TW201126872A - Electric motor and/or alternators with machine-adjustable permanent magnetic field - Google Patents

Electric motor and/or alternators with machine-adjustable permanent magnetic field Download PDF

Info

Publication number
TW201126872A
TW201126872A TW99137488A TW99137488A TW201126872A TW 201126872 A TW201126872 A TW 201126872A TW 99137488 A TW99137488 A TW 99137488A TW 99137488 A TW99137488 A TW 99137488A TW 201126872 A TW201126872 A TW 201126872A
Authority
TW
Taiwan
Prior art keywords
rotor
magnetic field
magnet
permanent magnet
permanent magnets
Prior art date
Application number
TW99137488A
Other languages
Chinese (zh)
Other versions
TWI572116B (en
Inventor
Louis J Finkle
Andrea Furia
Original Assignee
Louis J Finkle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/610,184 external-priority patent/US8390162B2/en
Priority claimed from US12/610,271 external-priority patent/US8097993B2/en
Priority claimed from US12/905,834 external-priority patent/US8072108B2/en
Application filed by Louis J Finkle filed Critical Louis J Finkle
Publication of TW201126872A publication Critical patent/TW201126872A/en
Application granted granted Critical
Publication of TWI572116B publication Critical patent/TWI572116B/en

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Apparatus and method for tuning the magnetic field of brushless motors and alternators to obtain efficient operation over a broad RPM range are provided. The motor or alternator includes fixed windings (or stator) around a rotating rotor carrying permanent magnets. The permanent magnets are generally cylindrical and have North and South poles formed longitudinally in the magnets. Magnetically conducting circuits are formed by the magnets residing in magnetic conducting pole pieces (for example, low carbon or soft steel, and/or laminated insulated layers, of non-magnetizable material). Rotating the permanent magnets, or rotating non-magnetically conducting shunting pieces, inside the pole pieces, either strengthens or weakens the resulting magnetic field to adjust the motor or alternator for low RPM torque or for efficient high RPM efficiency. Varying the rotor magnetic field adjusts the voltage output of the alternators allowing, for example, a windmill generator, to maintain a fixed voltage output.

Description

201126872 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種電動馬達和發電機,特別是關於調整 轉子中固疋磁體和/或不導磁分路塊的取向以獲得在各種每分 鐘轉數下的有效操作。 【先前技術】 本申請是2009年10月30曰申請的美國專利申請序列號 12/610,184以及2009年10 β 30日申請的美國專利申請序列 號12/610,271的部分延續申請’所述兩個美國專利申請的全部 内容通過參引結合入本申請中。 無電刷直流馬達通常需要在各種每分鐘轉數下操作,但只 月b在有限的母分鐘轉數範圍上獲得有效的操作。此外,發電機 和交流發電機通常需要在較寬的每分鐘轉數範圍上操作。例 如,汽車交流發電機在與發動機每分鐘轉數成比例的每分鐘轉 數下操作,而風力交流發電機在與風速成比例的每分鐘轉數下 操作。不幸的是,已知的交流發電機在與每分鐘轉數成比例的 電壓下發電。因為每分鐘轉數無法輕易控制,通常需要其他元 件以調整輸出電壓’這給交流發電機系統增加了無效率性,複 雜性以及成本。 曾有一些設計嘗試用“場弱化”來擴寬每分鐘轉數範圍 以允許馬達在很低的每分鐘轉數下有效率’並仍然獲得有效率 的更高每分鐘轉數的操作。這種場弱化可以應用於内永磁體同 步馬達(IPMSM)或交流同步感應馬達,允許3至4倍的基 4 201126872 準速度(每分鐘轉數)並具有合理的效率。不幸的是用常規 方法進行場弱化會犧牲在較高每分鐘馳下的效率並辦加控 制器算法和軟件的複雜性。 在發電機/交流發電機的應用中’輸出電壓與磁通強度成 比例’需要汽車交流發電機_換流n或單獨的電磁激勵線 圈,汽車㈣發電機只有6G%至鳳的效率,因為該交流發 電機必須在很寬的每分鋪數細上操作。類_問題也存在 於風力發電機巾,其巾遇到的風速變化導致操作的低效率。 【發明内容】 本發明藉由提供驗調節無電刷馬達和交流發電機的磁 場以獲得在較寬每分縛數顧上的有效操作職置和方法 來解決所歧其他需要。所述馬達歧流發電機包括眺承載 水磁體的轉動轉子的固定繞組(或定子)。永磁體大體為圓柱 形並具有在磁體内縱向形成的北(N)極和南⑻極。導磁 迴路由位於導磁極塊(例如非磁化材料製成的低破或軟鋼和/ 或層疊絕緣層)中的顧形成。在極塊_動永顧或轉動不 導磁分路塊’將或麵產生_場,從_整馬達或交流 發電機用於低每分鐘轉數轉賴用於有效的高每分鐘轉數效 率。改變轉子磁場調敎流發電機的賴輸出’允許例如風力 發電機保制定的賴輸出。用在轉子+的其他材料大體為例 如不銹鋼的非磁性材料。 根據本發明的-方面,提供了—婦置和方法贼變電動 馬達中的轉子/電樞的磁通強度,從而提供改進的啟動轉矩以 201126872 及高每分鐘轉數的效率。 根據本發_另—和,提供了裝置和方法赠變發電機 /交流電發電機應用中的轉子/電樞的磁通強度從而獨立於每分 鐘轉數控繼㈣壓。料已㈣交絲韻朗無法控制交 流發電機每分鐘魏,例如,賴以與鶴娜分鐘轉數成比 例的每分鐘賊下操作的汽車交流發電機,和經受風速影響的 風力發電機。改㈣子/魅_度允許獨立於每分鐘轉 數來控制輸出電壓,由此消除了對換流器或單獨電磁激勵線圈 的需要。 根據本發明的又-方面,提供了裝置和方法以藉由轉動半 長圓柱形永磁體而使可轉動磁體與固定半長永磁體對齊或不 對齊來改變馬達或發電機的磁場。 根據本發_另—方面,提供了裝置和方法以藉由使磁分 路塊與ms永磁體朗轉絲改變馬敍發電機的磁場。 根據本發明的再一方面,提供了裝置和方法,所述裝置和 方法可適於改變適於應用於感應馬達的馬達的磁場,從而提供 弱磁場用於以異步模式啟動馬達、以及提供強磁場用於同步模 式的有效操作的馬達磁場強度的。 【實施方式】 以下舉出具體實施例以詳細說明本發明之内容,然並非用 以限定本發明。本發明之保護範圍當視後附之申請專利範圍所 界定者為準。 6 201126872 第1A圖所示為本發明之可重構電動馬達1〇的侧視圖, 第1Β圖所示為可重構電動馬達1〇的端視圖,第2圖所示為 沿第1Α圖中的線2_2所取的可重構電動馬達1〇的橫截面圖。 所述馬達10包括定子繞組14以及位於定子繞組内側的轉子 12。所述可重構電動馬達1〇為包括磁路的無電刷交流感應馬 達,所述磁路包括在轉子12中的至少一個永磁體16 (見第3 圖至圖7)或可移動磁分路塊80 (見第3〇Α圖和第3〇Β圖), 所述永磁ϋ 16或磁純塊80可以進行調整以在一定範圍的每 分鐘轉數上控制轉子的磁場用於有效操作。 第3圖所不為本發明之圓柱形兩極永磁體16的立體圖, 而第4圖所示為本發明之除形喃永磁體而的立體圖。磁 體16和磁體16a的極如虛線指示的沿磁體的長度延伸。 第5A圖所示為本發明之徑向對齊構造的可調永磁體轉子 12a的侧視圖,第5B圖所示為徑向對齊構造的可調永磁體轉 子以的端視圖。轉子12包括永磁體16、内極塊18、外極塊 20和非磁性墊圈22。極塊是導磁但不可磁化的材料,所述材 料傳導水顧16 _場⑽祕子磁場。所述非磁性塾圈22 將内極塊18與外極塊20分隔開,而空氣間隙^將外極塊 分隔開。水磁體I6大體為圓柱形並且與馬達轴n轴向平行, 但也可以使用其他形狀的磁體。 磁乂 永磁體16對齊而產生最大(或強 圖所不為因兩極㈣體16對齊而產生中等磁場的可調柄 201126872 體轉子12a的端視圖’第6C目所示為因兩極永磁體16對齊而 產生最小(或弱)磁場24b (見第π圖)的可調永磁體 12a的端視圖。在電動馬達中,提供強磁場的對齊提供低每分 鐘轉數下的雜矩,啸磁場的對紐供高每分鐘轉數^ 的有效操作。在發電射,可以藉由調整磁體的對齊來調錄 出電壓,從而允許在諸如汽車交流發電機和風力發電機的具有 變化母分鐘轉數的發電機中具有怪定的電壓。 、 第7A圖所示為對應於第6A圖的強磁場24&,第π圖 示為對應於第6C圖的弱磁場。 第8圖所示為本發明之磁通擠壓構造的,柄 既的側視圖’第9圖所示為所述可調永磁體轉子⑶的端視 圖。可調永磁體轉子12b包括永磁體16、極塊21和空氣間隙 23。極塊為導磁但不可磁化的材料,其傳導永磁體16的磁場 以形成轉子磁場。空氣間隙23將極塊21分隔開。 第10A圖所示為本發明之可調永磁體轉子既的端視 圖,其中兩極永磁體16對齊產生最大(或強)磁場⑽,(見 第11A圖)’第圖所示為本發明之可調永磁體轉子⑶的 端視圖’其中兩極永磁體16對齊產生中等磁場,帛觀圖所 示為本發明之可雜轉子12b _簡,財兩極永磁體 16對齊產生最小(或弱)磁場術(見第UB圖)。在電動馬 達中,提供強磁場的對齊提供低每分鐘魏下的高轉矩,而提 供弱磁場的冊提供高每分鐘轉數下的有效操作。在發電機 中,可以藉由調整磁體的對齊來調整輸出電壓,從而允許在諸 8 201126872 如A*車交流發賴和風力發電機的具錢化每 電機中具有恆定電壓。 第11A圖所示為對應於第10A圖的強磁場24a,,第11B . 圖所示為對應於第l〇C圖的弱磁場。 • f 12 ®所示為本發明之可調永磁體轉子12e的端視圖, λ具有若干對徑向對齊構造的圓柱形兩極永磁體16,第13圖 所示為本發明之可調永磁體轉子12d的端視圖,其具有若干對 磁通擠壓構造的圓柱形兩極永磁體16。本發明不限於單個或 成對的水磁體’任意數量的磁體可以組成適用於應用的组。例 如3、4、5或更多個磁體可以代替第12圖和13中示出的磁體 對。 第14圖所示為本發明之包含可調内永磁體〗6和固定外磁 體17的轉子i2a·其成徑向對齊構造的端視圖。可調内永磁體 16和固定外磁體17的組合允許轉子磁場的附加設計。第15A 圖所不為混合可調内永磁體和固定外磁體轉子12ai而調節產 生最大磁場的端視圖,第15B圖所示為混合可調内永磁體和 固定外磁體轉子12a’而調節產生最小磁場的端視圖。 第16圖所示為本發明之包含可調内永磁體16和固定外磁 體17的混合轉子12b’成磁通擠壓構造的端視圖。可調内永磁 體16和固定外磁體π的組合允許轉子磁場的附加設計。第 17A圖所示為混合可調内永磁體和固定外磁體轉子丨2b,調節為 產生最大磁場的端視圖,圖17B所示為混合可調内永磁體和 固定外磁體轉子12bf調節為產生最小磁場的端視圖。 201126872 第18圖所不為用於構建層疊極塊的元件3〇的端視圖,而 第1U圖所示為第18圖的局部放大圖。轉子通常由多個元件 30 =疊構成,各元件30較佳地用電絕緣層塗覆。元件具 有半#Rr,包括具有半徑如的用於圓柱形之永磁體^的圓 形切除部32以及具有寬度Wag的空氣間㈣。用於本發明的 其他實施方式的層疊極塊類似地構建。 第19A圖所示為用於調整圓柱形兩極永磁體μ處於第一 磁體位置的裝置40a的第一實施方式的侧視圖,第ΐ9β圖所示 為用於調整圓柱形兩極永磁體處於第一磁||位置的裝置他 的端視圖,第2GA圖所示為用於調整圓柱形兩極永磁體w 於第二磁體位置的裝置4〇a的側視圖,第圖所示為用於謂 整圓柱形兩極永磁體處於第二磁體位置的裝置伽 圖。用於調整的裝置4〇a包括較佳為步進馬達的線性馬達幻、 由所述線性馬達42軸向致動_ 48、錄48軸向致 46、以及由環46致動並連接至六個齒條傳動機構&之二 個或多個)臂44。齒條傳動機構52接合附連於永磁體 齒輪50以轉動永補16。將轴招向右致動將齒條傳播 52徑向拉入’將軸48向左致動將齒條傳動機構52徑向推 從而經由接合齒條傳動機構52_輪5()來直接轉動磁 體16,其餘的永磁體16經由位於相鄰齒輪%之間 動機構52而耦接於致動裝置。 糸傳 第21A _示為用於調整圓柱形兩極永磁體16處於第 磁體位置的裝置·㈣二實施方式_棚,第2ib 201126872 示為用於調整圓柱形兩極永磁體的裝置. 置的端視圖,第似圖所示為用於調整圓 ^體 處於第二磁體位置雜置獅的側棚,第22Γ== 整圓柱形兩極永磁體處於第二磁體位置的 整的裝置杨包括較佳為步進馬達的線二 =边線性馬達42轴向致動的軸48、由所述㈣ 所骑46致動並連肢六_鱗動機構w 之-的奇曲臂45。彎曲臂45偏置至例如具有9〇。彎曲的彎曲 位置。當環46向右移動以釋放幫曲臂45時 條傳動機構52徑向拉人。當環46向左3 相# 45上施加力時,f #臂45伸直並將齒條傳動機構 以^動向推^齒條傳動機構52接合附連於磁體10的齒輪50 =體16。線性馬達42向右致動因而將齒條傳動機構 =拉人’線性馬達42向左致動將齒條傳動機構52徑向 =’攸而經由直接接合於祕傳動機構52 _輪5 轉動水磁體16 ’其餘的永磁體16藉 = 的齒條傳動機構52而耦接於致動裝置。鄰齒輪50之間 第23Α圖所福用於調整圓柱形兩極永磁體π處於第一 :轉置40c的第三實施方式的側視圖,第2犯圖所示 二用於調整圓柱形兩極永磁體處於第一磁體位置的撕 於^視圖,第24Α圖所示為用於調整圓柱形兩極永磁體16處 體位置的裝置他的侧視圖,第2犯圖所示為用於調 永磁體處於第二磁體位置的農置4〇c的端視 用於調整的裝置输包括較佳為步進馬達的線性馬達42、 201126872 -活42轴向致動的轴48、連接於所述抽48的第 傳動機構52之二:=塞47流體連通並連接至六個齒條 第二活塞49、P- 一,土 49。當第一活塞47向右移動時, 46向左移動:::塞:條傳動機構52被徑向拉入。當環 出,並___ ί 鶴,第二活塞49徑向移 連於永磁n 。雜__52接合附 致動永磁體16。線性馬達42向右 將齒:==徑向拉入’線性馬達_ 機構52的齒輪5()而二從而經由直接接合於齒條傳動 位於相鄰齒/5〇之心轉動水磁體16,其餘永磁體16經由 輪5〇之間的齒條傳動機構52而祕於致動裝置。 鮮圖獅為—鎌縣發錄裝置,用於 的圓二糊綱峨外磁體轉子 龍的1 ΓΓ 置。小娜錄5G固定於各磁 磁體16保㈣ 輪51接合各小磁體齒輪5〇,並使各 隙)相同的^ ^觸麵,術—定的齒輪遊 的對齊。+齊 周節以調整磁體16從弱磁場至強磁場 、⑼ΪΓΒ圖所示為另,齒輪褒置,用於調整成磁通擠壓構 =體調内永磁體和固定外磁體轉子的圓柱形兩極内永 丨、中〜齒輪51a僅接合小磁體齒輪50中交替的 、〗磁體齒輪50接合各相鄰之小磁體齒輪5〇,從而使各 水磁體16鱗近似(只要磁«密,可存在-定的= 12 201126872 遊隙)相同的對齊,並可調節以調整永磁體16從弱磁場至強 磁場的對齊。 第26A圖所示為本發明之用於控制馬達的磁體位置的偏 置系統的側視圖’第26B圖所示為用於藉由金屬線7〇控制馬 達磁體位置的偏置系統的端視圖。控制器64將來自於電源邰 的單向直流電壓變換成用於三相馬達的三相梯形或正弦波 形。使用一個至磁場線圈60的直流輸入線產生與馬達上的負 載成比例的電磁場。磁場線圈60的電阻很低並且不會降低到 馬達的輸入電壓或略微增加電阻。磁場作用在偏致電樞62上 並抵靠彎曲臂45向左推動偏致電樞62以轉動永磁體16。 當馬達負‘載增加時,電磁場與負載成比例地增加,校準負 載只稍小於克服永磁體16的轉動所需的負載,傾卸迴路 (tipping circuit) 66為分路控制器,提供力口至偏置電樞62的 電磁力的小電流,從而提供最終力,該最終力對控制轉子磁場 的永磁體16的轉動進行控制。控制器64較佳為換流器型,其 將單向直流電變換為給定子磁場供能以轉動轉子的三相波形。 偏置致動器包括具超低電阻之磁場線圈6〇及偏置電樞 62,所述偏置電樞62產生與負載電流成比例的力,所述負載 電流抵抗永磁體16的固有性質施力以保持在弱磁場位置。傾 卸迴路66是低力觸發器控制器,其將額外的電流提供給偏置 致動器,所述偏置致動器可以利用非常小的電能轉動永磁體 16以將磁場調整到強的位置或弱的位置。 第27A圖所示為本發明之用於控制發電機的永磁體16的 201126872 位置的偏置系統的侧視圖’第27B圖所示為用於控制發電機 的永磁體16的位置的偏置系統的端視圖。發電機可以被驅動 作為發電機/交流發電機以產生所述相或任何相的電能。 發電機/交流發電機的相電能輸出一般經過將多相電流變 換為單相直流電的六二極管陣列72。輸出直流電線之一的輸 出轉移至磁場線圈60和偏置電樞62,所述磁場線圈6〇和偏 置電樞62產生抵靠永磁體16自然轉動至弱磁場位置的反力。 以與第26A圖和26B中的馬達構造相同的方式,傾卸控制器 為磁場線圈60和偏置電樞62提供小的額外電流,以克服^磁力 從而控制磁體的轉動位置和磁場。傾卸迴路控制器是電子晶體 b型開關,其可以提供將要加至磁場線圈6〇和偏置電樞62的 偏置力的變化量的電能。 第28A圖所示為本發明之可調永磁體轉子12e的侧視 圖,該可調永磁體轉子12e具有對齊取向的可轉動半長圓柱形 磁體16c、同轴的固定半長圓柱形磁體脱以及用於控制磁體 位置的4整系統,第28B圖所示為沿第28A圖巾線28B-28B 所取的可調永磁贿? 12e的職關。第29a騎示為其 中可轉動半長除形娜16e制軸的固定半長圓柱形磁體 16d不對齊的可調永磁體轉子仏的第二側視圖,第29b圖所 :為沿第29A圖中線29B_29B所取的可調永磁體轉子以的 ,截面圖。當磁體16c與16d對齊(即磁體脱和脱的極對 背)時’產生了強磁場,而當磁體16c轉動18『並且磁體be 與16d的極不對齊時,則產生弱磁場。 201126872 調整系統包括附連於磁體16c的小齒輪5〇 和第二小齒輪54協作的徑向滑動齒條傳 ^小齒輪50 二小齒輪54協作的軸向滑動齒條傳動機構56籌=及與第 傳動機構56可以使_線管電魏、液‘動齒條 第24B圖)、藉由線性馬達、藉由線性步(見第23A圖至 广何裝置進行致動’從而使軸向滑動齒條傳動機 向上移動。軸向滑動齒條傳動機構56 _ =構56在軸 小齒輪54以轉動第二小齒輪54。第二小齒輪% 第二 至徑向滑動動齒條傳動機構52從而使徑向 的轉動祕 52 以使^體16 i、小齒輪5〇,從而轉動永磁體16c, 生魏略爾,㈣擇性地產 鮮H騎福本刺之可__子12f的端視圖, d 了移動私路塊8G與固定外永磁體 動磁分路塊8g轉動並與固定外永磁體17 e不對八以提供弱磁場。可移動磁 =導磁、不可磁化材科製成,並包括穿過可二= ^的令心料軸磁分職8G料兩部細棒_。棒_ 瑜80 觀錄佳㈣顯磁材㈣成。可移動磁分路 糊磁體的調整 U ) 料移動分路磁場從強磁 琢’、'、弱磁場的馬達或發電機均擬在本發明的範圍内。 201126872 第31Λ圖所示為本發明之可調永磁體轉子12f的端視圖, 所示為通過使可移動磁分路塊與永磁體16e對齊而獲得的強 磁場24a”,第31A圖所示為可調永磁體轉子以的端視圖, 所示為通吏可移動磁分路塊與永磁豸16e +對齊而獲得的 弱磁場24b’’。包括具有可移動磁分路塊的導磁迴路的轉子的 各種其他實施方式對於本領域的普通技術人貞將會顯而易 見’例如位於磁體外侧、具有角度相互交替的導磁段和不導磁 段的圓柱形殼’並且在具有這雜磁體協作的㈠固或多個) 可移動磁分路塊以選擇性地產生_場和獅場的馬達或發 電機中使用的任何轉子也意於在本發明的範圍内。 雖然本發_技軸容已㈣較佳實細揭露如上 *任何 热習此技藝者’在稀縣㈣之精神所作些許之更動與潤 飾,皆應涵蓋於本發明的範疇内。 【圖式簡單說明】 第1A圖為本發明之可重構電動騎的側視圖。 第1B圖為本發明之可重構電動馬達的端視圖。 第2圖為沿第1A圖中線2_2所取之可重構電動馬達的橫截面 圖。 第3圖為本發明之圓柱形兩極永磁體的立體圖。 第4圖為本發明之圓柱形四極永磁體的立體圖。 第5A圖為本發明之徑向對齊構造的可調永磁體轉子的側視 201126872 第SB圖為本發明之徑向對齊構造的可調永轉子的端視 圖。 第6A圖為本發明之徑向對齊構造的可調永磁體轉子的端視 圖,其中兩極永磁體對齊用於產生最大(或強)磁場。 第6B圖為本發明之徑向對齊構造的可調永磁體轉子的端視 圖,其中兩極永磁體對齊用於產生中等磁場。 第6C圖為本發明之徑向對齊構造的可調永磁體轉子的端視 圖’其中兩極永磁體對齊用於產生最小(或弱)磁場。 第7A圖為對應於第6A圖的強磁場。 第7B圖為對應於第6C圖的弱磁場。 第8圖為本發明之磁通擠壓構造的可調永磁體轉子的侧視圖。 第9圖為本發明之磁通擠壓構造的可調永磁體轉子的端視圖。 第10A圖為本發明之磁通擠壓構造的可調永磁體轉子的端視 圖,其中兩極永磁體對齊用於產生最大(或強)磁場。 第10B圖為本發明之磁通擠壓構造的可調永磁體轉子的端視 圖,其中兩極永磁體對齊用於產生中等磁場。 第〗〇C圖為本發明之磁通擠壓構造的可調永磁體轉子的端視 圖,其中兩極永磁體對齊用於產生最小(或弱)磁場。 第UA圖為對應於第1〇A圖的強磁場。 第1圖為對應於第i〇c圖的弱磁場。 第12圖為本發明之可調永磁體轉子的端視圖,其中若干對圓 柱形兩極永磁體成徑向對齊構造。 17 201126872 第13圖是根據本發明的可調永磁體轉子的端視圖,其中若干 對圓柱形兩極永磁體成磁通擠壓構造。 第14圖為本發明之成徑向對齊構造的混合可調内永磁體和固 疋外磁體轉子的端視圖,其中内磁體對齊用於產生最大磁通。 第15A圖為本發明之成徑向對齊構造的混合可調内永磁體和 固疋外磁體轉子的端視圖,其調節成用於產生最大磁場。 第1犯圖為本發明之成徑向對齊構造的混合可調内永磁體和 固定外磁體轉子的端棚,其調節成產生最小磁場。 第16圖為本發明之包含可調内永磁體和固定外磁體的混合轉 子成磁通擠壓構造的端視圖。 第ΠΑ圖為本發明之包含可調内永磁體和固定外磁體的混合 轉子成磁猶壓構造_棚,其成產生最大磁場。 第17B圖為本發明之包含可調内永磁體和固定外磁體的混合 轉子成磁通擠壓構造的端視圖,其調節成產生最小磁場。 第18圖為本發明之用於構建層疊極塊的端視圖。 第18A圖為第π圖的局部放大圖。 第19A圖為本發明之用於調整圓柱形兩極永磁體處於第〜礤 體位置的裝置的第一實施方式的侧視圖。 第19B圖為本發明之用於調整圓柱形兩極永磁體處於第〜、 體位置的裝置的第一實施方式的端視圖。 第20A圖為本發明之用於調整圓柱形兩極永磁體處於第一 體位置的裝置的第一實施方式的側視圖。 罐 201126872 第·圖林__賺細 體位置的裝置的第-實财式_棚。11處於第 第21A圖為本發明之用於調整圓柱形兩極 體位靖置的第二實施方式的側視圖。體處於第 第21B圖為本發明之用於調整圓柱形兩極永磁體處 體位置的裝㈣第二實财式_棚。 、第 第22A圖為本發日月之用於調整圓柱形兩極永麵處 體位置的裝置的第二實财式_視圖。 、第 第22B圖為本發明之用於調整圓柱形 體位置的t置的第二實施方式的端視圖。娜處於第二磁 第23A圖為本發明之用於調整圓柱形兩極永磁體處 體位置的裝置的第三實施的側視圖。 第23B圖為本發明之用於赃圓柱形兩極永磁體處 體位置的裝置的第三實施方式的端視圖。 第篇圖為本發明之用於調整圓柱形兩極永磁體處於第二磁 體位置的裳置的第三實施方式的侧視圖。 第24B目為本發明之用於調整圓柱形兩極永磁體處於第二磁 體位置的裝置的第三實施方式的端視圖。 第25A圖為本發明之用於調整成徑向對齊構造的屍合可調内 永磁體和固定外磁雜子__兩_永磁_位 替代齒輪裝置。 '可 第25B圖為本發明之用於調整成磁通擠壓構造的混人可% .磁 磁 磁 磁 磁 19 201126872 永磁體和固料磁體轉子的圓柱形兩極内永磁體的位置的可 替代的齒輪裝置》 第26A圖為本發日月之用於控制馬達的磁斷立置的偏置系統的 側視圖。 第26B圖為本發明之用於控制馬達的磁體位置的偏置系統的 端視圖。 第27A圖為本發明之用於控制發電機的磁體位置的偏置系統 的側視圖。 第27B圖為本發明之用於控制發電機的磁體位置的偏置系統 的端視圖。 第胤圖為本發明之具有可轉動半長圓柱形磁體和同轴固定 半長圓柱形磁體以及用於控制磁體位置的偏置系統的可調永 磁體轉子的側視圖。 第28B圖為本發明沿第28A圖中線2犯_2犯所取的具有可轉 動半長圓柱形磁體和同軸固定半長圓柱形磁體以及用於控制 磁體位置的偏置系統的可調永磁體轉子的正視圖。 第29A圖為本發明之具有可轉動半長圓柱形磁體和同轴固定 半長圓柱形磁體以及用於控制磁體位置的偏置系統的轉子的 側視圖。 第29B圖為本發明之具有可轉動半長圓柱形磁體和同轴固定 半長圓柱形磁體以及用於控制磁體位置的偏置系統的轉子的 正視圖。 20 201126872 第皿圖為本發明之可調永磁體轉子的端視圖, 磁分路塊對齊以提供強磁場。 、」移動 第30B圖為本發明之可調永磁體轉子的端姻 磁分路塊不對齊以提供弱磁場。 、j移動 第31A圖為本發明之可調永磁體轉子的端視圖,所 動磁分路塊與永磁體對齊而獲得的強磁場。 為7移 第31B圖是根縣發_柄轉子㈣㈣,所 可移動磁分路塊與永磁體不對齊而獲得鄉磁場。 * 【主要元件符號說明】 10 :可重構電動馬達 11 :馬達軸 12 :轉子201126872 VI. Description of the Invention: [Technical Field] The present invention relates to an electric motor and a generator, and more particularly to adjusting the orientation of a solid magnet and/or a non-magnetic branching block in a rotor to obtain various Effective operation per minute of revolution. [Prior Art] This application is a continuation application of the U.S. Patent Application Serial No. 12/610,184, filed on Oct. 30, 2009, and the U.S. Patent Application Serial No. 12/610,271, filed on Dec. The entire contents of the patent application are incorporated herein by reference. Brushless DC motors typically require operation at various revolutions per minute, but only month b achieves efficient operation over a limited range of mother revolutions. In addition, generators and alternators typically need to operate over a wide range of revolutions per minute. For example, an automotive alternator operates at a revolutions per minute that is proportional to the engine revolutions per minute, while a wind alternator operates at a revolutions per minute that is proportional to the wind speed. Unfortunately, known alternators generate electricity at voltages that are proportional to the number of revolutions per minute. Because the number of revolutions per minute cannot be easily controlled, other components are often required to adjust the output voltage', which adds inefficiency, complexity, and cost to the alternator system. There have been some attempts to use "field weakening" to widen the range of revolutions per minute to allow the motor to be efficient at very low revolutions per minute' and still achieve efficient higher revolutions per minute. This field weakening can be applied to an internal permanent magnet synchronous motor (IPMSM) or an AC synchronous induction motor, allowing 3 to 4 times the base 4 201126872 quasi-speed (revolutions per minute) with reasonable efficiency. Unfortunately, field weakening with conventional methods sacrifices efficiency at higher per minute and adds complexity to controller algorithms and software. In generator/alternator applications, the 'output voltage is proportional to the flux strength' requires an automotive alternator _ commutating n or a separate electromagnetic excitation coil, and the car (four) generator has only 6G% to phoenix efficiency because The alternator must operate on a wide range of fines per division. The class_problem also exists in wind turbine towels, where the wind speed changes encountered by the towel result in inefficient operation. SUMMARY OF THE INVENTION The present invention addresses other needs by providing an adjustment to the magnetic field of a brushless motor and an alternator to achieve an effective operational position and method over a wide range of constraints. The motor split generator includes a fixed winding (or stator) of a rotating rotor carrying a hydrodynamic magnet. The permanent magnets are generally cylindrical and have north (N) and south (8) poles formed longitudinally within the magnet. The magnetic back-back route is formed in a magnetically conductive pole block (e.g., a low-break or mild steel and/or laminated insulating layer made of a non-magnetized material). In the pole block _ moving or turning the non-magnetic branching block 'to create a _ field, from the _ whole motor or alternator for low per minute rpm to use for efficient high per minute rpm efficiency . Changing the rotor field to the turbulence output of the turbulent generator allows for, for example, the wind generator to set the output. Other materials used in the rotor + are generally non-magnetic materials such as stainless steel. According to an aspect of the invention, there is provided a magnetic flux strength of a rotor/armature in a squirrel-changing electric motor, thereby providing an improved starting torque with an efficiency of 201126872 and a high number of revolutions per minute. According to the present invention, the apparatus and method provide the magnetic flux strength of the rotor/armature in the variable generator/alternating current generator application so as to be independent of the NC (four) pressure per minute. It has been (4) that the silk thread can not control the AC generator every minute, for example, the car alternator operated by the thief and the wind turbine affected by the wind speed. Changing (4) sub/character_degree allows the output voltage to be controlled independently of the revolutions per minute, thereby eliminating the need for an inverter or a separate electromagnetic excitation coil. In accordance with yet another aspect of the present invention, an apparatus and method are provided for changing the magnetic field of a motor or generator by orienting or misaligning a rotatable magnet with a fixed half length permanent magnet by rotating a semi-long cylindrical permanent magnet. According to a further aspect of the invention, an apparatus and method are provided for changing the magnetic field of a circulator by a magnetic circuit block and a ms permanent magnet. According to yet another aspect of the present invention, an apparatus and method are provided that are adapted to change a magnetic field suitable for use in a motor of an induction motor to provide a weak magnetic field for activating the motor in an asynchronous mode and providing a strong magnetic field The magnetic field strength of the motor for efficient operation of the synchronous mode. BEST MODE FOR CARRYING OUT THE INVENTION The following examples are given to illustrate the contents of the present invention in detail, but are not intended to limit the present invention. The scope of the invention is defined by the scope of the appended claims. 6 201126872 Figure 1A shows a side view of a reconfigurable electric motor 1A of the present invention, and Fig. 1 is an end view of the reconfigurable electric motor 1〇, and Fig. 2 is a view along the first drawing. A cross-sectional view of the reconfigurable electric motor 1〇 taken from line 2_2. The motor 10 includes a stator winding 14 and a rotor 12 located inside the stator winding. The reconfigurable electric motor 1A is a brushless AC induction motor including a magnetic circuit including at least one permanent magnet 16 (see FIGS. 3 to 7) or a movable magnetic shunt in the rotor 12. Block 80 (see Figures 3 and 3), the permanent magnet 16 or magnetic block 80 can be adjusted to control the magnetic field of the rotor for efficient operation over a range of revolutions per minute. Fig. 3 is a perspective view of the cylindrical two-pole permanent magnet 16 of the present invention, and Fig. 4 is a perspective view of the shape removing permanent magnet of the present invention. The poles of the magnet 16 and the magnet 16a extend along the length of the magnet as indicated by the broken line. Fig. 5A shows a side view of the adjustable permanent magnet rotor 12a of the radially aligned configuration of the present invention, and Fig. 5B shows an end view of the adjustable permanent magnet rotor of the radially aligned configuration. The rotor 12 includes a permanent magnet 16, an inner pole block 18, an outer pole block 20, and a non-magnetic washer 22. The pole piece is a magnetically permeable but non-magnetizable material that conducts water to the 16 _ field (10) scorpion magnetic field. The non-magnetic coil 22 separates the inner pole block 18 from the outer pole block 20, and the air gap ^ separates the outer pole block. The hydromagnet I6 is generally cylindrical and axially parallel to the motor shaft n, but magnets of other shapes may also be used. The magnetic permanent magnets 16 are aligned to produce the largest (or strong maps are not adjustable due to the alignment of the two poles (four) body 16 to produce a medium magnetic field. 201126872 End view of the body rotor 12a '6C is shown as aligned by the two pole permanent magnets 16 An end view of the adjustable permanent magnet 12a that produces a minimum (or weak) magnetic field 24b (see Figure π). In an electric motor, the alignment of the strong magnetic field provides a low moment of rotation per minute, the pair of whistling magnetic fields The effective operation of the high-speed rotation per minute ^. In power generation, the voltage can be tuned by adjusting the alignment of the magnets, thereby allowing the transmission of varying mother-minute revolutions such as automobile alternators and wind turbines. There is a strange voltage in the motor. Fig. 7A shows a strong magnetic field 24& corresponding to Fig. 6A, and Fig. 8 shows a weak magnetic field corresponding to Fig. 6C. Fig. 8 shows the magnetic field of the present invention. The end view of the adjustable permanent magnet rotor (3) is shown in Fig. 9 through the squeezing configuration of the shank. The adjustable permanent magnet rotor 12b comprises a permanent magnet 16, a pole block 21 and an air gap 23. Block is a magnetically conductive but non-magnetizable material that conducts The magnetic field of the magnet 16 forms a rotor magnetic field. The air gap 23 separates the pole pieces 21. Figure 10A shows an end view of the adjustable permanent magnet rotor of the present invention, wherein the alignment of the two pole permanent magnets 16 produces the largest (or strong) Magnetic field (10), (see Figure 11A) 'The figure shows an end view of the adjustable permanent magnet rotor (3) of the present invention, wherein the two-pole permanent magnet 16 is aligned to produce a medium magnetic field, and the figure is shown as a miscellaneous The rotor 12b_simple, the two permanent magnets 16 are aligned to produce a minimum (or weak) magnetic field (see Figure UB). In an electric motor, the alignment of the strong magnetic field provides a low torque per minute, while providing a weak The magnetic field book provides efficient operation at high revolutions per minute. In generators, the output voltage can be adjusted by adjusting the alignment of the magnets, allowing for the use of 8 201126872 such as A* vehicles and wind turbines. There is a constant voltage in each motor. Figure 11A shows the strong magnetic field 24a corresponding to Figure 10A, and Figure 11B shows the weak magnetic field corresponding to the first 〇C diagram. Adjustable permanent magnet rotation for the present invention An end view of 12e, λ having a plurality of cylindrically poled permanent magnets 16 in a radially aligned configuration, and Figure 13 is an end view of the adjustable permanent magnet rotor 12d of the present invention having a plurality of pairs of magnetic flux extruded configurations Cylindrical two-pole permanent magnet 16. The invention is not limited to a single or pair of hydro-magnets. Any number of magnets may constitute a group suitable for the application. For example, 3, 4, 5 or more magnets may be substituted for Figures 12 and 13. The pair of magnets shown. Figure 14 is an end view of the rotor i2a of the present invention comprising a variable inner permanent magnet 6 and a fixed outer magnet 17 in a radially aligned configuration. Adjustable inner permanent magnet 16 and fixed The combination of the outer magnets 17 allows for an additional design of the rotor magnetic field. Figure 15A is an end view for adjusting the maximum magnetic field for the hybrid adjustable inner permanent magnet and the fixed outer magnet rotor 12ai, and Fig. 15B shows the mixed adjustable inner permanent magnet and the fixed outer magnet rotor 12a' for the smallest adjustment. End view of the magnetic field. Fig. 16 is an end elevational view showing the magnetic flux squeezing structure of the mixing rotor 12b' including the adjustable inner permanent magnet 16 and the fixed outer magnetic body 17 of the present invention. The combination of the adjustable inner permanent magnet 16 and the fixed outer magnet π allows for an additional design of the rotor magnetic field. Figure 17A shows an end view of the hybrid adjustable inner permanent magnet and the fixed outer magnet rotor 丨2b adjusted to produce a maximum magnetic field, and Fig. 17B shows the mixed adjustable inner permanent magnet and the fixed outer magnet rotor 12bf adjusted to produce a minimum End view of the magnetic field. 201126872 Fig. 18 is not an end view of the element 3〇 for constructing the laminated pole block, and Fig. 1U is a partial enlarged view of Fig. 18. The rotor is typically constructed of a plurality of elements 30 = stack, each element 30 preferably being coated with an electrically insulating layer. The element has a half #Rr including a circular cutout 32 having a radius such as a cylindrical permanent magnet ^ and an air (four) having a width Wag. The laminated pole pieces used in other embodiments of the present invention are similarly constructed. Figure 19A is a side view showing a first embodiment of the apparatus 40a for adjusting the cylindrical two-pole permanent magnet μ at the first magnet position, and the ninth 9β diagram is for adjusting the cylindrical two-pole permanent magnet in the first magnetic field. The position of the device is his end view, and the 2GA figure shows a side view of the device 4〇a for adjusting the position of the cylindrical two-pole permanent magnet w to the second magnet, and the figure is shown for the complete cylindrical shape. A device gaze of the two-pole permanent magnet at the second magnet position. The means for adjustment 4A includes a linear motor, preferably a stepper motor, axially actuated by the linear motor 42, 48 axially 46, and actuated by the ring 46 and connected to the six Two or more arms 44 of the rack drive mechanism. The rack drive mechanism 52 is coupled to the permanent magnet gear 50 to rotate the permanent complement 16. Actuating the shaft to the right pulls the rack propagation 52 radially into the 'actuating the shaft 48 to the left. Pushing the rack drive 52 radially to directly rotate the magnet via the engaged rack drive 52_wheel 5 () 16. The remaining permanent magnets 16 are coupled to the actuator via a moving mechanism 52 located between adjacent gears.糸 第 21A _ is shown as a device for adjusting the position of the cylindrical two-pole permanent magnet 16 at the position of the first magnet. (4) The second embodiment _ shed, the second ib 201126872 is shown as a device for adjusting the cylindrical two-pole permanent magnet. The first figure shows the side shed for adjusting the lion in the second magnet position, and the 22nd Γ == the whole cylindrical two-pole permanent magnet is in the second magnet position. The line 2 of the motor is the shaft 48 that is axially actuated by the linear motor 42 and the odd-shaped arm 45 that is actuated by the (four) ride 46 and that is connected to the limbs. The curved arm 45 is biased to have, for example, 9 turns. Curved bending position. When the ring 46 is moved to the right to release the brace arm 45, the bar drive mechanism 52 pulls the person radially. When the ring 46 applies a force to the left 3 phase #45, the f# arm 45 is straightened and the rack drive mechanism is engaged to the gear 50 = body 16 attached to the magnet 10 by the push rod drive mechanism 52. The linear motor 42 is actuated to the right and thus the rack drive = puller 'linear motor 42 is actuated to the left. The rack drive mechanism 52 is radial = '攸 and is directly coupled to the secret drive mechanism 52 _ wheel 5 to rotate the hydromagnet 16 'The remaining permanent magnets 16 are coupled to the actuating device by a rack drive mechanism 52. The second embodiment between the adjacent gears 50 is used to adjust the cylindrical two-pole permanent magnet π in the first: the side view of the third embodiment of the transposition 40c, and the second figure is used to adjust the cylindrical two-pole permanent magnet. The tearing at the first magnet position is shown in Fig. 24, which is a side view of the device for adjusting the position of the cylindrical permanent magnet 16 at the second position, and the second figure is shown for the permanent magnet. The device for adjusting the position of the two magnets at the position of the two magnets includes a linear motor 42 preferably a stepper motor, a 201126872 shaft 42 that is axially actuated 42, and a portion connected to the pump 48. Transmission mechanism 52: The plug 47 is in fluid communication and is connected to the six racks second piston 49, P-one, soil 49. When the first piston 47 moves to the right, 46 moves to the left::: Plug: The strip drive mechanism 52 is pulled radially in. When the ring is out and ___ ί crane, the second piston 49 is radially displaced to the permanent magnet n. The miscellaneous__52 is attached to actuate the permanent magnet 16. The linear motor 42 pulls the teeth to the right: == radially into the 'linear motor _ mechanism 52 gear 5 () and thus rotates the hydromagnet 16 via the direct engagement of the rack drive at the center of the adjacent tooth /5 ,, the rest The permanent magnets 16 are secreted by the rack drive mechanism 52 between the wheels 5〇. The fresh lion is a 发 发 发 发 , , , , , , , 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发Xiaonalu 5G is fixed to each magnet 16 (four) wheel 51 engages each small magnet gear 5〇, and makes the gaps the same ^^ contact surface, the alignment of the gears. + Qi Zhou Festival to adjust the magnet 16 from weak magnetic field to strong magnetic field, (9) shown in the figure, gear set, used to adjust the magnetic flux extrusion structure = body adjustment inner permanent magnet and fixed outer magnet rotor cylindrical pole The inner permanent ring and the middle gear 51a are only engaged with the alternating magnet magnet gears 50, and the magnet gears 50 are engaged with the adjacent small magnet gears 5〇, so that the scales of the respective hydromagnets 16 are approximated (as long as the magnetic «tight, may exist - The fixed = 12 201126872 clearance is the same alignment and can be adjusted to adjust the alignment of the permanent magnet 16 from a weak magnetic field to a strong magnetic field. Fig. 26A is a side view showing the biasing system for controlling the position of the magnet of the motor of the present invention. Fig. 26B is an end view showing a biasing system for controlling the position of the motor magnet by the wire 7?. Controller 64 converts the unidirectional DC voltage from the power supply 成 into a three-phase trapezoidal or sinusoidal waveform for the three-phase motor. A DC input line to the field coil 60 is used to generate an electromagnetic field proportional to the load on the motor. The resistance of the field coil 60 is very low and does not decrease to the input voltage of the motor or slightly increase the resistance. A magnetic field acts on the biasing armature 62 and pushes the biasing armature 62 to the left against the curved arm 45 to rotate the permanent magnet 16. When the motor's negative load increases, the electromagnetic field increases in proportion to the load, the calibration load is only slightly less than the load required to overcome the rotation of the permanent magnet 16, and the tipping circuit 66 is a shunt controller that provides force to The small current of the electromagnetic force of the armature 62 is biased to provide a final force that controls the rotation of the permanent magnet 16 that controls the rotor field. Controller 64 is preferably of the inverter type that converts unidirectional direct current to a given stator magnetic field to rotate the three phase waveform of the rotor. The bias actuator includes a field coil 6 超 having an ultra-low resistance and a biasing armature 62 that generates a force proportional to a load current that resists the inherent properties of the permanent magnet 16 Force to maintain a weak magnetic field position. The dump circuit 66 is a low force trigger controller that provides additional current to the bias actuator that can rotate the permanent magnet 16 with very little electrical energy to adjust the magnetic field to a strong position Or weak position. Figure 27A shows a side view of the biasing system of the 201126872 position of the permanent magnet 16 for controlling the generator of the present invention. Figure 27B shows the biasing system for controlling the position of the permanent magnet 16 of the generator. End view. The generator can be driven as a generator/alternator to generate electrical energy for the phase or any phase. The phase power output of the generator/alternator is typically passed through a six diode array 72 that converts the multiphase current to single phase direct current. The output of one of the output DC wires is transferred to the field coil 60 and the biasing armature 62, which produces a counterforce that naturally rotates against the permanent magnet 16 to a weak magnetic field position. In the same manner as the motor configuration of Figs. 26A and 26B, the dump controller provides a small additional current to the field coil 60 and the bias armature 62 to overcome the magnetic force and thereby control the rotational position and magnetic field of the magnet. The dump loop controller is an electronic crystal b-type switch that provides electrical energy for the amount of change in the biasing force to be applied to the field coil 6 〇 and the bias armature 62. Figure 28A is a side elevational view of the adjustable permanent magnet rotor 12e of the present invention having a rotatable semi-long cylindrical magnet 16c aligned in a aligned orientation and a coaxial fixed semi-long cylindrical magnet. The 4th system for controlling the position of the magnet, Figure 28B shows the adjustable permanent magnet bribe taken along line 28B-28B of Figure 28A. 12e's job title. The 29th ride is shown as a second side view of the adjustable permanent magnet rotor 不 in which the fixed half-length cylindrical magnet 16d of the rotatable half-length smear 16e shaft is misaligned, Figure 29b: in Figure 29A The adjustable permanent magnet rotor taken by line 29B_29B is a cross-sectional view. When the magnets 16c are aligned with 16d (i.e., the poles of the magnets are removed from the poles), a strong magnetic field is generated, and when the magnets 16c are rotated 18" and the poles of the magnets be and 16d are not aligned, a weak magnetic field is generated. 201126872 The adjustment system includes a pinion gear 5 附 attached to the magnet 16c and a second sliding pinion 54 cooperating with the radial sliding rack pinion pinion 50. The pinion gear 54 cooperates with the axial sliding rack gear mechanism 56 The first transmission mechanism 56 can make the _ line tube electric Wei, the liquid 'moving rack Fig. 24B), by linear motor, by linear step (see Fig. 23A to the wide device to actuate) to make the axial sliding teeth The strip conveyor moves upward. The axial sliding rack drive mechanism 56 _ = 56 is in the shaft pinion 54 to rotate the second pinion 54. The second pinion % is second to the radial sliding of the rack drive 52 so that Radial rotation of the secret 52 so that the body 16 i, pinion 5 〇, thereby rotating the permanent magnet 16c, Sheng Wei Luer, (4) Selective property fresh H riding Fu Ben stab __ child 12f end view, d The mobile private road block 8G and the fixed outer permanent magnet moving magnetic branch block 8g rotate and are opposite to the fixed outer permanent magnet 17 e to provide a weak magnetic field. The movable magnetic = magnetically conductive, non-magnetizable material is made and includes Can be two = ^ the core of the core axis of the 8G material two thin rods _. rod _ Yu 80 Guan Lujia (four) magnetic material (four) The movable magnet magnetic shunt paste adjusted U) moving the material from the shunt magnetic field cut ',' weak magnetic field motors or generators are intended to be within the scope of the present invention. 201126872 Fig. 31 is an end view showing the adjustable permanent magnet rotor 12f of the present invention, showing a strong magnetic field 24a" obtained by aligning the movable magnetic branch block with the permanent magnet 16e, as shown in Fig. 31A. An end view of the adjustable permanent magnet rotor, shown as a weak magnetic field 24b'' obtained by aligning the movable magnetic branch block with the permanent magnet 豸 16e + , including a magnetic circuit having a movable magnetic branch block Various other embodiments of the rotor will be apparent to those of ordinary skill in the art, such as a cylindrical shell that is located outside the magnet, has magnetically alternating segments that alternate with each other and non-magnetic segments, and cooperates with this hybrid magnet (1). Solid or multiple) movable magnetic shunt blocks to selectively generate any field used in the motor or generator of the _ field and the lion field are also intended to be within the scope of the invention. Although the present invention has been used (4) It is preferable to disclose the above changes and refinements made by any of the above-mentioned artists in the spirit of the rare county (four), which should be included in the scope of the present invention. [FIG. 1A] FIG. Reconfigurable electric ride Fig. 1B is an end view of the reconfigurable electric motor of the present invention. Fig. 2 is a cross-sectional view of the reconfigurable electric motor taken along line 2_2 of Fig. 1A. Fig. 3 is a view of the present invention A perspective view of a cylindrical two-pole permanent magnet. Figure 4 is a perspective view of a cylindrical quadrupole permanent magnet of the present invention. Figure 5A is a side view of the adjustable permanent magnet rotor of the radial alignment structure of the present invention. An end view of the adjustable permanent rotor in a radially aligned configuration. Figure 6A is an end view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention with the two pole permanent magnets aligned for generating a maximum (or strong) magnetic field. Figure 6B is an end elevational view of the adjustable permanent magnet rotor of the radially aligned configuration of the present invention with the two pole permanent magnets aligned for generating a medium magnetic field. Figure 6C is a radially aligned construction of the adjustable permanent magnet rotor of the present invention End view 'where two pole permanent magnets are aligned for generating a minimum (or weak) magnetic field. Fig. 7A is a strong magnetic field corresponding to Fig. 6A. Fig. 7B is a weak magnetic field corresponding to Fig. 6C. Fig. 8 is a view of the present invention Magnetic flux extrusion structure Side view of the adjustable permanent magnet rotor. Fig. 9 is an end view of the adjustable permanent magnet rotor of the magnetic flux extrusion structure of the present invention. Fig. 10A is an adjustable permanent magnet rotor of the magnetic flux extrusion structure of the present invention An end view in which two pole permanent magnets are aligned for generating a maximum (or strong) magnetic field. Figure 10B is an end view of the adjustable permanent magnet rotor of the flux squeezing configuration of the present invention, wherein the two pole permanent magnets are aligned for producing a medium The magnetic field is the end view of the adjustable permanent magnet rotor of the flux extrusion structure of the present invention, wherein the two pole permanent magnets are aligned for generating a minimum (or weak) magnetic field. The UA diagram corresponds to the first 〇 A strong magnetic field of Figure A. Figure 1 is a weak magnetic field corresponding to the i-th c. Figure 12 is an end view of the adjustable permanent magnet rotor of the present invention, wherein a plurality of pairs of cylindrical two-pole permanent magnets are radially aligned . 17 201126872 Figure 13 is an end view of an adjustable permanent magnet rotor in accordance with the present invention in which a plurality of pairs of cylindrical two-pole permanent magnets are in a magnetic flux extruded configuration. Figure 14 is an end elevational view of the hybrid adjustable inner permanent magnet and the solid outer magnet rotor in a radially aligned configuration of the present invention with the inner magnet aligned for generating maximum magnetic flux. Figure 15A is an end elevational view of the hybrid adjustable inner permanent magnet and the solid outer magnet rotor in a radially aligned configuration of the present invention adjusted for generating a maximum magnetic field. The first diagram is the end of the hybrid adjustable inner permanent magnet and the fixed outer magnet rotor in the radially aligned configuration of the present invention, which is adjusted to produce a minimum magnetic field. Figure 16 is an end elevational view of the hybrid rotor of the present invention comprising a variable inner permanent magnet and a fixed outer magnet in a magnetic flux extruded configuration. The first diagram is a hybrid rotor of the present invention comprising a tunable inner permanent magnet and a fixed outer magnet. The yoke is constructed to generate a maximum magnetic field. Figure 17B is an end elevational view of the hybrid rotor of the present invention comprising a variable inner permanent magnet and a fixed outer magnet in a magnetic flux extruded configuration that is adjusted to produce a minimum magnetic field. Figure 18 is an end view of the present invention for constructing a stacked pole piece. Fig. 18A is a partial enlarged view of the πth diagram. Fig. 19A is a side view showing the first embodiment of the apparatus for adjusting the position of the cylindrical two-pole permanent magnet in the first body position of the present invention. Figure 19B is an end elevational view of the first embodiment of the apparatus for adjusting the position of the cylindrical two-pole permanent magnet in the first, body position of the present invention. Fig. 20A is a side elevational view of the first embodiment of the apparatus for adjusting the position of the cylindrical two-pole permanent magnet in the first body position of the present invention. Cans 201126872 The first turf _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11 is a side view of the second embodiment of the present invention for adjusting the cylindrical pole position of the present invention. The body is in the 21st, and the second embodiment of the present invention is for adjusting the position of the cylindrical two-pole permanent magnet body. Fig. 22A is a second practical view of the apparatus for adjusting the position of the cylindrical two-pole permanent surface of the present day and the month. Fig. 22B is an end view of the second embodiment of the present invention for adjusting the position of the cylindrical body.娜在第二磁 Figure 23A is a side view of a third embodiment of the apparatus for adjusting the position of a cylindrical two-pole permanent magnet body of the present invention. Figure 23B is an end elevational view of a third embodiment of the apparatus for the position of the cylindrical two-pole permanent magnet of the present invention. The first drawing is a side view of a third embodiment of the present invention for adjusting the skirt of a cylindrical two-pole permanent magnet at a second magnetic position. Figure 24B is an end elevational view of a third embodiment of the apparatus of the present invention for adjusting the position of a cylindrical two-pole permanent magnet in a second magnetic position. Fig. 25A is a view showing the corpse adjustable inner permanent magnet and the fixed outer magnetic __ two_permanent _ position replacing gear device for adjusting to a radially aligned configuration of the present invention. '25B is the hybrid of the invention for adjusting the magnetic flux extrusion structure. Magnetic magnetic magnetic magnetic field 19 201126872 The position of the permanent magnet in the cylindrical two poles of the permanent magnet and the solid magnet rotor Gear Units Figure 26A is a side view of the biasing system for controlling the magnetic standoff of the motor. Figure 26B is an end elevational view of the biasing system of the present invention for controlling the position of the magnet of the motor. Figure 27A is a side elevational view of the biasing system of the present invention for controlling the position of a magnet of a generator. Figure 27B is an end elevational view of the biasing system of the present invention for controlling the position of the magnet of the generator. The figure is a side view of the adjustable permanent magnet rotor of the present invention having a rotatable semi-long cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet. Figure 28B is an illustration of a biasing system having a rotatable semi-long cylindrical magnet and a coaxial fixed semi-long cylindrical magnet and a biasing system for controlling the position of the magnet taken along line 2 of Figure 28A. Front view of the magnet rotor. Figure 29A is a side elevational view of the rotor of the present invention having a rotatable half-length cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet. Figure 29B is a front elevational view of the rotor of the present invention having a rotatable half-length cylindrical magnet and a coaxial fixed half-length cylindrical magnet and a biasing system for controlling the position of the magnet. 20 201126872 The first dish is an end view of the adjustable permanent magnet rotor of the present invention, the magnetic shunt blocks being aligned to provide a strong magnetic field. "Movement 30B is the end of the adjustable permanent magnet rotor of the present invention. The magnetic shunt blocks are not aligned to provide a weak magnetic field. , j movement Fig. 31A is an end view of the adjustable permanent magnet rotor of the present invention, and the strong magnetic field obtained by aligning the moving magnetic branch block with the permanent magnet. For the 7th movement, the 31st figure is the root county _ handle rotor (four) (four), the movable magnetic branch block and the permanent magnet are not aligned to obtain the rural magnetic field. * [Main component symbol description] 10 : Reconfigurable electric motor 11 : Motor shaft 12 : Rotor

Uf:可調永磁體轉子 12a、12b、12c、12d、12e、 12a’、12b·:固定外磁體轉子 14 :定子繞組 16、16a、16c、16d、16e、17 :永磁髀 18、20、21 :極塊 22 :非磁性墊圈 23、34 :空氣間隙 24a、24a”、24a':強磁場 24b、24b”、24b’ ··弱磁場 30 :用於構建層疊極塊的元件 32 :圓形切除部 40a、40b、40c :用於調整兩極永磁體的敦置 42 :線性馬達 、 44 ··臂 21 201126872 45 :彎曲臂 46 :環 47 :第一活塞 48 :軸 49 :第二活塞 50、5卜 51a、54 :齒輪 52、56 :齒條傳動機構 60 :磁場線圈 62 :偏置電樞 64 :控制器 66 ·•傾卸迴路 68 :電源 70 :金屬線 80 :可移動磁分路塊 80a :棒 22Uf: adjustable permanent magnet rotors 12a, 12b, 12c, 12d, 12e, 12a', 12b·: fixed outer magnet rotor 14: stator windings 16, 16a, 16c, 16d, 16e, 17: permanent magnets 18, 20, 21: pole block 22: non-magnetic washers 23, 34: air gaps 24a, 24a", 24a': strong magnetic fields 24b, 24b", 24b' · weak magnetic field 30: element 32 for constructing laminated pole blocks: circular Cut-off portion 40a, 40b, 40c: Dun 42 for adjusting two-pole permanent magnet: linear motor, 44 · arm 21 201126872 45: curved arm 46: ring 47: first piston 48: shaft 49: second piston 50, 5b 51a, 54: gears 52, 56: rack drive mechanism 60: field coil 62: bias armature 64: controller 66 • dumping circuit 68: power supply 70: metal wire 80: movable magnetic branch block 80a: Rod 22

Claims (1)

201126872 七、申請專利範圍: 1. 一種用於在電能與機械能之間轉換的電動馬達或發電機中使 用之轉子,包含: 一固定極塊,該固定極塊由導磁的不可磁化材料製成;以及 導磁迴路,包含該固定極塊以及該可移動元件,該可移動 疋件能夠移動以選擇性地產生強轉子磁場和弱轉子磁場。 2. 如請求項1所述之轉子,其中,該可移動元件包含至少一可移 動磁分路塊,該至少一可移動磁分路塊包含不 導磁材料。 3. 如請求項1所述之轉子,其中,該固定極塊為徑向對齊構造。 4. 如请求項1所述之轉子,其中,該固定極塊為磁通擠壓構造。 5. 如請求項1所述之轉子,其中,該可移動元件包含與該固定極 塊磁協作的至少一可轉動永磁體,該至少一可轉動永磁體能夠 移動從而將轉子磁場調整為強磁場以及調整為弱磁場。 6. 如請求項5所述之轉子,更包含-磁體齒輪,該磁體齒輪附連 於各該可轉動永磁體的端部,以調整各該可轉動永磁體的對 齊。 7. 如請求項6所述之轉子’更包含—齒條伽機構,滑動該齒條 傳動機構與該磁體齒輪中的相應磁體齒輪協作,以調整各該可 轉動永磁體的對齊。 8. 如請求項7所述之轉子’更包含—餅,該直桿連接至至少其 巾-該齒條傳動機構,並且該直桿被致動以使該齒條傳動機構 徑向滑動,從而調整各該可轉動永磁體的對齊。 23 201126872 如月长員8所述之轉子’其中,該直桿由一線性致動器致動從 =吏該齒條傳賴_向_,關整各該可_永磁體的對 10·如明求項9所狀轉子’其巾,鱗性致動^是步進馬達。 U.如請求項7所述之轉子’更包含—分裂式桿,該賴式桿連接 至至少其中—触條傳動機構,並且該賴式桿被致動以使該 齒條傳動機構徑向滑動,從而調整各該可轉動永磁體的對齊。 12. 如請求項U所述之轉子,其中,該分裂式桿的頂點抵靠一滑 動件,並且該滑動件朝向該分裂式桿的軸向平移使該分裂式桿 展開,從而調整各該可轉動永磁體的對齊。 13. 如請求項I2所述之轉子,其巾,該分裂式桿由—線性致動器 致動,以使該齒條傳動機構徑向滑動,從而調整各該可轉動永 磁體的對齊。 14. 如請求項7所述之轉子’更包含—液壓活塞,致動該液壓活塞 以使該齒條傳動機構徑向滑動,從而調整各該可轉動永磁體的 對齊。 15. 如請求項14所述之轉子,其中,該液壓活塞與第二液壓活塞 流體連通,並且該第一液壓活塞的致動致使該液壓活塞的平移 並致使該齒條傳動機構調整各該可轉動永磁體的對齊。 16. 如請求項15所述之轉子’其中’該第二液壓活塞由線性致動 器致動。 24 201126872 17.如請求項6所述之轉子,更白人 L 3 —中心齒輪,該中心齒輪與各 該磁體齒輪協作,以近似地伴拄^ 齊 俯得各該可轉動永磁體的相同的對 • I8.如請求項1所述的轉子,更包含附連於該轉子的外侧之1定 外部轉子磁體。 19. 一種電動馬達,包含: 一定子,具有電氣雛之—定子繞組; 一轉動定子磁場’由流過該定子繞組的電流產生; 一轉子,位於該定子繞組内,該轉子包含: 一固定極塊’由導磁的不可磁化材料製成;以及 與該極塊磁協作的至少-轉子内永磁體,該轉子内永磁體能 夠轉動以將轉子磁場調整為強磁場以及調整為弱磁場。 20. —種電氣發電機,包含: . 一定子,具有電氣特性之一定子繞組; -可轉動轉子,位於該定子繞組内,該轉子包含: 一固定極塊,由導磁的不可磁化材料製成; 至少一固定磁體;以及 至>、可移動磁分路塊,該可移動磁分路塊包含與該固定磁 體以及該固疋極塊磁協作的不導磁材料,該可移動磁分路塊能夠 轉動以將轉子磁場調整為強磁場以及調整為弱磁場。 25201126872 VII. Scope of application: 1. A rotor for use in an electric motor or generator for switching between electrical energy and mechanical energy, comprising: a fixed pole block made of a magnetically permeable non-magnetizable material And a magnetic circuit comprising the fixed pole block and the movable element, the movable element being movable to selectively generate a strong rotor magnetic field and a weak rotor magnetic field. 2. The rotor of claim 1, wherein the movable element comprises at least one movable magnetic branch block, the at least one movable magnetic branch block comprising a non-magnetic material. 3. The rotor of claim 1 wherein the fixed pole block is of a radially aligned configuration. 4. The rotor of claim 1, wherein the fixed pole block is a magnetic flux extruded configuration. 5. The rotor of claim 1, wherein the movable element comprises at least one rotatable permanent magnet that magnetically cooperates with the fixed pole block, the at least one rotatable permanent magnet being movable to adjust a rotor magnetic field to a strong magnetic field And adjust to a weak magnetic field. 6. The rotor of claim 5, further comprising a magnet gear attached to an end of each of the rotatable permanent magnets to adjust alignment of each of the rotatable permanent magnets. 7. The rotor of claim 6 further comprising a rack gantry mechanism that slides the rack gear mechanism to cooperate with a corresponding one of the magnet gears to adjust the alignment of each of the rotatable permanent magnets. 8. The rotor of claim 7 further comprising a cake connected to at least the towel-the rack drive mechanism, and the straight rod is actuated to slide the rack drive mechanism radially, thereby Adjust the alignment of each of the rotatable permanent magnets. 23 201126872 A rotor as described in the month of the month 8 wherein the straight rod is actuated by a linear actuator from = 吏 the rack _ _ _, the pair of _ permanent magnets The rotor of the shape of the item 9 is a towel, and the scaly actuation is a stepping motor. U. The rotor of claim 7 further comprising a split rod connected to at least one of the strip drive mechanisms, and the pull rod is actuated to radially slide the rack drive mechanism , thereby adjusting the alignment of each of the rotatable permanent magnets. 12. The rotor of claim U, wherein the apex of the split rod abuts a slide and the axial translation of the slide toward the split rod causes the split rod to unfold, thereby adjusting each of the Rotate the alignment of the permanent magnets. 13. The rotor of claim 1 wherein the split rod is actuated by a linear actuator to radially slide the rack drive to adjust the alignment of each of the rotatable permanent magnets. 14. The rotor of claim 7 further comprising a hydraulic piston actuating the hydraulic piston to slide the rack drive radially to adjust alignment of each of the rotatable permanent magnets. 15. The rotor of claim 14, wherein the hydraulic piston is in fluid communication with a second hydraulic piston, and actuation of the first hydraulic piston causes translation of the hydraulic piston and causes the rack drive to adjust each Rotate the alignment of the permanent magnets. 16. The rotor 'where' the second hydraulic piston of claim 15 is actuated by a linear actuator. 24 201126872 17. The rotor of claim 6, further white L 3 - a sun gear, the sun gear cooperating with each of the magnet gears to approximate the same pair of each of the rotatable permanent magnets The rotor of claim 1 further comprising a fixed outer rotor magnet attached to the outer side of the rotor. 19. An electric motor comprising: a stator having an electric stator-stator winding; a rotating stator magnetic field 'generated by a current flowing through the stator winding; a rotor located in the stator winding, the rotor comprising: a fixed pole The block 'made of a magnetically permeable non-magnetizable material; and at least an in-rotor permanent magnet that cooperates magnetically with the pole block, the inner permanent magnet of the rotor being rotatable to adjust the rotor magnetic field to a strong magnetic field and to a weak magnetic field. 20. An electrical generator comprising: a stator having one of electrical characteristics; a rotatable rotor located within the stator winding, the rotor comprising: a fixed pole block made of a magnetically permeable non-magnetizable material At least one fixed magnet; and to > a movable magnetic branching block, the movable magnetic branching block comprising a non-magnetic material magnetically cooperating with the fixed magnet and the solid germanium block, the movable magnetic component The block can be rotated to adjust the rotor magnetic field to a strong magnetic field and to a weak magnetic field. 25
TW099137488A 2009-10-30 2010-11-01 Electric motor and/or alternators with machine-adjustable permanent magnetic field TWI572116B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/610,184 US8390162B2 (en) 2009-10-30 2009-10-30 Reconfigurable inductive to synchronous motor
US12/610,271 US8097993B2 (en) 2009-10-30 2009-10-30 Electric motor and/or generator with mechanically tuneable permanent magnetic field
US12/905,834 US8072108B2 (en) 2009-10-30 2010-10-15 Electric motor or generator with mechanically tuneable permanent magnetic field

Publications (2)

Publication Number Publication Date
TW201126872A true TW201126872A (en) 2011-08-01
TWI572116B TWI572116B (en) 2017-02-21

Family

ID=43959320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099137488A TWI572116B (en) 2009-10-30 2010-11-01 Electric motor and/or alternators with machine-adjustable permanent magnetic field

Country Status (2)

Country Link
CN (1) CN102055257B (en)
TW (1) TWI572116B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767339B (en) * 2015-04-01 2016-03-09 吉林大学 A kind of excitation adjustable permanent-magnet synchronous machine
CN106992649B (en) * 2017-05-27 2019-01-18 江西理工大学 Become magnetic flow permanent magnet energy conversion
US11482360B2 (en) 2017-12-12 2022-10-25 The Boeing Company Stator secondary windings to modify a permanent magnet (PM) field
US10581287B2 (en) * 2018-01-02 2020-03-03 GM Global Technology Operations LLC Permanent magnet electric machine with variable magnet orientation
US10541578B2 (en) * 2018-01-02 2020-01-21 GM Global Technology Operations LLC Permanent magnet electric machine with moveable flux-shunting elements
CN109995162A (en) * 2019-04-05 2019-07-09 南京理工大学 A kind of multi-purpose permanent-magnetic synchronous motor rotor of one
KR102449464B1 (en) * 2021-10-15 2022-09-29 이승권 sequence power generation type generator with induced current strength selection function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB495813A (en) * 1936-05-27 1938-11-21 Jakob Bohli Magneto electric machines
US2209558A (en) * 1937-04-22 1940-07-30 Karl Otto Goettsch Magnetic clamping appliance
US2243616A (en) * 1937-12-08 1941-05-27 Bing Julius Lifting magnet
YU41934B (en) * 1979-08-03 1988-02-29 Baermann Max Switehing-in permanent - magnetbrake
DE4421594A1 (en) * 1994-06-21 1996-01-04 Bernhard Kraser Air-gap induction variation device for rotary or linear electrical machine
JP3879412B2 (en) * 2001-02-28 2007-02-14 株式会社日立製作所 Power generation system
JP4120347B2 (en) * 2002-10-08 2008-07-16 日産自動車株式会社 Rotating electric machine
JP4882715B2 (en) * 2006-12-11 2012-02-22 ダイキン工業株式会社 Electric motor and control method thereof

Also Published As

Publication number Publication date
CN102055257B (en) 2016-06-29
CN102055257A (en) 2011-05-11
TWI572116B (en) 2017-02-21

Similar Documents

Publication Publication Date Title
JP5922023B2 (en) Electric motor and / or generator with a mechanically variable permanent magnetic field
US8097993B2 (en) Electric motor and/or generator with mechanically tuneable permanent magnetic field
TW201126872A (en) Electric motor and/or alternators with machine-adjustable permanent magnetic field
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
US8952587B2 (en) Windmill generator with mechanically tuneable permanent magnetic field
CN101562383B (en) Single-phase reluctance generator
WO1997050164A1 (en) A.c. electrical machine and method of transducing power between two different systems
US7852037B2 (en) Induction and switched reluctance motor
Huang et al. Analysis of a hybrid field-modulated linear generator for wave energy conversion
Ogunjuyigbe et al. Analysis of synchronous reluctance machine with magnetically coupled three-phase windings and reactive power compensation
EP0447257A2 (en) Two-stator induction synchronous motor
Zhang et al. Rare earth-free dual mechanical port machine with spoke-type PM outer-rotor for electric variable transmission system
CN201188577Y (en) Single-phase reluctance generator
Ahmad et al. Design investigation of three phase HEFSM with outer-rotor configuration
US20100026103A1 (en) Driving or power generating multiple phase electric machine
US20050156702A1 (en) Motionless electromagnetic turbine
CN110692178A (en) Motor with configurable coils
Wang et al. Design of a multi-power-terminals permanent magnet machine with magnetic field modulation
Wang et al. Design optimization and comparative analysis of dual-stator flux modulation machines
KR102652170B1 (en) Dual Mode Motor
Dey et al. A Novel Magnetic Gear Integrated Segmented Rotor SRM with Reduced Rare-Earth Material
Motoki et al. Investigation of an Axial-Gap Electromagnet-Assisted Ferrite Magnet Motor
RU11635U1 (en) CASCADE STABLE FREQUENCY GENERATOR
Gladyshev et al. Hardware and Software Technology in Design Electrical DC and AC Machines with Wireless Rotor
Mecrow et al. High performance switched reluctance drives using novel windings

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees