TWI575666B - Three dimensional memory device and method for fabricating the same - Google Patents

Three dimensional memory device and method for fabricating the same Download PDF

Info

Publication number
TWI575666B
TWI575666B TW104135031A TW104135031A TWI575666B TW I575666 B TWI575666 B TW I575666B TW 104135031 A TW104135031 A TW 104135031A TW 104135031 A TW104135031 A TW 104135031A TW I575666 B TWI575666 B TW I575666B
Authority
TW
Taiwan
Prior art keywords
forming
source line
layer
protrusion
memory device
Prior art date
Application number
TW104135031A
Other languages
Chinese (zh)
Other versions
TW201715656A (en
Inventor
賴二琨
蔣光浩
李岱螢
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104135031A priority Critical patent/TWI575666B/en
Application granted granted Critical
Publication of TWI575666B publication Critical patent/TWI575666B/en
Publication of TW201715656A publication Critical patent/TW201715656A/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

立體記憶體元件及其製作方法 Stereo memory element and manufacturing method thereof

本揭露書是有關於一種高密度記憶體裝置及其製作方法。特別是有關於一種具有三維(three-dimensional,3D)立體記憶體陣列結構的記憶體裝及其製作方法。 The present disclosure relates to a high density memory device and a method of fabricating the same. In particular, there is a memory device having a three-dimensional (3D) three-dimensional memory array structure and a method of fabricating the same.

隨著電子科技的發展,半導體記憶體元件已被廣泛使用於電子產品,例如MP3播放器、數位相機、筆記型電腦、行動電話…等之中。目前對於記憶體元件的需求朝較小尺寸、較大記憶容量的趨勢發展。為了因應這種高元件密度的需求,目前已經發展出多種不同的結構形態三維立體記憶體元件。 With the development of electronic technology, semiconductor memory components have been widely used in electronic products, such as MP3 players, digital cameras, notebook computers, mobile phones, and the like. The current demand for memory components is moving toward smaller sizes and larger memory capacities. In order to meet the demand for such high component density, a variety of different structural morphological three-dimensional memory components have been developed.

典型的三維立體記憶體元件包含由複數個記憶胞平面層(plane)所堆疊而成的立體記憶胞陣列,以及電性串聯在記憶平面層與對應位元線之間的串列選擇電晶體。而為了增加記憶體元件的密度,除了縮小記憶胞陣列中個別記憶胞的尺寸外,也須 從縮小串列選擇電晶體的尺寸著手。傳統的三維立體記憶體元件係採用場效應電晶體(field effect transistor)來作為串列選擇電晶體。然而,一般的場效應電晶體是具有水平導向閘極(horizontally oriented gate)的水平結構,橫向剖面積或占地面積(footprint)較大,限制了記憶胞陣列的密度。 A typical three-dimensional memory element includes a three-dimensional memory cell array stacked by a plurality of memory cell planes, and a tandem selection transistor electrically connected in series between the memory plane layer and the corresponding bit line. In order to increase the density of memory components, in addition to reducing the size of individual memory cells in the memory cell array, Start by reducing the size of the transistor by narrowing the series. A conventional three-dimensional memory element uses a field effect transistor as a tandem selection transistor. However, a typical field effect transistor is a horizontal structure having a horizontally oriented gate with a large lateral cross-sectional area or footprint, which limits the density of the memory cell array.

為了解決此一問題,目前已有技術採用雙極接面電晶體(bipolar junction transistors)與二極體來作為串列選擇電晶體。然而,由於雙極接面電晶體或二極體的電流與電壓(I/V)之間的變化呈現關指數函數關係,較不易控制以進行多位元操作(multi-bit operation)。 In order to solve this problem, the prior art has adopted bipolar junction transistors and diodes as series-selective transistors. However, since the change between the current and voltage (I/V) of the bipolar junction transistor or diode exhibits an exponential function, it is less controllable for multi-bit operation.

因此,有需要提供一種更先進的立體記憶體元件及其製作方法,以改善習知技術所面臨的問題。 Therefore, there is a need to provide a more advanced three-dimensional memory component and a method of fabricating the same to improve the problems faced by conventional techniques.

根據本說明書的一實施例,提供一種立體記憶體元件,其包括:半導體基材、源極線、閘極線以及複數個串接記憶胞。半導體基材具有一凸出部。源極線位於半導體基材之中並且延伸於凸出部的下方。閘極線包圍且覆蓋於凸出部上,並與凸出部和源極線電性隔離。複數個串接記憶胞位於基材上方,並與凸出部的頂端串接。 According to an embodiment of the present specification, a stereo memory device is provided, including: a semiconductor substrate, a source line, a gate line, and a plurality of serially connected memory cells. The semiconductor substrate has a projection. The source line is located in the semiconductor substrate and extends below the protrusion. The gate line is surrounded and covers the protrusion and is electrically isolated from the protrusion and the source line. A plurality of serially connected memory cells are located above the substrate and are in series with the top end of the projection.

根據本說明書的另一實施例,提供一種立體記憶體元件的製作方法,包括下述步驟:首先,提供一半導體基材,使 其具有至少一個凸出部。再該半導體基材之中形成至少一條源極線,且使源極線延伸於凸出部的下方。之後,形成至少一條閘極線包圍且覆蓋於凸出部,並與凸出部和源極線電性隔離。後續,於基材上方形成複數個串接記憶胞,使其與凸出部的頂端串接。 According to another embodiment of the present specification, a method of fabricating a three-dimensional memory device is provided, comprising the steps of: first, providing a semiconductor substrate such that It has at least one projection. Further, at least one source line is formed in the semiconductor substrate, and the source line is extended below the protrusion. Thereafter, at least one gate line is formed to surround and cover the protrusion, and is electrically isolated from the protrusion and the source line. Subsequently, a plurality of serially connected memory cells are formed on the substrate so as to be in series with the top end of the protrusion.

根據本說明書的又一實施例,提供一種立體記憶體元件的製作方法,包括下述步驟:首先,提供一半導體基材,其具有一主動區和一周邊區(periphery)。再於主動區之中形成至少一條源極線。之後,進行選擇式磊晶成長(Selective Epitaxial Growth,SEG)製程,於源極線上形成至少一個柱狀通道結構,使柱狀通道結構的底部與源極線連接。然後,形成至少一條閘極線與源極線交叉,並圍繞於柱狀通道結構,且與柱狀通道結構和源極線電性隔離。後續,於主動區上方形成複數個串接記憶胞,使其與柱狀通道結構的頂端串接。 According to still another embodiment of the present specification, a method of fabricating a stereo memory device is provided, comprising the steps of: first, providing a semiconductor substrate having an active region and a peripheral region. At least one source line is formed in the active area. Thereafter, a Selective Epitaxial Growth (SEG) process is performed to form at least one columnar channel structure on the source line, such that the bottom of the columnar channel structure is connected to the source line. Then, at least one gate line is formed to intersect the source line, and surrounds the columnar channel structure, and is electrically isolated from the columnar channel structure and the source line. Subsequently, a plurality of serially connected memory cells are formed above the active area to be connected in series with the top end of the columnar channel structure.

根據本說明書的再一實施例,提供一種立體記憶體元件的製作方法,包括下述步驟:首先,提供一半導體基材;並於半導體基材中形成至少一條源極線。之後,形成至少一條閘極線,與源極線交叉,並且彼此電性隔離。再於閘極線中形成至少一個貫穿孔將一部分閘極線和一部分源極線暴露於外。然後,於貫穿孔的側壁上形成一個間隙壁;進行選擇式磊晶成長製程,於貫穿孔中形成一個柱狀通道結構。後續,於基材上方形成複數個串接記憶胞,使其與柱狀通道結構的頂端串接。 According to still another embodiment of the present specification, a method of fabricating a three-dimensional memory device is provided, comprising the steps of: first, providing a semiconductor substrate; and forming at least one source line in the semiconductor substrate. Thereafter, at least one gate line is formed, crossing the source lines, and electrically isolated from each other. Forming at least one through hole in the gate line exposes a portion of the gate line and a portion of the source line to the outside. Then, a spacer is formed on the sidewall of the through hole; a selective epitaxial growth process is performed to form a columnar channel structure in the through hole. Subsequently, a plurality of serially connected memory cells are formed on the substrate to be connected in series with the top end of the columnar channel structure.

根據上述實施例,本發明是在提供一種立體記憶體 元件及其製作方法。此一立體記憶體元件係採用具有垂直通道的場效電晶體來作為立體記憶體元件之串接記憶胞的串列選擇電晶體。在本發明的一些實施例中,場效電晶體的垂直通道可以直接建構於凸設在半導體基材表面的凸出部中。在本發明的一些實施例中,可採用選擇式磊晶成長製程,在半導體基材表面形成場效電晶體的垂直通道。 According to the above embodiment, the present invention provides a stereo memory Components and how to make them. The three-dimensional memory component uses a field effect transistor having a vertical channel as a tandem selection transistor of a serial memory cell. In some embodiments of the invention, the vertical channel of the field effect transistor can be directly constructed in a projection that is convexly disposed on the surface of the semiconductor substrate. In some embodiments of the invention, a selective epitaxial growth process can be employed to form a vertical channel of the field effect transistor on the surface of the semiconductor substrate.

由於,垂直通道的場效電晶體具有占地面積較小,以及電流與電壓(I/V)之間的變化呈現線性函數關係,在進行多位元操作時較易於控制等技術優勢。採用具有垂直通道的場效電晶體來作為立體記憶體元件之串接記憶胞的串列選擇電晶體,可同時解決習知橫向通道場效電晶體限縮記憶胞陣列的密度以及雙極接面電晶體或二極體不易操作控制的問題。 Because the vertical channel field effect transistor has a small footprint, and the linear relationship between the current and voltage (I / V) changes, it is easier to control and other technical advantages when performing multi-bit operation. A field effect transistor having a vertical channel is used as a tandem selection transistor for a tandem memory cell, which can simultaneously solve the density and bipolar junction of a conventional lateral channel field effect transistor-limited memory cell array. The problem that the transistor or diode is not easy to operate and control.

100、200、300、400‧‧‧立體記憶體元件 100, 200, 300, 400‧‧‧ stereo memory components

101、301、401‧‧‧半導體基材 101, 301, 401‧‧ ‧ semiconductor substrate

101a‧‧‧主動區 101a‧‧‧Active Area

101b‧‧‧周邊區 101b‧‧‧ surrounding area

102、302、402‧‧‧淺溝隔離結構 102, 302, 402‧‧‧ shallow trench isolation structure

103、303、403‧‧‧墊化矽層 103, 303, 403‧‧‧ 垫 矽 layer

104、304、404‧‧‧氮化矽層 104, 304, 404‧‧‧ tantalum nitride layer

105、305、409‧‧‧源極線 105, 305, 409‧‧‧ source line

106‧‧‧第一介電層 106‧‧‧First dielectric layer

107‧‧‧犧牲層 107‧‧‧ Sacrifice layer

108‧‧‧第二介電層 108‧‧‧Second dielectric layer

109、209、313、418‧‧‧貫穿孔 109, 209, 313, 418‧‧‧through holes

110、119、210、308、314、408、412、420‧‧‧間隙壁 110, 119, 210, 308, 314, 408, 412, 420‧‧ ‧ spacers

111、315‧‧‧柱狀通道結構 111, 315‧‧‧ columnar channel structure

112、312‧‧‧氧化覆蓋層 112, 312‧‧‧Oxidized coating

113、310、416‧‧‧硬罩幕層 113, 310, 416‧‧‧ hard mask layer

114a、114b、114c‧‧‧平面式金屬-氧化物-半導體場效電晶體元件 114a, 114b, 114c‧‧‧ planar metal-oxide-semiconductor field effect transistor components

115、123、311、318、417‧‧‧層間介電層 115, 123, 311, 318, 417‧‧ ‧ interlayer dielectric layer

116、216‧‧‧條狀結構 116, 216‧‧‧ strip structure

117‧‧‧凹室 117‧‧ ‧ alcove

118、218、307、410‧‧‧閘極線 118, 218, 307, 410‧‧ ‧ gate line

120、415‧‧‧金屬矽化物層 120, 415‧‧‧ metal telluride layer

121、316、413‧‧‧汲極 121, 316, 413‧‧ ‧ bungee

122、222、317、414‧‧‧串列選擇電晶體 122, 222, 317, 414‧‧‧ tandem selection transistor

124、125、319、419‧‧‧接觸差塞 124, 125, 319, 419 ‧ ‧ contact

126、320、422‧‧‧串接記憶胞 126, 320, 422‧‧‧ tandem memory cells

127、321、421‧‧‧記憶胞陣列 127, 321, 421‧‧‧ memory cell array

127a、321a、421a‧‧‧導電平面層 127a, 321a, 421a‧‧‧ conductive plane

127b、321b、421b‧‧‧導電柱狀體 127b, 321b, 421b‧‧‧ conductive columnar body

127c、321c、421c‧‧‧記憶體層 127c, 321c, 421c‧‧‧ memory layer

207‧‧‧導體層 207‧‧‧ conductor layer

305a‧‧‧重摻雜區 305a‧‧‧ heavily doped area

306、411‧‧‧閘介電層 306, 411‧‧ ‧ gate dielectric layer

309‧‧‧矽氧化物層 309‧‧‧矽Oxide layer

405‧‧‧脊狀部 405‧‧‧ ridge

406‧‧‧凸出部 406‧‧‧Protruding

407‧‧‧側蝕開口 407‧‧‧Side etching opening

409a‧‧‧擴散區 409a‧‧‧Diffusion zone

409b‧‧‧第一源極區 409b‧‧‧First source area

409c‧‧‧第二源極區 409c‧‧‧Second source area

PW‧‧‧P型阱區 PW‧‧‧P-well zone

NW‧‧‧N型阱區 NW‧‧‧N-well zone

S1a1、S1a2、S1b1、S1b2、S1c1、S1c2、S1d1、S1d2、S1e1、S1e2、S1f1、S1f2、S1g1、S1g2、S1g3、S1h1、S1h2、S1h3、S1i1、S1i2、S1i3、S1j1、S1j2、S1j3、S1k1、S1k2、S1k3、S2a1、S2a2、S2b1、S2b2、S2c1、S2c2、S2d1、S2d2、S2e1、S2e2、S2e3、S2f1、S2f2、S2f3、S3a、S3b、S3c1、S3c2、S3d1、S3d2、S3e1、S3e2、S3f1、S3f2、S3g1、S3g2、S4a、S4b、S4c1、S4c2、S4c3、S4d1、S4d2、S4d3、S4e1、S4e2、S4e3、S4f1、S4f2、S4f3、S4g1、S4g2、S4g3、S4h1、S4h2、S4h3‧‧‧切線 S1a1, S1a2, S1b1, S1b2, S1c1, S1c2, S1d1, S1d2, S1e1, S1e2, S1f1, S1f2, S1g1, S1g2, S1g3, S1h1, S1h2, S1h3, S1i1, S1i2, S1i3, S1j1, S1j2, S1j3, S1k1 S1k2, S1k3, S2a1, S2a2, S2b1, S2b2, S2c1, S2c2, S2d1, S2d2, S2e1, S2e2, S2e3, S2f1, S2f2, S2f3, S3a, S3b, S3c1, S3c2, S3d1, S3d2, S3e1, S3e2, S3f1 S3f2, S3g1, S3g2, S4a, S4b, S4c1, S4c2, S4c3, S4d1, S4d2, S4d3, S4e1, S4e2, S4e3, S4f1, S4f2, S4f3, S4g1, S4g2, S4g3, S4h1, S4h2, S4h3‧‧

為了對本發明之上述實施例及其他目的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:第1A1圖係根據本發明的一實施例所繪示之半導體基材的結構俯視圖;第1A2圖係沿著第1A1圖所繪示之切線S1a1所作的結構剖面圖;第1A3圖係沿著第1A1圖所繪示之切線S1a2所作的結構剖 面圖;第1B1圖係繪示對第1A1圖的結構進行離子植佈製程之後的結構俯視圖;第1B2圖係沿著第1B1圖所繪示之切線S1b1所作的結構剖面圖;第1B3圖係沿著第1B1圖所繪示之切線S1b2所作的結構剖面圖;第1C1圖係繪示在第1B1圖的結構上形成圖案化第一介電層、犧牲層和第二介電層之後的結構俯視圖;第1C2圖係沿著第1C1圖所繪示之切線S1c1所作的結構剖面圖;第1C3圖係沿著第1C1圖所繪示之切線S1c2所作的結構剖面圖;第1D1圖係繪示在第1C1圖的結構上形成間隙壁之後的結構俯視圖;第1D2圖係沿著第1D1圖所繪示之切線S1d1所作的結構剖面圖;第1D3圖係沿著第1D1圖所繪示之切線S1d2所作的結構剖面圖;第1E1圖係繪示在第1D1圖的結構上進行選擇式磊晶成長製程之後的結構俯視圖;第1E2圖係沿著第1E1圖所繪示之切線S1e1所作的結構剖面 圖;第1E3圖係沿著第1E1圖所繪示之切線S1e2所作的結構剖面圖;第1F1圖係繪示在第1E1圖的結構上形成複數個平面式金屬-氧化物-半導體場效電晶體元件之後的結構俯視圖;第1F2圖係沿著第1F1圖所繪示之切線S1f1所作的結構剖面圖;第1F3圖係沿著第1F1圖所繪示之切線S1f2所作的結構剖面圖;第1G1圖係繪示對第1F1圖中的第一介電層、犧牲層和第二介電層進行在一次圖案化製程之後的結構俯視圖;第1G2圖係沿著第1G1圖所繪示之切線S1g1所作的結構剖面圖;第1G3圖係沿著第1G1圖所繪示之切線S1g2所作的結構剖面圖;第1G4圖係沿著第1G1圖所繪示之切線S1g3所作的結構剖面圖;第1H1圖係繪示移除第1G1圖中之犧牲層後的結構俯視圖;第1H2圖係沿著第1H1圖所繪示之切線S1h1所作的結構剖面圖;第1H3圖係沿著第1H1圖所繪示之切線S1h2所作的結構剖面圖; 第1H4圖係沿著第1H1圖所繪示之切線S1h3所作的結構剖面圖;第1I1圖係繪示在第1H1圖的結構中形成複數條閘極線之後的結構俯視圖;第1I2圖係沿著第1I1圖所繪示之切線S1i1所作的結構剖面圖;第1I3圖係沿著第1I1圖所繪示之切線S1i2所作的結構剖面圖;第1I4圖係沿著第1I1圖所繪示之切線S1i3所作的結構剖面圖;第1J1圖係繪示在第1I1圖的結構中形成間隙壁之後的結構俯視圖;第1J2圖係沿著第1J1圖所繪示之切線S1j1所作的結構剖面圖;第1J3圖係沿著第1J1圖所繪示之切線S1j2所作的結構剖面圖;第1J4圖係沿著第1J1圖所繪示之切線S1j3所作的結構剖面圖;第1K1圖係繪示在第1J1圖的結構中形成串列選擇電晶體之後的結構俯視圖;第1K2圖係沿著第1K1圖所繪示之切線S1k1所作的結構剖面圖; 第1K3圖係沿著第1K1圖所繪示之切線S1k2所作的結構剖面圖;第1K4圖係沿著第1K1圖所繪示之切線S1k3所作的結構剖面圖;第1L圖係根據本發明的一實施例所繪示的立體記憶體元件的結構透視圖;第2A1圖係繪示在第1B1圖的結構上形成圖案化第一介電層、導體層和第二介電層之後的結構俯視圖;第2A2圖係沿著第2A1圖所繪示之切線S2a1所作的結構剖面圖;第2A3圖係沿著第2A1圖所繪示之切線S2a2所作的結構剖面圖;第2B1圖係繪示在第2A1圖的結構上形成間隙壁之後的結構俯視圖;第2B2圖係沿著第2A1圖所繪示之切線S2b1所作的結構剖面圖;第2B3圖係沿著第2B1圖所繪示之切線S2b2所作的結構剖面圖;第2C1圖係繪示在第2B1圖的結構上進行選擇式磊晶成長製程之後的結構俯視圖;第2C2圖係沿著第2C1圖所繪示之切線S2c1所作的結構剖面圖;第2C3圖係沿著第2C1圖所繪示之切線S2c2所作的結構剖 面圖;第2D1圖係繪示在第2C1圖的結構上形成複數個平面式金屬-氧化物-半導體場效電晶體元件之後的結構俯視圖;第2D2圖係沿著第2D1圖所繪示之切線S2d1所作的結構剖面圖;第2D3圖係沿著第2D1圖所繪示之切線S2d2所作的結構剖面圖;第2E1圖係繪示在第2D1圖的結構上再一次對第一介電層、導體層和第二介電層進行圖案化製程之後的結構俯視圖;第2E2圖係沿著第2E1圖所繪示之切線S2e1所作的結構剖面圖;第2E3圖係沿著第2E1圖所繪示之切線S2e2所作的結構剖面圖;第2E4圖係沿著第2E1圖所繪示之切線S2e3所作的結構剖面圖;第2F1圖係繪示在第2E1圖的結構中形成串列選擇電晶體之後的結構俯視圖;第2F2圖係沿著第2F1圖所繪示之切線S2f1所作的結構剖面圖;第2F3圖係沿著第2F1圖所繪示之切線S2f2所作的結構剖面圖;第2F4圖係沿著第2F1圖所繪示之切線S2f3所作的結構剖面圖;第2G圖係根據本發明的另一實施例所繪示的立體記憶體元 件的結構透視圖;第3A1圖係根據本發明的一實施例所繪示之半導體基材的結構俯視圖;第3A2圖係沿著第3A1圖所繪示之切線S3a所作的結構剖面圖;第3B1圖係繪示對第3A1圖的結構進行離子植佈製程之後的結構俯視圖;第3B2圖係沿著第3B1圖所繪示之切線S3b所作的結構剖面圖;第3C1圖係繪示在第3B1圖的結構上形成閘介電層306和閘極線之後的結構俯視圖;第3C2圖係沿著第3C1圖所繪示之切線S3c1所作的結構剖面圖;第3C3圖係沿著第3C1圖所繪示之切線S3c2所作的結構剖面圖;第3D1圖係繪示在第3C1圖的結構上覆蓋矽氧化物層309和氮化矽硬罩幕層之後的結構俯視圖;第3D2圖係沿著第3D1圖所繪示之切線S3d1所作的結構剖面圖;第3D3圖係沿著第3D1圖所繪示之切線S3d2所作的結構剖面圖;第3E1圖係繪示在第3D1圖的結構上形成慣穿孔313和間隙壁之後的結構俯視圖;第3E2圖係沿著第3E1圖所繪示之切線S3e1所作的結構剖 面圖;第3E3圖係沿著第3E1圖所繪示之切線S3e2所作的結構剖面圖;第3F1圖係繪示在第3E1圖的結構中形成柱狀通道結構之後的結構俯視圖;第3F2圖係沿著第3F1圖所繪示之切線S3f1所作的結構剖面圖;第3F3圖係沿著第3F1圖所繪示之切線S3f2所作的結構剖面圖;第3G1圖係繪示在第3F1圖的結構中形成串列選擇電晶體之後的結構俯視圖;第3G2圖係沿著第3G1圖所繪示之切線S3g1所作的結構剖面圖;第3G3圖係沿著第3G1圖所繪示之切線S3g2所作的結構剖面圖;第3H圖係根據本發明的又一實施例所繪示的立體記憶體元件的結構透視圖;第4A1圖係根據本發明的一實施例所繪示之半導體基材的結構俯視圖;第4A2圖係沿著第4A1圖所繪示之切線S4a所作的結構剖面圖;第4B1圖係繪示在第4A1圖的結構上進行蝕刻製程,移除一部分淺溝隔離結構之後的結構俯視圖;第4B2圖係沿著第4B1圖所繪示之切線S4b所作的結構剖面 圖;第4C1圖係繪示在第4B1圖的結構上進行蝕刻製程,移除一部分脊狀部之後的結構俯視圖;第4C2圖係沿著第4C1圖所繪示之切線S4c1所作的結構剖面圖;第4C3圖係沿著第4C1圖所繪示之切線S4c2所作的結構剖面圖;第4C4圖係沿著第4C1圖所繪示之切線S4c3所作的結構剖面圖;第4D1圖係繪示在第4C1圖的結構上形成側蝕開口之後的結構俯視圖;第4D2圖係沿著第4D1圖所繪示之切線S4d1所作的結構剖面圖;第4D3圖係沿著第4D1圖所繪示之切線S4d2所作的結構剖面圖;第4D4圖係沿著第4D1圖所繪示之切線S4d3所作的結構剖面圖;第4E1圖係繪示在第4D1圖的結構上形成源極線之後的結構俯視圖;第4E2圖係沿著第4E1圖所繪示之切線S4e1所作的結構剖面圖;第4E3圖係沿著第4E1圖所繪示之切線S4e2所作的結構剖面圖; 第4E4圖係沿著第4E1圖所繪示之切線S4e3所作的結構剖面圖;第4F1圖係繪示在第4E1圖的結構上形成閘極線之後的結構俯視圖;第4F2圖係沿著第4F1圖所繪示之切線S4f1所作的結構剖面圖;第4F3圖係沿著第4F1圖所繪示之切線S4f2所作的結構剖面圖;第4F4圖係沿著第4F1圖所繪示之切線S4f3所作的結構剖面圖;第4G1圖係繪示在第4F1圖的結構中形成複數個串列選擇電晶體之後的結構俯視圖;第4G2圖係沿著第4G1圖所繪示之切線S4g1所作的結構剖面圖;第4G3圖係沿著第4G1圖所繪示之切線S4g2所作的結構剖面圖;第4G4圖係沿著第4G1圖所繪示之切線S4g3所作的結構剖面圖;第4H1圖係繪示在第4G1圖的結構中形成複數個接觸差塞之後的結構俯視圖;第4H2圖係沿著第4H1圖所繪示之切線S4h1所作的結構剖面圖;第4H3圖係沿著第4H1圖所繪示之切線S4h2所作的結構剖面圖; 第4H4圖係沿著第4H1圖所繪示之切線S4h3所作的結構剖面圖;以及第4I圖係根據本發明的再一實施例所繪示的立體記憶體元件的結構透視圖。 The above-described embodiments and other objects, features and advantages of the present invention will become more apparent from the embodiments of the invention. The top view of the structure of the semiconductor substrate shown in the embodiment; the first A2 is a cross-sectional view taken along the tangential line S1a1 shown in FIG. 1A1; the first AA3 is taken along the tangential line S1a2 shown in FIG. Structural section 1B1 is a top view of the structure after the ion implantation process of the structure of FIG. 1A1; FIG. 1B2 is a structural cross-sectional view taken along the tangential line S1b1 shown in FIG. 1B1; A cross-sectional view of the structure taken along the tangential line S1b2 shown in FIG. 1B1; the first C1 is a structure after forming the patterned first dielectric layer, the sacrificial layer and the second dielectric layer on the structure of the first B1. 1C2 is a structural cross-sectional view taken along the tangential line S1c1 shown in FIG. 1C1; the 1C3 is a cross-sectional view taken along the tangential line S1c2 shown in FIG. 1C1; the 1D1 drawing is shown A top view of the structure after forming a spacer on the structure of the first C1; the first D2 is a cross-sectional view taken along a tangent S1d1 shown in FIG. 1D1; and the first D3 is a tangent along the first D1. FIG. 1E1 is a plan view showing a structure after performing a selective epitaxial growth process on the structure of the first D1; FIG. 1E2 is a structure taken along a tangent S1e1 shown in FIG. section Figure 1E3 is a cross-sectional view of the structure taken along the tangential line S1e2 shown in Fig. 1E1; the first F1 is a diagram showing the formation of a plurality of planar metal-oxide-semiconductor field-effects on the structure of the first E1. a top view of the structure after the crystal element; the first F2 is a cross-sectional view taken along the tangent S1f1 shown in FIG. 1F1; the first F3 is a cross-sectional view taken along the tangent S1f2 shown in the first F1; 1G1 is a top view of the structure of the first dielectric layer, the sacrificial layer and the second dielectric layer in the first F1 after the single patterning process; the first G2 is a tangent along the first G1 A structural sectional view made by S1g1; a 1G3 drawing is a structural sectional view taken along a tangential line S1g2 shown in Fig. 1G1; a 1G4 drawing is a structural sectional view taken along a tangential line S1g3 shown in Fig. 1G1; The 1H1 diagram shows a top view of the structure after removing the sacrificial layer in the 1G1 diagram; the 1H2 diagram is a cross-sectional view of the structure taken along the tangent S1h1 shown in the 1H1 diagram; the 1H3 diagram is along the 1H1 diagram. A cross-sectional view of the structure taken by the tangent S1h2; 1H4 is a structural cross-sectional view taken along a tangent line S1h3 shown in FIG. 1H1; FIG. 1I1 is a plan view showing a structure after forming a plurality of gate lines in the structure of the 1H1 diagram; The structural cross-sectional view of the tangential line S1i1 shown in Fig. 1I1; the 1I3 figure is a structural cross-sectional view taken along the tangential line S1i2 shown in Fig. 1I1; the 1I4 figure is shown along the 1I1 figure. A cross-sectional view of the structure of the tangent S1i3; the first J1 is a top view of the structure after forming the spacer in the structure of the first embodiment; the first J2 is a cross-sectional view taken along the tangent S1j1 of the first J1; 1J3 is a structural cross-sectional view taken along a tangential line S1j2 shown in FIG. 1J1; the first JJ is a structural cross-sectional view taken along a tangent S1j3 shown in FIG. 1J1; the 1K1 is shown in the first a top view of the structure after forming the tandem selection transistor in the structure of FIG. 1J; the first K2 diagram is a structural cross-sectional view taken along the tangent S1k1 shown in FIG. 1K1; 1K3 is a structural sectional view taken along a tangential line S1k2 shown in FIG. 1K1; the 1K4 is a structural sectional view taken along a tangential line S1k3 shown in FIG. 1K1; FIG. 1L is a perspective view according to the present invention. A perspective view of a structure of a three-dimensional memory device according to an embodiment; FIG. 2A is a plan view showing a structure after forming a patterned first dielectric layer, a conductor layer and a second dielectric layer on the structure of FIG. 2A2 is a structural sectional view taken along a tangent line S2a1 shown in FIG. 2A1; 2A3 is a structural sectional view taken along a tangent line S2a2 shown in FIG. 2A1; FIG. 2B1 is shown in FIG. FIG. 2A1 is a plan view showing a structure after forming a spacer; FIG. 2B2 is a structural cross-sectional view taken along a tangent line S2b1 shown in FIG. 2A1; and FIG. 2B3 is a tangent S2b2 shown along FIG. 2B1. FIG. 2C1 is a plan view showing a structure after performing a selective epitaxial growth process on the structure of FIG. 2B1; and FIG. 2C2 is a structural section taken along a tangent line S2c1 shown in FIG. 2C1. Figure 2; Figure 2C3 is taken along the tangent S2c2 shown in Figure 2C1 Structural section 2D1 is a top view of a structure after forming a plurality of planar metal-oxide-semiconductor field effect transistor elements on the structure of the 2C1; the 2D2 figure is shown along the 2D1 figure. The structural cross-sectional view made by the tangent line S2d1; the 2D3 figure is a structural cross-sectional view taken along the tangent line S2d2 shown in FIG. 2D1; the 2E1 figure shows the first dielectric layer again on the structure of the 2D1 figure. a top view of the structure after the patterning process of the conductor layer and the second dielectric layer; the second E2 figure is a structural cross-sectional view taken along the tangent line S2e1 shown in FIG. 2E1; and the second E3 figure is drawn along the 2E1 figure. A cross-sectional view of the structure shown by the tangent line S2e2; the second E4 figure is a cross-sectional view taken along the tangent line S2e3 shown in FIG. 2E1; and the second F1 figure shows the formation of the tandem selection transistor in the structure of the second E1 figure. The rear view of the structure; the second F2 is a structural cross-sectional view taken along the tangential line S2f1 shown in the second F1; the second F3 is a cross-sectional view taken along the tangential line S2f2 shown in the second F1; a structural cross-sectional view taken along a tangent line S2f3 depicted in FIG. 2F1; 2G is a stereo memory element according to another embodiment of the present invention. 3A1 is a top view of a structure of a semiconductor substrate according to an embodiment of the present invention; and 3A2 is a cross-sectional view of a structure taken along a tangential line S3a shown in FIG. 3A1; 3B1 is a top view of the structure after the ion implantation process of the structure of FIG. 3A1; FIG. 3B2 is a structural cross-sectional view taken along the tangential line S3b shown in FIG. 3B1; FIG. 3C1 is shown in the figure 3A1 is a top view of the structure after forming the gate dielectric layer 306 and the gate line; the 3C2 is a structural cross-sectional view taken along the tangent line S3c1 shown in FIG. 3C1; and the 3C3 is along the 3C1 diagram. The structural cross-sectional view of the tangent line S3c2 is shown; the 3D1 figure shows the top view of the structure after the structure of the 3C1 is covered with the tantalum oxide layer 309 and the tantalum nitride hard mask layer; the 3D2 figure is along the 3D1 is a cross-sectional view of the structure taken by the tangential line S3d1; the 3D3 is a cross-sectional view taken along the tangential line S3d2 shown in FIG. 3D1; and the 3E1 is shown on the structure of the 3D1. a top view of the structure after the conventional perforation 313 and the spacer; the 3E2 is along the 3E1 The structural section of the tangent S3e1 shown in the figure 3E3 is a structural cross-sectional view taken along a tangent line S3e2 shown in FIG. 3E1; FIG. 3F1 is a top view showing a structure after forming a columnar channel structure in the structure of the 3E1; 3F2 The structural cross-sectional view taken along the tangential line S3f1 shown in FIG. 3F1; the 3F3 is a structural cross-sectional view taken along the tangential line S3f2 shown in FIG. 3F1; the 3G1 drawing is shown in the 3F1 The top view of the structure after forming the tandem selection transistor in the structure; the 3G2 figure is a structural cross-sectional view taken along the tangential line S3g1 shown in the 3G1 figure; the 3G3 figure is made along the tangential line S3g2 shown in the 3G1 figure. 3H is a perspective view of a structure of a three-dimensional memory device according to another embodiment of the present invention; and FIG. 4A1 is a structure of a semiconductor substrate according to an embodiment of the invention. 4A2 is a structural cross-sectional view taken along the tangential line S4a shown in FIG. 4A1; FIG. 4B1 is a view showing the structure after the etching process is performed on the structure of the 4A1, and a part of the shallow trench isolation structure is removed. Top view; Figure 4B2 is shown along Figure 4B1 Structural section made by tangent S4b Figure 4C1 is a plan view showing the structure after the etching process is performed on the structure of the 4B1, and a part of the ridges is removed; and the 4C2 is a cross-sectional view of the structure taken along the tangential line S4c1 shown in Fig. 4C1. 4C3 is a structural cross-sectional view taken along a tangent line S4c2 shown in FIG. 4C1; FIG. 4C4 is a cross-sectional view taken along a tangent line S4c3 shown in FIG. 4C1; FIG. 4D1 is shown in FIG. 4A1 is a top view of the structure after forming a side etching opening; 4D2 is a structural sectional view taken along a tangent line S4d1 shown in FIG. 4D1; and 4D3 is a tangent shown along the 4D1 drawing. The structural cross-sectional view made by S4d2; the 4D4 is a structural cross-sectional view taken along the tangential line S4d3 shown in FIG. 4D1; and the 4E1 is a top view of the structure after the source line is formed on the structure of the 4D1; 4E2 is a structural sectional view taken along a tangential line S4e1 shown in FIG. 4E1; and FIG. 4E3 is a structural sectional view taken along a tangential line S4e2 shown in FIG. 4E1; 4E4 is a structural cross-sectional view taken along line S4e3 shown in FIG. 4E1; FIG. 4F1 is a plan view showing a structure after forming a gate line on the structure of FIG. 4E1; 4F1 is a cross-sectional view of the structure taken by the tangential line S4f1; the 4F3 is a cross-sectional view taken along the tangential line S4f2 shown in FIG. 4F1; the 4F4 is a tangential line S4f3 shown along the 4F1 FIG. 4G1 is a plan view showing a structure after forming a plurality of tandem selection transistors in the structure of FIG. 4F1; and FIG. 4G2 is a structure along a tangent S4g1 shown in FIG. 4G1. The cross-sectional view; the fourth G3 is a structural cross-sectional view taken along the tangential line S4g2 shown in Fig. 4G1; the fourth G4 is a structural cross-sectional view taken along the tangential line S4g3 shown in Fig. 4G1; The top view of the structure after forming a plurality of contact plugs in the structure of FIG. 4G1; the fourth H2 figure is a structural cross-sectional view taken along the tangent line S4h1 shown in FIG. 4H1; the fourth H3 figure is along the 4th H1 figure. A cross-sectional view of the structure taken by the tangent S4h2; 4H4 is a structural sectional view taken along a tangential line S4h3 shown in FIG. 4H1; and FIG. 4I is a perspective view showing a structure of a three-dimensional memory element according to still another embodiment of the present invention.

本發明提供一種立體記憶體元件及其製作方法,可解決習知橫向通道場效電晶體限縮記憶胞陣列的密度以及雙極接面電晶體或二極體不易操作控制的問題。為了對本發明之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉數立體記憶體元件及其製作方法作為較佳實施例,並配合所附圖式作詳細說明。 The invention provides a three-dimensional memory component and a manufacturing method thereof, which can solve the problems of the density of the conventional lateral channel field effect transistor-limited memory cell array and the difficulty in operation control of the bipolar junction transistor or the diode. The above-described embodiments and other objects, features and advantages of the present invention will become more apparent and understood.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 However, it must be noted that these specific embodiments and methods are not intended to limit the invention. The invention may be practiced with other features, elements, methods and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.

根據本發明的一實施例提供一種製作立體記憶體元件100的方法。其包括下述步驟:首先提供半導體基材101,使半導體基材101具有一主動區101a和一個周邊區101b,並在半 導體基材101中形成複數個淺溝隔離結構(Shallow Trench Isolation,STI)102。 A method of fabricating a stereo memory device 100 is provided in accordance with an embodiment of the present invention. It comprises the steps of first providing a semiconductor substrate 101 such that the semiconductor substrate 101 has an active region 101a and a peripheral region 101b, and A plurality of Shallow Trench Isolation (STI) 102 are formed in the conductor substrate 101.

請參照第1A1圖至第1A3圖,第1A1圖係根據本發明的一實施例所繪示之半導體基材101的結構俯視圖;第1A2圖係沿著第1A1圖所繪示之切線S1a1所作的結構剖面圖;以及第1A3圖係沿著第1A1圖所繪示之切線S1a2所作的結構剖面圖。 Referring to FIGS. 1A1 to 1A3, FIG. 1A is a plan view showing a structure of a semiconductor substrate 101 according to an embodiment of the present invention; and FIG. 1A2 is a tangent S1a1 shown in FIG. 1A1. A cross-sectional view of the structure; and a cross-sectional view of the structure taken along line S1a2 shown in Fig. 1A1.

在本發明的一些實施例中,如第1A2圖和第1A3圖所繪示,在形成淺溝隔離結構102之後,較佳會在半導體基材101和淺溝隔離結構102的表面形成墊化矽(pad oxide)層103和氮化矽層104,並以淺溝隔離結構102為停止層,對淺溝隔離結構102進行平坦化製程,例如化學機械研磨(Chemical Mechanical Polish,CMP)。 In some embodiments of the present invention, as shown in FIGS. 1A2 and 1A3, after the shallow trench isolation structure 102 is formed, padding is preferably formed on the surface of the semiconductor substrate 101 and the shallow trench isolation structure 102. The pad oxide layer 103 and the tantalum nitride layer 104 are formed as a stop layer by the shallow trench isolation structure 102, and the shallow trench isolation structure 102 is planarized, for example, chemical mechanical polishing (CMP).

在移除氮化矽層104之後,分別對基材101的主動區101a和周邊區101b進行至少一次離子植佈製程。請參照第1B1圖至第1B3圖,第1B1圖係繪示對第1A1圖的結構進行離子植佈製程之後的結構俯視圖;第1B2圖係沿著第1B1圖所繪示之切線S1b1所作的結構剖面圖;以及第1B3圖係沿著第1B1圖所繪示之切線S1b2所作的結構剖面圖。 After removing the tantalum nitride layer 104, at least one ion implantation process is performed on the active region 101a and the peripheral region 101b of the substrate 101, respectively. Referring to FIGS. 1B1 to 1B3, FIG. 1B1 is a plan view showing the structure after the ion implantation process of the structure of FIG. 1A; FIG. 1B2 is a structure taken along the tangent S1b1 shown in FIG. 1B1. The cross-sectional view; and the 1B3 figure is a cross-sectional view of the structure taken along the tangent S1b2 shown in Fig. 1B1.

藉由離子植佈製程,可以在周邊區101b的基材101中形成一個P型阱區PW和一個N型阱區NW。並在主動區101a的基材101中形成一個P型阱區PW和一個位於P型阱區PW中的N型摻雜層。在本發明的一些實施例中,主動區101a和周邊 區101b的P型阱區PW和N型阱區NW可以分別藉由相同的摻雜部驟所形成。另外,在本實施例中,由於淺溝隔離結構102呈現條狀,因此可以將主動區101a中的N型摻雜層劃分為複數個平行淺溝隔離結構102的區域,可作為立體記憶體元件100的源極線105。 By the ion implantation process, a P-type well region PW and an N-type well region NW can be formed in the substrate 101 of the peripheral region 101b. A P-type well region PW and an N-type doped layer in the P-type well region PW are formed in the substrate 101 of the active region 101a. In some embodiments of the invention, active area 101a and surrounding The P-type well region PW and the N-type well region NW of the region 101b can be formed by the same doping portions, respectively. In addition, in the embodiment, since the shallow trench isolation structure 102 is strip-shaped, the N-type doped layer in the active region 101a can be divided into a plurality of parallel shallow trench isolation structures 102, which can be used as a stereo memory component. The source line 105 of 100.

在移除墊化矽層103之後,於基材101的表面上形成圖案化的第一介電層106、犧牲層107和第二介電層108。請參照第1C1圖至第1C3圖,第1C1圖係繪示在第1B1圖的結構上形成圖案化第一介電層106、犧牲層107和第二介電層108之後的結構俯視圖;第1C2圖係沿著第1C1圖所繪示之切線S1c1所作的結構剖面圖;以及第1C3圖係沿著第1C1圖所繪示之切線S1c2所作的結構剖面圖。 After the pad layer 103 is removed, a patterned first dielectric layer 106, a sacrificial layer 107, and a second dielectric layer 108 are formed on the surface of the substrate 101. Referring to FIGS. 1C1 to 1C3, FIG. 1C1 is a plan view showing a structure after forming the patterned first dielectric layer 106, the sacrificial layer 107, and the second dielectric layer 108 on the structure of the first B1; The figure is a structural cross-sectional view taken along the tangential line S1c1 shown in Fig. 1C1; and the 1C3 figure is a structural cross-sectional view taken along the tangential line S1c2 shown in Fig. 1C1.

其中,圖案化的第一介電層106、犧牲層107和第二介電層108包括下述步驟:先依序在基材101的表面上形成彼此堆疊的第一介電層106、犧牲層107和第二介電層108。之後對第一介電層106、犧牲層107和第二介電層108進行蝕刻,在主動區101a中形成複數個貫穿孔109,貫穿第一介電層106、犧牲層107和第二介電層108,並將一部分的源極線105暴露於外。 The patterned first dielectric layer 106, the sacrificial layer 107, and the second dielectric layer 108 include the steps of sequentially forming a first dielectric layer 106 and a sacrificial layer stacked on each other on the surface of the substrate 101. 107 and a second dielectric layer 108. Then, the first dielectric layer 106, the sacrificial layer 107 and the second dielectric layer 108 are etched, and a plurality of through holes 109 are formed in the active region 101a, through the first dielectric layer 106, the sacrificial layer 107 and the second dielectric. Layer 108 and exposes a portion of source line 105 to the outside.

然後,在犧牲層107經由貫穿孔109暴露於外的部分上形成間隙壁110。請參照第1D1圖至第1D3圖,第1D1圖係繪示在第1C1圖的結構上形成間隙壁110之後的結構俯視圖;第1D2圖係沿著第1D1圖所繪示之切線S1d1所作的結構剖面圖; 以及第1D3圖係沿著第1D1圖所繪示之切線S1d2所作的結構剖面圖。 Then, the spacer 110 is formed on a portion where the sacrificial layer 107 is exposed through the through hole 109. Referring to FIGS. 1D1 to 1D3, FIG. 1D1 is a plan view showing a structure after the spacer 110 is formed on the structure of the 1C1; the 1D2 is a structure along the tangent S1d1 shown in FIG. Sectional view And the 1D3 figure is a structural cross-sectional view taken along the tangential line S1d2 shown in FIG. 1D1.

在本發明的一些實施例中,形成間隙壁110的步驟,包括下述步驟:先藉由熱氧化製程(例如原位蒸氣成長(in situ steam generation,ISSG)氧化製程)或沉積製程在貫穿孔109的側壁以及經由貫穿孔109暴露外之源極線105上形成矽氧化物層。再藉由一非等向性蝕刻(anisotropic etch),例如乾式蝕刻步驟,移除覆蓋於暴露之源極線105上的矽氧化物層,將一部分的源極線105再度暴露於外。同時保留形成於犧牲層107經由貫穿孔109暴露於外之側壁上的一部分矽氧化物層來作為間隙壁110。 In some embodiments of the present invention, the step of forming the spacers 110 includes the steps of first performing a thermal oxidation process (eg, an in situ steam generation (ISSG) oxidation process) or a deposition process in the through holes. A sidewall oxide layer is formed on the sidewall of the 109 and the source line 105 exposed through the via 109. A portion of the source line 105 is again exposed by an anisotropic etch, such as a dry etch step, to remove the tantalum oxide layer overlying the exposed source line 105. At the same time, a portion of the tantalum oxide layer formed on the sidewall of the sacrificial layer 107 exposed through the through hole 109 is left as the spacer 110.

接著,進行選擇式的矽或矽鍺(SiGex)磊晶成長製程。請參照第1E1圖至第1E3圖,第1E1圖係繪示在第1D1圖的結構上進行選擇式磊晶成長製程之後的結構俯視圖;第1E2圖係沿著第1E1圖所繪示之切線S1e1所作的結構剖面圖;以及第1E3圖係沿著第1E1圖所繪示之切線S1e2所作的結構剖面圖。藉由選擇式磊晶成長製程,在每一個貫穿孔109中沉積多晶矽,以形成一個柱狀通道結構111。在本實施例之中,矽或矽鍺磊晶成長製程係在第二介電層108的表面上進行,且在矽或矽鍺磊晶成長製程後,會以化學機械研磨移除位於第二介電層108表面上的磊晶成長矽或矽鍺,僅餘留位於貫穿孔109中的磊晶成長矽或矽鍺。 Next, a selective 矽 or 矽锗 (SiGex) epitaxial growth process is performed. Referring to FIGS. 1E1 to 1E3, FIG. 1E1 is a plan view showing a structure after performing a selective epitaxial growth process on the structure of the first D1; FIG. 1E2 is a tangent S1e1 along the first E1 diagram. A structural sectional view taken; and a 1E3 drawing is a structural sectional view taken along a tangent S1e2 shown in Fig. 1E1. Polycrystalline germanium is deposited in each of the through holes 109 by a selective epitaxial growth process to form a columnar channel structure 111. In this embodiment, the germanium or germanium epitaxial growth process is performed on the surface of the second dielectric layer 108, and after the germanium or germanium epitaxial growth process, the second mechanical dielectric polishing is removed. The epitaxial growth on the surface of the dielectric layer 108 is 矽 or 矽锗, leaving only the epitaxial growth 矽 or 位于 in the through hole 109.

之後,在周邊區101b中形成複數個平面式(planar)金屬-氧化物-半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)元件114a、114b和114c。請參照第1F1圖至第1F3圖,第1F1圖係繪示在第1E1圖的結構上形成複數個平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c之後的結構俯視圖;第1F2圖係沿著第1F1圖所繪示之切線S1f1所作的結構剖面圖;以及第1F3圖係沿著第1F1圖所繪示之切線S1f2所作的結構剖面圖。 Thereafter, a plurality of planar metal-oxide-semiconductor field effect transistors (Metal-Oxide-Semiconductor) are formed in the peripheral region 101b. Field-Effect Transistor (MOSFET) elements 114a, 114b and 114c. Referring to FIGS. 1F1 to 1F3, FIG. 1F1 is a plan view showing a structure after forming a plurality of planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c on the structure of FIG. 1F2 is a structural sectional view taken along a tangent S1f1 shown in FIG. 1F1; and a 1F3 is a structural sectional view taken along a tangent S1f2 shown in FIG.

在本實施例中,平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c的形成包括下述步驟:先在基材101上覆蓋用來保護主動區101a的氧化覆蓋層112以及氮化矽硬罩幕層113。在移除位於周邊區101b上的一部分氧化覆蓋層112及一部分硬罩幕層113之後,再於周邊區101b中形成平面式的N型金屬-氧化物-半導體場效電晶體元件114a和114b以及P型金屬-氧化物-半導體場效電晶體元件114c;並在平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c上覆蓋層間介電層(Inter-Layer Dielectric,ILD)115,並以硬罩幕層113為停止層進行平坦化。 In the present embodiment, the formation of the planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c includes the steps of first covering the substrate 101 with an oxide cap layer 112 for protecting the active region 101a and A tantalum nitride hard mask layer 113. After removing a portion of the oxide cap layer 112 and a portion of the hard mask layer 113 on the peripheral region 101b, planar N-type metal-oxide-semiconductor field effect transistor elements 114a and 114b are formed in the peripheral region 101b. P-type metal-oxide-semiconductor field effect transistor element 114c; and overlying interlayer metal-oxide-semiconductor field effect transistor elements 114a, 114b and 114c overlying interlayer dielectric (Inter-Layer Dielectric, ILD) 115 And planarizing with the hard mask layer 113 as a stop layer.

請參照第1G1圖至第1G4圖,第1G1圖係繪示對第1F1圖中的第一介電層106、犧牲層107和第二介電層108進行再一次圖案化製程之後的結構俯視圖;第1G2圖係沿著第1G1圖所繪示之切線S1g1所作的結構剖面圖;第1G3圖係沿著第1G1圖所繪示之切線S1g2所作的結構剖面圖;以及第1G4圖係沿著第1G1圖所繪示之切線S1g3所作的結構剖面圖。在本實施例中, 圖案化製程保留圍繞於柱狀通道結構111周邊的一部分第一介電層106、一部分犧牲層107和一部分第二介電層108,而形成複數條與源極線105交叉的條狀結構116。 Referring to FIGS. 1G1 to 1G4, FIG. 1G1 is a plan view showing a structure after the first dielectric layer 106, the sacrificial layer 107, and the second dielectric layer 108 in the first F1 pattern are further patterned; 1G2 is a structural cross-sectional view taken along the tangential line S1g1 shown in FIG. 1G1; the 1G3 is a structural cross-sectional view taken along the tangential line S1g2 shown in FIG. 1G1; and the 1G4 image is along the first A structural cross-sectional view of the tangent S1g3 shown in Fig. 1G1. In this embodiment, The patterning process retains a portion of the first dielectric layer 106, a portion of the sacrificial layer 107, and a portion of the second dielectric layer 108 surrounding the perimeter of the columnar channel structure 111 to form a plurality of strip structures 116 that intersect the source lines 105.

接著,移除剩餘的犧牲層107。請參照第1H1圖至第1H4圖,第1H1圖係繪示移除第1G1圖中之犧牲層107後的結構俯視圖;第1H2圖係沿著第1H1圖所繪示之切線S1h1所作的結構剖面圖;第1H3圖係沿著第1H1圖所繪示之切線S1h2所作的結構剖面圖;以及第1H4圖係沿著第1H1圖所繪示之切線S1h3所作的結構剖面圖。在本實施例中,移除剩餘的犧牲層107的同時,會一併移除剩餘的硬罩幕層113,並且會在每一個條狀結構116之中形成一個圍繞間隙壁110和柱狀通道結構111的凹室117。一般而言,犧牲層107係由氮化矽所構成,相對於矽和矽氧化物具有較高的蝕刻選擇比,可藉由熱磷酸(H3PO4)來加以移除。 Next, the remaining sacrificial layer 107 is removed. Referring to FIGS. 1H1 to 1H4, the 1H1 is a top view of the structure after removing the sacrificial layer 107 in the 1G1 diagram; the 1H2 is a structural section taken along the tangent S1h1 shown in the 1H1 diagram. Fig. 1H3 is a structural sectional view taken along a tangent line S1h2 shown in Fig. 1H1; and a sectional view taken along a tangent line S1h3 shown in Fig. 1H1. In the present embodiment, while the remaining sacrificial layer 107 is removed, the remaining hard mask layer 113 is removed together, and a spacer wall 110 and a columnar channel are formed in each strip structure 116. The recess 117 of the structure 111. In general, the sacrificial layer 107 is composed of tantalum nitride and has a higher etching selectivity with respect to tantalum and niobium oxide, which can be removed by hot phosphoric acid (H 3 PO 4 ).

後續,形成複數條閘極線118。請參照第1I1圖至第1I4圖,第1I1圖係繪示在第1H1圖的結構中形成複數條閘極線118之後的結構俯視圖;第1I2圖係沿著第1I1圖所繪示之切線S1i1所作的結構剖面圖;第1I3圖係沿著第1I1圖所繪示之切線S1i2所作的結構剖面圖;以及第1I4圖係沿著第1I1圖所繪示之切線S1i3所作的結構剖面圖。 Subsequently, a plurality of gate lines 118 are formed. Referring to FIGS. 1I1 to 1I4, FIG. 1I1 is a plan view showing a structure in which a plurality of gate lines 118 are formed in the structure of FIG. 1H1; and 1I2 is a tangent S1i1 shown along FIG. A cross-sectional view of the structure is taken; a 1A3 diagram is a cross-sectional view taken along a tangent line S1i2 shown in FIG. 1I1; and a 1A4 diagram is a cross-sectional view taken along a tangent S1i3 shown in FIG.

在本實施例之中,閘極線118的形成包含下述步驟:首先於相鄰條狀結構116之間的溝槽中形成導電材質,例如 多晶矽、金屬(例如鎢(W))、合金、金屬氮化物(例如氮化鈦(TiN))或上述之任意組合(其中以氮化鈦/鎢的組合為較佳),藉以填滿每一個凹室117。之後再進行回蝕,移除一部分導電材質,只留下位於凹室117中的導電材質,藉以形成複數條,分別徑向圍繞於對應間隙壁110和柱狀通道結構111的閘極線118。其中,閘極線118與源極線105交叉,並藉由第一介電層106彼此電性隔離。另外,閘極線118也藉由間隙壁110和柱狀通道結構111電性隔離。閘極線118和條狀結構116的組合可稱之為環繞閘極結構(surrounding gate structure),可大幅降低閘極線118的電阻。 In the present embodiment, the formation of the gate line 118 includes the steps of first forming a conductive material in the trench between adjacent strip structures 116, such as Polycrystalline germanium, metal (such as tungsten (W)), alloy, metal nitride (such as titanium nitride (TiN)) or any combination of the above (wherein a combination of titanium nitride / tungsten is preferred), thereby filling each Alcove 117. Subsequent etchback is performed to remove a portion of the conductive material leaving only the conductive material in the recess 117 to form a plurality of strips that radially surround the gate lines 118 corresponding to the spacers 110 and the columnar channel structures 111, respectively. The gate line 118 intersects the source line 105 and is electrically isolated from each other by the first dielectric layer 106. In addition, the gate line 118 is also electrically isolated by the spacer 110 and the columnar channel structure 111. The combination of gate line 118 and strip structure 116 may be referred to as a surrounding gate structure that substantially reduces the resistance of gate line 118.

在本發明的一些實施例中,較佳可以選擇性地在條狀結構116四周形成材質為氮化矽的間隙壁119。請參照第1J1圖至第1J4圖,第1J1圖係繪示在第1I1圖的結構中形成間隙壁119之後的結構俯視圖;第1J2圖係沿著第1J1圖所繪示之切線S1j1所作的結構剖面圖;第1J3圖係沿著第1J1圖所繪示之切線S1j2所作的結構剖面圖;以及第1J4圖係沿著第1J1圖所繪示之切線S1j3所作的結構剖面圖。 In some embodiments of the present invention, it is preferable to selectively form a spacer 119 made of tantalum nitride around the strip structure 116. Referring to FIGS. 1J1 to 1J4, the first JJ is a plan view showing a structure in which the spacers 119 are formed in the structure of the first embodiment, and the first J2 is a structure along the tangent S1j1 shown in FIG. A cross-sectional view; a 1J3 figure is a structural cross-sectional view taken along a tangent line S1j2 shown in Fig. 1J1; and a 1J4 figure is a cross-sectional view taken along a tangent line S1j3 shown in Fig. 1J1.

本實施例中,在形成間隙壁119之前,須先將兩相鄰條狀結構116之間的一部分第一介電層106移除,將一部分源極線105暴露於外。在形成間隙壁119之後,較佳可以在被暴露於外的源極線105上形成金屬矽化物層120,以降低源極線105的電阻。 In this embodiment, a portion of the first dielectric layer 106 between the two adjacent strip structures 116 must be removed prior to forming the spacers 119 to expose a portion of the source lines 105. After the spacers 119 are formed, the metal halide layer 120 may preferably be formed on the source lines 105 exposed to the outside to reduce the resistance of the source lines 105.

之後,在每一個柱狀通道結構111的頂端形成汲極 121,藉以在主動區101a中形成複數個具有垂直通道結構的串列選擇電晶體122。請參照第1K1圖至第1K4圖,第1K1圖係繪示在第1J1圖的結構中形成串列選擇電晶體122之後的結構俯視圖;第1K2圖係沿著第1K1圖所繪示之切線S1k1所作的結構剖面圖;第1K3圖係沿著第1K1圖所繪示之切線S1k2所作的結構剖面圖;以及第1K4圖係沿著第1K1圖所繪示之切線S1k3所作的結構剖面圖。 Thereafter, a bungee is formed at the top end of each of the columnar channel structures 111. 121, whereby a plurality of tandem selection transistors 122 having a vertical channel structure are formed in the active region 101a. Referring to FIG. 1K1 to FIG. 1K4, FIG. 1K1 is a plan view showing a structure after forming the tandem selection transistor 122 in the structure of the first J1 diagram; the first K2 diagram is a tangent S1k1 along the first K1 diagram. A cross-sectional view of the structure taken; a 1K3 figure is a cross-sectional view taken along a tangent line S1k2 shown in Fig. 1K1; and a 1K4 figure is a cross-sectional view taken along a tangent S1k3 shown in Fig. 1K1.

在形成串列選擇電晶體122之後,較佳會並在主動區101a和周邊區101b上形成平坦化的層間介電層123,並於層間介電層123中形成複數個接觸差塞124,用來將平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c與外部元件或電路(未繪示)連接。並且於層間介電層123中形成複數個接觸差塞125,用來將串列選擇電晶體122與後續形成於主動區101a上方的複數個串接記憶胞126連接。 After the tandem selection transistor 122 is formed, a planarized interlayer dielectric layer 123 is preferably formed on the active region 101a and the peripheral region 101b, and a plurality of contact plugs 124 are formed in the interlayer dielectric layer 123. The planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c are connected to external components or circuits (not shown). A plurality of contact plugs 125 are formed in the interlayer dielectric layer 123 for connecting the serial selection transistor 122 to a plurality of serially connected memory cells 126 formed on the active region 101a.

請參照第1L圖,第1L圖係根據本發明的一實施例所繪示的立體記憶體元件100的結構透視圖。複數個串接記憶胞126係形成於第1K1圖至第1K4圖所繪示之結構上方的立體記憶胞陣列127中。且每一個串接記憶胞126與其中一個串列選擇電晶體122之柱狀通道結構111頂端的汲極121串接。 Referring to FIG. 1L, a first perspective view is a perspective view of a three-dimensional memory device 100 according to an embodiment of the invention. A plurality of tandem memory cells 126 are formed in the stereo memory cell array 127 above the structure depicted in Figures 1K1 through 1K4. And each of the series memory cells 126 is connected in series with the drain 121 of the top of the columnar channel structure 111 of one of the tandem selection transistors 122.

在本實施例之中,此記憶胞陣列127包含複數個平行堆疊且彼此電性隔離的導電平面層127a、複數條穿設於複數導電平面層之中的導電柱狀體127b以及位於導電平面層127a和導 電柱狀體127b之間的記憶體層127c。每一個串接記憶胞126係形成於每一導電柱狀體127b、記憶體層127c與不同導電平面層127a的交叉處。其中,串接記憶胞126藉由導電柱狀體127b與位於立體記憶胞陣列127下方之串列選擇電晶體122的汲極121形成串聯。 In this embodiment, the memory cell array 127 includes a plurality of conductive planar layers 127a stacked in parallel and electrically isolated from each other, a plurality of conductive pillars 127b penetrating through the plurality of conductive planar layers, and a conductive planar layer. 127a and guide The memory layer 127c between the electric pillars 127b. Each of the series memory cells 126 is formed at the intersection of each of the conductive pillars 127b, the memory layer 127c, and the different conductive plane layers 127a. The serially connected memory cells 126 are connected in series with the drain electrodes 121 of the tandem selection transistors 122 located under the three-dimensional memory cell array 127 by the conductive columns 127b.

但值得注意的是,前述的記憶胞陣列127並不以此為限,任何具有垂直通道的垂直記憶胞陣列,皆可應用來與串列選擇電晶體122串連,以製作立體記憶體元件100。 It should be noted that the foregoing memory cell array 127 is not limited thereto, and any vertical memory cell array having vertical channels can be applied in series with the serial selection transistor 122 to fabricate the stereo memory device 100. .

根據本發明的另一實施例提供另一種製作立體記憶體元件200的方法。其中,製作立體記憶體元件200的方法大致與製作立體記憶體元件100的方法類似,差別在於形成閘極線的製作方式有所不同。由於形成半導體基材101、淺溝隔離結構102和源極線105的方式已說明如前(如第1A1圖至第1B3圖所繪示),因此相同的步驟不再此贅述。有關立體記憶體元件200的製作方法將接續第1B1圖至第1B3圖進行描述。 Another method of making a stereoscopic memory element 200 is provided in accordance with another embodiment of the present invention. Among them, the method of fabricating the three-dimensional memory element 200 is substantially similar to the method of fabricating the three-dimensional memory element 100, with the difference that the manner in which the gate lines are formed is different. Since the manner of forming the semiconductor substrate 101, the shallow trench isolation structure 102, and the source line 105 has been described as before (as shown in FIGS. 1A1 to 1B3), the same steps will not be described again. A method of fabricating the stereo memory device 200 will be described with reference to FIGS. 1B1 through 1B3.

首先,在第1B1圖的結構上形成圖案化的第一介電層106、導體層207和第二介電層108。請參照第2A1圖至第2A3圖,第2A1圖係繪示在第1B1圖的結構上形成圖案化之第一介電層106、導體層207和第二介電層108之後的結構俯視圖;第2A2圖係沿著第2A1圖所繪示之切線S2a1所作的結構剖面圖;以及第2A3圖係沿著第2A1圖所繪示之切線S2a2所作的結構剖面圖。 First, a patterned first dielectric layer 106, a conductor layer 207, and a second dielectric layer 108 are formed on the structure of FIG. 1B1. Referring to FIGS. 2A1 to 2A3, FIG. 2A1 is a plan view showing a structure after forming the patterned first dielectric layer 106, the conductor layer 207, and the second dielectric layer 108 on the structure of the first B1; 2A2 is a structural sectional view taken along a tangent line S2a1 shown in FIG. 2A1; and 2A3 is a structural sectional view taken along a tangent line S2a2 shown in FIG. 2A1.

在本實施例中,形成圖案化之第一介電層106、導 體層207和第二介電層108包括下述步驟:首先在基材101的表面上形成依序堆疊的第一介電層106、犧牲層107和第二介電層108。再藉由蝕刻製程在主動區101a中形成複數個貫穿孔209,貫穿第一介電層106、導體層207和第二介電層108,並將一部分的源極線105暴露於外。 In this embodiment, the patterned first dielectric layer 106 is formed and guided. The bulk layer 207 and the second dielectric layer 108 include the steps of first forming a first dielectric layer 106, a sacrificial layer 107, and a second dielectric layer 108 which are sequentially stacked on the surface of the substrate 101. A plurality of through holes 209 are formed in the active region 101a by an etching process, through the first dielectric layer 106, the conductor layer 207, and the second dielectric layer 108, and a portion of the source lines 105 are exposed.

然後,在導體層207經由貫穿孔209暴露於外的部分上形成間隙壁210。請參照第2B1圖至第2B3圖,第2B1圖係繪示在第2A1圖的結構上形成間隙壁210之後的結構俯視圖;第2B2圖係沿著第2A1圖所繪示之切線S2b1所作的結構剖面圖;以及第2B3圖係沿著第2B1圖所繪示之切線S2b2所作的結構剖面圖。 Then, a spacer 210 is formed on a portion of the conductor layer 207 that is exposed through the through hole 209. Referring to FIGS. 2B1 to 2B3, FIG. 2B1 is a plan view showing a structure after the spacer 210 is formed on the structure of FIG. 2A; and FIG. 2B is a structure taken along a tangent S2b1 shown in FIG. 2A1. The cross-sectional view; and the 2B3 figure are structural cross-sectional views taken along the tangent S2b2 shown in FIG. 2B1.

在本發明的一些實施例中,形成間隙壁210的步驟,包括先藉由熱氧化製程或沉積製程在貫穿孔209的側壁上形成矽氧化物層。再藉由一非等向性蝕刻,例如乾式蝕刻步驟,移除覆蓋於貫穿孔209底部的矽氧化物層,將一部分的源極線105再度暴露於外。同時保留形成於導體層207經由貫穿孔209暴露於外之側壁上的一部分矽氧化物層來作為間隙壁210。 In some embodiments of the present invention, the step of forming the spacers 210 includes first forming a tantalum oxide layer on the sidewalls of the through vias 209 by a thermal oxidation process or a deposition process. A portion of the source line 105 is again exposed by an anisotropic etch, such as a dry etch step, to remove the tantalum oxide layer overlying the bottom of the via 209. At the same time, a portion of the tantalum oxide layer formed on the sidewall of the conductor layer 207 exposed through the through hole 209 is left as the spacer 210.

接著,進行選擇式的矽或矽鍺磊晶成長製程。請參照第2C1圖至第2C3圖,第2C1圖係繪示在第2B1圖的結構上進行選擇式磊晶成長製程之後的結構俯視圖;第2C2圖係沿著第2C1圖所繪示之切線S2c1所作的結構剖面圖;以及第2C3圖係沿著第2C1圖所繪示之切線S2c2所作的結構剖面圖。藉由選擇 式磊晶成長製程,在每一個貫穿孔209中沉積多晶矽,以形成一個柱狀通道結構111。在本實施例之中,矽或矽鍺磊晶成長製程係在第二介電層108的表面上進行,且在矽或矽鍺磊晶成長製程後,會以化學機械研磨移除位於第二介電層108表面上的磊晶成長矽或矽鍺,僅餘留位於貫穿孔209中的磊晶成長矽或矽鍺。 Next, a selective 矽 or 矽锗 epitaxial growth process is performed. Referring to FIGS. 2C1 to 2C3, the second C1 is a top view of the structure after performing the selective epitaxial growth process on the structure of the second B1; the second C2 is a tangent S2c1 along the second C1. The structural cross-sectional view made; and the 2C3 figure is a structural cross-sectional view taken along the tangential line S2c2 shown in Fig. 2C1. By choosing In the epitaxial growth process, polycrystalline germanium is deposited in each of the through holes 209 to form a columnar channel structure 111. In this embodiment, the germanium or germanium epitaxial growth process is performed on the surface of the second dielectric layer 108, and after the germanium or germanium epitaxial growth process, the second mechanical dielectric polishing is removed. The epitaxial growth on the surface of the dielectric layer 108 is 矽 or 矽锗, leaving only the epitaxial growth 矽 or 位于 in the through hole 209.

之後,在周邊區101b中形成複數個平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c。請參照第2D1圖至第2D3圖,第2D1圖係繪示在第2C1圖的結構上形成複數個平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c之後的結構俯視圖;第2D2圖係沿著第2D1圖所繪示之切線S2d1所作的結構剖面圖;以及第2D3圖係沿著第2D1圖所繪示之切線S2d2所作的結構剖面圖。 Thereafter, a plurality of planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c are formed in the peripheral region 101b. Referring to FIGS. 2D1 to 2D3, FIG. 2D1 is a plan view showing a structure after forming a plurality of planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c on the structure of the 2C1; 2D2 is a structural sectional view taken along a tangent line S2d1 shown in FIG. 2D1; and 2D3 is a structural sectional view taken along a tangent line S2d2 shown in FIG. 2D1.

在本發明的一些實施例中,在周邊區101b中形成平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c的步驟,包括先在基材101上覆蓋用來保護主動區101a的氧化覆蓋層112以及氮化矽硬罩幕層113。在移除位於周邊區101b上的一部分氧化覆蓋層112及一部分硬罩幕層113之後,再於周邊區101b中形成平面式的N型金屬-氧化物-半導體場效電晶體元件114a和114b以及P型金屬-氧化物-半導體場效電晶體元件114c。 In some embodiments of the invention, the steps of forming planar metal-oxide-semiconductor field effect transistor elements 114a, 114b, and 114c in peripheral region 101b include first overlying substrate 101 for protecting active region 101a. The oxide cap layer 112 and the tantalum nitride hard mask layer 113. After removing a portion of the oxide cap layer 112 and a portion of the hard mask layer 113 on the peripheral region 101b, planar N-type metal-oxide-semiconductor field effect transistor elements 114a and 114b are formed in the peripheral region 101b. P-type metal-oxide-semiconductor field effect transistor element 114c.

請參照第2E1圖至第2E4圖,第2E1圖係繪示在第2D1圖的結構上再一次對第一介電層106、導體層207和第二介電層108進行圖案化製程之後的結構俯視圖;第2E2圖係沿著第 2E1圖所繪示之切線S2e1所作的結構剖面圖;第2E3圖係沿著第2E1圖所繪示之切線S2e2所作的結構剖面圖;以及第2E4圖係沿著第2E1圖所繪示之切線S2e3所作的結構剖面圖。 Referring to FIGS. 2E1 to 2E4, FIG. 2E1 illustrates the structure after patterning the first dielectric layer 106, the conductor layer 207, and the second dielectric layer 108 again on the structure of the second D1. Top view; 2E2 is along the first 2E1 is a cross-sectional view of the structure taken by the tangent S2e1; the 2E3 is a cross-sectional view taken along the tangent S2e2 shown in FIG. 2E1; and the 2E4 is a tangent shown along the 2E1. A structural section view made by S2e3.

在本實施例中,圖案化製程保留圍繞於柱狀通道結構111周邊的一部分第一介電層106、一部分導體層207和一部分第二介電層108,而形成複數條與源極線105交叉的條狀結構216。其中,剩餘的導體層207在條狀結構216中形成複數條閘極線218分別徑向圍繞於對應的間隙壁210和柱狀通道結構111。其中,閘極線218與源極線105交叉,並藉由第一介電層106彼此電性隔離。另外,閘極線218也藉由間隙壁210和柱狀通道結構111電性隔離。 In the present embodiment, the patterning process retains a portion of the first dielectric layer 106, a portion of the conductor layer 207, and a portion of the second dielectric layer 108 surrounding the perimeter of the columnar channel structure 111, forming a plurality of stripes crossing the source line 105. Strip structure 216. Wherein, the remaining conductor layer 207 forms a plurality of gate lines 218 in the strip structure 216 radially surrounding the corresponding spacers 210 and the columnar channel structures 111, respectively. The gate line 218 intersects the source line 105 and is electrically isolated from each other by the first dielectric layer 106. In addition, the gate line 218 is also electrically isolated by the spacer 210 and the columnar channel structure 111.

之後,在每一個柱狀通道結構111的頂端形成汲極121,藉以在主動區101a中形成複數個具有垂直通道結構的串列選擇電晶體222。請參照第2F1圖至第2F4圖,第2F1圖係繪示在第2E1圖的結構中形成串列選擇電晶體222之後的結構俯視圖;第2F2圖係沿著第2F1圖所繪示之切線S2f1所作的結構剖面圖;第2F3圖係沿著第2F1圖所繪示之切線S2f2所作的結構剖面圖;以及第2F4圖係沿著第2F1圖所繪示之切線S2f3所作的結構剖面圖。 Thereafter, a drain electrode 121 is formed at the top end of each of the columnar channel structures 111, thereby forming a plurality of tandem selection transistors 222 having a vertical channel structure in the active region 101a. Referring to FIGS. 2F1 to 2F4, FIG. 2F1 is a plan view showing a structure in which the tandem selection transistor 222 is formed in the structure of the second E1 diagram; and the second F2 is a tangent S2f1 along the second F1 diagram. A cross-sectional view of the structure is made; a 2F3 figure is a cross-sectional view taken along a tangent line S2f2 shown in FIG. 2F1; and a 2F4 figure is a cross-sectional view taken along a tangent line S2f3 shown in FIG.

在本發明的一些實施例中,較佳可以在被暴露於外的源極線105上形成金屬矽化物層120,以降低源極線105的電阻。在形成串列選擇電晶體222之後,較佳會在主動區101a和周 邊區101b上形成平坦化的層間介電層123,並於層間介電層123中形成複數個接觸差塞124,用來將平面式金屬-氧化物-半導體場效電晶體元件114a、114b和114c與外部元件或電路(未繪示)連接。並且,於層間介電層123中形成複數個接觸差塞125,用來將串列選擇電晶體222與後續形成於主動區101a上方的複數個串接記憶胞126連接。 In some embodiments of the invention, the metal telluride layer 120 may preferably be formed on the source line 105 that is exposed to reduce the resistance of the source line 105. After forming the tandem selection transistor 222, it is preferred to be in the active region 101a and the periphery. A planarized interlayer dielectric layer 123 is formed on the sidewall region 101b, and a plurality of contact plugs 124 are formed in the interlayer dielectric layer 123 for planar metal-oxide-semiconductor field effect transistor elements 114a, 114b and 114c. Connected to external components or circuits (not shown). Moreover, a plurality of contact plugs 125 are formed in the interlayer dielectric layer 123 for connecting the serial selection transistor 222 to a plurality of serially connected memory cells 126 formed subsequently over the active region 101a.

請參照第2G圖,第2G圖係根據本發明的另一實施例所繪示的立體記憶體元件200的結構透視圖。複數個串接記憶胞126係形成於第2F1圖至第2F4圖所繪示之結構上方的立體記憶胞陣列127中。且每一個串接記憶胞126與其中一個串列選擇電晶體222之柱狀通道結構111頂端的汲極121串接。 Referring to FIG. 2G, FIG. 2G is a perspective view showing a structure of a three-dimensional memory device 200 according to another embodiment of the present invention. A plurality of serially connected memory cells 126 are formed in the three-dimensional memory cell array 127 above the structure depicted in Figures 2F1 to 2F4. And each of the serial memory cells 126 is connected in series with the drain 121 of the top of the columnar channel structure 111 of one of the tandem selection transistors 222.

在本實施例之中,此記憶胞陣列127包含複數個平行堆疊且彼此電性隔離的導電平面層127a、複數條穿設於複數導電平面層之中的導電柱狀體127b以及位於導電平面層127a和導電柱狀體127b之間的記憶體層127c。每一個串接記憶胞126係形成於每一導電柱狀體127b、記憶體層127c與不同導電平面層127a的交叉處。其中,串接記憶胞126藉由導電柱狀體127b與位於立體記憶胞陣列127下方之串列選擇電晶體122的汲極121形成串聯。 In this embodiment, the memory cell array 127 includes a plurality of conductive planar layers 127a stacked in parallel and electrically isolated from each other, a plurality of conductive pillars 127b penetrating through the plurality of conductive planar layers, and a conductive planar layer. The memory layer 127c between the 127a and the conductive column 127b. Each of the series memory cells 126 is formed at the intersection of each of the conductive pillars 127b, the memory layer 127c, and the different conductive plane layers 127a. The serially connected memory cells 126 are connected in series with the drain electrodes 121 of the tandem selection transistors 122 located under the three-dimensional memory cell array 127 by the conductive columns 127b.

根據本發明的又一實施例再提供製作立體記憶體元件300的方法。其包括下述步驟:首先提供半導體基材301,並在半導體基材301中形成複數個淺溝隔離結構302。請參照第3A1 圖至第3A2圖,第3A1圖係根據本發明的一實施例所繪示之半導體基材301的結構俯視圖;以及第3A2圖係沿著第3A1圖所繪示之切線S3a所作的結構剖面圖。 A method of making a stereoscopic memory element 300 is further provided in accordance with yet another embodiment of the present invention. It includes the steps of first providing a semiconductor substrate 301 and forming a plurality of shallow trench isolation structures 302 in the semiconductor substrate 301. Please refer to section 3A1 3A2, FIG. 3A1 is a plan view showing a structure of a semiconductor substrate 301 according to an embodiment of the present invention; and FIG. 3A2 is a structural cross-sectional view taken along a line S3a shown in FIG. 3A1. .

在本發明的一些實施例中,如第3A2圖所繪示,在形成淺溝隔離結構302之後,較佳會在半導體基材301和淺溝隔離結構302的表面形成墊化矽層303和氮化矽層304,並以氮化矽層304為停止層,對淺溝隔離結構302進行平坦化製程,例如化學機械研磨。 In some embodiments of the present invention, as shown in FIG. 3A2, after forming the shallow trench isolation structure 302, a padded germanium layer 303 and nitrogen are preferably formed on the surface of the semiconductor substrate 301 and the shallow trench isolation structure 302. The ruthenium layer 304 is formed and the ruthenium nitride layer 304 is used as a stop layer to planarize the shallow trench isolation structure 302, such as chemical mechanical polishing.

接著,將氮化矽層304移除,並對半導體基材301進行至少一次離子植佈製程。請參照第3B1圖至第3B2圖,第3B1圖係繪示對第3A1圖的結構進行離子植佈製程之後的結構俯視圖;以及第3B2圖係沿著第3B1圖所繪示之切線S3b所作的結構剖面圖。藉由離子植佈製程,可以在半導體基材301中形成一個P型阱區PW和一個位於P型阱區PW中的N型摻雜層。在本實施例中,由於淺溝隔離結構302呈現條狀,因此可以將半導體基材301中的N型摻雜層劃分為複數個平行淺溝隔離結構302的區域,可作為立體記憶體元件300的源極線305。 Next, the tantalum nitride layer 304 is removed, and the semiconductor substrate 301 is subjected to at least one ion implantation process. Referring to FIGS. 3B1 to 3B2, FIG. 3B1 is a plan view showing the structure after the ion implantation process of the structure of FIG. 3A1; and FIG. 3B2 is performed along the tangential line S3b shown in FIG. 3B1. Structural profile. A P-type well region PW and an N-type doped layer in the P-type well region PW can be formed in the semiconductor substrate 301 by an ion implantation process. In the present embodiment, since the shallow trench isolation structure 302 is strip-shaped, the N-type doped layer in the semiconductor substrate 301 can be divided into regions of a plurality of parallel shallow trench isolation structures 302, which can be used as the stereo memory device 300. Source line 305.

然後,在半導體基材301上方形成依序堆疊的閘介電層306和複數條閘極線307。請參照第3C1圖至第3C3圖,第3C1圖係繪示在第3B1圖的結構上形成閘介電層306和閘極線307之後的結構俯視圖;第3C2圖係沿著第3C1圖所繪示之切線S3c1所作的結構剖面圖;以及第3C3圖係沿著第3C1圖所繪示 之切線S3c2所作的結構剖面圖。 Then, a gate dielectric layer 306 and a plurality of gate lines 307 are sequentially stacked over the semiconductor substrate 301. Referring to FIGS. 3C1 to 3C3, FIG. 3C1 is a plan view showing the structure after forming the gate dielectric layer 306 and the gate line 307 on the structure of the 3B1; the 3C2 drawing is along the 3C1 drawing. A cross-sectional view of the structure taken by the tangent S3c1; and a third C3 figure is shown along the 3C1 A cross-sectional view of the structure made by the tangent S3c2.

在本實施例之中,閘介電層306和閘極線307的形成包括:依序在半導體基材301上方形成一介電層和一導電層,然後圖案化此介電層和導電層,藉以在半導體基材301上定義出與源極線305交叉的閘介電層306和閘極線307,並且藉由閘介電層306使閘極線307與源極線305彼此電性隔離。 In this embodiment, the formation of the gate dielectric layer 306 and the gate line 307 includes: sequentially forming a dielectric layer and a conductive layer over the semiconductor substrate 301, and then patterning the dielectric layer and the conductive layer. The gate dielectric layer 306 and the gate line 307 crossing the source line 305 are defined on the semiconductor substrate 301, and the gate line 307 and the source line 305 are electrically isolated from each other by the gate dielectric layer 306.

在形成閘介電層306和閘極線307之後,較佳可以在閘極線307周邊形成間隙壁308,並以閘極線307和間隙壁308為罩幕,進行另一次離子植入製程,在對源極線305未與閘極線307和間隙壁308重疊的部分形成複數個重摻雜區305a。在本實施例中,重摻雜區305a為摻雜濃度實質大於源極線305的N型重摻雜區。 After forming the gate dielectric layer 306 and the gate line 307, it is preferable to form the spacer 308 around the gate line 307, and use the gate line 307 and the spacer 308 as a mask to perform another ion implantation process. A plurality of heavily doped regions 305a are formed in a portion where the source line 305 does not overlap the gate line 307 and the spacer 308. In the present embodiment, the heavily doped region 305a is an N-type heavily doped region having a doping concentration substantially greater than the source line 305.

之後,在基材101上覆蓋矽氧化物層309和氮化矽硬罩幕層310,請參照第3D1圖至第3D3圖,第3D1圖係繪示在第3C1圖的結構上覆蓋矽氧化物層309和氮化矽硬罩幕層310之後的結構俯視圖;第3D2圖係沿著第3D1圖所繪示之切線S3d1所作的結構剖面圖;以及第3D3圖係沿著第3D1圖所繪示之切線S3d2所作的結構剖面圖。 Thereafter, the base material 101 is covered with a tantalum oxide layer 309 and a tantalum nitride hard mask layer 310. Please refer to FIGS. 3D1 to 3D3. FIG. 3D1 is a diagram showing the structure of the 3C1 layer covered with tantalum oxide. A top view of the structure after the layer 309 and the tantalum nitride hard mask layer 310; the 3D2 figure is a structural cross-sectional view taken along the tangent line S3d1 shown in FIG. 3D1; and the 3D3 figure is shown along the 3D1 figure. A cross-sectional view of the structure made by the tangent S3d2.

在形成矽氧化物層309和氮化矽硬罩幕層310之後,較佳會在氮化矽硬罩幕層310上覆蓋一層間介電層311,並進行平坦化製程;再於平坦化的層間介電層311上覆蓋一層氧化覆蓋層312。藉由氧化覆蓋層312、層間介電層311、矽氧化物層 309和氮化矽硬罩幕層310的保護,可確保閘極線307和源極線305不會受到後續在周邊區(未繪示)中所進行的其他製程影響。其中,在周邊區(未繪示)中所進行的其他製程,可例如用來形成複數個平面式金屬-氧化物-半導體場效電晶體元件(未繪示)的製程。 After forming the tantalum oxide layer 309 and the tantalum nitride hard mask layer 310, an interlayer dielectric layer 311 is preferably covered on the tantalum nitride hard mask layer 310, and a planarization process is performed; The interlayer dielectric layer 311 is covered with an oxide coating layer 312. By oxidizing the cap layer 312, the interlayer dielectric layer 311, and the tantalum oxide layer The protection of 309 and the tantalum nitride hard mask layer 310 ensures that the gate line 307 and the source line 305 are not affected by subsequent processing in the peripheral region (not shown). Among other processes performed in the peripheral region (not shown), for example, a process for forming a plurality of planar metal-oxide-semiconductor field effect transistor elements (not shown) can be used.

之後,在每一條閘極線307中形成至少一個貫穿孔313,並在每一個貫穿孔313之中形成一個間隙壁314。請參照第3E1圖至第3E3圖,第3E1圖係繪示在第3D1圖的結構上形成慣穿孔313和間隙壁314之後的結構俯視圖;第3E2圖係沿著第3E1圖所繪示之切線S3e1所作的結構剖面圖;以及第3E3圖係沿著第3E1圖所繪示之切線S3e2所作的結構剖面圖。 Thereafter, at least one through hole 313 is formed in each of the gate lines 307, and a spacer 314 is formed in each of the through holes 313. Referring to FIGS. 3E1 to 3E3, FIG. 3E1 is a plan view showing a structure after forming the conventional perforation 313 and the spacer 314 on the structure of the 3D1; and the 3E2 is a tangent shown along the 3E1. A structural sectional view made by S3e1; and a 3E3 drawing is a structural sectional view taken along the tangential line S3e2 shown in Fig. 3E1.

在本發明的一些實施例之中,較佳係採用乾式蝕刻,例如反應離子蝕刻(Reactive Ion Etch,RIE)製程,在每一條閘極線307和源極線305交叉處形成一個開口(貫穿孔313),延伸穿過氧化覆蓋層312、層間介電層311、氮化矽硬罩幕層310、矽氧化物層309和閘極線307,將一部分對應的源極線305暴露於外。再藉由熱氧化法或沉積製程,在每一個貫穿孔313的側壁上形成材質為矽氧化物的間隙壁314。 In some embodiments of the present invention, a dry etching, such as a reactive ion etching (RIE) process, is preferably used to form an opening at each intersection of the gate line 307 and the source line 305 (through holes). 313), extending through the oxide cap layer 312, the interlayer dielectric layer 311, the tantalum nitride hard mask layer 310, the tantalum oxide layer 309, and the gate line 307, exposing a portion of the corresponding source line 305 to the outside. A spacer 314 made of tantalum oxide is formed on the sidewall of each of the through holes 313 by a thermal oxidation process or a deposition process.

接著,進行選擇式的矽或矽鍺磊晶成長製程,在每一個貫穿孔313中形成一個柱狀通道結構315。請參照第3F1圖至第3F3圖,第3F1圖係繪示在第3E1圖的結構中形成柱狀通道結構315之後的結構俯視圖;第3F2圖係沿著第3F1圖所繪示之切線S3f1所作的結構剖面圖;以及第3F3圖係沿著第3F1圖所 繪示之切線S3f2所作的結構剖面圖。在本實施例中,選擇式磊晶成長製程會在每一個貫穿孔313中沉積多晶矽,藉以在每一個貫穿孔313中形成一個柱狀通道結構315,且每一個柱狀通道結構315的底部與源極線305連接。在本實施例之中,矽或矽鍺磊晶成長製程係在氧化覆蓋層312的表面上進行,且在矽或矽鍺磊晶成長製程後,會以化學機械研磨移除位於氧化覆蓋層312表面上的磊晶成長矽或矽鍺,僅餘留位於貫穿孔313中的磊晶成長矽或矽鍺。 Next, a selective 矽 or 矽锗 epitaxial growth process is performed, and a columnar channel structure 315 is formed in each of the through holes 313. Referring to FIGS. 3F1 to 3F3, FIG. 3F1 is a plan view showing the structure after forming the columnar channel structure 315 in the structure of FIG. 3E1; and FIG. 3F2 is taken along the tangential line S3f1 shown in FIG. 3F1. a structural section view; and a 3F3 diagram along the 3F1 map A cross-sectional view of the structure taken by the tangent S3f2. In the present embodiment, the selective epitaxial growth process deposits polysilicon in each of the through holes 313, thereby forming a columnar channel structure 315 in each of the through holes 313, and the bottom of each of the columnar channel structures 315 is The source lines 305 are connected. In the present embodiment, the germanium or germanium epitaxial growth process is performed on the surface of the oxide cap layer 312, and after the germanium or germanium epitaxial growth process, the oxide cap layer 312 is removed by chemical mechanical polishing. The epitaxial growth on the surface is 矽 or 矽锗, leaving only the epitaxial growth 矽 or 位于 in the through hole 313.

之後,在每一個柱狀通道結構315的頂端形成汲極316,藉以在半導體基材之301上形成複數個具有垂直通道結構的串列選擇電晶體317。請參照第3G1圖至第3G3圖,第3G1圖係繪示在第3F1圖的結構中形成串列選擇電晶體317之後的結構俯視圖;第3G2圖係沿著第3G1圖所繪示之切線S3g1所作的結構剖面圖;以及第3G3圖係沿著第3G1圖所繪示之切線S3g2所作的結構剖面圖。 Thereafter, a drain 316 is formed at the top end of each of the columnar channel structures 315, thereby forming a plurality of tandem selection transistors 317 having a vertical channel structure on the semiconductor substrate 301. Referring to FIGS. 3G1 to 3G3, the 3G1 is a top view of the structure after forming the tandem selection transistor 317 in the structure of the 3F1; the 3G2 is a tangent S3g1 along the 3G1 diagram. The structural sectional view made; and the 3G3 figure is a structural sectional view taken along the tangential line S3g2 shown in Fig. 3G1.

在形成串列選擇電晶體317之後,較佳會並在基材301上形成平坦化的層間介電層318,並於層間介電層318中形成複數個接觸差塞319,用來將串列選擇電晶體317與後續形成於半導體基材301上方的複數個串接記憶胞320連接。請參照第3H圖,第3H圖係根據本發明的又一實施例所繪示的立體記憶體元件300的結構透視圖。複數個串接記憶胞320係形成於第3G1圖至第3G3圖所繪示之結構上方的立體記憶胞陣列321中。且每 一個串接記憶胞320與位於相對應之串列選擇電晶體317之柱狀通道結構頂端的汲極316串接。 After the tandem selection transistor 317 is formed, a planarized interlayer dielectric layer 318 is preferably formed on the substrate 301, and a plurality of contact plugs 319 are formed in the interlayer dielectric layer 318 for aligning the strings. The selection transistor 317 is connected to a plurality of serially connected memory cells 320 that are subsequently formed over the semiconductor substrate 301. Referring to FIG. 3H, FIG. 3H is a perspective view showing the structure of a three-dimensional memory device 300 according to still another embodiment of the present invention. A plurality of tandem memory cells 320 are formed in the three-dimensional memory cell array 321 above the structures illustrated in the third G1 to the third G3. And every A serial memory cell 320 is coupled in series with the drain 316 at the top of the columnar channel structure of the corresponding tandem selection transistor 317.

在本實施例之中,記憶胞陣列321包含複數個平行堆疊且彼此電性隔離的導電平面層321a、複數條穿設於複數導電平面層之中的導電柱狀體321b以及位於導電平面層321a和導電柱狀體321b之間的記憶體層321c。每一個串接記憶胞320係形成於每一條導電柱狀體321b、記憶體層321c與不同導電平面層321a的交叉處。其中,每一個串接記憶胞320藉由導電柱狀體321b與位於立體記憶胞陣列321下方之串列選擇電晶體317的汲極316形成串聯。 In this embodiment, the memory cell array 321 includes a plurality of conductive planar layers 321a stacked in parallel and electrically isolated from each other, a plurality of conductive pillars 321b penetrating through the plurality of conductive planar layers, and a conductive planar layer 321a. And a memory layer 321c between the conductive pillars 321b. Each of the series memory cells 320 is formed at the intersection of each of the conductive pillars 321b, the memory layer 321c, and the different conductive plane layers 321a. Each of the tandem memory cells 320 is connected in series with the drain 316 of the tandem selection transistor 317 located under the three-dimensional memory cell array 321 by the conductive pillars 321b.

根據本發明的再一實施例再提供製作立體記憶體元件400的方法。其包括下述步驟:首先提供半導體基材401,並在半導體基材401中形成複數個淺溝隔離結構402。請參照第4A1圖至第4A2圖,第4A1圖係根據本發明的一實施例所繪示之半導體基材401的結構俯視圖;以及第4A2圖係沿著第4A1圖所繪示之切線S4a所作的結構剖面圖。 A method of making a stereo memory component 400 is provided in accordance with yet another embodiment of the present invention. It includes the steps of first providing a semiconductor substrate 401 and forming a plurality of shallow trench isolation structures 402 in the semiconductor substrate 401. Referring to FIGS. 4A1 to 4A2, FIG. 4A1 is a plan view showing a structure of a semiconductor substrate 401 according to an embodiment of the present invention; and FIG. 4A2 is a tangent S4a shown in FIG. 4A1. Structural section view.

在本發明的一些實施例中,如第4A2圖所繪示,在形成淺溝隔離結構402之後,較佳會在半導體基材401和淺溝隔離結構402的表面形成墊化矽層403和氮化矽層404,並以氮化矽層404為停止層,對淺溝隔離結構402進行平坦化製程,例如化學機械研磨。 In some embodiments of the present invention, as shown in FIG. 4A2, after forming the shallow trench isolation structure 402, a padded germanium layer 403 and nitrogen are preferably formed on the surface of the semiconductor substrate 401 and the shallow trench isolation structure 402. The ruthenium layer 404 is formed and the ruthenium nitride layer 404 is used as a stop layer to planarize the shallow trench isolation structure 402, such as chemical mechanical polishing.

接著,進行一蝕刻製程,以移除一部分的淺溝隔離 結構403。請參照第4B1圖至第4B2圖,第4B1圖係繪示在第4A1圖的結構上進行蝕刻製程,移除一部分淺溝隔離結構403之後的結構俯視圖;以及第4B2圖係沿著第4B1圖所繪示之切線S4b所作的結構剖面圖。在本實施例中,此蝕刻製程係移除每一個淺溝隔離結構403的上方部分,餘留淺溝隔離結構403的下方部分,藉以於該半導體基材401中形成複數個脊狀部405,平行於剩餘的淺溝隔離結構402。 Next, an etching process is performed to remove a portion of the shallow trench isolation Structure 403. Referring to FIGS. 4B1 to 4B2, FIG. 4B1 is a plan view showing the structure after the etching process is performed on the structure of FIG. 4A1, and a part of the shallow trench isolation structure 403 is removed; and the 4B2 diagram is along the 4B1 diagram. A cross-sectional view of the structure taken by the tangent S4b. In this embodiment, the etching process removes the upper portion of each shallow trench isolation structure 403, leaving a lower portion of the shallow trench isolation structure 403, thereby forming a plurality of ridges 405 in the semiconductor substrate 401. Parallel to the remaining shallow trench isolation structures 402.

再進行另一次蝕刻製程,以移除一部分脊狀部405。請參照第4C1圖至第4C4圖,第4C1圖係繪示在第4B1圖的結構上進行另一次蝕刻製程,移除一部分脊狀部405之後的結構俯視圖;第4C2圖係沿著第4C1圖所繪示之切線S4c1所作的結構剖面圖;第4C3圖係沿著第4C1圖所繪示之切線S4c2所作的結構剖面圖;以及第4C4圖係沿著第4C1圖所繪示之切線S4c3所作的結構剖面圖。 Another etching process is performed to remove a portion of the ridges 405. Referring to FIGS. 4C1 to 4C4, FIG. 4C1 is a plan view showing a structure in which another etching process is performed on the structure of FIG. 4B1, and a part of the ridges 405 is removed; and the 4C2 is along the 4C1. A cross-sectional view of the structure taken by the tangent S4c1; the fourth C3 is a cross-sectional view taken along the tangent S4c2 shown in FIG. 4C1; and the fourth C4 is taken along the tangent S4c3 shown in FIG. 4C1. Structural section view.

在本實施例中,此蝕刻製程包含下述步驟:先採用平坦化的有機介電層(Organic Dielectric Layer)(未繪示)填充移除一部分淺溝隔離結構402所形成的凹室,並以剩餘的淺溝隔離結構402為蝕刻停止層,採用圖案化光阻層(未繪示)進行蝕刻,以移除一部分脊狀部405,藉以在半導體基材401表面形成複數個凸出部406。 In this embodiment, the etching process includes the steps of first filling a recess formed by removing a portion of the shallow trench isolation structure 402 by using a planarized organic dielectric layer (not shown). The remaining shallow trench isolation structure 402 is an etch stop layer, which is etched by a patterned photoresist layer (not shown) to remove a portion of the ridges 405, thereby forming a plurality of protrusions 406 on the surface of the semiconductor substrate 401.

接著,在每一個凸出部406下方形成至少一個側蝕開口(undercut)407。請參照第4D1圖至第4D4圖,第4D1圖係繪 示在第4C1圖的結構上形成側蝕開口407之後的結構俯視圖;第4D2圖係沿著第4D1圖所繪示之切線S4d1所作的結構剖面圖;第4D3圖係沿著第4D1圖所繪示之切線S4d2所作的結構剖面圖;以及第4D4圖係沿著第4D1圖所繪示之切線S4d3所作的結構剖面圖。 Next, at least one undercut 407 is formed under each of the projections 406. Please refer to the 4D1 to 4D4 drawings, and the 4D1 drawing A top view of the structure after the undercut opening 407 is formed on the structure of the 4C1; the 4D2 is a structural cross-sectional view taken along the tangent S4d1 shown in FIG. 4D1; and the 4D3 is drawn along the 4D1 A cross-sectional view of the structure taken by the tangent line S4d2; and a cross-sectional view of the fourth line D4 shown along the tangent line S4d3 shown in Fig. 4D1.

在本實施例中,側蝕開口407的形成包含下述步驟:首先對半導體基材401的表面進行原位蒸氣成長(in situ steam generation,ISSG)氧化製程,藉以形成矽氧化物薄膜(未繪示)毯覆在半導體基材401之平表面、每一個凸出部406之側壁以及位於凸出部406頂端之氮化矽層404的表面;再以乾式蝕刻移除位於半導體基材401水平表面和氮化矽層404上的氧化物薄膜,而在凸出部406的側壁上形成間隙壁408。接著進行濕式蝕刻製程,在半導體基材401表面形成至少一個開口(側蝕開口407),並延伸進入凸出部406的下方。 In the present embodiment, the formation of the undercut opening 407 includes the following steps: first, an in-situ steam generation (ISSG) oxidation process is performed on the surface of the semiconductor substrate 401 to form a tantalum oxide film (not drawn). a blanket covering the flat surface of the semiconductor substrate 401, the sidewall of each of the protrusions 406, and the surface of the tantalum nitride layer 404 at the top end of the protrusion 406; and removing the horizontal surface of the semiconductor substrate 401 by dry etching And an oxide film on the tantalum nitride layer 404, and a spacer 408 is formed on the sidewall of the protrusion 406. Next, a wet etching process is performed to form at least one opening (side etching opening 407) on the surface of the semiconductor substrate 401 and extending below the protruding portion 406.

然後,於半導體基材401中形成源極線409,並且部分地延伸進入每一個凸出部406下方的側蝕開口中407。請參照第4E1圖至第4E4圖,第4E1圖係繪示在第4D1圖的結構上形成源極線409之後的結構俯視圖;第4E2圖係沿著第4E1圖所繪示之切線S4e1所作的結構剖面圖;第4E3圖係沿著第4E1圖所繪示之切線S4e2所作的結構剖面圖;以及第4E4圖係沿著第4E1圖所繪示之切線S4e3所作的結構剖面圖。 A source line 409 is then formed in the semiconductor substrate 401 and partially extends into the undercut opening 407 below each of the protrusions 406. Referring to FIGS. 4E1 to 4E4, FIG. 4E1 is a plan view showing the structure after forming the source line 409 on the structure of FIG. 4D1; FIG. 4E2 is a view taken along the tangent S4e1 shown in FIG. 4E1. FIG. 4E3 is a structural sectional view taken along a tangent line S4e2 shown in FIG. 4E1; and FIG. 4E4 is a structural sectional view taken along a tangent line S4e3 shown in FIG. 4E1.

在本實施例之中,源極線409的形成包含下述步 驟:先進行選擇式的N型(N+)高摻雜矽或N型高摻雜矽鍺磊晶成長製程,以於半導體基材401上形成多晶矽層,並且部分地延伸進入側蝕開口中407。在移除位於凸出部406上方之墊化矽層403和氮化矽層404後,進行離子植入製程,使藉由選擇式磊晶成長製程所形成的多晶矽層具有高濃度的N型摻質。 In the present embodiment, the formation of the source line 409 includes the following steps. Step: a selective N-type (N+) high-doped germanium or N-type high-doped germanium epitaxial growth process is first performed to form a polysilicon layer on the semiconductor substrate 401 and partially extend into the undercut opening 407. . After removing the padding layer 403 and the tantalum nitride layer 404 over the protrusions 406, an ion implantation process is performed to make the polycrystalline germanium layer formed by the selective epitaxial growth process have a high concentration of N-type doping. quality.

接著,形成複數條閘極線410,藉以包圍覆蓋每一個凸出部406,並且使閘極線410和源極線409以及凸出部406電性隔離。請參照第4F1圖至第4F4圖,第4F1圖係繪示在第4E1圖的結構上形成閘極線410之後的結構俯視圖;第4F2圖係沿著第4F1圖所繪示之切線S4f1所作的結構剖面圖;第4F3圖係沿著第4F1圖所繪示之切線S4f2所作的結構剖面圖;以及第4F4圖係沿著第4F1圖所繪示之切線S4f3所作的結構剖面圖。 Next, a plurality of gate lines 410 are formed to surround each of the protrusions 406 and electrically isolate the gate lines 410 from the source lines 409 and the protrusions 406. Referring to FIGS. 4F1 to 4F4, FIG. 4F1 is a plan view showing a structure after forming the gate line 410 on the structure of FIG. 4E1; and FIG. 4F2 is a line S4f1 taken along the 4F1 diagram. FIG. 4F3 is a structural cross-sectional view taken along line S4f2 shown in FIG. 4F1; and FIG. 4F4 is a cross-sectional view taken along line S4f3 shown in FIG. 4F1.

在本實施例中,在形成閘極線410之前,還包括藉由熱氧化製程,每一個凸出部406的表面形成閘介電層411。在於閘介電層411上形成閘極線410之後,再以另一個熱氧化製程於閘極線410的側壁上形成間隙壁412。其中,用來形成閘介電層411和間隙壁412的熱製程,可以使源極線409中的N型摻質擴散至每一個凸出部406的下方,而在凸出部406的下方形成一個擴散區409a,與源極線409連接。 In the present embodiment, before forming the gate line 410, the surface of each of the protrusions 406 is formed to form the gate dielectric layer 411 by a thermal oxidation process. After the gate line 410 is formed on the gate dielectric layer 411, a spacer 412 is formed on the sidewall of the gate line 410 by another thermal oxidation process. Wherein, the thermal process for forming the gate dielectric layer 411 and the spacer 412 can diffuse the N-type dopant in the source line 409 below each of the protrusions 406 and form below the protrusions 406. A diffusion region 409a is connected to the source line 409.

詳言之,在本實施例之中,每一個凸出部406的下方具有兩個側蝕開口407,一個位於凸出部406下方之一側,另一個位於凸出部406下方之相反一側。位於每一個凸出部406下 方之的源極線409也分別具有兩個源極區,例如第一源極區409c和第二源極區409d分別延伸進入兩個對應的側蝕開口407。其中,擴散區409a係位於源極區409b和409c之間,且三者彼此相連。第一源極區409b和第二源極區409c的摻雜濃度實質高於擴散區409a的摻雜濃度。 In detail, in the present embodiment, each of the projections 406 has two undercut openings 407, one on the side below the projections 406 and the other on the opposite side below the projections 406. . Located under each of the projections 406 The source lines 409 also have two source regions, for example, the first source region 409c and the second source region 409d respectively extend into two corresponding undercut openings 407. Wherein, the diffusion region 409a is located between the source regions 409b and 409c, and the three are connected to each other. The doping concentration of the first source region 409b and the second source region 409c is substantially higher than the doping concentration of the diffusion region 409a.

後續,在每一個凸出部406的頂端形成汲極413,藉以在半導體基材410上形成複數個具有垂直通道結構的串列選擇電晶體414。請參照第4G1圖至第4G4圖,第4G1圖係繪示在第4F1圖的結構中形成複數個串列選擇電晶體414之後的結構俯視圖;第4G2圖係沿著第4G1圖所繪示之切線S4g1所作的結構剖面圖;第4G3圖係沿著第4G1圖所繪示之切線S4g2所作的結構剖面圖;以及第4G4圖係沿著第4G1圖所繪示之切線S4g3所作的結構剖面圖。 Subsequently, a drain 413 is formed at the top end of each of the projections 406, thereby forming a plurality of tandem selection transistors 414 having a vertical channel structure on the semiconductor substrate 410. Referring to FIGS. 4G1 to 4G4, FIG. 4G1 is a plan view showing a structure after forming a plurality of serial selection transistors 414 in the structure of FIG. 4F1; FIG. 4G2 is shown along the 4G1 diagram. A cross-sectional view of the structure taken by the tangent line S4g1; a cross-sectional view of the structure taken along the tangent line S4g2 shown in Fig. 4G1; and a cross-sectional view of the fourth line G4 taken along the tangent line S4g3 shown in Fig. 4G1. .

在本發明的一些實施例中,在形成汲極413之前,較佳可以在每一個凸出部406的頂端及第一源極區409b和第二源極區409c上方形成金屬矽化物層415,並以氮化矽硬罩幕層416以及層間介電層417覆蓋於凸出部406上。汲極413的製作包含下述步驟:先形成複數個貫穿孔418穿過層間介電層417、氮化矽硬罩幕層416、金屬矽化物層415、閘極線410和閘介電層411,將一部分凸出部406暴露出來。再進行另一次離子植入製程,在每一個凸出部406的頂端形成一個N型摻雜區。 In some embodiments of the present invention, before forming the drain 413, a metal telluride layer 415 may be formed over the top end of each of the protrusions 406 and the first source region 409b and the second source region 409c. The bump 406 is covered by a tantalum nitride hard mask layer 416 and an interlayer dielectric layer 417. The fabrication of the drain 413 includes the steps of forming a plurality of through vias 418 through the interlayer dielectric layer 417, the tantalum nitride hard mask layer 416, the metal telluride layer 415, the gate line 410, and the gate dielectric layer 411. A portion of the projection 406 is exposed. Another ion implantation process is performed to form an N-type doped region at the top end of each of the projections 406.

在形成串列選擇電晶體414之後,在貫穿孔418孔 中形成複數個接觸差塞419用來將連接串列選擇電晶體414與後續形成於半導體基材401上方的複數個串接記憶胞422連接。請參照第4H1圖至第4H4圖,第4H1圖係繪示在第4G1圖的結構中形成複數個接觸差塞419之後的結構俯視圖;第4H2圖係沿著第4H1圖所繪示之切線S4h1所作的結構剖面圖;第4H3圖係沿著第4H1圖所繪示之切線S4h2所作的結構剖面圖;以及第4H4圖係沿著第4H1圖所繪示之切線S4h3所作的結構剖面圖。 After forming the tandem selection transistor 414, the hole in the through hole 418 A plurality of contact plugs 419 are formed to connect the series tandem selection transistor 414 with a plurality of serially connected memory cells 422 formed over the semiconductor substrate 401. Referring to FIGS. 4H1 to 4H4, FIG. 4H1 is a plan view showing a structure after forming a plurality of contact plugs 419 in the structure of FIG. 4G1; and FIG. 4H2 is a tangent S4h1 shown along FIG. 4H1. A cross-sectional view of the structure is made; a 4H3 diagram is a cross-sectional view taken along a tangential line S4h2 shown in FIG. 4H1; and a cross-sectional view taken along a tangential line S4h3 shown in FIG. 4H1.

在本實施例中,在形成接觸差塞419之前,必須先於貫穿孔418孔的側壁上形成間隙壁420,以確保接觸差塞419與閘極線410電性隔離。 In the present embodiment, before the contact plug 419 is formed, the spacer 420 must be formed on the sidewall of the through hole 418 to ensure that the contact plug 419 is electrically isolated from the gate line 410.

後續,於基材401上方形成複數個串接記憶胞422,使其與位於串列選擇電晶體414之凸出部406頂端的汲極413串接。請參照第4I圖,第4I圖係根據本發明的再一實施例所繪示的立體記憶體元件400的結構透視圖。 Subsequently, a plurality of serially connected memory cells 422 are formed over the substrate 401 in series with the drain 413 at the top end of the protruding portion 406 of the tandem selection transistor 414. Referring to FIG. 4I, FIG. 4I is a perspective view showing the structure of a three-dimensional memory device 400 according to still another embodiment of the present invention.

在本實施例之中,串接記憶胞422係形成於第4H1圖至第4H4圖所繪示之結構上方的立體記憶胞陣列421中。其中,記憶胞陣列421包含複數個平行堆疊且彼此電性隔離的導電平面層421a、複數條穿設於複數導電平面層之中的導電柱狀體421b以及位於導電平面層421a和導電柱狀體421b之間的記憶體層421c。每一個串接記憶胞422係形成於每一條導電柱狀體421b和記憶體層421c與不同導電平面層421a的交叉處。其中,每一個串接記憶胞422藉由金導電柱狀體421b與位於立體記憶胞陣 列421下方之串列選擇電晶體414的汲極413形成串聯。 In the present embodiment, the tandem memory cells 422 are formed in the three-dimensional memory cell array 421 above the structures illustrated in FIGS. 4H1 to 4H4. The memory cell array 421 includes a plurality of conductive planar layers 421a stacked in parallel and electrically isolated from each other, a plurality of conductive pillars 421b penetrating through the plurality of conductive planar layers, and a conductive planar layer 421a and conductive pillars. The memory layer 421c between 421b. Each of the series memory cells 422 is formed at the intersection of each of the conductive pillars 421b and the memory layer 421c and the different conductive plane layer 421a. Wherein, each of the serially connected memory cells 422 is located in the stereo memory cell array by the gold conductive columnar body 421b. The drain 413 of the tandem selection transistor 414 below column 421 is connected in series.

根據上述實施例,本發明是在提供一種立體記憶體元件及其製作方法。此一立體記憶體元件係採用具有垂直通道的場效電晶體來作為立體記憶體元件之串接記憶胞的串列選擇電晶體。在本發明的一些實施例中,場效電晶體的垂直通道可以直接建構於凸設在半導體基材表面的凸出部中。在本發明的一些實施例中,可採用選擇式磊晶成長製程來形成場效電晶體的垂直通道。 According to the above embodiment, the present invention provides a three-dimensional memory element and a method of fabricating the same. The three-dimensional memory component uses a field effect transistor having a vertical channel as a tandem selection transistor of a serial memory cell. In some embodiments of the invention, the vertical channel of the field effect transistor can be directly constructed in a projection that is convexly disposed on the surface of the semiconductor substrate. In some embodiments of the invention, a selective epitaxial growth process can be employed to form the vertical channels of the field effect transistor.

由於,垂直通道的場效電晶體具有占地面積較小,以及電流與電壓(I/V)之間的變化呈現線性函數關係,在進行多位元操作時較易於控制等技術優勢。可同時解決習知橫向通道場效電晶體限縮記憶胞陣列的密度以及雙極接面電晶體或二極體不易操作控制的問題。 Because the vertical channel field effect transistor has a small footprint, and the linear relationship between the current and voltage (I / V) changes, it is easier to control and other technical advantages when performing multi-bit operation. The problem of the density of the conventional lateral channel field effect transistor-limited memory cell array and the difficulty in operation control of the bipolar junction transistor or the diode can be solved at the same time.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

401‧‧‧半導體基材 401‧‧‧Semiconductor substrate

406‧‧‧凸出部 406‧‧‧Protruding

409‧‧‧源極線 409‧‧‧ source line

409a‧‧‧擴散區 409a‧‧‧Diffusion zone

409b‧‧‧第一源極區 409b‧‧‧First source area

409c‧‧‧第二源極區 409c‧‧‧Second source area

410‧‧‧閘極線 410‧‧‧ gate line

411‧‧‧閘介電層 411‧‧‧gate dielectric layer

412‧‧‧間隙壁 412‧‧‧ spacer

413‧‧‧汲極 413‧‧‧汲polar

414‧‧‧串列選擇電晶體 414‧‧‧Serial selection transistor

415‧‧‧金屬矽化物層 415‧‧‧metal telluride layer

416‧‧‧硬罩幕層 416‧‧‧ Hard mask layer

417‧‧‧層間介電層 417‧‧‧Interlayer dielectric layer

419‧‧‧接觸差塞 419‧‧‧Contacts

420‧‧‧間隙壁 420‧‧‧ spacer

Claims (18)

一種立體記憶體元件,包括:一半導體基材,具有一第一凸出部;一第一源極線,位於該半導體基材之中並且部分地延伸於該第一凸出部的下方;一第一閘極線,包圍且覆蓋於該第一凸出部上,並與該第一凸出部和該第一源極線電性隔離;以及複數個串接記憶胞,位於該基材上方,並與該第一凸出部的一頂端串接。 A three-dimensional memory device comprising: a semiconductor substrate having a first protrusion; a first source line located in the semiconductor substrate and extending partially below the first protrusion; a first gate line surrounding and covering the first protrusion and electrically isolated from the first protrusion and the first source line; and a plurality of serially connected memory cells above the substrate And connected in series with a top end of the first protrusion. 如申請專利範圍第1項所述之立體記憶體元件,其中該半導體基材具有一第一側蝕開口(undercut)位於該第一凸出部下方之一側,以及一第二側蝕開口位於該第一凸出部下方之相反一側,分別用以容納一部分該第一源極線。 The three-dimensional memory device of claim 1, wherein the semiconductor substrate has a first undercut on one side of the first protrusion and a second undercut opening The opposite side of the first protruding portion is respectively for accommodating a part of the first source line. 如申請專利範圍第2項所述之立體記憶體元件,其中該第一源極線包括:一第一源極區,部分延伸於該第一側蝕開口之中;一第二源極區,部分延伸於該第二側蝕開口之中;以及一第一擴散區,位於該第一凸出部下方,且連接該第一源極區和第二源極區。 The three-dimensional memory device of claim 2, wherein the first source line comprises: a first source region, partially extending in the first spacer opening; and a second source region; a portion extending in the second undercut opening; and a first diffusion region under the first protrusion and connecting the first source region and the second source region. 如申請專利範圍第1項所述之立體記憶體元件,更包括:一第二凸出部,位於該半導體基材上,並鄰接該第一凸出部;複數個串接記憶胞,位於該基材上方,並與該第二凸出部的一頂端串接;以及一第二源極線,與該第一源極線平行,且部分地延伸於該第二凸出部的下方;其中,該第一閘極線包圍且覆蓋於該第二凸出部上,並與該第二凸出部和該第二源極線電性隔離。 The three-dimensional memory device of claim 1, further comprising: a second protruding portion on the semiconductor substrate adjacent to the first protruding portion; a plurality of serially connected memory cells located at the a substrate above and connected to a top end of the second protrusion; and a second source line parallel to the first source line and extending partially below the second protrusion; The first gate line surrounds and covers the second protrusion and is electrically isolated from the second protrusion and the second source line. 如申請專利範圍第4項所述之立體記憶體元件,更包括:一第三凸出部,位於該半導體基材上,並鄰接該第一凸出部;複數個串接記憶胞,位於該基材上方,並與該第三凸出部的一頂端串接;以及一第二閘極線,與該第一閘極線平行,包圍且覆蓋於該第三凸出部上,並與該第三凸出部和該第一源極線電性隔離;其中該第一源極層部分地延伸於該第三凸出部的下方。 The three-dimensional memory device of claim 4, further comprising: a third protruding portion on the semiconductor substrate adjacent to the first protruding portion; a plurality of serially connected memory cells located at the a substrate above and connected to a top end of the third protrusion; and a second gate line parallel to the first gate line, surrounding and covering the third protrusion, and The third protrusion is electrically isolated from the first source line; wherein the first source layer extends partially below the third protrusion. 一種立體記憶體元件的製作方法,包括:提供一半導體基材,使其具有至少一凸出部;於該半導體基材之中形成至少一源極線,且使該源極線部分地延伸於該凸出部的下方;形成至少一閘極線,包圍且覆蓋於該凸出部,並與該閘極線 和該源極線電性隔離;以及於該基材上方形成複數個串接記憶胞,使其與該凸出部的一頂端串接。 A method of fabricating a three-dimensional memory device, comprising: providing a semiconductor substrate having at least one protrusion; forming at least one source line in the semiconductor substrate, and extending the source line partially a lower portion of the protrusion; forming at least one gate line, surrounding and covering the protrusion, and the gate line Electrically isolating from the source line; and forming a plurality of serially connected memory cells above the substrate to be in series with a top end of the protrusion. 如申請專利範圍第6項所述之立體記憶體元件的製作方法,其中提供該半導體基材的步驟包括:於該半導體基材中形成複數個淺溝隔離結構(Shallow Trench Isolatiin,STI);將每一該些淺溝隔離結構部分移除,藉以於該半導體材上形成複數個脊狀部,平行於剩餘的該些淺溝隔離結構;以及以剩餘的該些淺溝隔離結構為蝕刻停止層,移除一部分該些脊狀部,以形成該至少一凸出部。 The method of fabricating a three-dimensional memory device according to claim 6, wherein the step of providing the semiconductor substrate comprises: forming a plurality of shallow trench isolation structures (STI) in the semiconductor substrate; Each of the shallow trench isolation structures is partially removed, whereby a plurality of ridges are formed on the semiconductor material, parallel to the remaining shallow trench isolation structures; and the remaining shallow trench isolation structures are etch stop layers And removing a portion of the ridges to form the at least one protrusion. 如申請專利範圍第6項所述之立體記憶體元件的製作方法,其中形成該源極線的方法包括:蝕刻該半導體基材,藉以於該凸出部下方形成至少一側蝕開口;以及進行一選擇式磊晶成長製程,於該半導體基材上形成一多晶矽層,並且部分地延伸進入該側蝕開口中。 The method of fabricating a three-dimensional memory device according to claim 6, wherein the method of forming the source line comprises: etching the semiconductor substrate, thereby forming at least one side of the opening under the protrusion; and performing A selective epitaxial growth process forms a polysilicon layer on the semiconductor substrate and partially extends into the undercut opening. 如申請專利範圍第8項所述之立體記憶體元件的製作方法,形成該閘極線之前更包括:進行一熱氧化製程,形成一閘介 電層包覆該凸出部,並於該凸出部下方形成一擴散區,與該多晶矽層連接。 The method for fabricating a three-dimensional memory device according to claim 8, wherein before the forming the gate line, the method further comprises: performing a thermal oxidation process to form a gate dielectric The electric layer covers the protruding portion, and a diffusion region is formed under the protruding portion to be connected to the polysilicon layer. 一種記憶體元件的製作方法,包括:提供一半導體基材,使該基材具有一主動區和一周邊區(periphery);於該主動區之中形成至少一源極線;進行一選擇式磊晶成長(Selective Epitaxial Growth,SEG)製程,於該源極線上形成至少一柱狀通道結構,使該柱狀通道結構的一底部與該源極線連接;形成至少一閘極線與該源極線交叉,並圍繞於該柱狀通道結構,且與該柱狀通道結構和該源極線電性隔離;於該主動區上方形成複數個串接記憶胞,使其與該柱狀通道結構的一頂端串接。 A method of fabricating a memory device, comprising: providing a semiconductor substrate having an active region and a peripheral region; forming at least one source line in the active region; performing a selective epitaxial a Selective Epitaxial Growth (SEG) process, forming at least one columnar channel structure on the source line, connecting a bottom of the columnar channel structure to the source line; forming at least one gate line and the source line Intersecting and surrounding the columnar channel structure, and electrically isolating from the columnar channel structure and the source line; forming a plurality of serially connected memory cells above the active region to make a structure with the columnar channel structure The top is connected in series. 如申請專利範圍第10項所述之立體記憶體元件的製作方法,其中形成該源極線的步驟包括一離子植入製程。 The method of fabricating a three-dimensional memory device according to claim 10, wherein the step of forming the source line comprises an ion implantation process. 如申請專利範圍第10項所述之立體記憶體元件的製作方法,其中形成該柱狀通道結構的步驟包括:於該源極線上依序形成一第一介電層、一犧牲層和一第二介電層; 圖案化該第一介電層、該犧牲層和該第二介電層,以形成至少一貫穿孔,將一部分該源極線暴露於外,於該犧牲層經由該貫穿孔暴露於外的一部分上形成一間隙壁;進行該選擇式磊晶成長製程,於該貫穿孔中形成該柱狀通道結構。 The method for fabricating a three-dimensional memory device according to claim 10, wherein the step of forming the columnar channel structure comprises: sequentially forming a first dielectric layer, a sacrificial layer, and a first layer on the source line. Two dielectric layers; Patterning the first dielectric layer, the sacrificial layer and the second dielectric layer to form at least a uniform via, exposing a portion of the source line to the outside, and exposing the sacrificial layer to the outer portion via the through hole Forming a spacer; performing the selective epitaxial growth process to form the columnar channel structure in the through hole. 如申請專利範圍第10項所述之立體記憶體元件的製作方法,其中形成該柱狀通道結構的步驟包括:於該源極層上依序形成一第一介電層、一導體層和一第二介電層;圖案化該第一介電層、該導體層和該第二介電層,以形成至少一貫穿孔,將一部分該源極線暴露於外;以及於該導體層經由該貫穿孔暴露於外的一部分上形成一間隙壁。 The method for fabricating a three-dimensional memory device according to claim 10, wherein the step of forming the columnar channel structure comprises: sequentially forming a first dielectric layer, a conductor layer and a layer on the source layer; a second dielectric layer; patterning the first dielectric layer, the conductor layer and the second dielectric layer to form at least a uniform via, exposing a portion of the source line to the outside; and passing through the conductor layer A portion of the hole is exposed to the outer portion to form a spacer. 如申請專利範圍第10項所述之立體記憶體元件的製作方法,在形成該柱狀通道結構之後,更包括於該周邊區形成至少一平面式(planar)金屬-氧化物-半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)元件。 The method for fabricating a three-dimensional memory device according to claim 10, after forming the columnar channel structure, further comprising forming at least one planar metal-oxide-semiconductor field effect current in the peripheral region. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) component. 一種立體記憶體元件的製作方法,包括:提供一半導體基材;於該半導體基材中形成至少一源極線;形成至少一閘極線,與該源極線交叉,並且彼此電性隔離;於該閘極線中形成至少一貫穿孔,將一部分該閘極線和一部分該源極線暴露於外;於該貫穿孔的側壁上形成一間隙壁;進行一選擇式磊晶成長製程,於該貫穿孔中形成一柱狀通道結構;以及於該半導體基材上方形成複數個串接記憶胞,使其與該柱狀通道結構的一頂端串接。 A method for fabricating a three-dimensional memory device, comprising: providing a semiconductor substrate; forming at least one source line in the semiconductor substrate; forming at least one gate line, crossing the source line, and electrically isolating from each other; Forming at least a uniform via in the gate line, exposing a portion of the gate line and a portion of the source line to the outside; forming a spacer on the sidewall of the through hole; performing a selective epitaxial growth process Forming a columnar channel structure in the through hole; and forming a plurality of serially connected memory cells over the semiconductor substrate to be in series with a top end of the columnar channel structure. 如申請專利範圍第15項所述之立體記憶體元件的製作方法,其中形成該源極線的步驟包括一離子植入製程。 The method of fabricating a three-dimensional memory device according to claim 15, wherein the step of forming the source line comprises an ion implantation process. 如申請專利範圍第15項所述之立體記憶體元件的製作方法,更包括在該源極線和該閘極線之間形成一閘介電層。 The method for fabricating a three-dimensional memory device according to claim 15, further comprising forming a gate dielectric layer between the source line and the gate line. 如申請專利範圍第15項所述之立體記憶體元件的製作方法,形成該貫穿孔之前更包括:以該閘極線為罩幕,進行一離子摻雜製程,於該源極線中形成至少二離子摻雜區鄰接該閘極線。 The method for fabricating a three-dimensional memory device according to claim 15, wherein before the forming the through hole, the method further comprises: performing an ion doping process with the gate line as a mask, and forming at least the source line The diion doped region is adjacent to the gate line.
TW104135031A 2015-10-26 2015-10-26 Three dimensional memory device and method for fabricating the same TWI575666B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104135031A TWI575666B (en) 2015-10-26 2015-10-26 Three dimensional memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104135031A TWI575666B (en) 2015-10-26 2015-10-26 Three dimensional memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI575666B true TWI575666B (en) 2017-03-21
TW201715656A TW201715656A (en) 2017-05-01

Family

ID=58766305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104135031A TWI575666B (en) 2015-10-26 2015-10-26 Three dimensional memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI575666B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019516A (en) * 2008-11-07 2010-05-16 Macronix Int Co Ltd Memory cell access device having a PN-junction with polycrystalline and single-crystal semiconductor regions
JP2011049561A (en) * 2009-08-26 2011-03-10 Samsung Electronics Co Ltd Semiconductor memory device comprising three-dimensional memory cell array, and method for manufacturing same
TW201301450A (en) * 2011-06-24 2013-01-01 Macromix Internat Co Ltd Method of forming memory cell access device
TW201436109A (en) * 2013-03-13 2014-09-16 Macronix Int Co Ltd 3D memory process and structures
US20140269078A1 (en) * 2013-03-12 2014-09-18 Macronix International Co., Ltd. Memory architecture of thin film 3d array
KR20150070746A (en) * 2013-12-17 2015-06-25 삼성전자주식회사 Semiconductor Memory Device And Method Of Fabricating The Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019516A (en) * 2008-11-07 2010-05-16 Macronix Int Co Ltd Memory cell access device having a PN-junction with polycrystalline and single-crystal semiconductor regions
JP2011049561A (en) * 2009-08-26 2011-03-10 Samsung Electronics Co Ltd Semiconductor memory device comprising three-dimensional memory cell array, and method for manufacturing same
TW201301450A (en) * 2011-06-24 2013-01-01 Macromix Internat Co Ltd Method of forming memory cell access device
US20140269078A1 (en) * 2013-03-12 2014-09-18 Macronix International Co., Ltd. Memory architecture of thin film 3d array
TW201436109A (en) * 2013-03-13 2014-09-16 Macronix Int Co Ltd 3D memory process and structures
KR20150070746A (en) * 2013-12-17 2015-06-25 삼성전자주식회사 Semiconductor Memory Device And Method Of Fabricating The Same

Also Published As

Publication number Publication date
TW201715656A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP7478512B2 (en) Vertical memory device and method for manufacturing the same
TWI621245B (en) Semiconductor memory device having enlarged cell contact area and method of fabricating the same
KR102401486B1 (en) A semiconductor device having a contact structure and method of manufacturing the semiconductor device
JP4456880B2 (en) Semiconductor device and manufacturing method thereof
TWI612674B (en) Finfet and the methods of fabricating the same
US20130234282A1 (en) Semiconductor device with vertical cells and fabrication method thereof
KR100983693B1 (en) Method of fabricating vertical transistor in high integrated semiconductor apparatus
JP2010141107A (en) Semiconductor device and method of manufacturing the same
US10121735B2 (en) Method of designing a layout of a semiconductor device, and a semiconductor device including a fin
US20150371895A1 (en) Method for manufacturing smeiconductor device
US9240415B2 (en) Semiconductor device and method of forming the same
US10720426B2 (en) Three dimensional memory device and method for fabricating the same
TW202015182A (en) Method for manufacturing semiconductor structure
WO2014123170A1 (en) Semiconductor device and method for manufacturing same
KR20180064799A (en) Semiconductor device, method of designing a layout of a semiconductor device, and method of manufacturing a semiconductor device
US8999827B2 (en) Semiconductor device manufacturing method
US20200219891A1 (en) Static random-access memory structure and related fabrication method
TWI575666B (en) Three dimensional memory device and method for fabricating the same
JP2014241325A (en) Semiconductor device and semiconductor device manufacturing method
CN106711144B (en) Three-dimensional memory element and manufacturing method thereof
WO2014123176A1 (en) Semiconductor device and fabrication method therefor
JP2014175647A (en) Semiconductor device and method for manufacturing the same
TWI841912B (en) Semiconductor memory device
JP2013030698A (en) Method of manufacturing semiconductor device
US20230309299A1 (en) Memory device and method of fabricating the same