TWI572116B - Electric motor and/or alternators with machine-adjustable permanent magnetic field - Google Patents
Electric motor and/or alternators with machine-adjustable permanent magnetic field Download PDFInfo
- Publication number
- TWI572116B TWI572116B TW099137488A TW99137488A TWI572116B TW I572116 B TWI572116 B TW I572116B TW 099137488 A TW099137488 A TW 099137488A TW 99137488 A TW99137488 A TW 99137488A TW I572116 B TWI572116 B TW I572116B
- Authority
- TW
- Taiwan
- Prior art keywords
- rotor
- electric motor
- permanent magnet
- generator
- magnetic field
- Prior art date
Links
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
本發明係有關於一種電動馬達和發電機,特別是關於調整轉子中固定磁體和/或不導磁分路塊的取向以獲得在各種每分鐘轉數下的有效操作。 This invention relates to an electric motor and generator, and more particularly to adjusting the orientation of a fixed magnet and/or a non-magnetic shunt block in a rotor to achieve efficient operation at various revolutions per minute.
本申請是2009年10月30日申請的美國專利申請序列號12/610,184以及2009年10月30日申請的美國專利申請序列號12/610,271的部分延續申請,所述兩個美國專利申請的全部內容通過參引結合入本申請中。 The present application is a continuation-in-part of U.S. Patent Application Serial No. 12/610,184, filed on Oct. 30, 2009, and the entire disclosure of the entire disclosure of The content is incorporated into this application by reference.
無電刷直流馬達通常需要在各種每分鐘轉數下操作,但只能在有限的每分鐘轉數範圍上獲得有效的操作。此外,發電機和交流發電機通常需要在較寬的每分鐘轉數範圍上操作。例如,汽車交流發電機在與發動機每分鐘轉數成比例的每分鐘轉數下操作,而風力交流發電機在與風速成比例的每分鐘轉數下操作。不幸的是,已知的交流發電機在與每分鐘轉數成比例的電壓下發電。因為每分鐘轉數無法輕易控制,通常需要其他元件以調整輸出電壓,這給交流發電機系統增加了無效率性,複雜性以及成本。 Brushless DC motors typically require operation at various revolutions per minute, but can only be operated efficiently over a limited number of revolutions per minute. In addition, generators and alternators typically need to operate over a wide range of revolutions per minute. For example, an automotive alternator operates at a revolutions per minute that is proportional to the engine revolutions per minute, while a wind alternator operates at a revolutions per minute that is proportional to the wind speed. Unfortunately, known alternators generate electricity at voltages that are proportional to the number of revolutions per minute. Because the number of revolutions per minute cannot be easily controlled, other components are often required to adjust the output voltage, which adds inefficiency, complexity, and cost to the alternator system.
曾有一些設計嘗試用”場弱化”來擴寬每分鐘轉數範圍以允許馬達在很低的每分鐘轉數下有效率,並仍然獲得有效率的更高每分鐘轉數的操作。這種場弱化可以應用於內永磁體同步馬達(IPMSM)或交流同步感應馬達,允許3至4倍的基 準速度(每分鐘轉數)並具有合理的效率。不幸的是,用常規方法進行場弱化會犧牲在較高每分鐘轉數下的效率並增加控制器算法和軟件的複雜性。 There have been some attempts to use "field weakening" to widen the range of revolutions per minute to allow the motor to be efficient at very low revolutions per minute and still achieve efficient higher revolutions per minute. This field weakening can be applied to an internal permanent magnet synchronous motor (IPMSM) or an AC synchronous induction motor, allowing 3 to 4 times the base. Quasi-speed (revolutions per minute) with reasonable efficiency. Unfortunately, field weakening with conventional methods sacrifices efficiency at higher revolutions per minute and increases the complexity of controller algorithms and software.
在發電機/交流發電機的應用中,輸出電壓與磁通強度成比例,需要汽車交流發電機內的換流器或單獨的電磁激勵線圈,汽車交流發電機只有60%至70%的效率,因為該交流發電機必須在很寬的每分鐘轉數範圍上操作。類似的問題也存在於風力發電機中,其中遇到的風速變化導致操作的低效率。 In generator/alternator applications, the output voltage is proportional to the flux strength, requiring an inverter in the automotive alternator or a separate electromagnetic excitation coil, and the automotive alternator is only 60% to 70% efficient. Because the alternator must operate over a wide range of revolutions per minute. A similar problem exists in wind turbines where the wind speed changes encountered result in inefficient operation.
本發明藉由提供用於調節無電刷馬達和交流發電機的磁場以獲得在較寬每分鐘轉數範圍上的有效操作的裝置和方法來解決所述及其他需要。所述馬達或交流發電機包括圍繞承載永磁體的轉動轉子的固定繞組(或定子)。永磁體大體為圓柱形並具有磁體內縱向形成的北(N)極和南(S)極。導磁迴路由位於導磁極塊(例如非磁化材料製成的低碳或軟鋼和/或層疊絕緣層)中的磁體形成。在極塊內轉動永磁體或轉動不導磁分路塊,將增強或減弱產生的磁場,從而調整馬達或交流發電機用於低每分鐘轉數轉矩或用於有效的高每分鐘轉數效率。改變轉子磁場調整交流發電機的電壓輸出,允許例如風力發電機保持固定的電壓輸出。用在轉子中的其他材料大體為例如不銹鋼的非磁性材料。 The present invention addresses these and other needs by providing an apparatus and method for adjusting the magnetic field of a brushless motor and an alternator to achieve efficient operation over a wide range of revolutions per minute. The motor or alternator includes a fixed winding (or stator) that surrounds a rotating rotor that carries permanent magnets. The permanent magnet is generally cylindrical and has a north (N) and south (S) pole formed longitudinally within the magnet. The magnetic circuit is formed by a magnet located in a magnetic pole piece, such as a low carbon or mild steel and/or laminated insulating layer made of a non-magnetized material. Rotating the permanent magnet or turning the non-magnetic shunt block within the pole block will augment or attenuate the generated magnetic field, thereby adjusting the motor or alternator for low torque per minute or for effective high revolutions per minute effectiveness. Changing the rotor field adjusts the voltage output of the alternator, allowing, for example, the wind turbine to maintain a fixed voltage output. Other materials used in the rotor are generally non-magnetic materials such as stainless steel.
根據本發明的一方面,提供了一種裝置和方法以改變電動馬達中的轉子/電樞的磁通強度,從而提供改進的啟動轉矩以 及高每分鐘轉數的效率。 In accordance with an aspect of the present invention, an apparatus and method are provided to vary the magnetic flux strength of a rotor/armature in an electric motor to provide improved starting torque. And the efficiency of the number of revolutions per minute.
根據本發明的另一方面,提供了裝置和方法以改變發電機/交流電發電機應用中的轉子/電樞的磁通強度從而獨立於每分鐘轉數控制輸出電壓。許多已知的交流發電機應用無法控制交流發電機每分鐘轉數,例如,必須以與發動機每分鐘轉數成比例的每分鐘轉數下操作的汽車交流發電機,和經受風速影響的風力發電機。改變轉子/電樞的磁通強度允許獨立於每分鐘轉數來控制輸出電壓,由此消除了對換流器或單獨電磁激勵線圈的需要。 In accordance with another aspect of the invention, apparatus and methods are provided to vary the magnetic flux strength of a rotor/armature in a generator/alternating current generator application to control the output voltage independently of revolutions per minute. Many known alternator applications are unable to control the alternator revolutions per minute, for example, automotive alternators that must operate at revolutions per minute proportional to engine revolutions per minute, and wind turbines that are subject to wind speed effects. Motor. Changing the magnetic flux strength of the rotor/armature allows the output voltage to be controlled independently of the number of revolutions per minute, thereby eliminating the need for an inverter or a separate electromagnetic excitation coil.
根據本發明的又一方面,提供了裝置和方法以藉由轉動半長圓柱形永磁體而使可轉動磁體與固定半長永磁體對齊或不對齊來改變馬達或發電機的磁場。 In accordance with yet another aspect of the present invention, apparatus and methods are provided to vary the magnetic field of a motor or generator by orienting or misaligning a rotatable magnet with a fixed half length permanent magnet by rotating a semi-long cylindrical permanent magnet.
根據本發明的再一方面,提供了裝置和方法,所述裝置和方法可適於改變適於應用於感應馬達的馬達的磁場,從而提供弱磁場用於以異步模式啟動馬達、以及提供強磁場用於同步模式的有效操作的馬達磁場強度的。 According to yet another aspect of the present invention, an apparatus and method are provided that are adapted to change a magnetic field suitable for use in a motor of an induction motor to provide a weak magnetic field for activating the motor in an asynchronous mode and providing a strong magnetic field The magnetic field strength of the motor for efficient operation of the synchronous mode.
以下舉出具體實施例以詳細說明本發明之內容,然並非用以限定本發明。本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The following examples are given to illustrate the present invention in detail, but are not intended to limit the invention. The scope of the invention is defined by the scope of the appended claims.
第1A圖所示為本發明之可重構電動馬達10的側視圖,第1B圖所示為可重構電動馬達10的端視圖,第2圖所示為沿第1A圖中的線2-2索取的可重構電動馬達10的橫結面圖。所述馬達10包括定子繞組14以及位於定子繞組內側的轉子12。所述可重構電動馬達10為包括磁路的無電刷交流感應馬達,所述磁路包括在轉子12中的至少一個永磁體16(見第3圖至圖7)或可移動磁分路塊80(見第30A圖和第30B圖),所述永磁體16或磁分路塊80可以進行調整以在一定範圍的每分鐘數上控制轉子的磁場用於有效操作。 1A is a side view of the reconfigurable electric motor 10 of the present invention, and FIG. 1B is an end view of the reconfigurable electric motor 10, and FIG. 2 is a line 2 along the first drawing. 2 The cross-sectional view of the reconfigurable electric motor 10 is obtained. The motor 10 includes a stator winding 14 and a rotor 12 located inside the stator winding. The reconfigurable electric motor 10 is a brushless AC induction motor including a magnetic circuit including at least one permanent magnet 16 in the rotor 12 (see FIGS. 3 to 7) or a movable magnetic branch block. 80 (see Figures 30A and 30B), the permanent magnet 16 or magnetic shunt block 80 can be adjusted to control the magnetic field of the rotor for effective operation over a range of minutes per minute.
第3圖所示為本發明之圓柱形兩極永磁體16的立體圖,而第4圖所示為本發明之圓柱形四極永磁體16a的立體圖。磁體16和磁體16a的極如虛線指示的沿磁體的長度延伸。 Fig. 3 is a perspective view showing the cylindrical two-pole permanent magnet 16 of the present invention, and Fig. 4 is a perspective view showing the cylindrical quadrupole permanent magnet 16a of the present invention. The poles of the magnet 16 and magnet 16a extend along the length of the magnet as indicated by the dashed lines.
第5A圖所示為本發明之徑向對齊構造的可調永磁體轉子12a的側視圖,第5B圖所示為徑向對齊構造的可調永磁體轉子12a的端視圖。轉子12包括永磁體16、內極塊18、外極塊20和非磁性墊圈22。極塊式導磁但不可磁化的材料,所述材料傳導永磁體16的磁場以形成轉子磁場。所述非磁性墊圈22將內極塊18與外極塊20分隔開,而空氣間隙23將外極塊20分隔開。永磁體16大體為圓柱形並且與馬達軸11軸向平行,但也可以使用其他形狀的磁體。 Fig. 5A shows a side view of the adjustable permanent magnet rotor 12a of the radially aligned configuration of the present invention, and Fig. 5B shows an end view of the adjustable permanent magnet rotor 12a of the radially aligned configuration. The rotor 12 includes a permanent magnet 16, an inner pole block 18, an outer pole block 20, and a non-magnetic washer 22. A pole-block magnetically permeable, non-magnetizable material that conducts the magnetic field of the permanent magnet 16 to form a rotor magnetic field. The non-magnetic gasket 22 separates the inner pole block 18 from the outer pole block 20, and the air gap 23 separates the outer pole block 20. The permanent magnets 16 are generally cylindrical and axially parallel to the motor shaft 11, but other shapes of magnets may be used.
第6A圖所示為因兩極永磁體16對齊而產生最大(或強)磁場24a(見第7A圖)的可調永磁體轉子12a的端視圖,第6B圖所示惟因兩極永磁體16對齊而產生中等磁場的可調永磁 體轉子12a的端視圖,第6C圖所示為因兩極永磁體16對齊而產生最小(或弱)磁場24b(見第7B圖)的可調永磁體轉子12a的端視圖。在電動馬達中,提供強磁場的對其提供低每分鐘轉數下的高轉矩,而提供弱磁場的對其提供高每分鐘轉數下的有效操作。在發電機中,可以藉由調整磁體的對齊來調整輸出電壓,從而允許在諸如汽車交流發電機和風力發電機的具有變化每分鐘轉數的發電機中具有恆定的電壓。 Fig. 6A is an end view of the adjustable permanent magnet rotor 12a which produces a maximum (or strong) magnetic field 24a (see Fig. 7A) due to the alignment of the two pole permanent magnets 16, and Fig. 6B shows the alignment of the two pole permanent magnets 16 Adjustable permanent magnet that produces a medium magnetic field An end view of the body rotor 12a, Figure 6C, shows an end view of the adjustable permanent magnet rotor 12a that produces a minimum (or weak) magnetic field 24b (see Figure 7B) due to alignment of the two pole permanent magnets 16. In an electric motor, a strong magnetic field is provided to provide a high torque at a low number of revolutions per minute, while a weak magnetic field is provided to provide an efficient operation at a high number of revolutions per minute. In a generator, the output voltage can be adjusted by adjusting the alignment of the magnets, thereby allowing a constant voltage in a generator having varying revolutions per minute, such as automotive alternators and wind turbines.
第7A圖所示為對應於第6A圖的強磁場24a,第7B圖所示為對應於第6C圖的弱磁場。 Fig. 7A shows a strong magnetic field 24a corresponding to Fig. 6A, and Fig. 7B shows a weak magnetic field corresponding to Fig. 6C.
第8圖所示為本發明之磁通擠壓構造的可調永磁體轉子12b的側視圖,第9圖所示為所述可調永磁體轉子12b的端視圖。可調永磁體轉子12b包括永磁體16、極塊21和空氣間隙23。極塊為導磁但不可磁化的材料,其傳導永磁體16的磁場以形成轉子磁場。空氣間隙23將極塊21分隔開。 Fig. 8 is a side view showing the adjustable permanent magnet rotor 12b of the magnetic flux pressing structure of the present invention, and Fig. 9 is an end view showing the adjustable permanent magnet rotor 12b. The adjustable permanent magnet rotor 12b includes a permanent magnet 16, a pole block 21, and an air gap 23. The pole piece is a magnetically permeable but non-magnetizable material that conducts the magnetic field of the permanent magnet 16 to form a rotor magnetic field. The air gap 23 separates the pole pieces 21.
第10A圖所示為本發明之可調永磁體轉子12b的端視圖,其中兩極永磁體16對齊產生最大(或強)磁場24a’(見第11A圖),第10B圖所示為本發明之可調永磁體轉子12b的端視圖,其中兩極永磁體16對齊產生中等磁場,第10C圖所示為本發明之可調永磁體轉子12b的端視圖,其中兩極永磁體16對齊產生最小(或弱)磁場24b’(見第11B圖)。在電動馬達中,提供強磁場的對齊提供低每分鐘轉數下的高轉矩,而提供弱磁場的對齊提供高每分鐘轉數下的有效操作。在發電機中,可以藉由調整磁體的對齊來調整輸出電壓,從而允許在諸 如汽車交流發電機和風力發電機的具有變化每分鐘轉數的發電機中具有恆定電壓。 Figure 10A is an end view of the adjustable permanent magnet rotor 12b of the present invention, wherein the two-pole permanent magnets 16 are aligned to produce a maximum (or strong) magnetic field 24a' (see Figure 11A), and Figure 10B shows the present invention. An end view of the adjustable permanent magnet rotor 12b, wherein the two pole permanent magnets 16 are aligned to produce a medium magnetic field, and FIG. 10C is an end view of the adjustable permanent magnet rotor 12b of the present invention, wherein the alignment of the two pole permanent magnets 16 produces a minimum (or weak ) Magnetic field 24b' (see Figure 11B). In electric motors, the alignment providing a strong magnetic field provides a high torque at low revolutions per minute, while the alignment providing a weak magnetic field provides efficient operation at high revolutions per minute. In the generator, the output voltage can be adjusted by adjusting the alignment of the magnets, thereby allowing There are constant voltages in generators with varying revolutions per minute, such as automotive alternators and wind turbines.
第11A圖所示為對應於第10A圖的強磁場24a’,第11B圖所示為對應於第10C圖的弱磁場。 Fig. 11A shows a strong magnetic field 24a' corresponding to Fig. 10A, and Fig. 11B shows a weak magnetic field corresponding to Fig. 10C.
第12圖所示為本發明之可調永磁體轉子12c的端視圖,其具有若干對徑向對齊構造的圓柱形兩極永磁體16,第13圖所示為本發明之可調永磁體轉子12d的端視圖,其具有若干對磁通擠壓構造的圓柱形兩極永磁體16。本發明不限於單個或成對的永磁體,任意數量的磁體可以組成適用於應用的組。例如3、4、5或更多個磁體可以代替第12圖和13中示出的磁體對。 Figure 12 is an end elevational view of the adjustable permanent magnet rotor 12c of the present invention having a plurality of cylindrically-arranged permanent magnets 16 in a radially aligned configuration, and Figure 13 is an adjustable permanent magnet rotor 12d of the present invention. An end view of the cylindrical two-pole permanent magnet 16 having a plurality of pairs of magnetic flux extruded configurations. The invention is not limited to single or paired permanent magnets, and any number of magnets may constitute a suitable set for the application. For example, 3, 4, 5 or more magnets may be substituted for the pair of magnets shown in Figures 12 and 13.
第14圖所示為本發明之包含可調內永磁體16和固定外磁體17的轉子12a’其成徑向對齊構造的端視圖。可調內永磁體16和固定外磁體17的組合允許轉子磁場的附加設計。第15A圖所示為混合可調內永磁體和固定外磁體轉子12a’而調節產生最大磁場的端視圖,第15B圖所示為混合可調內永磁體和固定外磁體轉子12a’而調節產生最小磁場的端視圖。 Figure 14 is an end elevational view of the rotor 12a' of the present invention including the adjustable inner permanent magnet 16 and the fixed outer magnet 17 in a radially aligned configuration. The combination of the adjustable inner permanent magnet 16 and the fixed outer magnet 17 allows for an additional design of the rotor magnetic field. Figure 15A shows an end view of the mixed adjustable inner permanent magnet and the fixed outer magnet rotor 12a' to adjust the maximum magnetic field, and Fig. 15B shows the mixed adjustable inner permanent magnet and the fixed outer magnet rotor 12a'. End view of the minimum magnetic field.
第16圖所示為本發明之包含可調內永磁體16和固定外磁體17的混合轉子12b’成磁通擠壓構造的端視圖。可調內永磁體16和固定外磁體17的組合允許轉子磁場的附加設計。第17A圖所示為混合可調內永磁體和固定外磁體轉子12b’調節為產生最大磁場的端視圖,圖17B所示為混合可調內永磁體和固定外磁體轉子12b’調節為產生最小磁場的端視圖。 Fig. 16 is an end view showing the magnetic flux-pressing structure of the mixing rotor 12b' including the adjustable inner permanent magnet 16 and the fixed outer magnet 17 of the present invention. The combination of the adjustable inner permanent magnet 16 and the fixed outer magnet 17 allows for an additional design of the rotor magnetic field. Figure 17A shows an end view of the hybrid adjustable inner permanent magnet and the fixed outer magnet rotor 12b' adjusted to produce a maximum magnetic field, and Figure 17B shows the mixed adjustable inner permanent magnet and the fixed outer magnet rotor 12b' adjusted to produce a minimum End view of the magnetic field.
第18圖所示為用於構建層疊極塊的元件30的端視圖,而第18A圖所示為第18圖的局部放大圖。轉子通常由多個元件30層疊構成,各元件30較佳地用電絕緣層塗覆。元件30具有半徑Rr,包括具有半徑Rm的用於圓柱形之永磁體16的圓形切除部32以及具有寬度Wag的空氣間隙34。用於本發明的其他實施方式的層疊極塊類似的構建。 Fig. 18 is an end view showing the element 30 for constructing the laminated pole piece, and Fig. 18A is a partially enlarged view showing Fig. 18. The rotor is typically constructed by laminating a plurality of elements 30, each element 30 preferably being coated with an electrically insulating layer. Element 30 has a radius Rr comprising a circular cutout 32 for a cylindrical permanent magnet 16 having a radius Rm and an air gap 34 having a width Wag. A similar construction of stacked pole pieces for use in other embodiments of the present invention.
第19A圖所示為用於調整圓柱形兩極永磁體16處於第一磁體位置的裝置40a的第一實施方式的側視圖,第19B圖所示為用於調整圓柱形兩極永磁體處於第一磁體位置的裝置40a的端視圖,第20A圖所示為用於調整圓柱形兩極永磁體16處於第二磁體位置的裝置40a的側視圖,第20B圖所示為用於調整圓柱形兩極永磁體處於第二磁體位置的裝置40a的端視圖。用於調整的裝置40a包括較佳為步進馬達的線性馬達42、由所述線性馬達42軸向致動的軸48、由軸48軸向致動的環46、以及由環46致動並連接至六個齒條傳動機構52之一的(一個或多個)臂44。齒條傳動機構52接合附連與永磁體16的齒輪50以轉動永磁體16。將軸48向右致動將齒條傳動機構52徑向拉入,將軸48向左致動將齒條傳動機構52徑向推出,從而經由直接接合齒條傳動機構52的齒輪50來直接轉動永磁體16,其餘的永磁體16經由位於相鄰齒輪50之間的齒條傳動機構52而耦接於致動裝置。 Figure 19A shows a side view of a first embodiment of a device 40a for adjusting the position of the cylindrical two-pole permanent magnet 16 at a first magnet position, and Figure 19B shows a first magnet for adjusting a cylindrical two-pole permanent magnet. An end view of the positional device 40a, Figure 20A shows a side view of the device 40a for adjusting the cylindrical two-pole permanent magnet 16 in the second magnet position, and Figure 20B shows the cylindrical permanent magnet for adjusting the An end view of the device 40a at the second magnet position. The means for adjusting 40a includes a linear motor 42 preferably a stepper motor, a shaft 48 axially actuated by the linear motor 42, a ring 46 axially actuated by the shaft 48, and actuated by the ring 46 and The arm(s) 44 are coupled to one of the six rack drive mechanisms 52. The rack drive mechanism 52 engages the gear 50 attached to the permanent magnet 16 to rotate the permanent magnet 16. Actuating the shaft 48 to the right pulls the rack drive 52 radially, actuating the shaft 48 to the left, pushing the rack drive 52 radially out, thereby directly rotating via the gear 50 that directly engages the rack drive 52 The permanent magnets 16 and the remaining permanent magnets 16 are coupled to the actuating device via a rack drive 52 located between adjacent gears 50.
第21A圖所示為用於調整圓柱形兩極永磁體16處於第一磁體位置的裝置40b的第二實施方式的側視圖,第21B圖所 示為用於調整圓柱形兩極永磁體的裝置40b處於第一磁體位置的端視圖,第22A圖所示為用於調整圓柱形兩極永磁體16處於第二磁體位置的裝置40b的側視圖,第22B圖所示為調整圓柱形兩極永磁體處於第二磁體位置的裝置40b的端視圖。用於調整的裝置40b包括較佳為步進馬達的線性馬達42、由所述線性馬達42軸向致動的軸48、由所述軸48軸向致動的環46以及由所述環46致動並連接至六個齒條傳動機構52之一的彎曲臂45。彎曲臂45偏置至例如具有90°彎曲的彎曲位置。當環46向右移動以釋放彎曲臂45時,彎曲臂45放鬆至彎曲位置並將齒條傳動機構52徑向拉入。當環46向左移動以在彎曲臂45上施加力時,彎曲臂45伸直並將齒條傳動機構52徑向推出。齒條傳動機構52接合附連與磁體16的齒輪50以轉動永磁體16。線性馬達42向右致動因而將齒條傳動機構52徑向拉入,線性馬達42向左致動將齒條傳動機構52徑向推出,從而經由直接接合於齒條傳動機構52的齒輪50而直接轉動永磁體16,其餘的永磁體16藉由位於相鄰齒輪50之間的齒條傳動機構52而耦接與致動裝置。 Figure 21A shows a side view of a second embodiment of a device 40b for adjusting the position of the cylindrical two-pole permanent magnet 16 at a first magnet position, Figure 21B Shown as an end view of the apparatus 40b for adjusting the cylindrical two-pole permanent magnet at the first magnet position, and FIG. 22A is a side view of the apparatus 40b for adjusting the position of the cylindrical two-pole permanent magnet 16 at the second magnet position, Figure 22B shows an end view of the device 40b for adjusting the position of the cylindrical two-pole permanent magnet at the second magnet. The means for adjusting 40b includes a linear motor 42 preferably a stepper motor, a shaft 48 axially actuated by the linear motor 42, a ring 46 axially actuated by the shaft 48, and a ring 46 by the ring 46. The curved arm 45 is actuated and coupled to one of the six rack drive mechanisms 52. The curved arm 45 is biased to, for example, a curved position with a 90° bend. As the ring 46 moves to the right to release the curved arm 45, the curved arm 45 relaxes to the flexed position and pulls the rack drive 52 radially. As the ring 46 moves to the left to exert a force on the curved arm 45, the curved arm 45 straightens and pushes the rack drive 52 radially out. The rack drive mechanism 52 engages the gear 50 attached to the magnet 16 to rotate the permanent magnet 16. The linear motor 42 is actuated to the right thereby pulling the rack drive 52 radially, and the linear motor 42 is actuated to the left to push the rack drive 52 radially out, thereby via the gear 50 that is directly coupled to the rack drive 52. The permanent magnets 16 are rotated directly, and the remaining permanent magnets 16 are coupled to the actuating device by a rack drive mechanism 52 located between adjacent gears 50.
第23A圖所示為用於調整圓柱形兩極永磁體16處於第一磁體位置的裝置40c的第三實施方式的側視圖,第23B圖所示為用於調整圓柱形兩極永磁體處於第一磁體位置的裝置40c的端視圖,第24A圖所示為用於調整圓柱形兩極永磁體16處於第二磁體位置的裝置40c的側視圖,第24B圖所示為用於調整圓柱形兩極永磁體處於第二磁體位置的裝置40c的端視圖。用於調整的裝置40c包括較佳為步進馬達的線性馬達42、 由所述線性馬達42軸向致動的軸48、連接於所述軸48的第一活塞47以及與所述第一活塞47流體連通並連接至六個齒條傳動機構52之一的第二活塞49。當第一活塞47向右移動時,第二活塞49被徑向收入,齒條傳動機構52被徑向拉入。當環46向左移動時,第一活塞47向左移動,第二活塞49徑向移出,並將齒條傳動機構52徑向推出。齒條傳動機構52接合附連於永磁體16的齒輪50以轉動永磁體16。線性馬達42向右致動因而將齒條傳動機構52徑向拉入,線性馬達42向左致動將齒條傳動機構52徑向推出,從而經由直接接合與齒條傳動機構52的齒輪50而直接轉動永磁體16,其餘永磁體16經由位於相鄰齒輪50之間的齒條傳動機構52而耦接於致動裝置。 Figure 23A shows a side view of a third embodiment of a device 40c for adjusting the position of the cylindrical two-pole permanent magnet 16 at a first magnet position, and Figure 23B shows a second permanent magnet for adjusting the cylindrical body. An end view of the positional device 40c, Figure 24A shows a side view of the device 40c for adjusting the cylindrical two-pole permanent magnet 16 at the second magnet position, and Figure 24B shows the cylindrical permanent magnet for adjusting the An end view of the device 40c at the second magnet position. The means for adjusting 40c includes a linear motor 42, preferably a stepper motor, A shaft 48 axially actuated by the linear motor 42 , a first piston 47 coupled to the shaft 48 , and a second fluidly coupled to the first piston 47 and coupled to one of the six rack drive mechanisms 52 Piston 49. When the first piston 47 moves to the right, the second piston 49 is radially received and the rack drive mechanism 52 is pulled radially. As the ring 46 moves to the left, the first piston 47 moves to the left, the second piston 49 moves radially out, and the rack drive mechanism 52 pushes out radially. The rack drive mechanism 52 engages a gear 50 attached to the permanent magnet 16 to rotate the permanent magnet 16. The linear motor 42 is actuated to the right thereby pulling the rack drive 52 radially, and the linear motor 42 is actuated to the left to push the rack drive 52 radially out, thereby directly engaging the gear 50 of the rack drive 52. The permanent magnets 16 are rotated directly, and the remaining permanent magnets 16 are coupled to the actuating device via a rack drive 52 located between adjacent gears 50.
第25A圖所示為一種根據本發明的另一齒輪裝置,用於調整成徑向對齊構造的混合可調內永磁體和固定外磁體轉子的圓柱形兩極內永磁體16的位置。小磁體齒輪50固定於各磁體16的一端。大中心齒輪51接合各小磁體齒輪50,並使各磁體16保持近似(只要磁體緊密對齊,可存在一定的齒輪遊隙)相同的對齊,並可調節以調整磁體16從弱磁場至強磁場的對齊。 Figure 25A shows another gear arrangement in accordance with the present invention for adjusting the position of the radially adjustable inner permanent magnet and the cylindrical inner permanent magnet 16 of the fixed outer magnet rotor in a radially aligned configuration. The small magnet gear 50 is fixed to one end of each of the magnets 16. The large sun gear 51 engages each of the small magnet gears 50 and maintains each magnet 16 approximately (as long as the magnets are closely aligned, there may be some gear play) the same alignment and can be adjusted to adjust the magnet 16 from a weak magnetic field to a strong magnetic field. Align.
第25B圖所示為另一齒輪裝置,用於調整成磁通擠壓構造的混合可調內永磁體和固定外磁體轉子的圓柱形兩極內永磁體的位置。小中心齒輪51a僅接合小磁體齒輪50中交替的幾個,小磁體齒輪50接合各相鄰之小磁體齒輪50,從而使各永磁體16保持近似(只要磁體緊密對齊,可存在一定的齒輪 遊隙)相同的對齊,並可調節以調整永磁體16從弱磁場至強磁場的對齊。 Fig. 25B shows another gear device for adjusting the position of the cylindrical inner-pole permanent magnet of the hybrid adjustable inner permanent magnet and the fixed outer magnet rotor in the magnetic flux-pressing configuration. The small sun gear 51a only engages alternate ones of the small magnet gears 50, and the small magnet gears 50 engage the adjacent small magnet gears 50 such that the permanent magnets 16 remain similar (as long as the magnets are closely aligned, there may be a certain gear The clearance is the same alignment and can be adjusted to adjust the alignment of the permanent magnet 16 from a weak magnetic field to a strong magnetic field.
第26A圖所示為本發明支用於控制馬達的磁體位置的偏置系統的側視圖,第26B圖所示為用於藉由金屬線70控制馬達磁體位置的偏置系統的端視圖。控制器64將來自於電源68的單向直流電壓變換成用於三相馬達的三相梯形或正弦波形。使用一個至磁場線圈60的直流輸入線產生與馬達上的負載成比例的電磁場。磁場線圈60的電阻很低並且不會降低到馬達的輸入電壓或略微增加電阻。磁場作用在偏致電樞62上並抵靠彎曲臂45向左推動偏致電樞62以轉動永磁體16。 Figure 26A shows a side view of the biasing system of the present invention for controlling the position of the magnet of the motor, and Figure 26B shows an end view of the biasing system for controlling the position of the motor magnet by the wire 70. Controller 64 converts the unidirectional DC voltage from power source 68 into a three-phase trapezoidal or sinusoidal waveform for the three phase motor. A DC input line to the field coil 60 is used to generate an electromagnetic field proportional to the load on the motor. The resistance of the field coil 60 is very low and does not decrease to the input voltage of the motor or slightly increase the resistance. A magnetic field acts on the biasing armature 62 and pushes the biasing armature 62 to the left against the curved arm 45 to rotate the permanent magnet 16.
當馬達負載增加時,電磁場與負載成比例地增加,校準負載只稍小於克服永磁體16的轉動所需的負載,傾卸迴路(tipping circuit)66為分路控制器,提供加至偏置電樞62的電磁力的小電流,從而提供最終力,該最終力對控制轉子磁場的永磁體16的轉動進行控制。控制器64較佳為換流器型,其將單向直流電變換為給定子磁場供能以轉動轉子的三相波形。 As the motor load increases, the electromagnetic field increases in proportion to the load, the calibration load is only slightly less than the load required to overcome the rotation of the permanent magnet 16, and the tipping circuit 66 is a shunt controller that provides the bias to the bias. The small current of the electromagnetic force of the pivot 62 provides a final force that controls the rotation of the permanent magnet 16 that controls the rotor field. Controller 64 is preferably of the inverter type that converts unidirectional direct current to a given stator magnetic field to rotate the three phase waveform of the rotor.
偏置致動器包括具超低電阻之磁場線圈60及偏置電樞62,所述偏置電樞62產生與負載電流成比例的力,所述負載電流抵抗永磁體16的固有性質施力以保持在弱磁場位置。傾卸迴路66是低力觸發器控制器,期將額外的電流提供給偏置致動器,所述偏置致動器可以利用非常小的電能轉動永磁體16以及將磁場調整到強的位置或弱的位置。 The bias actuator includes a field coil 60 having an ultra-low resistance and a biasing armature 62 that produces a force proportional to the load current that resists the inherent properties of the permanent magnet 16 To maintain the position of the weak magnetic field. The dump circuit 66 is a low force trigger controller that provides additional current to the bias actuator that can rotate the permanent magnet 16 with very small electrical energy and adjust the magnetic field to a strong position Or weak position.
第27A圖所示為本發明支用於控制發電機的永磁體16的 位置的偏置系統的側視圖,第27B圖所示為用於控制發電機的永磁體16的位置的偏置系統的端視圖。發電機可以被驅動作為發電機/交流發電機以產生所述相或任何相的電能。 Figure 27A shows the permanent magnet 16 of the present invention for controlling a generator. A side view of the positional biasing system, Figure 27B, shows an end view of the biasing system for controlling the position of the permanent magnets 16 of the generator. The generator can be driven as a generator/alternator to generate electrical energy for the phase or any phase.
發電機/交流發電機的相電能輸出一般經過將多相電流變換為單相直流電的六二極管陣列72。輸出直流電線之一的輸出轉移至磁場線圈60和偏置電樞62,所述磁場線圈60和偏置電樞62產生抵靠永磁體16自然轉動置弱磁場位置的反力。以與的26A圖和26B中的馬達構造相同的方式,傾卸控制器為磁場線圈60和偏置電樞62提供小的額外電流,以克服磁力從而控制磁體的轉動位置和磁場。傾卸迴路控制器是電子晶體管型開關,其可以提供將要加至磁場線圈60和偏置電樞62的偏置力的變化量的電能。 The phase power output of the generator/alternator is typically passed through a six diode array 72 that converts the multiphase current to single phase direct current. The output of one of the output DC wires is transferred to the field coil 60 and the biasing armature 62, which produces a counterforce that is placed against the permanent magnet 16 to naturally rotate the weak magnetic field position. In the same manner as the motor configurations of Figures 26A and 26B, the dump controller provides a small additional current to the field coil 60 and the biasing armature 62 to overcome the magnetic force to control the rotational position and magnetic field of the magnet. The dump loop controller is an electronic transistor type switch that can provide a varying amount of electrical energy to be applied to the biasing force of the field coil 60 and the biasing armature 62.
第28A圖所示為本發明之可調永磁體轉子12e的側視圖,該可調永磁體轉子12e具有對齊取向的可轉動辦長圓柱形磁體16c、同軸的固定半長圓柱形磁體16以及用於控制磁體位置的調整系統,第28B圖所示為沿第28A圖中線28B-28B所取的可調永磁體轉子12e的橫截面圖。第29A圖所示為其中可轉動半長圓柱形磁體16c與同軸的固定半長圓柱形磁體16d不對齊的可調永磁體轉子12e的第二側視圖,第29B圖所示為沿第29A圖中線29B-29B索取的可調永磁體轉子12e的橫截面圖。當磁體16c與16d對齊(即磁體16c和16d的極對齊)時,產生了強磁場,而當磁體16c轉動180°並且磁體16c與16d的極不對齊時,則產生弱磁場。 Figure 28A is a side elevational view of the adjustable permanent magnet rotor 12e of the present invention having an aligned orientation of the rotatable cylindrical magnet 16c, a coaxial fixed half-length cylindrical magnet 16 and In the adjustment system for controlling the position of the magnet, Fig. 28B is a cross-sectional view of the adjustable permanent magnet rotor 12e taken along line 28B-28B of Fig. 28A. Figure 29A shows a second side view of the adjustable permanent magnet rotor 12e in which the rotatable semi-long cylindrical magnet 16c is misaligned with the coaxial fixed half-length cylindrical magnet 16d, and Figure 29B shows the image along line 29A. A cross-sectional view of the adjustable permanent magnet rotor 12e as claimed in the midline 29B-29B. When the magnets 16c are aligned with 16d (i.e., the poles of the magnets 16c and 16d are aligned), a strong magnetic field is generated, and when the magnet 16c is rotated by 180 and the poles of the magnets 16c and 16d are not aligned, a weak magnetic field is generated.
調整系統包括附連於磁體16c的小齒輪50、與小齒輪50和第二小齒輪54協作的徑向滑動齒條傳動機構52、以及與第二小齒輪54協作的軸向滑動齒條傳動機構56。軸向滑動齒條傳動機構56可以使用螺線管電氣地、液壓地(見第23A圖至第24B圖)、藉由線性馬達、藉由線性步進馬達、藉由桿或藉由任何裝置進行致動,從而使軸向滑動齒條傳動機構56在軸向上移動。軸向滑動齒條傳動機構56的軸向平移耦接至第二小齒輪54以轉動第二小齒輪54。第二小齒輪54的轉動耦接至徑向滑動動齒條傳動機構52從而使徑向滑動齒條傳動機構52徑向移動。徑向滑動齒條傳動機構52的徑向移動耦接至第一小齒輪50,以轉動第一小齒輪50,從而轉動永磁體16c,以使永磁體16c與永磁體16d對齊和不對齊,進而選擇性地產生強磁場和弱磁場。 The adjustment system includes a pinion 50 attached to the magnet 16c, a radial sliding rack drive 52 cooperating with the pinion 50 and the second pinion 54, and an axial sliding rack drive cooperating with the second pinion 54 56. The axial sliding rack drive mechanism 56 can be electrically, hydraulically (see Figures 23A-24B) using a solenoid, by a linear motor, by a linear stepper motor, by a lever or by any means Actuated to move the axial sliding rack drive 56 in the axial direction. The axial translation of the axial sliding rack drive 56 is coupled to the second pinion 54 to rotate the second pinion 54. The rotation of the second pinion 54 is coupled to the radially sliding rack drive 52 to radially move the radial slide rack drive 52. The radial movement of the radial sliding rack drive 52 is coupled to the first pinion 50 to rotate the first pinion 50, thereby rotating the permanent magnet 16c to align and misalign the permanent magnet 16c with the permanent magnet 16d. A strong magnetic field and a weak magnetic field are selectively generated.
第30A圖所示為本發明之可調永磁體轉子12f的端視圖,其中可移動磁分路塊80與固定外永磁體17和固定內永磁體16e對齊以提供強磁場,第30B圖所示為可調永磁體轉子12f的端視圖,其中可移動磁分路塊80轉動並與固定外永磁體17及16e不對齊以提供弱磁場。可移動磁分路塊80較佳為圓柱形並由導磁、不可磁化材料製成,並包刮穿過可移動磁分路塊80的中心將可移動磁分路塊80分為兩部分的棒80a。棒80a由不導磁材料製成並叫加油非鐵非磁材料製成。可移動磁分路塊80可以使用任何所描述的用於如本文描述移動磁體的調整系統來移動(或調整),任何使用可移動分路快將磁場從牆磁場改變為弱磁場的馬達或發電機均擬在本發明的範圍內。 Figure 30A is an end view of the adjustable permanent magnet rotor 12f of the present invention, wherein the movable magnetic branch block 80 is aligned with the fixed outer permanent magnet 17 and the fixed inner permanent magnet 16e to provide a strong magnetic field, as shown in Fig. 30B. An end view of the adjustable permanent magnet rotor 12f, wherein the movable magnetic branch block 80 rotates and is not aligned with the fixed outer permanent magnets 17 and 16e to provide a weak magnetic field. The movable magnetic branch block 80 is preferably cylindrical and made of a magnetically permeable, non-magnetizable material, and is scraped through the center of the movable magnetic branch block 80 to divide the movable magnetic branch block 80 into two parts. Stick 80a. The rod 80a is made of a non-magnetic material and is called a non-ferrous non-magnetic material. The movable magnetic shunt block 80 can be moved (or adjusted) using any of the described adjustment systems for moving magnets as described herein, any motor or hair that uses a movable shunt to quickly change the magnetic field from a wall magnetic field to a weak magnetic field. Motors are intended to be within the scope of the invention.
第31A圖所示為本發明之可調永磁體轉子12f的端視圖,所示為通過使可移動磁分路塊與永磁體16e對齊而獲得的強磁場24a”,第31A圖所示為可調永磁體轉子12f的端視圖,所示為通過使可移動磁分路塊與永磁體16e不對齊而獲得的弱磁場24b”。包括具有可移動磁分路塊的導磁迴路的轉子的各種其他實施方式對於本領域的普通技術人員將會顯而易見,例如位於磁體外側、具有角度相互交替的導磁段和不導磁段的圓柱形殼,並且在具有這種與磁體協作的(一個或多個)可移動磁分路塊以選擇性地產生強磁場和弱磁場的馬達或發電機中使用的任何轉子也意於在本發明的範圍內。 Fig. 31A is an end view showing the adjustable permanent magnet rotor 12f of the present invention, showing a strong magnetic field 24a" obtained by aligning the movable magnetic branch block with the permanent magnet 16e, which is shown in Fig. 31A. An end view of the permanent magnet rotor 12f is shown as a weak magnetic field 24b" obtained by disaligning the movable magnetic branch block with the permanent magnet 16e. Various other embodiments of a rotor including a magnetically permeable circuit having a movable magnetic shunt block will be apparent to those of ordinary skill in the art, such as a cylinder located outside the magnet, having alternating magnetic and magnetic segments. a shell, and any rotor used in a motor or generator having such a movable magnetic branch block(s) cooperating with a magnet to selectively generate a strong magnetic field and a weak magnetic field is also intended to be in the present invention. In the range.
雖然本發明的技術內容已經以較佳實施例揭露如上,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內。 Although the technical content of the present invention has been disclosed in the above preferred embodiments, it is to be understood that those skilled in the art will be able to make a few modifications and modifications without departing from the spirit of the invention.
10‧‧‧可重構電動馬達 10‧‧‧Reconfigurable electric motor
11‧‧‧馬達軸 11‧‧‧Motor shaft
12‧‧‧轉子 12‧‧‧Rotor
12a、12b、12c、12d、12e、12f‧‧‧可調永磁體轉子 12a, 12b, 12c, 12d, 12e, 12f‧‧‧ adjustable permanent magnet rotor
12a'、12b'‧‧‧固定外磁體轉子 12a', 12b'‧‧‧ fixed outer magnet rotor
14‧‧‧定子繞組 14‧‧‧ stator winding
16、16a、16c、16d、16e、17‧‧‧永磁體 16, 16a, 16c, 16d, 16e, 17‧‧‧ permanent magnets
18、20、21‧‧‧極塊 18, 20, 21‧‧‧ pole
22‧‧‧非磁性墊圈 22‧‧‧Non-magnetic washers
23、34‧‧‧空間間隙 23, 34‧‧‧ Space clearance
24a、24a"、24b'‧‧‧強磁場 24a, 24a", 24b'‧‧‧ strong magnetic field
24b、24b"、24b'‧‧‧弱磁場 24b, 24b", 24b'‧‧‧ weak magnetic field
30‧‧‧用於構建層疊極塊的元件 30‧‧‧Components for building laminated poles
32‧‧‧圓形切除部 32‧‧‧Circular resection
40a、40b、40c‧‧‧用於調整兩極永磁體的裝置 40a, 40b, 40c‧‧‧Devices for adjusting two-pole permanent magnets
42‧‧‧線性馬達 42‧‧‧Linear motor
44‧‧‧臂 44‧‧‧ Arm
45‧‧‧彎曲臂 45‧‧‧Bent arm
46‧‧‧環 46‧‧‧ Ring
47‧‧‧第一活塞 47‧‧‧First Piston
48‧‧‧軸 48‧‧‧Axis
49‧‧‧第二活塞 49‧‧‧second piston
50、51、51a、54‧‧‧齒輪 50, 51, 51a, 54‧‧‧ gears
52、56‧‧‧齒條傳動機構 52, 56‧‧‧ rack drive mechanism
60‧‧‧磁場線圈 60‧‧‧ magnetic field coil
62‧‧‧偏置電樞 62‧‧‧Offset armature
64‧‧‧控制器 64‧‧‧ Controller
66‧‧‧傾卸迴路 66‧‧‧ dumping circuit
68‧‧‧電源 68‧‧‧Power supply
70‧‧‧金屬線 70‧‧‧metal wire
80‧‧‧可移動磁分路塊 80‧‧‧Removable magnetic circuit block
80a‧‧‧棒 80a‧‧‧ great
第1A圖為本發明之可重構電動馬達的側視圖。 Fig. 1A is a side view of the reconfigurable electric motor of the present invention.
第1B圖為本發明之可重構電動馬達的端視圖。 Figure 1B is an end elevational view of the reconfigurable electric motor of the present invention.
第2圖為延第1A圖中線2-2索取之可重構電動馬達的橫截面圖。 Figure 2 is a cross-sectional view of the reconfigurable electric motor taken from line 2-2 of Figure 1A.
第3圖為本發明之圓柱形兩極永磁體的立體圖。 Figure 3 is a perspective view of a cylindrical two-pole permanent magnet of the present invention.
第4圖為本發明之圓柱形四極永磁體的立體圖。 Figure 4 is a perspective view of a cylindrical quadrupole permanent magnet of the present invention.
第5A圖為本發明之徑向對齊構造的可調永磁體轉子的側視圖。 Figure 5A is a side elevational view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention.
第5B圖為本發明之徑向對齊構造的可調永磁體轉子的端視圖。 Figure 5B is an end elevational view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention.
第6A圖為本發明之徑向對齊構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生最大(或強)磁場。 Figure 6A is an end elevational view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention with the two pole permanent magnets aligned for generating a maximum (or strong) magnetic field.
第6B圖為本發明之徑向對齊構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生中等磁場。 Figure 6B is an end elevational view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention with the two pole permanent magnets aligned for generating a medium magnetic field.
第6C圖為本發明之徑向對齊構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生最小(或弱)磁場。 Figure 6C is an end view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention with the two pole permanent magnets aligned for generating a minimum (or weak) magnetic field.
第7A圖為對應於第6A圖的強磁場。 Fig. 7A is a strong magnetic field corresponding to Fig. 6A.
第7B圖為對應於第6C圖的弱磁場。 Fig. 7B is a weak magnetic field corresponding to Fig. 6C.
第8圖為本發明之磁通擠壓構造的可調永磁體轉子的側視圖。 Figure 8 is a side elevational view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention.
第9圖為本發明之磁通擠壓構造的可調永磁體轉子的端視圖。 Figure 9 is an end elevational view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention.
第10A圖為本發明之磁通擠壓構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生最大(或強)磁場。 Figure 10A is an end elevational view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention with the two pole permanent magnets aligned for generating a maximum (or strong) magnetic field.
第10B圖為本發明之磁通擠壓構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生中等磁場。 Figure 10B is an end elevational view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention with the two pole permanent magnets aligned for generating a medium magnetic field.
第10C圖為本發明之磁通擠壓構造的可調永磁體轉子的端視圖,其中兩極永磁體對齊用於產生最小(或弱)磁場。 Figure 10C is an end elevational view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention with the two pole permanent magnets aligned for generating a minimum (or weak) magnetic field.
第11A圖為對應於第10A圖的強磁場。 Fig. 11A is a strong magnetic field corresponding to Fig. 10A.
第11B圖為對應於第10C圖的弱磁場。 Fig. 11B is a weak magnetic field corresponding to Fig. 10C.
第12圖為本發明之可調永磁體轉子的端視圖,其中若干對圓柱形兩極永磁體成徑向對齊構造。 Figure 12 is an end elevational view of the adjustable permanent magnet rotor of the present invention with a plurality of pairs of cylindrical two-pole permanent magnets in a radially aligned configuration.
第13圖是根據本發明的可調永磁體轉子的端視圖,其中若干對圓柱形兩極永磁通擠壓構造。 Figure 13 is an end elevational view of an adjustable permanent magnet rotor in accordance with the present invention with a plurality of pairs of cylindrical two pole permanent magnet through extrusion configurations.
第14圖為本發明之成徑向對齊構造的混合可調內永磁體和固定外磁體轉子的端視圖,其中內磁體對齊用於產生最大磁通。 Figure 14 is an end elevational view of the hybrid adjustable inner permanent magnet and fixed outer magnet rotor in a radially aligned configuration of the present invention with the inner magnet aligned for generating maximum magnetic flux.
第15A圖為本發明之徑向對齊構造的混合可調內永磁體和固定外磁體轉子的端視圖,其調節成用於產生最大磁場。 Figure 15A is an end elevational view of the hybrid adjustable inner permanent magnet and fixed outer magnet rotor of the radially aligned configuration of the present invention adjusted for generating a maximum magnetic field.
第15B圖為本發明之成徑向對齊構造的混合可調內永磁體和固定外磁體轉子的端視圖,其調節成用於產生最小磁場。 Figure 15B is an end elevational view of the hybrid adjustable inner permanent magnet and fixed outer magnet rotor in a radially aligned configuration of the present invention adjusted for generating a minimum magnetic field.
第16圖為本發明之包含可調內永磁體和固定外磁體的混合轉子成磁通擠壓構造的端視圖。 Figure 16 is an end elevational view of the hybrid rotor of the present invention comprising a variable inner permanent magnet and a fixed outer magnet in a magnetic flux extruded configuration.
第17A圖為本發明之包含可調內永磁體和固定外磁體的混合轉子成磁通擠壓構造的端視圖,其調節成產生最大磁場。 Figure 17A is an end elevational view of the hybrid rotor of the present invention incorporating a tunable inner permanent magnet and a fixed outer magnet into a magnetic flux squeezing configuration that is adjusted to produce a maximum magnetic field.
第17B圖為本發明之包含可調內永磁體和固定外磁體的混合轉子成磁通擠壓構造的端視圖,其調節成產生最小磁場。 Figure 17B is an end elevational view of the hybrid rotor of the present invention comprising a tunable inner permanent magnet and a fixed outer magnet in a magnetic flux squeezing configuration that is adjusted to produce a minimum magnetic field.
第18圖為本發明之用於構建層疊極塊的端視圖。 Figure 18 is an end view of the present invention for constructing a stacked pole piece.
第18A圖為第18圖的局部放大圖。 Fig. 18A is a partial enlarged view of Fig. 18.
第19A圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第一實施方式的側視圖。 Figure 19A is a side elevational view of a first embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第19B圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第一實施方式的端視圖。 Figure 19B is an end elevational view of the first embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第20A圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第一實施方式的側視圖。 Figure 20A is a side elevational view of the first embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第20B圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第一實施方式的端視圖。 Figure 20B is an end elevational view of the first embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第21A圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第二實施方式的側視圖。 Figure 21A is a side elevational view of a second embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第21B圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第二實施方式的端視圖。 Figure 21B is an end elevational view of a second embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第22A圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第二實施方式的側視圖。 Figure 22A is a side elevational view of a second embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第22B圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第二實施方式的端視圖。 Figure 22B is an end elevational view of a second embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第23A圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第三實施方式的側視圖。 Figure 23A is a side elevational view of a third embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第23B圖為本發明之用於調整圓柱形兩極永磁體處於第一磁體位置的裝置的第三實施方式的端視圖。 Figure 23B is an end elevational view of a third embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a first magnet position.
第24A圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第三實施方式的側視圖。 Figure 24A is a side elevational view of a third embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第24B圖為本發明之用於調整圓柱形兩極永磁體處於第二磁體位置的裝置的第三實施方式的端視圖。 Figure 24B is an end elevational view of a third embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnet position.
第25A圖為本發明之用於調整成徑向對齊構造的混合可調內永磁體和固定外磁體轉子的圓柱形兩極內永磁體的位置的可替代齒輪裝置。 Figure 25A is an alternative gear arrangement of the present invention for adjusting the position of a cylindrically adjustable inner permanent magnet and a fixed inner magnet permanent magnet of a fixed outer magnet rotor in a radially aligned configuration.
第25B圖為本發明之用於調整成磁通擠壓構造的混合可調內 永磁體和固定外磁體轉子的圓柱形兩極內永磁體的位置的可替代的齒輪裝置。 Figure 25B is a hybrid adjustable interior of the present invention for adjusting into a magnetic flux extrusion configuration An alternative gearing arrangement for the permanent magnet and the position of the permanent magnet within the cylindrical pole of the fixed outer magnet rotor.
第26A圖為本發明之用於控制馬達的磁體位置的偏置系統的側視圖。 Figure 26A is a side elevational view of the biasing system of the present invention for controlling the position of a magnet of a motor.
第26B圖為本發明之用於控制馬達的磁體位置的偏置系統的端視圖。 Figure 26B is an end elevational view of the biasing system of the present invention for controlling the position of the magnet of the motor.
第27A圖為本發明之用於控制發電機的磁體位置的偏置系統的側視圖。 Figure 27A is a side elevational view of the biasing system of the present invention for controlling the position of a magnet of a generator.
第27B圖為本發明之用於控制發電機的磁體位置的偏置系統的端視圖。 Figure 27B is an end elevational view of the biasing system of the present invention for controlling the position of a magnet of a generator.
第28A圖為本發明之具有可轉動半長圓柱形磁體和同軸固定半長圓柱形磁體以及用於控制磁體位置的偏置系統的可調永磁體轉子的側視圖。 Figure 28A is a side elevational view of the adjustable permanent magnet rotor of the present invention having a rotatable semi-long cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet.
第28B圖為本發明沿第28A圖中線288B-28B所取的具有可轉動半長圓柱形磁體和同軸固定辦長圓柱形磁體以及用於控制磁體位置的偏置系統的可調永磁體轉子的正視圖。 Figure 28B is an adjustable permanent magnet rotor having a rotatable semi-long cylindrical magnet and a coaxial fixed-length cylindrical magnet and a biasing system for controlling the position of the magnet taken along line 288B-28B of Figure 28A of the present invention. Front view.
第29A圖為本發明之具有可轉動半長圓柱形磁體和同軸固定半長圓柱形磁體以及用於控制磁體位置的偏置系統的轉子的側視圖。 Figure 29A is a side elevational view of the rotor of the present invention having a rotatable semi-long cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet.
第29B圖為本發明之具有可轉動半長圓柱形磁體和同軸固定半長圓柱形磁體以及用於控制磁體位置的偏置系統的轉子的正視圖。 Figure 29B is a front elevational view of the rotor of the present invention having a rotatable half-length cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet.
第30A圖為本發明之可調永磁體轉子的端視圖,其中可移動磁分路塊對齊以提供強磁場。 Figure 30A is an end elevational view of the adjustable permanent magnet rotor of the present invention with the movable magnetic shunt blocks aligned to provide a strong magnetic field.
第30B圖為本發明之可調永磁體轉子的端視圖,其中可移動磁分路塊對齊以提供弱磁場。 Figure 30B is an end elevational view of the adjustable permanent magnet rotor of the present invention with the movable magnetic shunt blocks aligned to provide a weak magnetic field.
第31A圖為本發明之可調永磁體轉子的端視圖,所示為可移動磁分路塊與永磁體對齊而獲得的強磁場。 Figure 31A is an end elevational view of the adjustable permanent magnet rotor of the present invention showing the strong magnetic field obtained by aligning the movable magnetic branch block with the permanent magnet.
第31B圖是根據本發明的可調永磁體轉子的端部圖,所示為可移動磁分路塊與永磁體不對齊而獲得的弱磁場。 Figure 31B is an end view of an adjustable permanent magnet rotor in accordance with the present invention showing the weak magnetic field obtained by the non-alignment of the movable magnetic branch block with the permanent magnet.
10‧‧‧可重構電動馬達 10‧‧‧Reconfigurable electric motor
2-2‧‧‧橫截面線 2-2‧‧‧cross line
Claims (26)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/610,271 US8097993B2 (en) | 2009-10-30 | 2009-10-30 | Electric motor and/or generator with mechanically tuneable permanent magnetic field |
US12/610,184 US8390162B2 (en) | 2009-10-30 | 2009-10-30 | Reconfigurable inductive to synchronous motor |
US12/905,834 US8072108B2 (en) | 2009-10-30 | 2010-10-15 | Electric motor or generator with mechanically tuneable permanent magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201126872A TW201126872A (en) | 2011-08-01 |
TWI572116B true TWI572116B (en) | 2017-02-21 |
Family
ID=43959320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099137488A TWI572116B (en) | 2009-10-30 | 2010-11-01 | Electric motor and/or alternators with machine-adjustable permanent magnetic field |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102055257B (en) |
TW (1) | TWI572116B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11482360B2 (en) | 2017-12-12 | 2022-10-25 | The Boeing Company | Stator secondary windings to modify a permanent magnet (PM) field |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104767339B (en) * | 2015-04-01 | 2016-03-09 | 吉林大学 | A kind of excitation adjustable permanent-magnet synchronous machine |
CN106992649B (en) * | 2017-05-27 | 2019-01-18 | 江西理工大学 | Become magnetic flow permanent magnet energy conversion |
US10541578B2 (en) * | 2018-01-02 | 2020-01-21 | GM Global Technology Operations LLC | Permanent magnet electric machine with moveable flux-shunting elements |
US10581287B2 (en) * | 2018-01-02 | 2020-03-03 | GM Global Technology Operations LLC | Permanent magnet electric machine with variable magnet orientation |
CN109995162A (en) * | 2019-04-05 | 2019-07-09 | 南京理工大学 | A kind of multi-purpose permanent-magnetic synchronous motor rotor of one |
KR102449464B1 (en) * | 2021-10-15 | 2022-09-29 | 이승권 | sequence power generation type generator with induced current strength selection function |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4482034A (en) * | 1979-08-03 | 1984-11-13 | Max Baermann | Switchable permanent magnet brake |
US6771000B2 (en) * | 2001-02-28 | 2004-08-03 | Hitachi, Ltd. | Electric rotary machine and power generation systems using the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB495813A (en) * | 1936-05-27 | 1938-11-21 | Jakob Bohli | Magneto electric machines |
US2209558A (en) * | 1937-04-22 | 1940-07-30 | Karl Otto Goettsch | Magnetic clamping appliance |
US2243616A (en) * | 1937-12-08 | 1941-05-27 | Bing Julius | Lifting magnet |
DE4421594A1 (en) * | 1994-06-21 | 1996-01-04 | Bernhard Kraser | Air-gap induction variation device for rotary or linear electrical machine |
JP4120347B2 (en) * | 2002-10-08 | 2008-07-16 | 日産自動車株式会社 | Rotating electric machine |
JP4882715B2 (en) * | 2006-12-11 | 2012-02-22 | ダイキン工業株式会社 | Electric motor and control method thereof |
-
2010
- 2010-10-29 CN CN201010533434.XA patent/CN102055257B/en not_active Expired - Fee Related
- 2010-11-01 TW TW099137488A patent/TWI572116B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4482034A (en) * | 1979-08-03 | 1984-11-13 | Max Baermann | Switchable permanent magnet brake |
US6771000B2 (en) * | 2001-02-28 | 2004-08-03 | Hitachi, Ltd. | Electric rotary machine and power generation systems using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11482360B2 (en) | 2017-12-12 | 2022-10-25 | The Boeing Company | Stator secondary windings to modify a permanent magnet (PM) field |
TWI791660B (en) * | 2017-12-12 | 2023-02-11 | 美商波音公司 | Systems and methods for using stator secondary windings to modify permanent magnet (pm) fields of permanent magnet synchronous generators (pmsg), and related controllers |
Also Published As
Publication number | Publication date |
---|---|
CN102055257A (en) | 2011-05-11 |
CN102055257B (en) | 2016-06-29 |
TW201126872A (en) | 2011-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5922023B2 (en) | Electric motor and / or generator with a mechanically variable permanent magnetic field | |
TWI572116B (en) | Electric motor and/or alternators with machine-adjustable permanent magnetic field | |
US8097993B2 (en) | Electric motor and/or generator with mechanically tuneable permanent magnetic field | |
US8120224B2 (en) | Permanent-magnet switched-flux machine | |
US8952587B2 (en) | Windmill generator with mechanically tuneable permanent magnetic field | |
US7876019B2 (en) | Electrical devices with reduced flux leakage using permanent magnet components | |
KR101241078B1 (en) | Planetary geared motor and dynamo | |
US7884518B2 (en) | Electrical synchronous machine | |
JP2009505629A (en) | DC induction motor generator | |
EP3821522A1 (en) | Magnet powered electric generator | |
US20040150289A1 (en) | Universal motor/generator/alternator apparatus | |
JP2001510676A (en) | Electronically switched two-phase reluctance machine | |
JP2016536952A (en) | Improved switched reluctance motor and switched reluctance device for hybrid vehicles | |
RU2719685C1 (en) | Electric motor stator | |
US20100026103A1 (en) | Driving or power generating multiple phase electric machine | |
RU2821426C1 (en) | Brushless dc electric motor | |
RU2422971C1 (en) | Inductor machine | |
KR102497538B1 (en) | Motor | |
Durairaju et al. | An alternative PM machine configuration suitable for low speed and beyond—rated speed applications | |
US8350429B2 (en) | Spring assisted magnetic motor | |
Banerjee et al. | Fine grain commutation: Integrated design of permanent-magnet synchronous machine drives with highest torque density | |
JP2005520470A (en) | Motor / alternator / synchronous generator universal device | |
RU2336621C1 (en) | Method of magnetic flux control and inductor machine to this effect | |
KR100594884B1 (en) | Srm motor of inner rotor form | |
JP2007129830A (en) | Single-phase permanent magnet motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |