor Corporation Accurate and precise current matching for low voltage CMOS digital to analog converters
DE19755164B4 (de) 1996-12-18 2012-01-05 Siemens Ag Leistungsstufe eines Verstärkers/Senders
US6683499B2 (en) 2000-12-27 2004-01-27 Emhiser Research, Inc. Divided-voltage fet power amplifiers
US6831511B2 (en) 2003-02-05 2004-12-14 Sirenza Microdevices, Inc. Distortion cancellation for RF amplifiers using complementary biasing circuitry
KR100574969B1 (ko) 2004-02-12 2006-05-02 삼성전자주식회사 향상된 이득을 가지는 조절된 캐스코드 증폭 회로
US7173482B2 (en) 2005-03-30 2007-02-06 International Business Machines Corporation CMOS regulator for low headroom applications
US7202654B1 (en) 2005-09-27 2007-04-10 Saifun Semiconductors Ltd Diode stack high voltage regulator
US7528648B2 (en) 2006-02-23 2009-05-05 Cypress Semiconductor Corporation Replica biased system
US7477095B2 (en) 2006-06-15 2009-01-13 Silicon Laboratories Inc. Current mirror architectures
US7675273B2 (en) 2007-09-28 2010-03-09 Qualcomm Incorporated Wideband low dropout voltage regulator
US7920015B2 (en) * 2007-10-31 2011-04-05 Texas Instruments Incorporated Methods and apparatus to sense a PTAT reference in a fully isolated NPN-based bandgap reference
US7973518B2 (en) 2008-06-05 2011-07-05 Intel Corporation Low noise voltage regulator
US9166533B2 (en) 2009-07-30 2015-10-20 Qualcomm Incorporated Bias current monitor and control mechanism for amplifiers
US8446173B1 (en) * 2010-11-03 2013-05-21 Pmc-Sierra, Inc. Scalable high-swing transmitter with rise and/or fall time mismatch compensation
US9041462B2 (en) 2010-11-18 2015-05-26 Dsp Group Ltd. Power amplifier with an adaptive bias
WO2012101467A1 (en) 2011-01-24 2012-08-02 Tredefin S.A. Efficient low noise differential amplifier, reutilizing the bias current
US8482266B2 (en) 2011-01-25 2013-07-09 Freescale Semiconductor, Inc. Voltage regulation circuitry and related operating methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551020B2 (en) * 2007-05-31 2009-06-23 Agere Systems Inc. Enhanced output impedance compensation
US20120319738A1 (en) * 2010-02-19 2012-12-20 Renesas Electronics Corporation Semiconductor integrated circuit device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
年公開文獻B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, 2001 *

Also Published As

Publication number Publication date
JP2017524307A (ja) 2017-08-24
WO2016025177A1 (en) 2016-02-18
TW201626713A (zh) 2016-07-16
EP3180854A1 (en) 2017-06-21
US9287830B2 (en) 2016-03-15
US20160049909A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
TWI580175B (zh) 堆疊式偏壓電流-電壓調整技術
JP6316632B2 (ja) ボルテージレギュレータ
US7741911B2 (en) Circuit and method for dynamic current compensation
US7312651B2 (en) Cascode current mirror circuit operable at high speed
US9367074B2 (en) Voltage regulator capable of stabilizing an output voltage even when a power supply fluctuates
US8310308B1 (en) Wide bandwidth class C amplifier with common-mode feedback
JP2018523420A (ja) カスコード段及びdcバイアスレギュレータを有する多段増幅器
TWI633410B (zh) 電流鏡裝置及相關放大電路
US9450568B1 (en) Bias circuit having second order process variation compensation in a current source topology
CN107750351A (zh) 电压调节器
WO2014203703A1 (ja) ボルテージレギュレータ
JP2018527821A (ja) カスコード増幅器用のdcバイアスレギュレータ
CN107112963A (zh) 差分放大器
JP6253481B2 (ja) ボルテージレギュレータ及びその製造方法
US20160049908A1 (en) Radio-frequency amplifier circuit and control voltage setting method for radio-frequency amplifier circuit
US9231525B2 (en) Compensating a two stage amplifier
JP5760947B2 (ja) バイアス回路およびそれを有するアンプ回路
US9367073B2 (en) Voltage regulator
TWI806936B (zh) 用於調整場效電晶體的汲極電流的場效電晶體配置和方法
WO2014080668A1 (ja) 高周波増幅回路
KR102530677B1 (ko) 병렬 바랙터를 사용한 스택 구조 전력 증폭기
JP2008244986A (ja) 高周波増幅器
CN112087205B (zh) 用于mmic hemt放大器的补偿器器件
US8878611B2 (en) High-frequency amplifier
US20120313705A1 (en) Method for introducing feedback in a FET amplifier