TWI576595B - 電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法 - Google Patents

電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法 Download PDF

Info

Publication number
TWI576595B
TWI576595B TW101105958A TW101105958A TWI576595B TW I576595 B TWI576595 B TW I576595B TW 101105958 A TW101105958 A TW 101105958A TW 101105958 A TW101105958 A TW 101105958A TW I576595 B TWI576595 B TW I576595B
Authority
TW
Taiwan
Prior art keywords
electrode
antenna
radio transceiver
sensing device
capacitive
Prior art date
Application number
TW101105958A
Other languages
English (en)
Other versions
TW201235671A (en
Inventor
霍傑爾 爾肯斯
Original Assignee
微晶片科技德國公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微晶片科技德國公司 filed Critical 微晶片科技德國公司
Publication of TW201235671A publication Critical patent/TW201235671A/zh
Application granted granted Critical
Publication of TWI576595B publication Critical patent/TWI576595B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/288TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the usage mode, e.g. hands-free, data transmission, telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法
本發明有關一種用於手持式無線電收發器之電容式感測裝置,並有關一種包含本發明電容式感測裝置之手持式無線電收發器。本發明特別有關一種用於手持式無線電收發器藉以估計手持式無線電收發器比吸收率(SAR)之電容式感測裝置。此外,本發明有關一種調整手持式無線電收發器發射功率之方法,該手持式無線電收發器較佳包括根據本發明之電容式感測裝置,以使電磁場吸收,尤其是生物組織內的電磁場吸收降至最低。
比吸收率(Specific Absorption Rate,SAR)是用於量測電磁場吸收,尤其是生物組織內電磁場吸收。此外,比吸收率SAR是一種重要指標,用以指示出自無線電系統(例如手持式無線電收發器)的高頻傳輸訊號之放射及其耦入人體之情形。高頻傳輸訊號耦入人體,代表使用手持式無線電收發器(例如行動電話)時的風險因素,因為,不論任何情況,吸收電磁場能量都會導致身體組織變暖,如此會導致身體組織內的變化,可能成為癌症的肇因。
因此有必要控制手持式無線電收發器的發射功率使之儘量地低,尤其當手持式無線電收發器位於人體近處時,以便減少身體受污染的程度。可以使用有關高頻傳輸訊號耦入人體的說明,以便相應調整手持式無線電收發器的發射功率。
有兩項不同的因素對手持式無線電收發器的比吸收率SAR具有實質的影響,亦即:
因素一:手持式無線電收發器有效放射的發射功率(高頻HF發射功率);及
因素二:天線與人體的靠近程度。
為了能夠儘可能確實地判定或估計比吸收率SAR,最好同時評估或檢測以上兩項因素。亦即,在判定或評估比吸收率SAR時,最好將有效放射的高頻發射功率及天線與身體靠近的程度都加以考量。倘若兩項因素都加以考量,便有可能獲得與耦入人體的真實功率相當近似的功率耦合。
然而,倘若僅考量兩項因素之一時,必須將另一項因素假設為最差情況,以使身體遭受的污染維持在儘可能低的程度。不過,此種方式的缺點在於,發射功率的降低必須超過必要的程度,如此對於無線電系統或手持式無線電收發器的傳輸特性有負作用。
為了偵測手持式無線電收發器天線有效放射的高頻功率,以及為了偵測人體與手持式無線電收發器或與手持式無線電收發器天線間的距離,先前技術中已有習知的解決方法。圖1顯示對高頻功率放射進行偵測的解決法。圖2顯示對人體與手持式無線電收發器天線之間的距離進行偵測的解決法。
圖1顯示先前技術中對於天線有效放射的高頻發射功率進行偵測的習知解決辦法。圖中顯示的高頻發射器包括一訊號發生器用以產生一高頻載波訊號;一訊號產生單元,由其提供欲傳送的傳輸資訊;及一混訊器,用以產生調變的高頻傳輸訊號並傳送給一功率放大器PA。藉由功率放大器PA,可使高頻傳輸訊號上升到傳輸位準。放大器訊號隨後由一循環電路及一天線開關導至天線A,最後從天線A放射。
循環電路本身對正常操作而言並非必要。此處提供循環電路,是為了在正常操作中允許對天線放射的訊號進行比吸收率SAR評估。
藉由循環電路可將天線A反射的波移轉到一解調器,使反射波不出現在功率放大器PA上。功率放大器PA係隨時妥善調整並傳送其額定功率,因此可將此額定功率視為固定。以此方式,可以只根據反射波的變化功率來說明關於天線A的有效放射功率。此處的解調器可滿足整流器的功能,因為需要的只是功率的量測而不是傳輸資訊本身的量測。解調器係與一比吸收率SAR評估單元耦接,並可包括一直流(DC)電壓放大器及一類比/數位轉換器或一簡易比較器。比吸收率SAR評估單元的確實架構主要依照所需的比吸收率SAR評估精確性而定。
圖1所示對天線有效放射的高頻發射功率進行偵測的解決辦法,特別適於具有固定包絡的系統,例如高斯最小移頻鍵控/高斯移頻鍵控(GMSK-/GFSK)系統(全球行動通訊系統/數位無線電話系統,GSM/DECT)。藉由此種解決辦法,特別利於得出比吸收率SAR估計與高頻傳輸訊號的直接相關性,因為可在傳輸訊號產生耦入人體的確切部位,亦即在天線部位,偵測有效放射的功率。
圖2顯示先前技術中對手持式無線電收發器附近之物體或人體進行偵測的習知解決辦法。為了偵測一物體或人體與一手持式無線電收發器之間的距離或接近狀態,於是提供了一種電容式感測器,其係根據所謂的負載法運作。根據負載法操作的電容式感測器中,係對一感測電極饋入一發生器G1的電性交流訊號。利用一接收器E1(或接收路徑E1),一評估裝置可偵測並評估所產生的訊號的電容負載。評估器可為一SAR評估單元之組件。
一般而言,電極與物體或人體的距離愈小,可偵測的電容負載愈大。然而其缺點在於,若要使天線訊號與電容式感測器的感測結果間有充分良好的相關性,電極必須靠近天線。由於感測電極靠近天線,所以天線的調整減少,以致手持式無線電收發器的發射/接收特性變差。為了避免感測電極實質影響無線電系統的發射/接收特性,因此感測電極的安排有必要與天線相隔某一距離。然而此種方式無法經常保證天線訊號與電容式感測器感測結果間的相關性。儘管如此,為了確保人體受污染的程度不超過一預定值,因此有必要將手持式無線電收發器超過必要部份的發射功率減少。
因此,本發明之目的在於提供若干解決辦法,此等解決辦法允許以簡單而有效率的方式說明關於手持式無線電收發器的比吸收率SAR,可避免先前技術中所知的缺點,並特別允許降低手持式無線電收發器的發射功率,使其不超過必要的範圍,同時保證手持式無線電收發器對人體的污染程度不超過一預定值。
根據本發明,藉由各獨立請求項所述用於手持式無線電收發器之電容式感測裝置、包含本發明電容式感測裝置之手持式無線電收發器、及手持式無線電收發器發射功率之調整方法,可以解決上述目的。各附屬請求項則指示本發明的優異實施例與改良。
因此,所述解決辦法中提供一種用於手持式無線電收發器之電容式感測裝置,係特別用於估計手持式無線電收發器比吸收率SAR;其中所述感測裝置可與至少一第一電極耦接,且當手持式無線電收發器於操作時,該第一電極係同時作為電容式感測裝置的感測電極與作為手持式無線電收發器的天線。
以此方式,藉由電容式感測裝置可利於判定天線與一近接物體間的距離,例如與一人體間的距離。
該第一電極較佳是:
- 經由一高通濾波器與手持式無線電收發器之收發電路耦接;以及
- 經由一低通濾波器與該感測裝置耦接。
所述感測裝置可額外具有一第二電極,其可與第一電極形成電容耦合;其中兩電極之一可作為發射電極,另一電極則作為接收電極;其中,可對該發射電極饋入一電性交流訊號。
由於兩個感測電極之一同時也作為天線,所以若為多電極系統時(具有數個感測電極的電容式感測裝置),也可利於判定天線與一近接物體,例如與一人體間的距離。
第一電極可作為發射電極,而且,電性交流訊號可經由低通濾波器饋入第一電極。
所述感測裝置可額外包括一第三電極,其係設於第一電極與第二電極之間;而且可對第三電極饋入一電性交流訊號,其與饋入發射電極之電性交流訊號大致為反相。
所述低通濾波器可包括一微帶線。
所述感測裝置之評估電路可設計用於偵測一物體接近感測裝置電極之狀況及/或偵測一物體與感測裝置電極之間的距離。
所述手持式無線電收發器可具有一偵測裝置,用以偵測天線部位放射的高頻發射功率;所偵測的高頻發射功率連同所偵測的接近感測裝置電極的狀況,一起包括在手持式無線電收發器比吸收率的評估中。
此外,本發明提供一種手持式無線電收發器,其包括至少一個根據本發明之電容式感測裝置;其中,所述手持式無線電收發器之至少一天線可與所述至少一電容式感測裝置耦接;其中,當手持式無線電收發器於操作時,該至少一天線可同時作為電容式感測裝置的感測電極與手持式無線電收發器的高頻天線。
所述手持式無線電收發器至少為雙向收音機、行動電話、無線電話、無線區域網路(WLAN)裝置、微電腦與平板式個人電腦之群組中的一項。
所述手持式無線電收發器的天線可由多重輸入多重輸出(MIMO)天線系統形成之。
此外,本發明提供一種調整手持式無線電收發器發射功率之方法,其中包括:
- 偵測一物體接近該手持式無線電收發器,尤其是接近該手持式無線電收發器天線的狀況,及/或偵測一物體與該手持式無線電收發器間,尤其是與該手持式無線電收發器天線間之距離,並提供偵測結果;
- 估計該手持式無線電收發器之比吸收率SAR;估計所述SAR時,係包括前述偵測結果;以及
- 視估計而定,增加或減少該手持式無線電收發器的發射功率。
為了偵測前述接近的狀況及/或距離,可使用一電容式感測裝置;其中,所述手持式無線電收發器的天線同時作為天線及作為該電容式感測裝置之感測電極;其中,所述天線係經由一低通濾波器與該電容式感測裝置耦接。
天線部位放射的高頻發射功率可加以偵測;並於估計所述SAR時,可包括所偵測的高頻發射功率。
可將所述電容式感測裝置的電性交流訊號饋入前述天線,並偵測該交流訊號的電容負載;其中,電容負載係用於量測前述接近狀況及/或距離。
較佳是使所述電容式感測裝置的第二電極與手持式無線電收發器的天線形成電容耦合,其中以第二電極或所述天線作為發射電極;其中,將所述電容式感測裝置的電性交流訊號饋入發射電極,並在另一單元(天線或電極)的部位,偵測天線與第二電極間的電容耦合;其中,所偵測的電容耦合係用於量測前述接近狀況及/或距離。
可使用微帶線作為低通濾波器。
以下參照附圖說明本發明細節與特徵及其具體實施例。
借助電容式感測器或電容式感測裝置,可以偵測一物體(例如人體)與該電容式感測器各感測電極間的距離,或偵測一物體(例如人體)接近該電容式感測器各電極的狀況。依照所偵測的距離或所偵測的接近狀況而定,可以估計一手持式無線電收發器的天線所放射的高頻傳輸訊號耦入人體的功率,藉此也可以估計比吸收率SAR。根據此項估計,可以調整手持式無線電收發器的發射功率或高頻發射功率。藉由發射功率控制,可以降低人體外曝於污染或受污染的程度。
然而,唯當SAR估計中所包括的不是與設於手持式無線電收發器天線附近的感測電極之間的距離或接近狀況,而是在SAR估計時考量天線與物體間的距離或物體接近天線的狀況,才能根據所偵測的距離或所偵測的接近狀況得到最佳可能的比吸收率SAR估計。
根據本發明,由於電容式感測裝置的一個電極係同時為電容式感測裝置的感測電極與手持式無線電收發器的天線,所以可達到前述最佳可能的比吸收率SAR估計。關於這點,「同時」係表示至少在進行SAR估計時,該電極既是作為手持式無線電收發器的天線,也作為電容式感測裝置的感測電極。這表示,至少在進行SAR估計時,可以用該電容式感測裝置進行距離或接近程度的偵測,而在距離或接近程度偵測之同時,有高頻傳輸訊號從感測電極或天線的部位放射出。其優點在於使用手持式無線電收發器內既有的天線作為電容式感測裝置的感測電極。另一優點在於可以判定一物體(例如人體)與手持式無線電收發器天線間的實際距離,因而可以改進手持式無線電收發器的發射功率控制。更一優點在於不必設置另外的感測電極用於偵測接近狀況或距離。
圖3顯示本發明手持式無線電收發器之一實施例,其中包含根據本發明之電容式感測裝置。
所述手持式無線電收發器可具有一記憶/處理裝置。該儲存裝置例如可包括一硬碟記憶體、非暫時記憶裝置(例如快閃記憶體)或暫時記憶裝置(例如動態隨機存取記憶體,DRAM)。該處理裝置例如可提供用於手持式無線電收發器的運算,並可包括一處理單元,例如一微處理器或其他相應配合的積體電路。該處理裝置可用於執行手持式無線電收發器上的軟體。所述軟體例如可包括網際網路瀏覽器程式、網際網路語音(VoIP)應用程式、電子郵件應用程式、多種作業系統功能、多種用以控制手持式無線電收發器高頻功率放大器及/或其他高頻收發裝置的控制功能等等。
所述記憶/處理裝置尤其可用於實施各種通信協定。所述通信協定例如可包括網際網路協定、行動電話協定、無線區域網路(W-LAN)協定(例如IEEE802.11協定)、或各種短程無線通信鏈結之協定,例如藍芽協定。
此外,所述手持式無線電收發器可包括若干輸入/輸出(I/O)裝置。輸入/輸出裝置例如可包括觸控螢幕或其他使用者介面。
此外,所述手持式無線電收發器可包括一收發電路30,其例如可包括一用於行動電話、用於無線區域網路(W-LAN)介面或一藍芽介面的高頻收發器。
收發器30係與一天線A(或與數個天線)耦接,所述天線既可作為發射天線亦可作為接收天線。由收發器30提供的調變高頻傳輸訊號被饋至天線A,並從該處放射出去。
此外,所述手持式無線電收發器包括一電容式感測裝置40,其亦與天線A(或數個天線)耦接。用於電容式感測裝置40的天線A係擔任感測電極的功能,而用於收發器的天線A則擔任其原設計的發射天線及/或接收天線的功能。這表示天線A係同時作為電容式感測裝置40的感測電極與收發器30的天線。
由於天線A可設為各種適於手持式無線電收發器的天線類型,所以可使用例如PIFA(平面倒置F形天線)。
至於電容式感測裝置的其他實施例(如圖5至圖7所述者),可以進一步設置其他電極EL。同樣地,當設置其他更多感測電極時,電容式感測裝置40至少有一感測電極係由手持式無線電收發器的天線形成,以使圖5至圖7所述實施例也可以偵測一物體與天線的實際距離或一物體接近天線的情況。此外,圖5至圖7所述電容式感測器的實施例,其優點在於感測電極的數目減少,因為至少有一感測電極是由手持式無線電收發器的天線形成的。
此外,所述手持式無線電收發器可包括一裝置(圖3內未顯示),用於控制天線A部位所放射的高頻傳輸訊號的發射功率。此控制裝置可根據電容式感測裝置的偵測結果及/或根據天線有效放射的高頻發射功率,進行比吸收率SAR的估計;並根據SAR估計的結果,相應調整天線的發射功率。
此外,所述手持式無線電收發器可具有數個天線,其中每一天線皆可作為發射及/或接收天線。舉例而言,前述數個天線可像MIMO(多重輸入多重輸出)系統般地操作。
根據本發明,手持式無線電收發器的每一天線皆可作為分配給各該天線的電容式感測裝置的感測電極。或者,手持式無線電收發器的每一天線皆可作為某一選定電容式感測裝置的感測電極。在後一情況中,所述天線例如可用分時多工法與電容式感測裝置耦接。根據本發明,以此方式可偵測一物體(例如人體)與每一個天線間的距離,以便可進行每一天線本身的SAR估計。同樣地,若在有數個天線的情況時,各個SAR估計中亦可分別考量由各天線有效放射的高頻發射功率。根據本發明,當一天線之SAR估計值為最低時,可啟動此天線作為手持式無線電收發器的發射天線。
以下參照圖4至圖7說明本發明電容式感測裝置的四種原理。所示圖式中,圖4顯示本發明根據負載原理之電容式感測裝置,圖5顯示本發明根據傳輸原理之電容式感測裝置,圖6顯示根據本發明具有所謂補償電極之第三電極的電容式感測裝置,圖7顯示根據本發明之差分電容式感測器。
圖4顯示根據本發明用於手持式無線電收發器的電容式感測裝置,用以偵測一物體接近該感測裝置之電極的狀況及/或偵測一物體與該感測裝置之電極間的距離。天線A務必同時作為電容式感測裝置的感測電極EL1。圖4所示根據負載法操作的電容式感測器中,係量測感測電極EL1或天線A所連接的電力網內一交換點的電容負載。電極EL1或天線A的電容以及電力網內交換點的電容負載係隨著物體(例如人體)的接近狀況而改變。因此,交換點的電容負載可用於量測身體接近電極EL1之狀況或身體與電極EL1之距離。
圖4所示的本發明電容式感測器實施例,及圖5至圖7所示的本發明電容式感測器中,一方面須使電容式感測裝置與作為感測電極的天線A連接,另一方面須使收發電路(高頻收發器)與天線連接。因此,以下所述天線A與高頻收發器及與電容式感測裝置的耦接,也適用於本發明參照圖5至圖7所述的電容式感測裝置。
高頻收發電路係藉由一耦合器C而與天線A連接。耦合器C在此之作用如單純之高頻通道(高通濾波器)。高頻路徑在耦合器C的後方分成一發射路徑與一接收路徑,此二路徑經由一天線開關S1而與天線或與高通濾波器連接。天線開關S1例如可設為一頻率多工器。
電容式感測裝置經由一耦合器L或TL而與天線A或感測電極EL1連接。耦合器L或TL在此之作用如一低頻通道(低通濾波器)。舉例而言,可借助一線圈L或一微帶線TL實施所述之耦合。所述微帶線最好為極薄,以免不利電容式感測裝置的感測功能。極薄的微帶線呈現高輻射電阻。此種具高輻射電阻的線路與微帶線後方的電容式感測裝置對於高頻電路或高頻收發器只有微小的影響,因為高頻電路或高頻收發器係專門設計用於低輻射電阻(約略50歐姆Ω)。
相較於線圈,微波線的優點在於,它是印刷到電路板上的。以此方式可避免取得與組接線圈的成本。然而,以微帶線而言,必須有一預定的最小長度,以獲得或保證電容式感測器與高頻電路間的良好解耦。
電容式感測裝置與天線A或電極EL1的耦接,該選擇多種耦接的哪一種,最後仍視有關無線電系統或手持式無線電收發器的具體需求而定。
天線與高頻收發器之間的高通濾波器可確保電容式感測裝置的低頻交流訊號不會負面影響高頻收發器,而天線A與電容式感測裝置之間的低通濾波器可確保高頻收發器的高頻訊號不會負面影響電容式感測裝置。
根據圖4所示的本發明實施例,訊號發生器G1產生一電性交流訊號(正弦波形或矩形),並由天線A或感測電極EL1的低通濾波器饋送。天線A或感測電極EL1經由一儲備電容CSK與人體耦合,人體復經由另一儲備電容CKE而與周圍接地電勢連接。感測器主體也經由一儲備電容CME接地。
倘若身體接近天線時,該等串聯之儲備電容的總電容量會增加,如此導致發生器訊號的電容負載增大。在電容式感測裝置的接收路徑E1內可偵測到此負載,此負載並被饋入後方的比吸收率SAR評估單元;SAR評估單元可根據所偵測的電容負載進行SAR評估。由於所偵測的電容負載大致對應人體與手持式無線電收發器天線A之間的距離,所以可進行SAR評估;在此SAR評估時,包括人體與天線A之間的實際距離。
也可以將有關天線的有效放射功率資訊饋入比吸收率SAR評估裝置。此項資訊例如可使用圖1所示的偵測裝置取得。因此,為了進行SAR估計時,可以同時考量人體與天線A的實際距離及天線A有效放射的發射功率二者。以此方式,可以做到特別精確的SAR估計,而可對手持式無線電收發器的發射功率做更佳的調整(尤其是增加時),避免對人體的污染程度超過預定值。
圖5顯示根據本發明用於手持式無線電收發器並根據所謂的傳輸法操作的電容式感測裝置。根據傳輸法操作的電容式感測裝置係量測一發射電極EL1與一接收電極EL2之間的傳輸。手持式無線電收發器的天線A係擔任發射電極的功能或接收電極的功能。在圖5所示實施例中,天線A係同時作為電容式感測裝置的發射電極EL1。此外,另設一專用的電極EL2,由其擔任接收電極的功能。天線A究竟作為發射電極或作為接收電極,最後仍視有關手持式無線電收發器或有關手持式無線電收發器天線A的具體需求而定。
訊號發生器G1如參照圖4之解說,係經由一低通濾波器而與天線A或發射電極EL1耦接。另一方面,SAR評估裝置則與接收電極EL2耦接。
倘若天線A係用作接收電極,那麼SAR評估裝置則經由低通濾波器與天線A耦接,例如圖4所示者。然後,訊號發生器G1可與作為發射電極的電極EL2直接連接。
同樣地,如圖5所示之本發明實施例中,手持式無線電收發器的收發器(高頻收發器)係經由一高通濾波器與天線A連接。高通濾波器與低通濾波器擔任的功能已參照圖4說明過。
由訊號發生器G1產生一電性交流訊號,其被饋入發射電極EL1或饋入天線A。所述電性交流訊號係經由電極EL1與接收電極EL2之間的直接耦接路徑CSE,或經由人體CSK、CKE形成的耦接路徑,從發射電極EL1傳輸到接收電極EL2。傳輸到接收電極EL2的電性交流訊號被饋入指定給接收電極EL2的接收器E1,並傳送至位於下游的SAR評估裝置。
若有身體靠近電容式感測裝置的電極EL1、EL2時,兩電極間透過身體(CSK、CKE)的電容耦合會增加,而透過CSE的接地耦合減少。評估在接收電極EL2分流的電訊號時,牽涉到電極EL1與電極EL2之間哪一耦接路徑為主要路徑。亦即,對於在接收電極EL2分流的電訊號進行訊號評估時,其結果主要視耦接路徑CSE或耦接路徑CSK、CKE誰是主要路徑而定。
兩個耦接路徑中何者是主要路徑,大致視兩電極的幾何形狀及相對彼此的配置方式而定。倘若兩電極呈現較大電極表面且兩電極彼此間的距離較大,若有人體靠近電極EL1、EL2時,會偵測到於接收電極EL2分流的電訊號上升。倘若兩電極呈現較小電極表面且兩電極彼此間的距離較小,若有人體靠近電極EL1、EL2時,會偵測到於接收電極EL2分流的電訊號下降。
最好選擇電極表面較大的電極EL2,並使其配置位置與天線A或電極EL1間有較大距離,因為以此方式可以降低電極EL2對天線的影響。假若採用減縮方法,亦即,使用小表面電極配置在天線或電極EL1近處的解決方案時,電極EL2可造成天線失諧。假使有適宜的距離也有大表面電極EL2或有大表面天線A時,可使用減縮方法。具體的手持式無線電收發器中應使用哪一種解決方案,最後仍視有關手持式無線電收發器的具體需求而定。倘若可供配置電極EL2的空間相當小,根據減縮方法實施解決方案也有所幫助。
圖6顯示本發明用於手持式無線電收發器之電容式感測裝置的另一實施例。除了圖5中顯示的電極EL2之外,本實施例中還設置一第三電極EL3。電極EL3最好安排在發射電極EL1或天線A與接收電極EL2之間。在圖6所示實施例的情況中,天線A係作為發射電極EL1,而電極EL2係作為接收電極。然而,依照有關無線電系統的具體需求而定,天線A也可以用作接收電極,而電極EL2則作為發射電極。
關於天線A與電容式感測裝置的耦接方面,大致對應已於圖4及圖5所示者,亦即,經由一低通濾波器耦接。天線與手持式無線電收發器之收發器(高頻收發器)經由一高通濾波器而耦接,也對應已於圖5及圖6所示者。低通濾波器與高通濾波器在此方面亦滿足參照圖4及圖5中所述的功能。
對設於發射電極EL1與接收電極EL2之間的電極EL3所饋入的電性交流訊號,可與饋入發射電極EL1的電性交流訊號大致為反相位。饋入第三電極EL3的電性交流訊號也可以由訊號發生器G1提供。藉由提供第三電極EL3,可以減少或消除發射電極EL1與接收電極EL2之間的電容接地耦合。
同樣地,圖6所示的本發明電容式感測裝置實施例中,天線A既可用作發射電極,亦可用作接收電極。與圖5所示實施例相同,圖6所示實施例中,天線A究竟用作發射電極或用作接收電極,亦視有關手持式無線電收發器的具體需求而定。
若有穩固的接地基準時,可以一起使用接收電極與第三電極EL3,以供用於近似偵測時的吸收率測定。在此情況時,將天線A用作發射電極較為有利,因為接收電極與第三電極EL3應該彼此靠近設置,也因為電極EL2、EL3配置時應儘可能遠離天線A,以避免或儘量減少電極EL2、EL3對天線的高頻機能性產生影響。
儘管電極EL1與電極EL2間的距離較大,發射電極EL1與接收電極EL2間的電容接地耦合CSE可能使接收器部位的動態範圍受到限制。第三電極EL3的操作與發射電極相反,並透過第三電極EL3與接收電極EL2之間的電容CCE而與接收電極EL2耦接,藉由第三電極EL3可以降低或消除位於接收器的動態範圍限制。藉由訊號倒相,可減少接收電極EL2部位的複合訊號,因此接收器的動態範圍加寬。
圖4至圖7顯示的電容式感測裝置也可結合一個用於高頻功率偵測的裝置,如圖1中所示者。以此方式,可以針對有效耦入人體的功率提出更精確的說明,無線電系統或手持式無線電收發器的操作也可更接近規定的比吸收率SAR限度。這表示不需要將發射功率做不必要的降低來確保低於預設的人體污染程度極限值。不像圖1或圖2所示系統僅有高頻功率偵測或僅量測與身體接近的程度,本發明在身體接近手持式無線電收發器的情況時,仍然可以獲得較寬廣的範圍。
圖7顯示本發明用於手持式無線電收發器之電容式感測器的另一實施例,其架構大致為一差分電容式近距感測器。此種電容式差分近距感測器大致包括二個感測電極EL1、EL2,一訊號發生器,一電負載裝置,及一用以區別電訊號差分模部份與共模部份的電路。在圖7所示實施例中,可由手持式無線電收發器的天線A形成感測電極EL1或感測電極EL2。
該等感測電極包括一第一感測電極EL1及一第二感測電極EL2,它們在感測系統中以同等基礎操作,並同時為發射與接收電極。此處所示實施例中,電極EL1同時也是手持式無線電收發器的天線。訊號發生器經由電負載裝置LE而與兩個感測電極EL1、EL2耦接。訊號發生器提供一差分交變電壓,此電壓經由電負載裝置LE饋入感測電極EL1、EL2。訊號發生器可包括二個非對稱的發生器G1、G2,它們各產生一全同的訊號,發生器G1的訊號與發生器G2的訊號之間有180°的相位差。第一發生器G1的訊號經由電負載LE饋入第一感測電極EL1,發生器G2相移180°的訊號則經由負載裝置LE饋入第二感測電極EL2。
一物體接近感測電極EL1、EL2時會形成電容負載。電負載LE連同欲量測的電容負載可形成一級低通濾波器。電負載LE例如可經由電阻器實現之。然而,電負載亦可由位於上游的差分放大器實現之。此負載可為差分放大器的一部份。
此外,電負載LE與電極A/EL1、EL2之間,可各設一低通濾波器,如圖4至圖6中所示者。
用以區別電訊號差分模部份與共模部份的電路,例如可經由一全差分放大器A1而實現。借助全差分放大器A1可以選出受感測電極EL1、EL2之間的導電物體所影響的差分模訊號,並將其饋入一差分模評估裝置(差分接收及評估裝置)。差分模評估裝置可實施為個別的裝置或實施為一較大訊號處理單元(例如一微控制器)的一部份。放大器A1的差分輸出訊號可以饋入差分模評估裝置。或者,兩個訊號導體中僅有一個可饋入差分模評估裝置以供進一步處理。在第三種可選方式中,可將全差分放大器A1的差分輸出訊號轉換成接地訊號,並將其饋入差分模評估裝置。
從圖7可以看出,全差分放大器A1的負載LE係與電極對EL1、EL2並行切換。整體而言,於考慮人體引起的電容網路時,如此會產生一級低通濾波器。決定電負載LE的大小時,最好是人體接近感測電極EL1、EL2的狀況介於「無人在電交流場內」與「最靠近」的兩種狀態之間時,可使低通濾波器的傳遞函數內產生最大的變化量。若在人體往感測電極接近的情況下,傳遞函數的變化程度經常會降低,因為濾波器的時間常數上升而濾波器的有效截止頻率下降。
電容式近距感測器的主要特徵為用以激活濾波器的差分訊號,以及借助全差分放大器A1與差分模評估裝置的下游差分模評估。通常,在具有三個導體的系統中(包括二個訊號導體與一接地),例如此處說明的電容式近距感測器,可以有兩種訊號存在,每一種訊號呈現其特有的性質。這兩種訊號包括所謂的差分模訊號與所謂的共模訊號。
差分模訊號的特徵在於,兩個訊號導體上的振幅相同但是有恰好180°的相位偏差。因此,除了相移外,此等訊號完全相同。由於訊號電壓總是指向另一訊號導體,所以在兩訊號間產生所謂的虛擬接地;虛擬接地的某些特性與真實接地相同。因此,以交流訊號而言,虛擬接地與接地的電位相同,這表示它們之間無任何電流發生。
共模訊號的特徵在於,兩個訊號導體上的振幅相同並有完全相同的相位。由於共模部份在兩個訊號導體上經常包括相同的電位,所以並無共模電流通過兩訊號導體間與主體無關的電路組件。
一對導體上的訊號經常可以分成上述兩個部份(差分模部份與共模部份)。對本發明之電容式近距感測器而言,重要的是將訊號發生器G1、G2產生與提供的差分模訊號饋入電極EL1、EL2,然後加以評估。因為寄生訊號耦入感測系統或耦入感測電極EL1、EL2時,大多是共模干擾,所以在差分模評估時係將其刪除而不會損及進一步的處理。因此,根據本發明之電容式近距感測器特別能夠耐受干擾。
若在無線電系統具有數個天線的情況,且若該等天線朝向彼此形成適當的配置時,第二電極EL2也可由一天線形成,因此圖7所示的差分近距感測器最後也不需要任何額外的電極。
同樣由本案申請人提出之德國專利申請案DE 10 2011 002 447中,有差分電容式近距感測器進一步實施例的說明,其中,感測電極之一每次都由手持式無線電收發器的天線形成的。
圖8顯示三個手持式無線電收發器,其中左側顯示的手持式無線電收發器包含使用負載法之電容式感測裝置,中間顯示的手持式無線電收發器包含使用傳輸法之電容式感測裝置,右側顯示的手持式無線電收發器則包含額外設有第三電極之電容式感測裝置。
如為根據負載法操作的電容式感測器,不必有任何額外的電極,因為供感測目的唯一必要的電極EL1是由手持式無線電收發器的天線A形成的。如上所示,此種感測器係偵測天線A與人體間的實際距離,此距離最有可能對應高頻發射功率可耦入人體之值。
如為中間所示包含根據傳輸法操作之電容式感測器的手持式無線電收發器,必需有一額外的電極EL2;此電極應相對手持式無線電收發器上的電極EL1或天線A設置在適合的位置內。選擇電極EL2在手持式無線電收發器之上或之內的配置時,若電極EL2有可能被(例如罩殼)覆蓋時,天線A也應受到覆蓋。此外,選擇天線A或電極EL1與電極EL2之間的距離時,必須能避免天線與電極間的電容接地耦合EL2超標,否則會造成天線失諧。
為了消除天線A或電極EL1與電極EL2間的電容接地耦合,可以設置一額外的第三電極EL3,安排在電極EL1與電極EL2之間,如圖8右側所示者。如以上之解說,欲饋入電極EL3的電性交流訊號,其與欲饋入電極EL1(發射電極)的電性交流訊號為反相。
手持式無線電收發器的天線同時作為電容式感測裝置的感測電極,有幾種好處:
- 電容式感測裝置必要的感測電極之數目可以減少。例如,以根據負載法操作的電容式感測裝置而言,不必有任何自身的或額外的感測電極,因為以手持式無線電收發器的天線作為感測電極。根據傳輸法操作的電容式感測裝置中,只需要另多一個感測電極,因為由天線形成兩個感測電極之一。同樣地,在圖6所示的三電極系統中,只需要二個額外的電極,因為此處同樣以手持式無線電收發器的天線作為感測電極。如此可使電容式感測裝置的成本較低。此外,裝置設計中的限制較少,因為每次均可減少一個必須設置的電極,否則必須連接與定位該電極。尤其在非常小巧的手持式無線電收發器中,例如行動電話,可供安排電極的空間受限,所以沒有電極也可使用的小型手持式無線電收發器特別有利。
- 具有多數天線的手持式無線電收發器中(例如配有行動電話天線與全球定位系統GPS天線的智慧型電話),若其天線相對彼此適當配置時,即便使用圖6所示的傳輸法,也可免去第二電極EL2,因為,譬如可由行動電話天線形成電極之一,並由譬如GPS天線形成另一電極。
- 此外,在多天線系統中,例如多重輸入多重輸出(MIMO)系統,某些天線或全部天線可同時作為感測電極,因此,以傳輸法而言,也不需任何額外的感測電極。
- 由於天線既發出欲估計之高頻輻射,同時也是電容式感測器感測路徑的一部份,所以電容式感測器的說明與高頻放射有極確切的相關性。
- 與圖2所示先前技術中習知的感測裝置相較時,根據本發明的電容式感測裝置其優點特別在於,不必由感測表面接近天線來產生上述的相關性。以此方式,可以防止天線的擴散特性隨著感測表面接近天線的程度漸增而受到負面的影響,使手持式無線電收發器可能無法再充分調整,於傳輸時無法發出其完整的功率,並於接收時失去其充分的靈敏度。
以上配合手持式無線電收發器說明本發明之電容式感測裝置。所述手持式無線電收發器例如可為行動電話、無線電話、智慧型電話、可攜式小型電腦、平板式個人電腦、無線區域網路(WLAN)裝置或類似裝置。
10...記憶/處理裝置
20...輸入/輸出裝置
30...收發器
40...電容式感測裝置
A...天線
C...耦合器
CCE...第三電極與接收電極之間的電容
CKE...儲備電容
CME...儲備電容
CSE...耦接路徑
CSK...儲備電容
E1...接收器(接收路徑)
EL...電極
EL1...第一電極
EL2...第二電極
EL3...第三電極
G1...訊號發生器
G2...訊號發生器
HF...高頻
L...耦合器(線圈)
LE...電負載裝置
LF...低頻
PA...功率放大器
S1...天線開關
TL...耦合器(微帶線)
μC...微控制器
圖1顯示先前技術中用以偵測天線有效放射高頻發射功率的習知解決辦法;
圖2顯示先前技術中用以偵測手持式無線電收發器附近物體或人體的習知解決辦法;
圖3為根據本發明一實施例之手持式無線電收發器概要方塊圖,其中包含一天線、一電容式感測裝置及一收發器;
圖4顯示本發明電容式感測裝置之一實施例,其可依照一負載法操作之;
圖5顯示本發明電容式感測裝置之一實施例,其可依照一傳輸法操作之;
圖6顯示本發明電容式感測器之一實施例,其額外包括一補償電極;
圖7顯示根據本發明之差分電容式感測器,其中由一手持式無線電收發器的天線形成一感測電極;以及
圖8顯示圖4至圖7所示實施例的手持式無線電收發器中若干可行的電極配置實例。
PA...功率放大器
S1...開關
A...天線
EL1...第一電極
CSK...儲備電容
E1...接收器
CKE...儲備電容
G1...訊號發生器
CME...儲備電容

Claims (14)

  1. 一種用於連接至一天線元件之一手持式無線電收發器之電容式感測裝置,係用於估計該手持式無線電收發器之一比吸收率;其中該感測裝置係與該天線元件耦接,且其中當該手持式無線電收發器於操作時,該天線元件同時作為該電容式感測裝置之一感測電極與該手持式無線電收發器之一天線,其中該感測裝置額外包括一第二電極,其與該天線元件可形成電容耦合;其中該天線元件與該第二電極中之一者係作為發射電極而另一者則作為接收電極,且其中可對該發射電極饋入一電性交流訊號。
  2. 如申請專利範圍第1項之電容式感測裝置,其中該天線元件係- 經由一高通濾波器而與該手持式無線電收發器之一收發電路耦接;以及- 經由一低通濾波器而與該感測裝置耦接。
  3. 如申請專利範圍第1項之電容式感測裝置,其中該天線元件可作為一發射電極,且其中該天線元件經由一低通濾波器接收一電性交流訊號。
  4. 如申請專利範圍第1項之電容式感測裝置,其中該感測裝置進一步包括一第三電極,其實質上設於該天線元件與該第二電極之間,且有一電性交流訊號饋入其中,此電性交流訊號與饋入該發射電極之該電性交流訊號實質上為反相。
  5. 如申請專利範圍第2項之電容式感測裝置,其中該低通濾波器包括一微帶線。
  6. 如申請專利範圍第1項之電容式感測裝置,其中該感測裝置之一評估電路係設為用以偵測一物體至該感測裝置之該等電極之一接近(approach)及/或偵測一物體與該感測裝置之該等電極之一距離。
  7. 如前述申請專利範圍第6項之電容式感測裝置,其中該手持式無線電收發器包括一偵測裝置,用以偵測該天線處放射的高頻發射功率,其中該偵測的高頻發射功率與該偵測的至該感測裝置之該等電極之該物體之該接近都被包括在該手持式無線電收發器之該比吸收率的估計中。
  8. 一種手持式無線電收發器,其包括如申請專利範圍第1-7項中任一項之電容式感測裝置,其中該手持式無線電收發器之該天線元件係與該電容式感測裝置耦接,且其中該手持式無線電收發器於操作時,該天線元件可同時作為該電容式感測裝置之感測電極與作為該手持式無線電收發器的高頻天線。
  9. 如申請專利範圍第8項之手持式無線電收發器,其至少為雙向收音機、行動電話、無線電話、無線區域網路(WLAN)裝置、小型電腦、及平板式個人電腦之群組中的一項。
  10. 一種操作如申請專利範圍第8項之手持式無線電收發器之方法,其中使該電容式感測裝置之一第二電極與 該手持式無線電收發器之天線形成電容耦合,該方法包括:- 使用該手持式無線電收發器之該天線元件作為一電容式感測器以判定一電容值,其中以該第二電極或該天線元件作為一發射電極並以另一者作為一接收電極,其中將該電容式感測裝置之一電性交流訊號饋入該發射電極,其中該天線元件與該第二電極間的電容耦合係依據與一物體之靠近(proximity),且該電容耦合經偵測作為該電容值,且其中該偵測的電容耦合係用於量測該接近及/或該距離;- 自該電容值估計該手持式無線電收發器之一比吸收率;以及- 依照該估計增加或減少該手持式無線電收發器之發射功率。
  11. 如申請專利範圍第10項之方法,其中為偵測該電容值,一交流訊號係經由一低通濾波器或傳輸線饋入至該天線元件。
  12. 如申請專利範圍第10項之方法,其中偵測該天線放射之高頻發射功率,並將該偵測的高頻發射功率包括在該比吸收率之估計中。
  13. 如申請專利範圍第11項之方法,其中偵測該交流訊號之電容負載作為該電容值,且該電容負載係用於量測該接近及/或該距離。
  14. 如申請專利範圍第11項之方法,其中一微帶線係作為低通濾波器。
TW101105958A 2011-02-23 2012-02-23 電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法 TWI576595B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011004622A DE102011004622B4 (de) 2011-02-23 2011-02-23 Kapazitive Sensoreinrichtung und Funkgerät mit kapazitiver Sensoreinrichtung sowie Verfahren zum Einstellen einer Sendeleistung eines Funkgerätes

Publications (2)

Publication Number Publication Date
TW201235671A TW201235671A (en) 2012-09-01
TWI576595B true TWI576595B (zh) 2017-04-01

Family

ID=45876684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101105958A TWI576595B (zh) 2011-02-23 2012-02-23 電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法

Country Status (6)

Country Link
US (1) US9247504B2 (zh)
EP (1) EP2678899B1 (zh)
KR (1) KR101907640B1 (zh)
DE (1) DE102011004622B4 (zh)
TW (1) TWI576595B (zh)
WO (1) WO2012113754A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004622B4 (de) 2011-02-23 2013-04-18 Ident Technology Ag Kapazitive Sensoreinrichtung und Funkgerät mit kapazitiver Sensoreinrichtung sowie Verfahren zum Einstellen einer Sendeleistung eines Funkgerätes
US8831528B2 (en) * 2012-01-04 2014-09-09 Futurewei Technologies, Inc. SAR control using capacitive sensor and transmission duty cycle control in a wireless device
CN103516385A (zh) * 2012-06-21 2014-01-15 深圳富泰宏精密工业有限公司 无线通信装置
US20140098073A1 (en) * 2012-10-05 2014-04-10 Research In Motion Limited Method and apparatus pertaining to user-sensed transmission power control in a stylus
WO2014128811A1 (ja) * 2013-02-21 2014-08-28 パナソニック株式会社 電子機器
US9300342B2 (en) * 2013-04-18 2016-03-29 Apple Inc. Wireless device with dynamically adjusted maximum transmit powers
CN104167591B (zh) * 2013-05-17 2017-06-06 宏碁股份有限公司 电子装置
US9871544B2 (en) 2013-05-29 2018-01-16 Microsoft Technology Licensing, Llc Specific absorption rate mitigation
US10893488B2 (en) 2013-06-14 2021-01-12 Microsoft Technology Licensing, Llc Radio frequency (RF) power back-off optimization for specific absorption rate (SAR) compliance
TWI536658B (zh) * 2013-10-03 2016-06-01 緯創資通股份有限公司 行動通訊裝置及其輻射功率調整方法
WO2015076849A1 (en) * 2013-11-25 2015-05-28 Hewlett-Packard Development Company, L.P. Antenna devices
CN104684060A (zh) * 2013-11-27 2015-06-03 华为终端有限公司 一种发射功率调整方法及终端
US9813997B2 (en) 2014-01-10 2017-11-07 Microsoft Technology Licensing, Llc Antenna coupling for sensing and dynamic transmission
US10044095B2 (en) 2014-01-10 2018-08-07 Microsoft Technology Licensing, Llc Radiating structure with integrated proximity sensing
DE102014101906B4 (de) 2014-02-14 2016-08-04 Intel Corporation Schaltung, Übertragungssystem und Verfahren zum Bestimmen von Nähe eines Objekts
US10122081B2 (en) * 2014-03-13 2018-11-06 Google Technology Holdings LLC Hand grip sensor for external chassis antenna
US9791490B2 (en) 2014-06-09 2017-10-17 Apple Inc. Electronic device having coupler for tapping antenna signals
US9769769B2 (en) 2014-06-30 2017-09-19 Microsoft Technology Licensing, Llc Detecting proximity using antenna feedback
US9785174B2 (en) 2014-10-03 2017-10-10 Microsoft Technology Licensing, Llc Predictive transmission power control for back-off
US9864464B2 (en) 2014-10-31 2018-01-09 Semtech Corporation Method and device for reducing radio frequency interference of proximity and touch detection in mobile devices
US9871545B2 (en) 2014-12-05 2018-01-16 Microsoft Technology Licensing, Llc Selective specific absorption rate adjustment
US10108292B2 (en) * 2015-04-22 2018-10-23 Microchip Technology Incorporated Capacitive sensor system with multiple transmit electrodes
JP2017069651A (ja) * 2015-09-28 2017-04-06 京セラ株式会社 電子機器、制御方法、及び制御プログラム
US10013038B2 (en) 2016-01-05 2018-07-03 Microsoft Technology Licensing, Llc Dynamic antenna power control for multi-context device
US10461406B2 (en) 2017-01-23 2019-10-29 Microsoft Technology Licensing, Llc Loop antenna with integrated proximity sensing
CN106953648B (zh) 2017-02-28 2019-08-20 维沃移动通信有限公司 一种复用天线和天线复用的方法
US10224974B2 (en) 2017-03-31 2019-03-05 Microsoft Technology Licensing, Llc Proximity-independent SAR mitigation
EP3404835B1 (en) * 2017-05-16 2020-09-09 Semtech Corporation Single sensor proximity detector
KR102324967B1 (ko) * 2017-09-22 2021-11-12 삼성전자 주식회사 외부 객체의 근접에 따라 변경된 공진 주파수를 이용하여 외부 전자 장치와 통신을 수행하는 방법 및 이를 지원하는 전자 장치
US10420023B2 (en) 2018-01-10 2019-09-17 Dell Products, Lp Method and apparatus for multiple radio access technology antenna front end controller integration
DE102018104924B4 (de) * 2018-03-05 2020-08-27 Qundis Gmbh Vorrichtung mit einer Funkkommunikationseinheit und einer Schalteinheit
CN109001505B (zh) * 2018-04-10 2019-12-24 西安易朴通讯技术有限公司 一种对终端的sar传感器进行温度补偿的方法及终端
US11237613B2 (en) 2018-07-13 2022-02-01 Semtech Corporation Intelligent proximity detector
US11297429B2 (en) * 2018-12-03 2022-04-05 Synaptics Incorporated Proximity detection for wireless in-ear listening devices
CN112114202B (zh) * 2019-07-12 2021-07-23 中兴通讯股份有限公司 一种检测sar的装置、降低sar的方法及移动终端
CN113258258B (zh) * 2020-02-10 2022-08-12 北京小米移动软件有限公司 电子设备、辐射功率的调整方法及装置
CN111308246B (zh) * 2020-03-15 2022-06-17 东南大学 双向无线充放电系统对称判谐电路设计与双边谐振判断方法
US11418878B1 (en) 2021-04-02 2022-08-16 Synaptics Incorporated Secondary path identification for active noise cancelling systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564164A1 (en) * 1992-04-01 1993-10-06 AT&T Corp. Capacitive proximity sensors
CN1778015A (zh) * 2003-04-22 2006-05-24 爱信精机株式会社 天线装置、门手柄装置
WO2009033510A1 (en) * 2007-09-13 2009-03-19 Sony Ericsson Mobile Communications Ab Adaptive antenna matching
EP2276109A1 (en) * 2009-07-17 2011-01-19 Apple Inc. Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623894A (en) * 1984-06-22 1986-11-18 Hughes Aircraft Company Interleaved waveguide and dipole dual band array antenna
CN1507674A (zh) 2001-03-07 2004-06-23 西门子公司 带有减小sar值的校正件的无线电通讯装置
US7146139B2 (en) * 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
US20120231737A1 (en) * 2006-11-30 2012-09-13 Motorola, Inc. Energy distribution among antennas in an antenna system
US8148999B2 (en) * 2007-09-13 2012-04-03 Ident Technology Ag Proximity detector
US20100317302A1 (en) * 2009-06-12 2010-12-16 Novatel Wireless System and method for controlling rf explosure levels
US8466839B2 (en) * 2009-07-17 2013-06-18 Apple Inc. Electronic devices with parasitic antenna resonating elements that reduce near field radiation
US20110076966A1 (en) * 2009-09-28 2011-03-31 Sony Ericsson Mobile Communications Ab Method for driving an antenna of a mobile device
US8781420B2 (en) * 2010-04-13 2014-07-15 Apple Inc. Adjustable wireless circuitry with antenna-based proximity detector
DE102011002447B4 (de) 2011-01-04 2014-07-10 Ident Technology Ag Kapazitiver Annäherungsensor sowie Verfahren zur kapazitiven Annäherungsdetektion
US9026059B2 (en) * 2011-02-17 2015-05-05 Futurewei Technologies, Inc. Adaptive maximum power limiting using capacitive sensing in a wireless device
US8577289B2 (en) * 2011-02-17 2013-11-05 Apple Inc. Antenna with integrated proximity sensor for proximity-based radio-frequency power control
DE102011004622B4 (de) 2011-02-23 2013-04-18 Ident Technology Ag Kapazitive Sensoreinrichtung und Funkgerät mit kapazitiver Sensoreinrichtung sowie Verfahren zum Einstellen einer Sendeleistung eines Funkgerätes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564164A1 (en) * 1992-04-01 1993-10-06 AT&T Corp. Capacitive proximity sensors
CN1778015A (zh) * 2003-04-22 2006-05-24 爱信精机株式会社 天线装置、门手柄装置
WO2009033510A1 (en) * 2007-09-13 2009-03-19 Sony Ericsson Mobile Communications Ab Adaptive antenna matching
EP2276109A1 (en) * 2009-07-17 2011-01-19 Apple Inc. Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control
CN101958455A (zh) * 2009-07-17 2011-01-26 苹果公司 具有电容式接近传感器的电子设备

Also Published As

Publication number Publication date
US20140155000A1 (en) 2014-06-05
CN103443999A (zh) 2013-12-11
EP2678899A1 (en) 2014-01-01
EP2678899B1 (en) 2018-05-30
DE102011004622A1 (de) 2012-08-23
TW201235671A (en) 2012-09-01
KR101907640B1 (ko) 2018-10-12
WO2012113754A1 (en) 2012-08-30
US9247504B2 (en) 2016-01-26
DE102011004622B4 (de) 2013-04-18
KR20140074867A (ko) 2014-06-18

Similar Documents

Publication Publication Date Title
TWI576595B (zh) 電容式感測裝置、包含電容式感測裝置之無線電收發器及調整手持式無線電收發器發射功率之方法
JP5909830B2 (ja) 無線装置における、静電容量センサと送信デューティ・サイクル制御を用いたsar制御
EP3176952B1 (en) Adaptive maximum power limiting using capacitive sensing in a wireless device
JP5534027B2 (ja) アンテナ装置
EP2915268B1 (en) Standing wave ratio meter for integrated antenna tuner
US9407335B2 (en) Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks
US8406806B2 (en) Mobile telephone capable of automatically switching antenna according to user's hand position
CN104052506B (zh) 天线调谐器控制系统和生成用于其的控制信号的方法
TWI352208B (en) Method and related electronic device for adjusting
KR20190030771A (ko) 안테나와 방향성 커플러 스위치를 이용한 근접 검출
TWI502808B (zh) 行動通訊裝置
US10290927B2 (en) Electronic device with proximity sensor
TWI355500B (en) Test system for adjusting a wireless communication
JP2021502792A (ja) 近傍界マイクロ波無線電力システム
JP2015084510A (ja) 近距離無線通信システム及び自動で最適化する近距離無線通信結合方法
US20100054305A1 (en) System including capacitively coupled electrodes and circuits in a network
CN116626378A (zh) 具有输出负载独立检测能力的电子设备
CN103443999B (zh) 电容性传感器装置、手持式无线电收发器及其操作方法
US20150280838A1 (en) Field coupling electrode, communication device, and communication system
CN116908925A (zh) 一种电子设备及确定方法
JP5727971B2 (ja) 電界通信システムおよび携帯端末
TW201316611A (zh) 調整模組、具有調整模組之電子裝置及其天線效能調整之方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees