TWI573390B - Operational transconductance amplifier for wide input range application - Google Patents

Operational transconductance amplifier for wide input range application Download PDF

Info

Publication number
TWI573390B
TWI573390B TW105100549A TW105100549A TWI573390B TW I573390 B TWI573390 B TW I573390B TW 105100549 A TW105100549 A TW 105100549A TW 105100549 A TW105100549 A TW 105100549A TW I573390 B TWI573390 B TW I573390B
Authority
TW
Taiwan
Prior art keywords
transistor
terminal
input
voltage
electrically connected
Prior art date
Application number
TW105100549A
Other languages
Chinese (zh)
Other versions
TW201810937A (en
Inventor
何儀修
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW105100549A priority Critical patent/TWI573390B/en
Application granted granted Critical
Publication of TWI573390B publication Critical patent/TWI573390B/en
Publication of TW201810937A publication Critical patent/TW201810937A/en

Links

Landscapes

  • Amplifiers (AREA)

Description

適於寬輸入範圍應用的跨導運算放大器 Transconductance op amp for wide input range applications

本發明係關於一種跨導運算放大器(Operational Transconductance Amplifier,OTA),且特別是一種適於寬輸入範圍應用的跨導運算放大器,其中寬輸入範圍應用例如包括發光二極體驅動器的應用。 The present invention relates to an Operational Transconductance Amplifier (OTA), and more particularly to a transconductance operational amplifier suitable for wide input range applications, wherein a wide input range application includes, for example, an application including a light emitting diode driver.

針對切換式發光二極體設備來說,其需要發光二極體驅動器產生脈波寬度調變信號來驅動。用以產生脈波寬度調變信號的脈波寬度調變器會具有一個跨導運算放大器,並且跨導運算放大器放大參考電壓與依據發光二極體回授電流產生的回授電壓之間的誤差信號,從而使脈波寬度調變器調整脈波寬度調變信號之責任區間的時間(period of duty cycle)。 For a switched LED device, it is required that the LED driver generates a pulse width modulation signal to drive. The pulse width modulator for generating the pulse width modulation signal has a transconductance operational amplifier, and the transconductance operational amplifier amplifies the error between the reference voltage and the feedback voltage generated by the feedback current of the LED The signal is such that the pulse width modulator adjusts the period of duty cycle of the pulse width modulation signal.

請參照圖1,圖1是傳統的跨導運算放大器的電路示意圖。如圖1所示,跨導運算放大器1包括輸入級電路10與電流鏡電路12,其中輸入級電路10電性連接電流鏡電路12。輸入級電路10透過輸入電晶體對接收第一輸入電壓CS(例如,由依發光二極體回授電流產生的回授電壓)與第二輸入電壓VREF(例如為參考電壓),以根據第二輸入電壓VREF與第一輸入電壓CS之間的電壓差異改變其施加於電流鏡電路12上的偏壓,也就是端點aa、bb上的電壓作為偏壓提供給電流鏡電路12,從而使得電流鏡電路12 的輸出信號COMP(例如,參考電壓與依據發光二極體回授電流產生的回授電壓之間的誤差信號)。 Please refer to FIG. 1. FIG. 1 is a schematic circuit diagram of a conventional transconductance operational amplifier. As shown in FIG. 1, the transconductance operational amplifier 1 includes an input stage circuit 10 and a current mirror circuit 12, wherein the input stage circuit 10 is electrically coupled to the current mirror circuit 12. The input stage circuit 10 receives the first input voltage CS (eg, the feedback voltage generated by the feedback current from the LED) and the second input voltage VREF (eg, the reference voltage) through the input transistor pair to be based on the second input. The voltage difference between the voltage VREF and the first input voltage CS changes its bias applied to the current mirror circuit 12, that is, the voltage at the terminals aa, bb is supplied as a bias voltage to the current mirror circuit 12, thereby causing the current mirror Circuit 12 The output signal COMP (for example, an error signal between the reference voltage and the feedback voltage generated by the feedback current of the LED).

進一步地說,輸入級電路10包括電流源S、輸入電晶體對與偏壓電晶體對,其中輸入電晶體對由兩個P型電晶體MP1、MP2組成,以及偏壓電晶體對由兩個N型電晶體MN1、MN2組成。電流源S的輸出端電性連接P型電晶體MP1、MP2的源極端,P型電晶體MP1、MP2的閘極端分別接收第一輸入電壓CS與第二輸入電壓VREF,P型電晶體MP1、MP2的汲極端分別電性輸入級電路10的兩個內部的端點aa與bb。N型電晶體MN1的汲極端電性連接N型電晶體MN1的閘極端與電流鏡電路12的第一偏壓端,並透過端點aa電性連接P型電晶體MP1的汲極端。N型電晶體MN2的汲極端電性連接N型電晶體MN2的閘極端與電流鏡電路12的第二偏壓端,並透過端點bb電性連接P型電晶體MP2的汲極端。N型電晶體MN1、MN2的源極端則電性連接至接地端GND。 Further, the input stage circuit 10 includes a current source S, an input transistor pair and a bias transistor pair, wherein the input transistor pair is composed of two P-type transistors MP1, MP2, and the bias transistor pair is composed of two The N-type transistors MN1, MN2 are composed. The output end of the current source S is electrically connected to the source terminals of the P-type transistors MP1 and MP2, and the gate terminals of the P-type transistors MP1 and MP2 respectively receive the first input voltage CS and the second input voltage VREF, and the P-type transistor MP1. The 汲 extremes of MP2 are respectively the two internal endpoints aa and bb of the electrical input stage circuit 10. The 汲 terminal of the N-type transistor MN1 is electrically connected to the gate terminal of the N-type transistor MN1 and the first bias terminal of the current mirror circuit 12, and is electrically connected to the 汲 terminal of the P-type transistor MP1 through the terminal aA. The 汲 terminal of the N-type transistor MN2 is electrically connected to the gate terminal of the N-type transistor MN2 and the second bias terminal of the current mirror circuit 12, and is electrically connected to the 汲 terminal of the P-type transistor MP2 through the terminal bb. The source terminals of the N-type transistors MN1, MN2 are electrically connected to the ground GND.

電流鏡電路12包括P型電晶體MP3、MP4與N型電晶體MN5、MN6。P型電晶體MP3、MP4的閘極端彼此電性連接,且P型電晶體MP3、MP4的源極端電性連接系統電壓端VDD。P型電晶體MP3的汲極端電性連接P型電晶體MP3的閘極端與N型電晶體MN5的汲極端,P型電晶體MP4的汲極端電性連接N型電晶體MN6的汲極端。N型電晶體MN5、MN6的閘極端分別電性連接N型電晶體MN1、MN2的閘極端,以分別作為電流鏡電路12的第一偏壓端與第二偏壓端。N型電晶體MN5、MN6的源極端則電性連接至接地端GND。 The current mirror circuit 12 includes P-type transistors MP3, MP4 and N-type transistors MN5, MN6. The gate terminals of the P-type transistors MP3 and MP4 are electrically connected to each other, and the source terminals of the P-type transistors MP3 and MP4 are electrically connected to the voltage terminal VDD of the system. The 汲 terminal of the P-type transistor MP3 is electrically connected to the gate terminal of the P-type transistor MP3 and the 汲 terminal of the N-type transistor MN5, and the 汲 terminal of the P-type transistor MP4 is electrically connected to the 汲 terminal of the N-type transistor MN6. The gate terminals of the N-type transistors MN5 and MN6 are electrically connected to the gate terminals of the N-type transistors MN1 and MN2, respectively, to serve as the first bias terminal and the second bias terminal of the current mirror circuit 12, respectively. The source terminals of the N-type transistors MN5 and MN6 are electrically connected to the ground GND.

跨導運算放大器1應用在一般的直流電壓轉換器(DC/DCconverter)時,並不會有因第二輸入電壓VREF與第一輸入電壓CS之間差異過大而造成輸入級電路10的腳部空間(foot room)擺幅過大。換言之P型電晶體MP1、MP2之汲極端/源極端電壓VDS1與VDS2不會不一致。然而,在發光二極體驅動器的應用中,第二輸 入電壓VREF可能為0.2伏特,而第一輸入電壓可能的平均電壓為0.2伏特且最大擺伏為1伏特的三角波電壓信號,因此,P型電晶體MP1、MP2之汲極端/源極端電壓VDS1與VDS2(相應於端點aa與bb的電壓)並不一致。P型電晶體MP1、MP2之汲極端/源極端電壓VDS1與VDS2分別決定P型電晶體MP1、MP2的跨導係數gm1、gm2,且造成電流鏡電路MN1、MN5及MN2、MN6因通道調變效應(channel length modulation)造成複製電流偏移,故若P型電晶體MP1、MP2之汲極端/源極端電壓VDS1與VDS2不一致,將會使得輸出信號COMP有所偏移(offset)。 When the transconductance operational amplifier 1 is applied to a general DC voltage converter (DC/DC converter), there is no difference in the foot space of the input stage circuit 10 due to the excessive difference between the second input voltage VREF and the first input voltage CS. (foot room) The swing is too large. In other words, the 汲 extreme/source extreme voltages V DS1 and V DS2 of the P-type transistors MP1, MP2 do not coincide. However, in an LED driver application, the second input voltage VREF may be 0.2 volts, while the first input voltage may have an average voltage of 0.2 volts and a maximum swing voltage of 1 volt triangular wave voltage signal, therefore, P-type The 汲 extreme/source extreme voltages V DS1 and V DS2 of the transistors MP1, MP2 (corresponding to the voltages of the terminals aa and bb) do not coincide. The 汲 extreme/source extreme voltages V DS1 and V DS2 of the P-type transistors MP1 and MP2 determine the transconductance coefficients g m1 and g m2 of the P-type transistors MP1 and MP2, respectively, and cause the current mirror circuits MN1, MN5 and MN2, MN6. If the replica current shift is caused by the channel length modulation, if the 汲 extreme/source extreme voltages V DS1 and V DS2 of the P-type transistors MP1 and MP2 are inconsistent, the output signal COMP will be shifted ( Offset).

本發明實施例提供一種適於寬輸入範圍應用的跨導運算放大器,此跨導運算放大器包括輸入級電路、電流鏡電路與電壓閂鎖對。輸入級電路包括輸入電晶體對與偏壓電晶體對,輸入電晶體對透過輸入級電路內部的兩端點電性連接偏壓電晶體對。電流鏡電路的第一偏壓端與第二偏壓端分別電性連接兩端點。電壓閂鎖對具有第一閂鎖電路與第二閂鎖電路,第一閂鎖電路與所述第二閂鎖電路電性連接至一接地端或一系統電壓端,電性連接偏壓電晶體對,與分別電性連接兩端點。第一閂鎖電路與第二閂鎖電路用以將兩端點上的電壓閂鎖在特定電壓,或使兩端點上的電壓彼此相同。 Embodiments of the present invention provide a transconductance operational amplifier suitable for wide input range applications, the transconductance operational amplifier including an input stage circuit, a current mirror circuit, and a voltage latching pair. The input stage circuit includes an input transistor pair and a bias transistor pair, and the input transistor pair is electrically connected to the bias transistor pair through the two ends of the input stage circuit. The first bias end and the second bias end of the current mirror circuit are electrically connected to the two ends. The voltage latching pair has a first latching circuit and a second latching circuit. The first latching circuit and the second latching circuit are electrically connected to a ground terminal or a system voltage terminal, and are electrically connected to the bias transistor. Yes, and electrically connect the two ends. The first latch circuit and the second latch circuit are used to latch the voltage at the two ends to a specific voltage or to make the voltages at the two ends different from each other.

據此,本發明實施例提供的跨導運算放大器即使在輸入級電路所接收的兩個輸入電壓之間的差異很大時,其輸出信號也不會因此而有偏移,故所述跨導運算放大器具有較高的精準度,且適於寬輸入範圍應用。 Accordingly, the transconductance operational amplifier provided by the embodiment of the present invention does not have an offset of the output signal even when the difference between the two input voltages received by the input stage circuit is large, so the transconductance The op amp has high accuracy and is suitable for wide input range applications.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

1~5‧‧‧跨導運算放大器 1~5‧‧‧transconductance operational amplifier

10、20、30、40、50‧‧‧輸入級電路 10, 20, 30, 40, 50‧‧‧ input stage circuits

12、22、32、42、52‧‧‧電流鏡電路 12, 22, 32, 42, 52‧‧‧ current mirror circuit

24、34、44、54‧‧‧電壓閂鎖對 24, 34, 44, 54‧‧‧ voltage latching pairs

aa、bb‧‧‧端點 Aa, bb‧‧‧ endpoint

agnda、agndb、vdda、vddb‧‧‧端點 Agnda, agndb, vdda, vddb‧‧‧ endpoints

OP1、OP2‧‧‧放大器 OP1, OP2‧‧‧ amplifier

S‧‧‧電流源 S‧‧‧current source

VDD‧‧‧系統電壓端 VDD‧‧‧ system voltage terminal

GND‧‧‧接地端 GND‧‧‧ ground terminal

MN1~MN8‧‧‧N型電晶體 MN1~MN8‧‧‧N type transistor

MP1~MP8‧‧‧P型電晶體 MP1~MP8‧‧‧P type transistor

CS‧‧‧第一輸入電壓 CS‧‧‧First input voltage

VREF‧‧‧第二輸入電壓 VREF‧‧‧second input voltage

COMP‧‧‧輸出信號 COMP‧‧‧ output signal

Vb‧‧‧特定電壓 Vb‧‧‧specific voltage

圖1是傳統的跨導運算放大器的電路示意圖。 1 is a circuit diagram of a conventional transconductance operational amplifier.

圖2A是本發明實施例的跨導運算放大器的電路示意圖。 2A is a circuit diagram of a transconductance operational amplifier according to an embodiment of the present invention.

圖2B是本發明另一實施例的跨導運算放大器的電路示意圖。 2B is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention.

圖3A是本發明另一實施例的跨導運算放大器的電路示意圖。 3A is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention.

圖3B是本發明另一實施例的跨導運算放大器的電路示意圖。 3B is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention.

在下文將參看隨附圖式更充分地描述各種例示性實施例,在隨附圖式中展示一些例示性實施例。然而,本發明概念可能以許多不同形式來體現,且不應解釋為限於本文中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。在諸圖式中,可為了清楚而誇示層及區之大小及相對大小。類似數字始終指示類似元件,且本文中所使用的術語「或」視實際情況可能包括相關聯之列出項目中之任一者或者多者之所有組合。 Various illustrative embodiments are described more fully hereinafter with reference to the accompanying drawings. However, the inventive concept may be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. Rather, these exemplary embodiments are provided so that this invention will be in the In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like numbers refer to like elements throughout, and the term "or" as used herein may include all combinations of any one or more of the associated listed items.

本發明實施例提供一種適於寬輸入範圍應用的跨導運算放大器,即使輸入級電路所接收的兩個輸入電壓之間的差異很大,跨導運算放大器的輸出信號也不會因此而有偏移。所述跨導運算放大器包括輸入級電路、電流鏡電路與電壓閂鎖對。輸入級電路包括輸入電晶體對、偏壓電晶體對與電流源,電流源電性連接輸入電晶體對,輸入電晶體對電性連接偏壓電晶體對,且偏壓電晶體對電性連接電流鏡電路。電壓閂鎖對具有兩個電壓閂鎖電路,偏壓電晶體對分別透過此兩個電壓閂鎖電路電性連接至接地端或系統電壓端。此兩個電壓閂鎖電路還分別電性連接輸入電晶體對與偏壓電晶體對之間的兩個端點,以藉此將輸入電晶體對與偏壓電晶體對之間的兩個端點上的電壓維持於特定電壓或使此兩個端點 的電壓彼此相同。 Embodiments of the present invention provide a transconductance operational amplifier suitable for a wide input range application. Even if the difference between two input voltages received by the input stage circuit is large, the output signal of the transconductance operational amplifier is not biased accordingly. shift. The transconductance operational amplifier includes an input stage circuit, a current mirror circuit, and a voltage latching pair. The input stage circuit comprises an input transistor pair, a bias transistor pair and a current source, the current source is electrically connected to the input transistor pair, the input transistor is electrically connected to the bias transistor pair, and the bias transistor is electrically connected Current mirror circuit. The voltage latching pair has two voltage latching circuits, and the biasing transistor pair is electrically connected to the grounding terminal or the system voltage terminal through the two voltage latching circuits, respectively. The two voltage latching circuits are also electrically connected to the two ends between the input transistor pair and the bias transistor pair, respectively, thereby thereby connecting the two ends between the input transistor pair and the bias transistor pair The voltage at the point is maintained at a specific voltage or the two endpoints are The voltages are the same as each other.

電壓閂鎖對實質上為一對負回授電路架構,用以將輸入電晶體對與偏壓電晶體對之間的兩個端點上的電壓進行閂鎖,如此,輸入電晶體對之兩個輸入電晶體的汲極端/源極端電壓與跨導係數會一致,而不會有輸出信號之偏移的問題。電壓閂鎖對中的每一個電壓閂鎖電路包括了放大器與開關電晶體,其中開關電晶體的閘極端接收放大器輸出的電壓信號,開關電晶體的汲極端電性連接所述偏壓電晶體對之對應的偏壓電晶體的一端,開關電晶體的源極端電性連接接地端或系統電壓端,放大器的正輸入端電性連接對應的端點,以及放大器的負輸入端電性連接特定電壓或對應的另一端點。如此一來,輸入電晶體對與偏壓電晶體對之間的兩個端點上的電壓將維持於特定電壓,或者此兩個端點上的電壓會彼此相同,而能夠避免輸入電晶體對之兩個輸入電晶體的汲極端/源極端電壓(或跨導係數)彼此不一致。 The voltage latch pair is essentially a pair of negative feedback circuit architectures for latching the voltages at the two terminals between the input transistor pair and the bias transistor pair, such that the input transistor pair The input terminal's 汲 extreme/source extreme voltage and transconductance coefficient will be the same, without the problem of offset of the output signal. Each voltage latching circuit of the voltage latching pair includes an amplifier and a switching transistor, wherein a gate terminal of the switching transistor receives a voltage signal output by the amplifier, and a 汲 terminal of the switching transistor is electrically connected to the bias transistor pair One end of the corresponding bias transistor, the source terminal of the switching transistor is electrically connected to the ground terminal or the system voltage terminal, the positive input terminal of the amplifier is electrically connected to the corresponding end point, and the negative input terminal of the amplifier is electrically connected to the specific voltage. Or the corresponding other endpoint. In this way, the voltage at the two terminals between the input transistor pair and the bias transistor pair will be maintained at a specific voltage, or the voltages at the two terminals will be identical to each other, and the input transistor pair can be avoided. The 汲 extreme/source extreme voltages (or transconductance coefficients) of the two input transistors do not coincide with each other.

請參照圖2A,圖2A是本發明實施例的跨導運算放大器的電路示意圖。跨導運算放大器2包括輸入級電路20、電流鏡電路22與電壓閂鎖對24,其中輸入級電路20電性連接電流鏡電路22與電壓閂鎖對24,且輸入級電路20透過電壓閂鎖對24電性連接至接地端GND。跨導運算放大器2可以適於寬輸入範圍應用,例如發光二極體驅動器的應用中,但是本發明並不限制於此。 Please refer to FIG. 2A. FIG. 2A is a circuit diagram of a transconductance operational amplifier according to an embodiment of the present invention. The transconductance operational amplifier 2 includes an input stage circuit 20, a current mirror circuit 22 and a voltage latching pair 24, wherein the input stage circuit 20 is electrically coupled to the current mirror circuit 22 and the voltage latching pair 24, and the input stage circuit 20 is permeable to voltage latching. Connect 24 to ground GND. The transconductance operational amplifier 2 can be adapted for wide input range applications, such as in the application of a light emitting diode driver, but the invention is not limited thereto.

輸入級電路20接收第一輸入電壓CS與第二輸入電壓VREF,其中第二輸入電壓VREF可以是參考電壓,例如為0.2伏特,而第一輸入電壓CS可以參考電壓為三角波電壓信號的平均電壓,例如擺伏最大為1伏特的三角波電壓信號,其最小電壓與最大分別為-0.3伏特與0.8伏特。輸入級電路20根據第一輸入電壓CS與第二輸入電壓VREF分別產生兩個偏壓(端點aa、bb的電壓)於電流鏡電路22的第一偏壓端與第二偏壓端,且電流鏡電路22依據此兩個偏壓產生輸出信號COMP。 The input stage circuit 20 receives the first input voltage CS and the second input voltage VREF, wherein the second input voltage VREF may be a reference voltage, for example, 0.2 volts, and the first input voltage CS may be a reference voltage that is an average voltage of the triangular wave voltage signal. For example, a triangular wave voltage signal with a maximum of 1 volt is oscillated with a minimum voltage of -0.3 volts and a maximum of 0.8 volts, respectively. The input stage circuit 20 generates two bias voltages (voltages of the terminals aa, bb) according to the first input voltage CS and the second input voltage VREF, respectively, at the first bias end and the second bias end of the current mirror circuit 22, and Current mirror circuit 22 produces an output signal COMP based on the two bias voltages.

為了避免輸入級電路20中成對的輸入電晶體MP1、MP2的汲極端/源極端電壓VDS1、VDS2不一致(亦即,避免輸入電晶體MP1、MP2的跨導係數gm1、gm2不一致)導致輸出信號COMP有所偏移,電壓閂鎖對24透過一對負回授電路的架構,會將輸入級電路20內部的兩個端點aa、bb閂鎖在特定電壓Vb。 In order to avoid inconsistency between the 汲 extreme/source extreme voltages V DS1 and V DS2 of the paired input transistors MP1, MP2 in the input stage circuit 20 (ie, avoiding the inconsistency of the transconductance coefficients g m1 , g m2 of the input transistors MP1, MP2) The output signal COMP is shifted, and the voltage latching pair 24 is transmitted through a pair of negative feedback circuits, and the two terminals aa, bb inside the input stage circuit 20 are latched at a specific voltage Vb.

輸入級電路20包括電流源S、輸入電晶體對與偏壓電晶體對,其中輸入電晶體對由兩個輸入電晶體MP1、MP2(例如為P型電晶體)組成,以及偏壓電晶體對由兩個偏壓電晶體MN1、MN2(例如為N型電晶體)組成。電流源S的輸出端電性連接輸入電晶體MP1、MP2的源極端,輸入電晶體MP1、MP2的閘極端分別接收第一輸入電壓CS與第二輸入電壓VREF,輸入電晶體MP1、MP2的汲極端分別電性輸入級電路20的兩個內部的端點aa與bb。偏壓電晶體MN1的汲極端電性連接偏壓電晶體MN1的閘極端與電流鏡電路22的第一偏壓端,並透過端點aa電性連接輸入電晶體MP1的汲極端。偏壓電晶體MN2的汲極端電性連接偏壓電晶體MN2的閘極端與電流鏡電路22的第二偏壓端,並透過端點bb電性連接輸入電晶體MP2的汲極端。偏壓電晶體MN1、MN2的源極端則電性連接至電壓閂鎖對24的兩端(端點agnda、agndb),並透過電壓閂鎖對24電性連接至接地端GND。 The input stage circuit 20 includes a current source S, an input transistor pair and a bias transistor pair, wherein the input transistor pair is composed of two input transistors MP1, MP2 (eg, a P-type transistor), and a bias transistor pair It consists of two bias transistors MN1, MN2 (for example, an N-type transistor). The output end of the current source S is electrically connected to the source terminals of the input transistors MP1 and MP2, and the gate terminals of the input transistors MP1 and MP2 respectively receive the first input voltage CS and the second input voltage VREF, and are input to the transistors MP1 and MP2. The two internal end points aa and bb of the electrical input stage circuit 20 are respectively extreme. The 汲 terminal of the bias transistor MN1 is electrically connected to the gate terminal of the bias transistor MN1 and the first bias terminal of the current mirror circuit 22, and is electrically connected to the 汲 terminal of the input transistor MP1 through the terminal aA. The 汲 terminal of the bias transistor MN2 is electrically connected to the gate terminal of the bias transistor MN2 and the second bias terminal of the current mirror circuit 22, and is electrically connected to the 汲 terminal of the input transistor MP2 through the terminal bb. The source terminals of the bias transistors MN1 and MN2 are electrically connected to both ends of the voltage latching pair 24 (end points agnda, agndb), and are electrically connected to the ground GND through the voltage latching pair 24.

電流鏡電路22包括P型電晶體MP3、MP4與N型電晶體MN5、MN6。P型電晶體MP3、MP4的閘極端彼此電性連接,且P型電晶體MP3、MP4的源極端電性連接系統電壓端VDD。P型電晶體MP3的汲極端電性連接P型電晶體MP3的閘極端與N型電晶體MN5的汲極端,P型電晶體MP4的汲極端電性連接N型電晶體MN6的汲極端。N型電晶體MN5、MN6的閘極端分別電性連接偏壓電晶體MN1、MN2的閘極端,以分別作為電流鏡電路22的第一偏壓端與第二偏壓端。N型電晶體MN5、MN6的源極端則電性連接至電壓閂鎖對24的兩端(端點agnda、agndb),並透過 電壓閂鎖對24電性連接至接地端GND。 The current mirror circuit 22 includes P-type transistors MP3, MP4 and N-type transistors MN5, MN6. The gate terminals of the P-type transistors MP3 and MP4 are electrically connected to each other, and the source terminals of the P-type transistors MP3 and MP4 are electrically connected to the voltage terminal VDD of the system. The 汲 terminal of the P-type transistor MP3 is electrically connected to the gate terminal of the P-type transistor MP3 and the 汲 terminal of the N-type transistor MN5, and the 汲 terminal of the P-type transistor MP4 is electrically connected to the 汲 terminal of the N-type transistor MN6. The gate terminals of the N-type transistors MN5, MN6 are electrically connected to the gate terminals of the bias transistors MN1, MN2, respectively, to serve as the first bias terminal and the second bias terminal of the current mirror circuit 22, respectively. The source terminals of the N-type transistors MN5 and MN6 are electrically connected to both ends of the voltage latching pair 24 (end points agnda, agndb), and are transmitted through The voltage latch pair 24 is electrically connected to the ground GND.

電壓閂鎖對24包括兩個電壓閂鎖電路,其中一個電壓閂鎖電路由放大器OP1與開關電晶體MN7組成,而另一個電壓閂鎖電路由放大器OP2與開關電晶體MN8組成。於此實施例中,開關電晶體MN7、MN8例如為N型電晶體。開關電晶體MN7、MN8的閘極端分別電性連接放大器OP1、OP2的輸出端,以分別接收放大器OP1、OP2輸出的電壓信號。開關電晶體MN7、MN8的源極端電性連接接地端GND,以及開關電晶體MN7、MN8的汲極端分別電性連接端點agnda、agndb,以使開關電晶體MN7的汲極端電性連接N型電晶體MN5與偏壓電晶體MN1的源極端,以及使開關電晶體MN8的汲極端電性連接N型電晶體MN6與偏壓電晶體MN2的源極端。另外,放大器OP1、OP2的負輸入端皆電性連接特定電壓Vb,且放大器OP1、OP2的正輸入端分別電性連接端點aa與bb。 The voltage latch pair 24 includes two voltage latch circuits, one of which is comprised of an amplifier OP1 and a switching transistor MN7, and the other voltage latch circuit is comprised of an amplifier OP2 and a switching transistor MN8. In this embodiment, the switching transistors MN7, MN8 are, for example, N-type transistors. The gate terminals of the switching transistors MN7, MN8 are electrically connected to the output terminals of the amplifiers OP1, OP2, respectively, to receive the voltage signals output by the amplifiers OP1, OP2, respectively. The source terminals of the switching transistors MN7 and MN8 are electrically connected to the ground GND, and the 汲 terminals of the switching transistors MN7 and MN8 are electrically connected to the terminals agnda and agndb, respectively, so that the 电 terminal of the switching transistor MN7 is electrically connected to the N-type. The transistor MN5 is connected to the source terminal of the bias transistor MN1, and the anode of the switching transistor MN8 is electrically connected to the source terminals of the N-type transistor MN6 and the bias transistor MN2. In addition, the negative input terminals of the amplifiers OP1 and OP2 are electrically connected to the specific voltage Vb, and the positive input terminals of the amplifiers OP1 and OP2 are electrically connected to the terminals aa and bb, respectively.

透過上述的連接關係,可以知道電壓閂鎖為負回授電路的架構,因此,於穩態時,放大器OP1、OP2之正輸入端上的電壓應該等於特定電壓Vb,亦即,端點aa與bb上的電壓會等於特定電壓Vb,而多餘的跨壓則是由開關電晶體MN7與MN8所承受(對應於端點agnda與agndb上的電壓)。由於端點aa與bb上的電壓會等於特定電壓Vb,因此,輸入電晶體MP1與MP2的極端/源極端電壓VDS1、VDS2一致(亦即,使輸入電晶體MP1、MP2的跨導係數gm1、gm2一致),從而避免輸出信號COMP因第一輸入電壓CS與第二輸入電壓VREF之間的電壓差異過大而產生的偏移。 Through the above connection relationship, it can be known that the voltage latch is a negative feedback circuit structure. Therefore, at steady state, the voltage on the positive input terminals of the amplifiers OP1 and OP2 should be equal to the specific voltage Vb, that is, the terminal aa and The voltage on bb will be equal to the specific voltage Vb, and the excess voltage will be absorbed by the switching transistors MN7 and MN8 (corresponding to the voltages at the terminals agnda and agndb). Since the voltages at the terminals aa and bb are equal to the specific voltage Vb, the input transistors MP1 and MP2 are identical in their extreme/source extreme voltages V DS1 , V DS2 (ie, the transconductance coefficients of the input transistors MP1, MP2 are made). g m1 and g m2 are identical), thereby avoiding an offset of the output signal COMP due to an excessive voltage difference between the first input voltage CS and the second input voltage VREF.

請參照圖2B,圖2B是本發明另一實施例的跨導運算放大器的電路示意圖。於圖2B中,跨導運算放大器30包括輸入級電路30、電流鏡電路32與電壓閂鎖對34。於此實施例中,輸入級電路30與電流鏡電路32分別與圖2A的輸入級電路20與電流鏡電路22相同,故不贅述。相較於圖2A的電壓閂鎖對24,圖2B的電壓 閂鎖對34中的放大器OP1與OP2的負輸入端不是接收特定電壓Vb,而是分別連接到端點bb與aa,以使兩個端點aa與bb的電壓彼此相同。如此一來,同樣地可以使輸入電晶體MP1與MP2的極端/源極端電壓VDS1、VDS2一致(亦即,使輸入電晶體MP1、MP2的跨導係數gm1、gm2一致),從而避免輸出信號COMP因第一輸入電壓CS與第二輸入電壓VREF之間的電壓差異過大而產生的偏移。 Please refer to FIG. 2B. FIG. 2B is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention. In FIG. 2B, transconductance operational amplifier 30 includes an input stage circuit 30, a current mirror circuit 32, and a voltage latching pair 34. In this embodiment, the input stage circuit 30 and the current mirror circuit 32 are the same as the input stage circuit 20 and the current mirror circuit 22 of FIG. 2A, respectively, and therefore will not be described again. Compared to the voltage latch pair 24 of FIG. 2A, the negative inputs of the amplifiers OP1 and OP2 in the voltage latching pair 34 of FIG. 2B are not receiving the specific voltage Vb, but are connected to the terminals bb and aa, respectively, so that The voltages of the endpoints aa and bb are identical to each other. In this way, the input/transmission source voltages V DS1 and V DS2 of the input transistors MP1 and MP2 can be identical (that is, the transconductance coefficients g m1 and g m2 of the input transistors MP1 and MP2 are matched), thereby The offset of the output signal COMP due to the excessive voltage difference between the first input voltage CS and the second input voltage VREF is avoided.

請參照圖3A,圖3A是本發明另一實施例的跨導運算放大器的電路示意圖。跨導運算放大器4包括輸入級電路40、電流鏡電路42與電壓閂鎖對44,其中輸入級電路40電性連接電流鏡電路42與電壓閂鎖對44,且輸入級電路40透過電壓閂鎖對44電性連接至系統電壓端VDD。跨導運算放大器4可以適於寬輸入範圍應用,例如發光二極體驅動器的應用中,但是本發明並不限制於此。 Please refer to FIG. 3A. FIG. 3A is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention. The transconductance operational amplifier 4 includes an input stage circuit 40, a current mirror circuit 42 and a voltage latching pair 44, wherein the input stage circuit 40 is electrically coupled to the current mirror circuit 42 and the voltage latching pair 44, and the input stage circuit 40 is permeable to voltage latching. The pair 44 is electrically connected to the system voltage terminal VDD. Transconductance operational amplifier 4 can be adapted for wide input range applications, such as in the application of light emitting diode drivers, although the invention is not limited thereto.

輸入級電路40接收第一輸入電壓CS與第二輸入電壓VREF,其中第二輸入電壓VREF可以是參考電壓。為了避免輸入級電路40中成對的輸入電晶體MN1、MN2的汲極端/源極端電壓VDS1、VDS2不一致(亦即,避免輸入電晶體MP1、MP2的跨導係數gm1、gm2不一致)導致輸出信號COMP有所偏移,電壓閂鎖對44透過一對負回授電路的架構,會將輸入級電路40內部的兩個端點aa、bb閂鎖在特定電壓Vb。 The input stage circuit 40 receives the first input voltage CS and the second input voltage VREF, wherein the second input voltage VREF can be a reference voltage. In order to avoid inconsistency of the 汲 extreme/source extreme voltages V DS1 , V DS2 of the paired input transistors MN1, MN2 in the input stage circuit 40 (ie, to avoid inconsistencies in the transconductance coefficients g m1 , g m2 of the input transistors MP1, MP2) The output signal COMP is shifted, and the voltage latching pair 44 is transmitted through a pair of negative feedback circuits, and the two terminals aa, bb inside the input stage circuit 40 are latched at a specific voltage Vb.

輸入級電路40包括電流源S、輸入電晶體對與偏壓電晶體對,其中輸入電晶體對由兩個輸入電晶體MN1、MN2(例如為N型電晶體)組成,以及偏壓電晶體對由兩個偏壓電晶體MP1、MP2(例如為P型電晶體)組成。電流源S的輸出端電性連接輸入電晶體MN1、MN2的源極端,輸入電晶體MN1、MN2的閘極端分別接收第一輸入電壓CS與第二輸入電壓VREF,輸入電晶體MN1、MN2的汲極端分別電性輸入級電路40的兩個內部的端點aa與bb。偏壓電晶體MP1的汲極端電性連接偏壓電晶體MP1的 閘極端與電流鏡電路42的第一偏壓端,並透過端連接點aa電性連接輸入電晶體MN1的汲極端。偏壓電晶體MP2的汲極端電性連接偏壓電晶體MP2的閘極端與電流鏡電路42的第二偏壓端,並透過端點bb電性連接輸入電晶體MN2的汲極端。偏壓電晶體MP1、MP2的源極端則電性連接至電壓閂鎖對44的兩端點vdda、vddb,並透過電壓閂鎖對44電性連接至系統電壓端VDD。 The input stage circuit 40 includes a current source S, an input transistor pair and a bias transistor pair, wherein the input transistor pair is comprised of two input transistors MN1, MN2 (eg, an N-type transistor), and a bias transistor pair It consists of two bias transistors MP1, MP2 (for example, a P-type transistor). The output terminal of the current source S is electrically connected to the source terminals of the input transistors MN1 and MN2, and the gate terminals of the input transistors MN1 and MN2 respectively receive the first input voltage CS and the second input voltage VREF, and input to the transistors MN1 and MN2. The two internal end points aa and bb of the extreme electrical input stage circuit 40 are respectively extreme. The 汲 terminal of the bias transistor MP1 is electrically connected to the bias transistor MP1 The gate terminal is connected to the first bias end of the current mirror circuit 42 and is electrically connected to the drain terminal of the input transistor MN1 through the terminal connection point aa. The 汲 terminal of the bias transistor MP2 is electrically connected to the gate terminal of the bias transistor MP2 and the second bias terminal of the current mirror circuit 42, and is electrically connected to the 汲 terminal of the input transistor MN2 through the terminal bb. The source terminals of the biasing transistors MP1 and MP2 are electrically connected to the two ends of the voltage latching pair 44, vdda, vddb, and are electrically connected to the system voltage terminal VDD through the voltage latching pair 44.

電流鏡電路42包括N型電晶體MN3、MN4與P型電晶體MP5、MP6。N型電晶體MN3、MN4的閘極端彼此電性連接,且N型電晶體MN3、MN4的源極端電性連接接地端GND。N型電晶體MN3的汲極端電性連接N型電晶體MN3的閘極端與P型電晶體MP5的汲極端,N型電晶體MN4的汲極端電性連接P型電晶體MP6的汲極端。P型電晶體MP5、MP6的閘極端分別電性連接偏壓電晶體MP1、MP2的閘極端,以分別作為電流鏡電路22的第一偏壓端與第二偏壓端。P型電晶體MP5、MP6的源極端則電性連接至電壓閂鎖對44的兩端點vdda、vddb,並透過電壓閂鎖對44電性連接至系統電壓端VDD。 The current mirror circuit 42 includes N-type transistors MN3, MN4 and P-type transistors MP5, MP6. The gate terminals of the N-type transistors MN3 and MN4 are electrically connected to each other, and the source terminals of the N-type transistors MN3 and MN4 are electrically connected to the ground GND. The 汲 terminal of the N-type transistor MN3 is electrically connected to the 极端 terminal of the N-type transistor MN3 and the 汲 terminal of the P-type transistor MP5, and the 汲 terminal of the N-type transistor MN4 is electrically connected to the 汲 terminal of the P-type transistor MP6. The gate terminals of the P-type transistors MP5 and MP6 are electrically connected to the gate terminals of the bias transistors MP1 and MP2, respectively, to serve as the first bias terminal and the second bias terminal of the current mirror circuit 22, respectively. The source terminals of the P-type transistors MP5 and MP6 are electrically connected to the two ends of the voltage latching pair 44, vdda, vddb, and are electrically connected to the system voltage terminal VDD through the voltage latching pair 44.

電壓閂鎖對44包括兩個電壓閂鎖電路,其中一個電壓閂鎖電路由放大器OP1與開關電晶體MP7組成,而另一個電壓閂鎖電路由放大器OP2與開關電晶體MP8組成。於此實施例中,開關電晶體MP7、MP8例如為P型電晶體。開關電晶體MP7、MP8的閘極端分別電性連接放大器OP1、OP2的輸出端,以分別接收放大器OP1、OP2輸出的電壓信號。開關電晶體MP7、MP8的源極端電性連接系統電壓端VDD,以及開關電晶體MP7、MP8的汲極端分別電性連接端點vdda、vddb,以使開關電晶體MP7的汲極端電性連接P型電晶體MP5與偏壓電晶體MP1的源極端,以及使開關電晶體MP8的汲極端電性連接P型電晶體MP6與偏壓電晶體MP2的源極端。另外,放大器OP1、OP2的負輸入端皆電性連接特定電壓Vb,且放大器OP1、OP2的正輸入端分別電性連接端點aa 與bb。 The voltage latching pair 44 includes two voltage latching circuits, one of which is comprised of an amplifier OP1 and a switching transistor MP7, and the other voltage latching circuit is comprised of an amplifier OP2 and a switching transistor MP8. In this embodiment, the switching transistors MP7, MP8 are, for example, P-type transistors. The gate terminals of the switching transistors MP7 and MP8 are electrically connected to the output terminals of the amplifiers OP1 and OP2, respectively, to receive the voltage signals output by the amplifiers OP1 and OP2, respectively. The source terminals of the switching transistors MP7 and MP8 are electrically connected to the voltage terminal VDD of the system, and the 汲 terminals of the switching transistors MP7 and MP8 are electrically connected to the terminals vdda and vddb, respectively, so that the 汲 terminal of the switching transistor MP7 is electrically connected. The type of transistor MP5 and the source terminal of the bias transistor MP1, and the anode of the switching transistor MP8 are electrically connected to the source terminals of the P-type transistor MP6 and the bias transistor MP2. In addition, the negative input terminals of the amplifiers OP1 and OP2 are electrically connected to the specific voltage Vb, and the positive input terminals of the amplifiers OP1 and OP2 are electrically connected to the terminal aa respectively. With bb.

透過上述的連接關係,可以知道電壓閂鎖為負回授電路的架構,因此,於穩態時,放大器OP1、OP2之正輸入端上的電壓應該等於特定電壓Vb,亦即,端點aa與bb上的電壓會等於特定電壓Vb,而多餘的跨壓則是由開關電晶體MP7與MP8所承受(對應於端點vdda、vddb上的電壓)。由於端點aa與bb上的電壓會等於特定電壓Vb,因此,輸入電晶體MP1與MP2的極端/源極端電壓VDS1、VDS2一致(亦即,使輸入電晶體MP1、MP2的跨導係數gm1、gm2一致),從而避免輸出信號COMP因第一輸入電壓CS與第二輸入電壓VREF之間的電壓差異過大而產生的偏移。 Through the above connection relationship, it can be known that the voltage latch is a negative feedback circuit structure. Therefore, at steady state, the voltage on the positive input terminals of the amplifiers OP1 and OP2 should be equal to the specific voltage Vb, that is, the terminal aa and The voltage on bb will be equal to the specific voltage Vb, and the excess voltage will be absorbed by the switching transistors MP7 and MP8 (corresponding to the voltages at the terminals vdda, vddb). Since the voltages at the terminals aa and bb are equal to the specific voltage Vb, the input transistors MP1 and MP2 are identical in their extreme/source extreme voltages V DS1 , V DS2 (ie, the transconductance coefficients of the input transistors MP1, MP2 are made). g m1 and g m2 are identical), thereby avoiding an offset of the output signal COMP due to an excessive voltage difference between the first input voltage CS and the second input voltage VREF.

請參照圖3B,圖3B是本發明另一實施例的跨導運算放大器的電路示意圖。於圖3B中,跨導運算放大器50包括輸入級電路50、電流鏡電路52與電壓閂鎖對54。於此實施例中,輸入級電路50與電流鏡電路52分別與圖3A的輸入級電路40與電流鏡電路42相同,故不贅述。相較於圖3A的電壓閂鎖對44,圖3B的電壓閂鎖對54中的放大器OP1與OP2的負輸入端不是接收特定電壓Vb,而是分別連接到端點bb與aa,以使兩個端點aa與bb的電壓彼此相同。如此一來,同樣地可以使輸入電晶體MN1與MN2的極端/源極端電壓VDS1、VDS2一致(亦即,使輸入電晶體MN1、MN2的跨導係數gm1、gm2一致),從而避免輸出信號COMP因第一輸入電壓CS與第二輸入電壓VREF之間的電壓差異過大而產生的偏移。 Please refer to FIG. 3B. FIG. 3B is a circuit diagram of a transconductance operational amplifier according to another embodiment of the present invention. In FIG. 3B, transconductance operational amplifier 50 includes an input stage circuit 50, a current mirror circuit 52, and a voltage latching pair 54. In this embodiment, the input stage circuit 50 and the current mirror circuit 52 are the same as the input stage circuit 40 and the current mirror circuit 42 of FIG. 3A, respectively, and therefore will not be described again. Compared to the voltage latching pair 44 of FIG. 3A, the negative inputs of the amplifiers OP1 and OP2 in the voltage latching pair 54 of FIG. 3B are not receiving a specific voltage Vb, but are connected to the terminals bb and aa, respectively, so that The voltages of the endpoints aa and bb are identical to each other. In this way, the input/transmission source voltages V DS1 and V DS2 of the input transistors MN1 and MN2 can be identical (that is, the transconductance coefficients g m1 and g m2 of the input transistors MN1 and MN2 are matched), thereby The offset of the output signal COMP due to the excessive voltage difference between the first input voltage CS and the second input voltage VREF is avoided.

綜合以上所述,本發明實施例提供之跨導運算放大器係透過電壓閂鎖對將輸入級電路中內部的兩個端點鎖在特定電壓或使此兩端點的電壓彼此相同,以藉此讓輸入級電路中的兩個輸入電晶體之極端/源極端電壓VDS1、VDS2一致(亦即,使輸入電晶體的跨導係數gm1、gm2一致)。如此一來,跨導運算放大器之輸出電壓不會因為第一輸入電壓與第二輸入電壓之間的差異過大,而有偏 移,亦即所述跨導運算放大器適於寬輸入範圍應用。 In summary, the transconductance operational amplifier provided by the embodiment of the present invention locks two internal terminals of the input stage circuit to a specific voltage or the voltages of the two end points are identical to each other through a voltage latching pair. The extreme input/source extreme voltages V DS1 , V DS2 of the two input transistors in the input stage circuit are identical (ie, the transconductance coefficients g m1 , g m2 of the input transistor are made uniform). As such, the output voltage of the transconductance operational amplifier is not offset by the difference between the first input voltage and the second input voltage, that is, the transconductance operational amplifier is suitable for wide input range applications.

以上所述,僅為本發明最佳之具體實施例,惟本發明之特徵並不侷限於此,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾,皆可涵蓋在以下本案之專利範圍。 The above description is only the preferred embodiment of the present invention, but the features of the present invention are not limited thereto, and any one skilled in the art can easily change or modify it in the field of the present invention. Covered in the following patent scope of this case.

2‧‧‧跨導運算放大器 2‧‧‧Transconductance operational amplifier

20‧‧‧輸入級電路 20‧‧‧Input stage circuit

22‧‧‧電流鏡電路 22‧‧‧current mirror circuit

24‧‧‧電壓閂鎖對 24‧‧‧Voltage latching pair

aa、bb、agnda、agndb‧‧‧端點 Aa, bb, agnda, agndb‧‧‧ endpoint

OP1、OP2‧‧‧放大器 OP1, OP2‧‧‧ amplifier

S‧‧‧電流源 S‧‧‧current source

VDD‧‧‧系統電壓端 VDD‧‧‧ system voltage terminal

GND‧‧‧接地端 GND‧‧‧ ground terminal

MN1、MN2、MN5、MN6、MN7、MN8‧‧‧N型電晶體 MN1, MN2, MN5, MN6, MN7, MN8‧‧‧N type transistor

MP1~MP4‧‧‧P型電晶體 MP1~MP4‧‧‧P type transistor

CS‧‧‧第一輸入電壓 CS‧‧‧First input voltage

VREF‧‧‧第二輸入電壓 VREF‧‧‧second input voltage

COMP‧‧‧輸出信號 COMP‧‧‧ output signal

Vb‧‧‧特定電壓 Vb‧‧‧specific voltage

Claims (9)

一種適於寬輸入範圍應用的跨導運算放大器,包括:一輸入級電路,內部具有兩端點,包括一輸入電晶體對與一偏壓電晶體對,所述輸入電晶體對透過所述兩端點電性連接所述偏壓電晶體對;一電流鏡電路,具有一第一偏壓端與一第二偏壓端,所述第一偏壓端與所述第二偏壓端分別電性連接所述兩端點;一電壓閂鎖對,具有一第一閂鎖電路與一第二閂鎖電路,所述第一閂鎖電路與所述第二閂鎖電路電性連接至一接地端或一系統電壓端,電性連接所述偏壓電晶體對,與分別電性連接所述兩端點,所述第一閂鎖電路與所述第二閂鎖電路用以將所述兩端點上的電壓閂鎖在一特定電壓,或使所述兩端點上的電壓彼此相同;其中所述第一閂鎖電路包括第一放大器與第一開關電晶體,且所述第二閂鎖電路包括第二放大器與第二開關電晶體,所述第一開關電晶體與所述第二開關電晶體的閘極端分別電性連接所述第一放大器與所述第二放大器的輸出端,所述第一開關電晶體與所述第二開關電晶體的汲極端電性連接所述偏壓電晶體對,所述第一開關電晶體與所述第二開關電晶體的源極端電性連接至所述接地端或所述系統電壓端,所述第一放大器與所述第二放大器的正輸入端分別電性連接所述兩端點的一第一端點與一第二端點,以及所述第一放大器與所述第二放大器的負輸入端電性連接所述特定電壓,或者分別電性連接所述第二端點與所述第一端點。 A transconductance operational amplifier suitable for a wide input range application includes: an input stage circuit having two ends therein, including an input transistor pair and a bias transistor pair, the input transistor pair transmitting the two The terminal is electrically connected to the bias transistor pair; a current mirror circuit has a first bias terminal and a second bias terminal, and the first bias terminal and the second bias terminal are respectively electrically Connecting the two ends; a voltage latching pair having a first latching circuit and a second latching circuit, the first latching circuit and the second latching circuit being electrically connected to a ground a terminal or a system voltage terminal electrically connected to the bias transistor pair and electrically connected to the two end points, wherein the first latch circuit and the second latch circuit are used to connect the two The voltage on the terminal latches at a particular voltage, or causes the voltages at the two ends to be identical to each other; wherein the first latch circuit includes a first amplifier and a first switching transistor, and the second latch The lock circuit includes a second amplifier and a second switch transistor, the first switch transistor The gate terminals of the second switching transistor are electrically connected to the output ends of the first amplifier and the second amplifier, respectively, and the first switching transistor is electrically connected to the second terminal of the second switching transistor. The pair of bias transistors, the first switch transistor and the source terminal of the second switch transistor are electrically connected to the ground terminal or the system voltage terminal, the first amplifier and the first The positive input terminals of the two amplifiers are electrically connected to a first end point and a second end point of the two end points, respectively, and the first amplifier and the negative input end of the second amplifier are electrically connected to the specific The voltage is electrically connected to the second end point and the first end point respectively. 如請求項第1項所述的跨導運算放大器,其中所述輸入電晶體對由一第一輸入電晶體與一第二輸入電晶體所組成,所述偏壓電晶體對由第一偏壓電晶體與一第二偏壓電晶體所組成,且所述輸入級電路更包括一電流源,其中所述電流源電性連接所述 第一輸入電晶體與所述第二輸入電晶體的源極端,所述第一輸入電晶體與所述第二輸入電晶體的閘極端分別接收一第一輸入電壓與一第二輸入電壓,所述第一輸入電晶體與所述第二輸入電晶體的汲極端分別透過所述第一端點與所述第二端點電性連接所述第一偏壓電晶體與所述第二偏壓電晶體的汲極端,所述第一偏壓電晶體與所述第二偏壓電晶體的閘極端電性連接所述第一端點與所述第二端點,以及第一偏壓電晶體與所述第二偏壓電晶體的源極端分別電性連接所述第一開關電晶體與所述第二開關電晶體的汲極端。 The transconductance operational amplifier of claim 1, wherein the input transistor pair is composed of a first input transistor and a second input transistor, the bias transistor pair being biased by a first The transistor is composed of a second bias transistor, and the input stage circuit further includes a current source, wherein the current source is electrically connected to the a first input transistor and a source terminal of the second input transistor, the first input transistor and the gate of the second input transistor respectively receiving a first input voltage and a second input voltage, The first input transistor and the second terminal of the second input transistor are electrically connected to the first bias transistor and the second bias through the first end point and the second end point, respectively a first terminal of the transistor, the first bias transistor and the gate of the second bias transistor being electrically connected to the first terminal and the second terminal, and the first bias transistor And a source terminal of the second bias transistor is electrically connected to a first terminal of the first switching transistor and the second switching transistor, respectively. 如請求項第2項所述的跨導運算放大器,其中所述電流鏡電路包括第一電晶體、第二電晶體、第三電晶體與第四電晶體,所述第一電晶體與所述第二電晶體的汲極端電性連接所述系統電壓端或接地端,所述第一電晶體與所述第二電晶體的閘極端彼此電性連接,所述所述第一電晶體的汲極端電性連接所述第一電晶體的閘極端與所述第三電晶體的汲極端,所述第二電晶體的汲極端電性連接所述第四電晶體的汲極端,所述第三電晶體與所述第四電晶體的閘極端分別電性連接所述第一端點與所述第二端點,以及述第三電晶體與所述第四電晶體的源極端分別電性連接所述第一開關電晶體與所述第二開關電晶體的汲極端。 The transconductance operational amplifier of claim 2, wherein the current mirror circuit comprises a first transistor, a second transistor, a third transistor, and a fourth transistor, the first transistor and the The 电 of the second transistor is electrically connected to the voltage terminal or the ground of the system, and the gates of the first transistor and the second transistor are electrically connected to each other, and the 电 of the first transistor Extremely electrically connecting the gate terminal of the first transistor to the 汲 terminal of the third transistor, the 汲 terminal of the second transistor being electrically connected to the 汲 terminal of the fourth transistor, the third The transistor and the gate terminal of the fourth transistor are electrically connected to the first end point and the second end point, respectively, and the third transistor is electrically connected to the source end of the fourth transistor respectively The first switching transistor and the second terminal of the second switching transistor. 如請求項第3項所述的跨導運算放大器,其中所述第一輸入電晶體、所述第二輸入電晶體、所述第一電晶體與所述第二電晶體為P型電晶體,所述第一偏壓電晶體、所述第二偏壓電晶體、所述第三電晶體、所述第四電晶體、所述第一開關電晶體與所述第二開關電晶體為N型電晶體,所述所述第一開關電晶體與所述第二開關電晶體的源極端電性連接至所述接地端,以及所述第一電晶體與所述第二電晶體的源極端電性連接所述系統電壓端。 The transconductance operational amplifier of claim 3, wherein the first input transistor, the second input transistor, the first transistor, and the second transistor are P-type transistors, The first bias transistor, the second bias transistor, the third transistor, the fourth transistor, the first switching transistor and the second switching transistor are N-type a transistor, the source of the first switching transistor and the second switching transistor being electrically connected to the ground, and a source of the first transistor and the second transistor Sexually connected to the voltage terminal of the system. 如請求項第3項所述的跨導運算放大器,其中所述第一輸入電晶體、所述第二輸入電晶體、所述第一電晶體與所述第二電晶體為N型電晶體,所述第一偏壓電晶體、所述第二偏壓電晶體、所述第三電晶體、所述第四電晶體、所述第一開關電晶體與所述第二開關電晶體為P型電晶體,所述所述第一開關電晶體與所述第二開關電晶體的源極端電性連接至所述系統電壓端,以及所述第一電晶體與所述第二電晶體的源極端電性連接所述接地端。 The transconductance operational amplifier of claim 3, wherein the first input transistor, the second input transistor, the first transistor, and the second transistor are N-type transistors, The first bias transistor, the second bias transistor, the third transistor, the fourth transistor, the first switching transistor and the second switching transistor are P-type a transistor, the source of the first switching transistor and the second switching transistor being electrically connected to the voltage terminal of the system, and a source terminal of the first transistor and the second transistor Electrically connecting the ground terminal. 如請求項第2項所述的跨導運算放大器,其中所述第二輸入電壓為一參考電壓,以及所述第一參考電壓為一三角波電壓信號的平均電壓。 The transconductance operational amplifier of claim 2, wherein the second input voltage is a reference voltage, and the first reference voltage is an average voltage of a triangular wave voltage signal. 如請求項第1項所述的跨導運算放大器,其中所述輸入級電路根據接收的一第一輸入電壓與一第二輸入電壓產生兩偏壓給所述所述電流鏡電路,且所述電流鏡電路依據所述兩偏壓產生一輸出信號於所述電流鏡電路的一端。 The transconductance operational amplifier of claim 1, wherein the input stage circuit generates two bias voltages to the current mirror circuit according to a received first input voltage and a second input voltage, and The current mirror circuit generates an output signal at one end of the current mirror circuit in accordance with the two bias voltages. 如請求項第3項所述的跨導運算放大器,其中所述第四電晶體的汲極端產生一輸出信號。 The transconductance operational amplifier of claim 3, wherein the fourth terminal of the fourth transistor produces an output signal. 如請求項第1項所述的跨導運算放大器,其中所述寬輸入範圍應用為發光二極體驅動器的應用。 The transconductance operational amplifier of claim 1, wherein the wide input range is applied as an application of a light emitting diode driver.
TW105100549A 2016-01-08 2016-01-08 Operational transconductance amplifier for wide input range application TWI573390B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105100549A TWI573390B (en) 2016-01-08 2016-01-08 Operational transconductance amplifier for wide input range application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105100549A TWI573390B (en) 2016-01-08 2016-01-08 Operational transconductance amplifier for wide input range application

Publications (2)

Publication Number Publication Date
TWI573390B true TWI573390B (en) 2017-03-01
TW201810937A TW201810937A (en) 2018-03-16

Family

ID=58766285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100549A TWI573390B (en) 2016-01-08 2016-01-08 Operational transconductance amplifier for wide input range application

Country Status (1)

Country Link
TW (1) TWI573390B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726697B (en) * 2020-04-27 2021-05-01 茂達電子股份有限公司 Light driver for driving light emitting component at high speed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729178A (en) * 1995-04-04 1998-03-17 Postech Foundation Fully differential folded cascode CMOS operational amplifier having adaptive biasing and common mode feedback circuits
US7193466B2 (en) * 2003-12-26 2007-03-20 Electronics And Telecommunications Research Institute Operational transconductance amplifier with DC offset elimination and low mismatch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729178A (en) * 1995-04-04 1998-03-17 Postech Foundation Fully differential folded cascode CMOS operational amplifier having adaptive biasing and common mode feedback circuits
US7193466B2 (en) * 2003-12-26 2007-03-20 Electronics And Telecommunications Research Institute Operational transconductance amplifier with DC offset elimination and low mismatch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
年公開文獻B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill *

Also Published As

Publication number Publication date
TW201810937A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
US5736892A (en) Differential charge pump circuit with high differential impedance and low common mode impedance
US7417415B2 (en) Voltage-controlled current source
KR101451468B1 (en) Constant current circuit and reference voltage circuit
KR100275177B1 (en) Low-voltage differential amplifier
US7317358B2 (en) Differential amplifier circuit
KR102240295B1 (en) Mismatched differential circuit
US20160268982A1 (en) Light receiving circuit and optical coupling device
JP2004328640A (en) Circuit for generating bias current, circuit for driving laser diode, and transmitter for optical communication
TWI573390B (en) Operational transconductance amplifier for wide input range application
KR102483031B1 (en) Current generating circuit
JP4351535B2 (en) Improved differential inverter
CN106992755B (en) Transconductance operational amplifier suitable for wide input range application
JP5883477B2 (en) Voltage controlled oscillator
TWI699967B (en) Gain modulation circuit
US10727795B2 (en) Amplifier circuit that amplifies differential signal and optical module that includes amplifier circuit
KR100554441B1 (en) Current bias circuit for cascode current mirror
KR100668455B1 (en) Variable gain amplifier
JP2013187815A (en) Hysteresis comparator
US20070229150A1 (en) Low-voltage regulated current source
TW201926886A (en) Compensation circuit for input voltage offset of error amplifier
JP6445954B2 (en) comparator
TWI542968B (en) Current mirror with tunable mirror ratio
JPH0147047B2 (en)
KR101919555B1 (en) Reference current source
TW201810934A (en) Operational amplifier circuit