TWI572159B - 在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置 - Google Patents

在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置 Download PDF

Info

Publication number
TWI572159B
TWI572159B TW102106103A TW102106103A TWI572159B TW I572159 B TWI572159 B TW I572159B TW 102106103 A TW102106103 A TW 102106103A TW 102106103 A TW102106103 A TW 102106103A TW I572159 B TWI572159 B TW I572159B
Authority
TW
Taiwan
Prior art keywords
antenna
gain
average
connected antenna
mimo
Prior art date
Application number
TW102106103A
Other languages
English (en)
Other versions
TW201338453A (zh
Inventor
席奧德羅斯 沙隆尼蒂斯
德海昂 金
亨利克 隆克朗
Original Assignee
湯姆生特許公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湯姆生特許公司 filed Critical 湯姆生特許公司
Publication of TW201338453A publication Critical patent/TW201338453A/zh
Application granted granted Critical
Publication of TWI572159B publication Critical patent/TWI572159B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0491Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置
本發明係關於多進多出(MIMO)系統內無線連接之控制方法,其中系統之至少一複數天線係定向天線,使用二或以上之天線扇片,至少其一係選擇性活化,以獲得定向天線輻射特性或形態。在本案說明書文脈中,MIMO是Multiple Input Multiple Output(多進多出)的縮寫。MIMO一般係關於無線傳輸,使用複數天線傳輸和接收,提供發射和接收天線之複數組合,以及相對應訊號傳播路徑。MIMO可透過分集增益改進連結可靠性,和/或透過行列增益,把整體傳輸功率分配於複數天線,改進頻譜效率。
隨聯合通訊、IPTV、在家庭和企業共用之增長趨勢,以及相對應增加需要高度輸貫量無線通訊,MIMO成為未來無線網路關鍵科技之一。MIMO把複數全向天線與訊號處理技術兼併,把可行射頻資源維度延伸到時間、頻率和空間。採納許多標準協定,例如IEEE 802.11n Part 11,已廣泛展開傳送流送聲音,以及需要高度輸貫量之高解像度視訊通訊量。
長久受到注意的另一無線技術,是定向天線,使用預定窄束,把RF能量聚焦到所需接收器上。此舉達成輸貫量增益,並減少干擾。此外,天線的方向性便於決定天線之適當導向,尤其是在容許視線途徑之室外環境內。近來發現在室內環境的定向天線,即使在無視線途徑下,在節點間可提供一些強途徑。
N.Razai-Ghods,M.Abdalla和S.Salous在〈MIMO傳播通道使用定向天線陣列之特性〉(Proc.IEEE Sarnoff研討會,美國紐澤西州普林斯頓,2009)一文中,已討論到MIMO和定向天線之兼併。然而,結果是 基於定向天線之固定導向,結論是使用定向天線頂多有邊際利益。
C.Hermozilla,R.Feick,R.A.Valenzuela和L.Ahumada在〈以定向天線改進室外室內場的MIMO容量〉(IEEE Trans.無線通訊第8卷第8期2177-2188頁,2009年5月)一文中,討論到在散佈不良環境內使MIMO和定向天線。
在相關領域內,使用MIMO和定向天線,美國加州Sunnyvale市的Ruckus無線公司,在“Demystifying beamforming”討論到收集訊包誤差率,以決定複數天線之導向。相關率適應演算法之討論,見J.C.Bicket〈無線網路內之位元率選擇〉,2005年美國麻州波斯頓MIT博士論文。
US 2006/0234777 A1提到具有複數扇片之射頻存取網路,包括二個或以上之扇片發射器,個別扇片用來發送資料給移動站。
Muhammad Fainan Hanif,Peter J.Smith,Desmond P.Taylor和Philippe A.Martin在〈具有天線選擇之MIMO認知收音機〉(IEEE Trans.無線通訊第10卷第11期3688-3699頁,2011年11月),討論到使用天線選擇,聯合滿足在複數主要使用者環境內之干擾拘限,又能改進可達成之速率。
Jun Zhou,John Thompson和Ioannis Krikidis在〈線性預寫MISO認知收音機之複數天線選擇〉(2009年4月5日無線通訊和網路架設會議)中,討論到在認知收音機設定中頻率再用之天線選擇演算法。
Anand Prabhu Subramanian,Henrik Lundgren,Theodoros Salonidis和Don Towsley在〈密集802.11無線網路中使用扇片式天線之拓樸控制協定〉,展示一種測量為基礎之最適架構,把網路干擾減到最少,而網路容量加到最大。
本發明之目的,在以優良方式控制具有至少一複數扇片的定向天線,以控制MIMO無線存取點,藉改變MIMO通道之結構,維持高輸貫量增益,即使無額外方向性增益。另一目的在MIMO環境內,避免不穩定連結品質和連結輸貫量。本發明係基於發現,視被作動之天線扇片,較之僅用全向輻射定向,增減輸貫量,而增減輸貫量僅見於活化形態之小子集。本案說明書中所稱活化形態,指該天線扇片在傳輸中呈活性。本發明 又基於發現,具有增加輸貫量之活化形態,大多視環境而定,且與活化扇片數、Tx或Rx扇片活化,或天線導向無關。本發明再基於發現,使用複數扇片天線時,干擾位準與活化扇片數呈比例。本發明方法藉決定僅含高性能天線輸貫量天線組態之子集,由此選擇對平均輸貫量有最佳平均等級之一組態,可避免選擇顯示不良性能之扇片形態(在隨意選擇形態之情況下,一旦不再符合性能臨限,即可能發生)。本發明因此減少由於選擇低性能天線形態,致喪失連結之或然率。高性能天線扇片係按照平均等級公制,經預定時間,一日之不同時間和/或一星期之不同日子測定。本發明方法與現有MIMO無線存取點相較,於任何選用的時間期限,一般具有較高平均輸貫量,而在連接降到預定性臨限以下時,又能減少探測時間。此外,本發明方法視實際組態,經選擇適當天線形態或天線組態,減少與在附近作業的其他裝置干擾,增加空間再用。
如上所述,單是兼併MIMO和定向天線,不一定僅產生利益,例如考慮到室外環境之點對點MIMO。在富於散射的多途徑環境內,MIMO達成容量增益。然而,室外環境典型上具有單一強視線途徑,而定向天線會降低MIMO連結容量。反之,不會立刻顯現在提供富於散射的多途徑之環境,例如室內環境內,供MIMO之定向天線性能如何。一方面,可辯稱定向天線會降低MIMO連結之容量,由於減少多途徑或由其窄束引起訊號散射之故。然而,另方面,定向性會改變傳播途徑之結構,其結構改變和訊號增加,會改進連結容量。
按照本發明,天線選擇單位適於選擇性活化天線系統的不同天線元件,以創造不同的定向天線形態,供傳輸Tx和/或接收Rx。在下文中,「連結天線形態」指在二MIMO無線節點間之無線連結,分別在發射器和接收器節點的定向天線形態Tx-Rx組合。按照本發明決定連結天線形態集合,使連結輸貫量最大化,當連結性能降到預定臨限位準以下時,由此選擇連結天線形態。連結性能可就測得輸貫量、訊雜比或SNR、所接收訊號強度或RSS、訊包誤差率或PER等決定。按照本發明,對集合之各連結天線形態,決定一項或多項連結性能公制。操作當中,於一段時距,或無線連結使用率低時,即從子集選擇一或以上之連結天線形態,進行連結性能測量。一段時間期限即進行連結性能測量,獲得平均結果。形態是按 照平均結果指定等級,並按照等級進行選擇,即選擇顯示最佳平均等級之形態。
按照本發明一要旨之方法,在初始測量步驟中,各複數天線之扇片係選擇性活化,使得對全部天線或天線形態接續建立活化扇片之可能組合,包含在一或以上天線活化複扇片。此步驟為各天線接續建立複數發射用之定向輻射波束形式,和接收用之定向接收靈敏度形態。須知個別裝置之傳輸和接收形態可以不同。對各形態產生不同之分集反應,按照MIMO原理,可顯示有益的訊號途徑。此外,不同天線可饋以總傳輸功率之不同額分,進一步變化在諸訊號途徑上之訊號傳播。對於活化天線扇片和施於個別天線的傳輸功率之複數組合,分別決定所接訊號強度、輸貫量,和/或誤差率,或更一般而言,為連結性能。誤差率可包含位元誤差率、訊包誤差率、區塊誤差率等。可藉發送預定資料訊包,並從接收器接收有關所接收資料之相對應資訊,或以任何其他已知方式,進行決定。所得資訊儲存於記憶器內,並按照連結性能經時穩定性,以及達成之個別輸貫量,把連結天線形態分等級。分等級之細節詳後。
可立刻或經較長時間期限後,重複測量一次或若干次,以確立有關特殊天線組合之時間性穩定。亦可在一天之不同時間,或一星期之不同日,重複測量,以便視一天內之時間或一星期內的日子,提供按規則性方式改環境條件下之最好性能。
按照本發明,提供輸貫量超出預定臨限的活化天線扇片或扇片形態之組合,併入扇片形態集合內,集合在使用中任何時間具有至少一種組合,提供優於預定臨限之輸貫量。於操作當中,從預定扇片形態集合選擇無線存取點,即使在短時距,例如以秒計,以便隨時維持最佳之可能輸貫量。集合可在一天之某一時間,或一星期之某一天有效。
於操作當中,對連結天線形態集合之全部連結天線形態,在預定時刻瞬間決定平均連結性能。平均連結性能可例如為涵蓋過去瞬間連結性能值之牽動平均,或指數平均。連結天線形態係按照平均連結性能分類,為各預定時刻瞬間獲得瞬間等級。然後,對各預定時刻瞬間,決定各連結天線形態之平均等級。平均可為預定數量的過去瞬間等級之變通平均,或指數平均。一旦決定平均等級,即選擇目前具有最佳平均等級的連 結天線形態以供傳輸。
為減少正常操作中測試所需時間和常務,在後續測試和選擇操作時,只選擇在最佳平均等級的一定範圍附近內,具有平均等級的預定數連結天線形態,並決定個別瞬間連結性能,以及相對應平均連結性能和平均等級。重複測量未選擇形態之平均等級,保留與從前相同。一旦完成隨後測試,即選擇具有最佳平均等級之連結天線形態。在預定時刻瞬間重複此過程。
連結天線形態集合的連結天線形態數愈大,找到具有最佳平均等級的形態所需時間愈多。然而,找到具有最高連結性能的連結天線形態之或然率,亦隨之提高。一旦找到始終具有良好平均等級的穩定連結天線形態集合,集合規模即可減小。
發生探測的時距,以及探測本身的時間,可視具有最佳平均等級的連結天線形態變化如何頻繁,而動態肆應。例如,在室內系統中,具有最佳連結性能之形態,典型上以時間小尺度變化,遵循有人員四處活動的典型室內環境之通道特性。因此,對最準確追蹤通道變化,時距應比典型上1秒左右之連貫時大為縮短。另方面,可選用數秒或數十秒,只要願意接收較不準確追蹤,但阻尼逾時探測常務。
第1圖表示多扇片天線無饋電損失之輻射形態例;第2圖展示使用本發明之室內環境例;第3圖舉例表示與長期平均相關的SDM有效SNR樣本分部;第4圖表示STBC SNR和SDM有效SNR對輸貫量關係例;第5圖舉例表示活性扇片諸種組合之輸貫量增益;第6圖舉例表示輸貫量對照活性扇片之導向;第7圖舉例表示具有天線定向性增益的每連結之輸貫量增益;第8圖舉例表示對3 Tx天線形態集合之經時輸貫量變異;第9圖舉例繪示諸種天線形態之平均RSS diff 值;第10圖舉例圖示具有天線定向性增益之平均RSS diff ;第11圖舉例表示為不同數連結天線形態得以選擇之輸貫量增益; 第12圖舉例說明有和無使用按照本發明分等級的經時輸貫量增益。
茲參照附圖詳述本發明如下。
本發明裝置具體例設有至少二多扇片天線,各有四個天線元件。在一具體例中,天線元件不具定向性增益。裝置又具有處理器;程式記憶器,適於在執行程式資訊之際儲存程序資訊;資料記憶器,適於在執行程式資訊之際儲存資料。裝置可又有非無常性儲存記憶器,例如閃抹記憶器型,或電抹式程式規劃性ROM(EEPROM)型,供非暫時儲存程式資訊和/或執行程式資訊時所用資料。亦可構想其他型非無常性儲存記憶器,包含光學或確性記憶器,和委託器/伺服器資料儲存器。裝置又裝設有線界面,以接收和發送資料,例如連接至LAN或主機裝置。有線界面可例如為USB型或IEEE 802.3型。亦可構想其他型有線界面。使用定向性增益,指示定向天線朝一方向較之全向輻射形態的額外天線增益。在一具體例中,天線元件印在印刷電路板或PCB上,涵蓋IEEE 802.11n的5 GHz頻帶內之全水平面。扇片之任何組合均可活化,通過饋電網路傳輸或接收,所指組合以下稱為扇片活化形態或單純扇片形態。造成24-1=15種不同活化形態,其中有一種是「全部四個扇片活化」,造成全向形態,以下稱全向模態。第1(a)和1(b)圖分別描繪有一個或四個活化扇片之輻射形態。表1顯示各形態之天線定向性增益,視二種活化扇片而定,而對二種活化扇片情況,視是否為對立(2 opp)或相鄰(2 adj)而定。
顯而可見,具有較少活化扇片的天線形態,其定向性增益較高。然而,天線饋電網路已設計成引進饋電損失,使全部天線形態展示大 致同等高峰增益。此項設計決心在於多躍程網形網路內,減少定向終端問題。
測試設置例,部署在典型實驗室空間內之單一地面,如第2圖所示。此為典型辦公室環境,包含隔間、座位,和玻璃牆分開之辦公室。由於多扇片天線之可行性,只需四個節點。可利用傳輸功率,或Tx功率,對照、模仿不同之拓樸。
本說明書呈現的舉例測量結果,係使用UDP輸貫量做為連結性能公制所得。為測量具有多扇片天線的MIMO連結之最大輸貫量,需考慮到大量活化形態和可能之時間性變化。
在具有K MCS資料率之M×M MIMO系統中,發送器Tx和接收器Rx二者均使用各s個扇片之多扇片天線,測試全部組合需要K×(28-1)2M輸貫量測量。此相當於810,000輸貫量測量之系統例,其中M=2,s=4,K=16。對於本發明,此議題針對二方式。第一,限制各連結所考慮之活化形態數。具體而言,扇片活化是在Tx或Rx,即發送器或接收器進行,連結之另一端在全向模態。須知在現時802.11n WLANs內,只有Tx聚束是在存取點(AP)進行,而委託器具有全向天線。此外,各天線之活性扇片數保持相同。此舉把所考慮的天線形態數,在此特殊情況,從(28-1)2M減到,即。形態集合參照選擇Tx或Rx,以及每一天線之活性扇片數。第二,複數MCS率使用UDP輸貫量對照SNR或訊雜比映射,加以複製。除大部份802.11無線裝置提供的所接收訊號強度或RSS外,設置例內所用硬體,為各接收訊包儲存SNR資訊。若訊包以SDM模態編碼,可有一對SNR值(每一空間連流之SNR),而若以STBC模態編碼,則可有單一SNR值。
在舉例之測量系列中,把硬體專用SNR資訊映射到UDP輸慣量。各MCS率之UDP輸貫量,使用iperf和tcpdump工具,以各限制形態集合測量5秒。5秒測量之期限已識別足夠測試。通訊量負載設定在比各MCS率高。SNR值經平均,映射到輸貫量。對於SDM模態封包,各SNR值對組合於單有效SNR,供一對一映射於輸貫量。因此,於一對SDM模態SNR值而言,有效SNR是單一代表性SNR。
如上所述,不同活化形態的測量結果,會受到無線通道的時間變異影響。為量化此衝擊,測量落在長期平均±δ dB範圍內之SDM有效性SNR樣本分部。第3圖表示不同δ的結果。夜裡只有10%樣本偏離長期平均2 dB,即使時距達200秒,見第3圖(a)。白天見第3圖(b)對20秒時距,有15%左右的樣本偏離2 dB,接近所用802.11n裝置之1 dB顆粒性。為進一步減少局外效應,全部測量均在夜裡進行,除非另有指明,測量各活化形態和全向模態背對背之輸貫量,只考慮其個別差異。
第4圖舉例表示無線裝置例之平均輸貫量樣本,和相對應SNR或有效SNR值。為產生映射,所產生Sigmoid函數,配合具有同樣MCS率之各集合輸貫量樣本。使用某一天線形態之連結輸貫量估計方式是,測量STBC SNR值和SDM有效SNR值,使用映射把此等二SNR值映射到輸貫量,並選擇此二輸貫量之最大值。
為量化超過全向模態傳輸的MIMO扇片活化之輸貫量增益,使用前述同例之測試設置。全向模態之SNR也是以背對背方式測量,使用上述同樣映射,獲得輸貫量增益。為獲得可靠結果,各項測量重複5次,把結果平均。決定RSS的撞擊、活化扇片數、Tx或Rx扇片活化、裝置位置、諸扇片形態之定向性增益和時間性輸貫量變異。
第5圖表示Tx和Rx扇片皆活化的天線形態之輸貫量增益。第5圖內各灰柱表示每一天線一、二或三個活化扇片之中等增益;誤差柱表示最大和最小輸貫量增益。黑柱代表具有最高RSS的形態之輸貫量增益。大多數連結超過全向模態之正最大輸貫量增益,在每一天線有2 Rx扇片之連結1-3最多130%,全部連結平均21%。顯示對抗直覺性,因如前所述,測試設置例中所用多扇片天線,未具有超過全向模態之天線定向性增益。由於多扇片天線以同等或較低訊號功率發送或接收,且Tx和Rx間有些分集途徑受到抑制,或許有人質疑無法觀察正輸貫量增益。正輸貫量增益係因訊號在角度界域內簇集式傳播之故。室內環境之傳播測量已經顯示分離角度AoD和到達角度AoA,形成相關訊號簇集。此外,只有2至4簇集對所接收訊號有功。達成正輸貫量增益之天線形態,相位與此等優勢訊號簇集對準,因而避免負增益,但又與在天線輸入引發訊號相關性之其他簇集不對準。此項不對準會減少所接收訊號相關性,造成MIMO通道矩陣 出現解脫相關。所以,利用結構性改變MIMO通道,可使無定向性之扇片活化,創造輸貫量增益變化。儘管有高度正最大輸貫量增益之潛力,第5圖亦顯示大部份連結達成負中等輸貫量增益,平均-9.3%,最低增益會低到-100%,例如每一天線2 Rx扇片之連結1-3。因此,低於一半天線形態不具正增益,而若不慎選扇片活化形態,對輸貫量性能會產生高度代價。第5圖呈現之測量結果,明確顯示最大輸貫量增益無關活化扇片數,或是否使用Tx或Rx活化。
對於第5圖內大多數節點成對(x,y),以Tx活化的連結x-y之性能,會與以Rx活化的逆向連結y-x之性能在徑向不同。因此,一般連結並非對稱,而連結逆向性不能以槓桿作用減少測量常務。對Tx和Rx二者活化皆然,分別如第5(a)和5(b)圖所示。因此,無天線定向性增益,RSS即不能以充分準確性預估輸貫量增益。
第5圖顯示共位連結有徑向不同之性能。例如,考慮共用節點2之連結2-3和5-2。連結2-3對Tx和Rx二者活化均達成正最大輸貫量增益,對Rx活化為正中等輸貫量增益,而RSS為基礎之輸貫量增益對Rx活化則接近最大輸貫量增益。相反地,連結5-2只對Tx活化達成正最大輸貫量增益,而對Rx活化具有負中等輸貫量增益,至於RSS為基礎之輸貫量增益均接近中等輸貫量增益。基於上述觀察,輸貫量增益出現「肆意」。然而,本發明人等發現是因環境在訊號散射方面「肆意」,而且扇片活化改變MIMO通道的結構,非常視周圍環境而定。在M×N MIMO通道內Tx和Rx天線訊號間之關係是y=γ.Hx,其中x為1×M輸入向量,或Tx符號向量,γ是純量途徑損失為基礎之通道增益,H為M×N MIMO通道矩陣,而y為1×N輸出向量,或Tx符號向量。先前觀察到RSS並非輸貫量增益之優良指示符,意指對輸貫量增益之主要貢獻,是MIMO通道矩陣H之結構,而非純量增益γ。
現有研究陳明,H的結構大視連結的周圍環境和合量途徑而定。尤其是在室內環境,各連結之周圍顯然不同,導致跨越活化形態有不同的輸貫量增益特性。
如前所述,以全向模態減少發射功率,可創造天線定向性增益。舉例測試設置內所用網路界面卡或NIC,支援3 dB增量中之發射功率 控制,當活性扇片數為一或二時,可補償多扇片天線之饋電損失,見表1。由於三個活性扇片的饋電損失為1.25 dB,下述即不考慮3個活性扇片之形態集合。
第6圖描繪涵蓋全體連結的平均輸貫量增益,以朝向連結他端的活化扇片地理方向所分序之天線形態導向為函數。TX1和TX3分別表示1 Tx和3 Tx扇片活化形態。RX1和RX3相對應Rx活化。F,L,R,B分別表示臉、左、右、背導向。例如在二天線MIMO系統中TX1(或TX3)二天線內F/F,具有朝接收器的活性Tx扇片。與每一節點有單一扇片式天線之情況不同,地理關係與輸貫量增益不具相關,也不干活性扇片數以及Rx或Tx活化。
第7圖表示具有天線定向性增益的每一連結之輸貫量增益。最大和中等輸貫量增益分別為71%和14%。慎選扇片活化形態集合,有些連結像1-2和3-2顯示最大增益超過100%。又,連結1-3,2-3,3-2之中等增益超出50%。整體而言,80個形態集合中有11個中等增益為正,意即各形態集合中有一半以上的活化形態,輕易具有高於全向模態之輸貫量增益。所以,仿效之定向性增益提高γ即使連同MIMO所代表之Rx訊號位準。此項效應先前只有單一天線系統得到確認。
在第7圖裡,活化扇片數不太影響輸貫量增益。全部10個連結,有5個連結顯示1和2活化二者之競爭輸貫量增益,無關Tx或Rx活化。與無定向性增益之情況相似,第7圖亦對諸連結位置和逆向組態,透示肆意出現輸貫量增益。地理關係也不提供輸貫量增益之任何指示(圖上未示)。此等觀察亦可解釋為周圍環境間差異的結果。
一如第5圖所示,第7圖黑柱代表RSS為基礎之輸貫量增益。RSS為基礎之活化造成40個形態集合中有34個高於中等之輸貫量。此外,10個形態集合是在最大輸貫量增益之10%內。
因此總結,儘管室內環境內肆意周圍,當呈現天線定向性增益時,RSS值即成功代表輸貫量增益。
已知若呈現天線定向性時,RSS可為輸貫量增益之優良公制,仍須探測形態集合內全部形態之RSS。此意料可及,因上述其他空間性規範不能顯示任何相關性。惟本發明人等發現,利用時間性能,並非始 終必須探測所有形態。
在測試例中,由1 Tx,1 Rx,3 Tx,3 Rx活化形態集合,進行對活化形態之SNR測量,不需後續全向模態測量。連結2-1,2-3,2-5視為無天線定向性增益。各集合之全部形態均經探測,並重複探測40次,從13:30到17:30歷4小時。然後,使用上述映射得輸貫量。
經由扇片活化的輸貫量時間變異,如第8圖所示。最大(Max)取自涵蓋指定時間之全部形態,而顯示第一(1st)和第二(2nd)最多數經時最大輸貫量之形態輸貫量,則經時追蹤。粗線為從全部3 Tx扇片活化當中的最大輸貫量變異,標示Max。計算形態賦予最大輸貫量之次數,選用最經常達成最大數的二種形態,標示1st和2nd,經時追蹤。二副圖證明二種極端趨勢。第8(a)圖內,1st和2nd配合最大輸貫量,40次有38次,次數最多。而第8(b)圖,最大輸貫量與1st和2nd等級活化形態的輸貫量之間,大部份時間有間隙。二種形態只涵蓋最大輸貫量的40%。即使在此情況下,於時間指數16至24間之時距,相當於大約45分鐘當中,1st或2nd形態達成接近最大輸貫量。
進一步看有多少形態達成經時最大輸貫量,就記錄有多少次形態達成最大輸貫量。然後,識別一同涵蓋最大輸貫量在90%和95%時間的最少形態子集,列於表2。
16個形態平均分別有5.4和6.3個需視為達成最大輸貫量超過90%和95%時間。進行二次觀察:第一,第8圖內有二極端情況,顯示 只有少數形態值得視為達成最大輸貫量。第二,由第8(a)圖,輸貫量可變異,而仍然有少數形態具有最大輸貫量。此意味具有最大輸貫量的形態之穩定性,必定是由於室內環境周圍元素之安靜性質。反之,第8(b)圖顯示小小時間尺度內輸貫量之相對快速變化,應是人員到處走動之故。
以下探究干擾減少和空間再利用。使用上述序列連結活化之類似實驗方法,在全向模態測量後立即為Tx活化集合內之各形態,測量SNR和RSS。使用差值RSS diff =RSS x -RSS omni ,做為干擾公制。負值意指扇片活化形態x相較全向模態,減少干擾,增加空間再利用。所有測量均在夜間進行,以便具有穩定而安靜環境,結果是五次迭代之平均。上述實驗係就有和無天線定向性增益存在之二者進行。
第9(a)圖描繪無天線定向性增益時,在各連結鄰近,超過全向模態之平均RSS diff 。例如,以「連結1-2,1扇片」點而言,平均包含對連結1-2的全部1扇片活化所得全部連結1-3和1-4之RSS diff 值。RSS diff 值隨活性扇片數減少而降低。每一扇片或天線1 Tx扇片時,超過全向模態的干擾,可減少最多12 dB(連結2-1),平均8 dB(連結2-5)。雖然扇片活化減少干擾位準,但不一定增加輸貫量增益。
第9(b)圖描繪跨越全部天線形態之RSS diff 值,按照輸貫量增益下降順序。對於各連結,形態先按照下降輸貫量增益劃分,再將同樣等級的RSS diff 平均。可觀察得到,對各數量活化扇片而言,RSS diff 值與輸貫量增益無關。尤其是對於最高輸貫量增益,保留恒常。因此,選擇活化扇片數,即可將受到一定干擾位準的輸貫量增益最大化,考量到1 Tx扇片活化形態則為最小。總之,無天線定向性增益之干擾位準,與活化扇片數呈比例,與最大輸貫量增益相關性少。
第10圖描繪有天線定向性存在時,在各連結鄰近,超過全向模態之平均RSS diff 。與無天線定向性增益情況相反,見第9(a)圖之探討,跨越全部連結和Tx扇片活化集合,平均RSS diff 頂多3 dB,並在全向模態的7 dB範圍內。平均3 dB干擾減少可能低到使802.11n載波感測失效,因而增加空間再利用。干擾減少也不依賴活化扇片數。雖然二扇片活化的天線定向性增益比單一扇片活化少2.3 dB,見第1表,其角度涵蓋為單一活化扇片的二倍。此外,使用MIMO系統內之複數天線,對接收器更多機會捕 集更多訊號途徑,因此接收比單一天線接收器更強之訊號。因此,有天線定向性存在時,干擾減少小,無關活性扇片數。
基於上述發現,可考慮二種實施方式:(1)多MIMO無定向性增益之多扇片天線,利用輸貫量增益和空間再利用,(2)對MIMO有定向性增益之多扇片天線,以提高輸貫量增益。
實施方式(1)除輸貫量增益外,可開拓空間再利用,以增進網路寬闊性。然而,空間再利用是以隱藏終端為代價,在不同連結之間需要協調機制。此外,如前述所探討,若從實際硬體得不到SNR資訊,如何找到大數正輸貫量之形態,仍不清楚。
實施方式(2)得中度空間再利用,但具有較高輸貫量增益和較簡單協定設計。對於扇片活化,不同連結間不需協調。此外,甚至RSS可用來找到良好活化形態,提供與IEEE 802.11n之反向相容性。
以下呈現本發明自動選擇和活化扇片之方法。本發明方法基於前述呈現之實施方法(2)。本質上,本發明方法包含下列步驟:首先,在正常或正規操作之前,選擇候選活化形態集合P。也選用估計形態品質用之公制。候選公制有例如外顯反饋為基礎之公制,諸如SNR和RSS,以及非外顯反饋為基礎之公制,諸如利用通常訊包傳輸測量之訊包誤差率(PER)。然後探測P內之全部形態,並加以分等級。
一旦進行出步設定,於正常操作之際,即執行下列步驟:根據經時公制歷程,從P選擇N形態;於T時距,探測N形態,得公制數值;一旦探測全部N形態,即根據其平均公制,劃分全部形態,再選擇具有最佳平均等級之形態。
初期步驟得以從良好初期狀態開始,縮短涵蓋良好子集之時間。正常操作當中進行之步驟,旨在找出盡量多次含有最大輸貫量形態之P子集。在短時間內評估和選擇子集,就輸貫量逐漸精選子集。此係例如採取迄今收集數值之公制平均,例如SNR、RSS或PER為之。可是不用立即測量結果,而是經時平均之公制數值,但最後是根據時間平均等級選擇子集。如此,本發明方法在探究下權衡形態順序,不強調公制之實測值。探測限於所選擇子集N之扇片。最後,選擇最佳形態。雖然藉測量經時平均 的連結性能決定等級,惟選擇是按照平均等級為之。
按照本發明,需決定三個參數P,T,N。P可為全形態集合之任何子集。例如,P可為具有單一活性扇片總數16的Tx活化形態集合。惟不限於此種形態。須知集合愈大,找到供探測的優良子集更具挑戰。同時,可預料更多輸貫量增益。一旦決定大候選集合,即可權衡時間平均等級,以減小集合規模,減少探測數。T的選擇視P內具有最高輸貫量的形態變化如何頻繁而定。此外,亦視經時追蹤通道變異如何準確而定。如上所論,在典型室內環境內,具有最高輸貫量的形態,以小時間尺度改變後繼通道特性。因此,為最準確追蹤通道變異,T應比典型上在1秒左右的凝聚時間大為縮短。另方面,可選擇T數秒或數十秒,願接受較不準確追蹤,但減少經時之探測常務。
當N已決定,為選擇T和N,應考慮額外探測常務量。由於常務量對所用物理或MAC協定很特別,視實際實施方式而定。例如,探測操作可整合於實際協定內,一如附加訊包交換操作,或背負於現有通常的訊包轉移排程上。其後,可選用N,使輸貫量增益超越因探測常務而損失的輸貫量。
Tx扇片活化的形態稱為P。收集全部P的SNR和RSS以供評估,並對所收集資料集合進行分等級,以便公平比較。為收集此資料集合,對某一形態和全向模態二者,以背對背方式進行同樣SNR測量。重複測量充分次數,例如40次,並對一日之各種時間,和一星期之不同日重複。對全部連結重複測量。第11圖舉例表示不同數量的連結天線之輸貫量增益可供選擇。
第12圖表示對N=8經時涵蓋全部連結平均之輸貫量增益。在第12(a)和12(b)圖內分別考慮二公制:SNR和RSS。圖中“Max”為每次選擇具有最多公制數值之形態時的輸貫量增益。“w/Rank”相當於使用子集選擇形態之等級,且“w/Rank”相當於單純使用SNR或RSS值之時間平均。由第12(a)和12(b)圖顯示,本發明方法成功選擇賦有正輸貫量增益之活化形態。尤其是以SNR為等級基礎之選擇,具有50%以上之增益,而甚至在考慮中的形態數減半時,最大增益為62%。當本發明方法按照RSS選擇時,最大增益為23%,遠比按照SNR選擇為小。因此,以使用SNR為有利。 雖然陡N增加,二種變化例均趨近最大,但等級基礎之選擇,其傾斜度遠比時間平均基礎者為陡。此又顯示以長程言,通道變化頻頻,但少數形態保持繼續達到接近最大輸貫量增益。
第12圖透示,在特別連結2-3,當N=8時,本發明方法追蹤具有經時最高輸貫量之形態是多麼順利。以SNR的等級基礎選擇,幾乎隨時可成功找到最高輸貫量之形態。然而,時間平均基礎之選擇,即使以SNR進行仍相對遜色。由於16個形態之8係為SNR探測,不良性能顯示粗略時間平均基礎之選擇,受到通道小時間尺度變異之影響較大,良好形態子集的長期安靜影響較小。
本發明使用有限子集之天線活化形態,可找到輸貫量增益。子集之決定是為Rx和Tx全部活化形態收集SNR,決定經一段時間的SNR穩定性,按照其長期穩定性把形態分等級。只有輸貫量降到臨限值以下之形態,才加以考慮,已知具有位在預定臨限值以上之長期SNR。SNR的決定可定期性重複,以補償環境變化。本發明好處在於輸貫量降落時,避免需要粗暴力量測試全部可能之天線形態,加上過度訊包資訊追蹤,以找到適當天線形態。

Claims (10)

  1. 一種在多進多出(MIMO)之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法,使用扇片式天線,包含步驟為:從分等級(Rank)的連結天線形態之初始集合,選擇具有最佳平均等級之連結天線形態,連結天線形態相當於活化天線節段之不同選擇,並按照與平均連結性能分等級;在預定時距,接續選擇於最佳平均等級預定距離內,具有平均等級的連結天線形態子集;決定在前一步驟內所選擇連結天線形態之平均連結性能;決定在前一步驟內已決定平均連結性能的連結天線形態之平均等級;選擇傳輸和/或接收用天線節段,相當於具有最佳平均等級之連結天線形態;在其次預定時距重複此過程者。
  2. 如申請專利範圍第1項之方法,其中未選為子集一部份的連結天線形態之平均等級,保留與從前相同者。
  3. 如申請專利範圍第1項之方法,其中連結天線形態被平均之時間期限,係活動視窗時間期限,或其中平均等級係決定為指數平均者。
  4. 如申請專利範圍第1項之方法,其中連結天線形態之不同子集,提供給一天的一段時間,或一星期之一天者。
  5. 如申請專利範圍第1項之方法,其中連結建立在發送器和接收器之間,且其中發送器或接收器分別通知接收器或發送器,要選擇哪個連結天線形態者。
  6. 如申請專利範圍第1項之方法,又包含:選擇不是連結天線形態子集一部份的新連結天線形態,進行連結性能測量和分等級;更換連結天線形態子集內等級比新連結天線形態為低之連結天線形態者。
  7. 如申請專利範圍第1項之方法,其中預定時距視具有最佳等級的連結天線形態變化頻率如何,而動態適應者。
  8. 如申請專利範圍第1項之方法,其中預定時距視一天中的時間和/或 一星期內的日子,而動態適應者。
  9. 一種具有至少二天線並適合以MIMO(多進多出)方式操作的包括微處理器、程式記憶器、資料記憶器,以及無線發送器和/或接收器之裝置,其特徵為,天線為區域性定向天線,且其中程式記憶器持有程式指令,適於進行前述申請專利範圍第1-8項之一方法者。
  10. 一種電腦可讀式媒體,適於非暫時性儲存程式資訊,其中電腦可讀式媒體儲存程式資訊,當利用具有微處理器、程式記憶器、資料記憶器、無線發送器和/或接收器,以及至少二區域性定向天線之裝置執行時,致使裝置能夠進行申請專利範圍第1-8項之一方法者。
TW102106103A 2012-03-15 2013-02-22 在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置 TWI572159B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12305307.6A EP2639970A1 (en) 2012-03-15 2012-03-15 Method of, and apparatus for, controlling a wireless connection in a MIMO system using multi-sector directional antennas

Publications (2)

Publication Number Publication Date
TW201338453A TW201338453A (zh) 2013-09-16
TWI572159B true TWI572159B (zh) 2017-02-21

Family

ID=47844382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106103A TWI572159B (zh) 2012-03-15 2013-02-22 在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置

Country Status (7)

Country Link
US (1) US9374140B2 (zh)
EP (2) EP2639970A1 (zh)
JP (1) JP6130864B2 (zh)
KR (1) KR102122808B1 (zh)
CN (1) CN104170273B (zh)
TW (1) TWI572159B (zh)
WO (1) WO2013135692A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104538A1 (de) * 2014-03-31 2015-10-01 Intel Corporation Kommunikationsendgeräte, kommunikationsvorrichtung, verfahren zum erstellen einer kommunikation, zum bestimmen von kommunikationsverbindungen für eine kommunikation und zum durchführen einer kommunikation
US10148557B2 (en) 2015-12-30 2018-12-04 Facebook, Inc. Link maintenance in point-to-point wireless communication networks
US10587499B2 (en) * 2015-12-30 2020-03-10 Facebook, Inc. Wireless node memory utilization for storing beamforming settings
US10313953B2 (en) 2015-12-30 2019-06-04 Facebook, Inc. Micro-route characterization and selection
WO2018156825A1 (en) 2017-02-24 2018-08-30 AMI Research & Development, LLC Directional mimo antenna
CN112865840B (zh) * 2019-11-27 2022-02-18 深圳市通用测试系统有限公司 Mimo无线终端的测试方法、装置以及系统
US20230336258A1 (en) * 2019-12-07 2023-10-19 Meta Platforms, Inc. Automatic detection of interfering cells in a brown-field deployment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320898B1 (en) * 1998-11-30 2001-11-20 Nortel Networks Limited CDMA pseudo-smart antenna selection
US20060234777A1 (en) * 2005-04-18 2006-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Flexible multi-sector multiple antenna system
US7853294B1 (en) * 2002-05-24 2010-12-14 Sprint Spectrum L.P. Method and system of selecting antennas and equipment for use within a wireless communication system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511365C2 (sv) * 1998-01-23 1999-09-20 Ericsson Telefon Ab L M Antennomkopplingsdiversitet
WO2003096560A1 (en) * 2002-05-07 2003-11-20 Ipr Licensing, Inc. Antenna adaptation in a time division duplexing system
JP3841411B2 (ja) * 2003-01-17 2006-11-01 松下電器産業株式会社 ダイバシティ受信装置およびダイバシティ受信方法
US7302278B2 (en) 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US7098849B2 (en) 2004-09-23 2006-08-29 Interdigital Technology Corporation Blind signal separation using array deflection
KR100679860B1 (ko) * 2005-08-19 2007-02-07 한국전자통신연구원 Mimo 시스템을 위한 낮은 복잡도의 송/수신 안테나선택 방법
US8102830B2 (en) 2005-12-16 2012-01-24 Samsung Electronics Co., Ltd. MIMO radio communication apparatus and method
JP4734210B2 (ja) * 2006-10-04 2011-07-27 富士通株式会社 無線通信方法
US7689171B2 (en) 2006-11-27 2010-03-30 Intel Corporation Reducing interference in a wireless network via antenna selection
EP2129173B1 (en) * 2008-05-30 2011-07-20 Alcatel Lucent Method and base station for controlling beam forming in a mobile cellular network
US8290551B2 (en) 2008-08-06 2012-10-16 Direct Beam Inc. Systems and methods for efficiently positioning a directional antenna module to receive and transmit the most effective band width of wireless transmissions
JP4547521B2 (ja) * 2008-09-10 2010-09-22 Necアクセステクニカ株式会社 通信機器、アンテナ切替方法、プログラム
JP5801721B2 (ja) * 2009-01-26 2015-10-28 ドレクセル ユニバーシティ Mimo系において再構成可能アンテナを選択するシステムおよび方法
US20110009105A1 (en) 2009-07-13 2011-01-13 Jungwoo Lee Self-organizing networks using directional beam antennas
JP5483690B2 (ja) 2009-11-26 2014-05-07 シャープ株式会社 無線通信システム、基地局装置、および周波数割当方法
EP2506625B1 (en) * 2011-03-29 2017-11-01 Alcatel Lucent A small cell base station comprising multiple antennas, and a method of controlling reception pattern by selecting a subset of the antennas for use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320898B1 (en) * 1998-11-30 2001-11-20 Nortel Networks Limited CDMA pseudo-smart antenna selection
US7853294B1 (en) * 2002-05-24 2010-12-14 Sprint Spectrum L.P. Method and system of selecting antennas and equipment for use within a wireless communication system
US20060234777A1 (en) * 2005-04-18 2006-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Flexible multi-sector multiple antenna system

Also Published As

Publication number Publication date
KR102122808B1 (ko) 2020-06-15
US20150049825A1 (en) 2015-02-19
US9374140B2 (en) 2016-06-21
CN104170273B (zh) 2017-07-25
TW201338453A (zh) 2013-09-16
KR20140144184A (ko) 2014-12-18
WO2013135692A1 (en) 2013-09-19
EP2639970A1 (en) 2013-09-18
EP2826163B1 (en) 2018-05-30
CN104170273A (zh) 2014-11-26
JP6130864B2 (ja) 2017-05-17
EP2826163A1 (en) 2015-01-21
JP2015515781A (ja) 2015-05-28

Similar Documents

Publication Publication Date Title
TWI572159B (zh) 在多進多出之無線傳輸系統中傳輸和/或接收用天線節段之選擇方法和裝置
CN109891963B (zh) 用于三维多输入多输出通信系统中波束赋形的参考信号的系统和方法
US10236962B2 (en) Method for measuring downlink channel quality, transmit end, receive end, and system
US8670717B2 (en) System and method for enabling coordinated beam switching and scheduling
US9172439B2 (en) Configuring channel-state information resources used for reference-signal-received-power feedback
JP5139462B2 (ja) セルラー無線ネットワーク内におけるマルチアンテナの配備によって得られる容量および有効範囲の利得を近似し最適化する方法
CN107615853A (zh) 移动台、基站以及无线通信方法
CN109565777A (zh) 用于在无线通信网络中定位的通信节点及其中的方法
US10681674B2 (en) Beam training for a radio transceiver device
KR101813349B1 (ko) 통신 시스템, 기지국, 이동국 및 수신 품질 측정 방법
CN110099391B (zh) 基于信道测量结果选择波束
KR20140136673A (ko) 다중 안테나 적용 통신 시스템에서 부분 간섭 정렬 장치 및 방법
Mohamed et al. Millimeter wave beamforming based on WiFi fingerprinting in indoor environment
JP2018523345A (ja) 電気チルトアンテナ配線順の検出方法及び装置
KR20120011952A (ko) 다중안테나 시스템에서 다중 섹터 협력 전송을 위한 송신 빔포밍과 다중 사용자 스케줄링 방법 및 장치
CN104735694B (zh) 通信系统中小区重选的判断方法与装置
CN110140299A (zh) 用于管理无线通信网络中的通信的无线设备及其中执行的方法
KR20150095008A (ko) 스펙트럼 센싱 방법 및 그 장치
KR101807816B1 (ko) 분산 안테나 시스템에서 다중 사용자 다중 안테나 송수신을 위한 기지국의 통신 장치 및 통신 방법
Kim et al. MIMO wireless networks with directional antennas in indoor environments
TW202105938A (zh) 與通信網路中之無線通信相關之方法、設備及機器可讀媒體
KR101989507B1 (ko) 단일 rf 체인에 기반한 빔포밍 장치 및 방법
JP7310033B2 (ja) 関数ベースのマッチングパターンを使用するフィンガープリンティングのための方法および装置
Xu et al. When Indoor Localization Meets New Communication Technologies
CN111971912A (zh) 表现不佳无线电分支的标识