TWI570918B - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TWI570918B
TWI570918B TW104132958A TW104132958A TWI570918B TW I570918 B TWI570918 B TW I570918B TW 104132958 A TW104132958 A TW 104132958A TW 104132958 A TW104132958 A TW 104132958A TW I570918 B TWI570918 B TW I570918B
Authority
TW
Taiwan
Prior art keywords
region
trench
semiconductor device
source
epitaxial layer
Prior art date
Application number
TW104132958A
Other languages
Chinese (zh)
Other versions
TW201714303A (en
Inventor
馬洛宜 庫馬
李琮雄
洪培恒
李家豪
張睿鈞
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW104132958A priority Critical patent/TWI570918B/en
Application granted granted Critical
Publication of TWI570918B publication Critical patent/TWI570918B/en
Publication of TW201714303A publication Critical patent/TW201714303A/en

Links

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本揭露係有關於半導體裝置及其製造方法,且特別係有關於一種具有溝槽之半導體裝置及其製造方法。 The present disclosure relates to a semiconductor device and a method of fabricating the same, and in particular to a semiconductor device having a trench and a method of fabricating the same.

半導體積體電路工業在過去數十年間經歷了快速的成長。半導體材料與設計技術的進步使得電路越來越小也越來越複雜。由於相關製程技術的進步,使得上述材料與設計方面的進步得以實現。在半導體發展的歷程中,由於能夠可靠地製造出的最小元件的尺寸越來越小,所以單位面積上可互連的元件數量越來越多。 The semiconductor integrated circuit industry has experienced rapid growth over the past few decades. Advances in semiconductor materials and design techniques have made circuits smaller and more complex. Advances in the above materials and design have been achieved due to advances in related process technologies. In the course of semiconductor development, the number of components that can be interconnected per unit area is increasing due to the smaller and smaller size of the smallest components that can be reliably fabricated.

半導體積體電路工業已做出了許多發展以致力於元件尺寸的縮小。然而,當最小元件的尺寸縮小時,許多挑戰隨之而生,例如裝置之結構可靠度。然而,目前的半導體積體裝置並非各方面皆令人滿意。 The semiconductor integrated circuit industry has made many developments in an effort to reduce the size of components. However, as the size of the smallest component shrinks, many challenges arise, such as the structural reliability of the device. However, current semiconductor integrated devices are not satisfactory in all respects.

因此,業界仍須一種具有更高結構可靠度之半導體裝置。 Therefore, the industry still needs a semiconductor device with higher structural reliability.

本揭露提供一種半導體裝置,包括:基底,具有第一導電型;磊晶層,設於基底上且具有第一導電型;閘極電極,設於磊晶層上;源極區及汲極區,設於閘極電極之相反側 之磊晶層中,其中源極區具有第一導電型,而汲極區具有第二導電型,且第一導電型與第二導電型不同;溝槽,自磊晶層之上表面延伸穿過源極區且延伸入磊晶層內,其中溝槽具有傾斜側壁以及底表面;及第一導電型連接區,具有第一導電型,其中第一導電型連接區圍繞溝槽之傾斜側壁並接觸溝槽之底表面,其中第一導電型連接區電性連接源極區及基底。 The present disclosure provides a semiconductor device comprising: a substrate having a first conductivity type; an epitaxial layer disposed on the substrate and having a first conductivity type; a gate electrode disposed on the epitaxial layer; a source region and a drain region On the opposite side of the gate electrode In the epitaxial layer, wherein the source region has a first conductivity type, and the drain region has a second conductivity type, and the first conductivity type is different from the second conductivity type; the trench extends from the upper surface of the epitaxial layer Passing through the source region and extending into the epitaxial layer, wherein the trench has inclined sidewalls and a bottom surface; and the first conductive type connection region has a first conductivity type, wherein the first conductive type connection region surrounds the inclined sidewall of the trench and Contacting a bottom surface of the trench, wherein the first conductive type connection region is electrically connected to the source region and the substrate.

本揭露更提供一種半導體裝置之製造方法,包括:提供基底,基底具有第一導電型;形成磊晶層於基底上,且磊晶層具有第一導電型;形成閘極電極於磊晶層上;形成源極區及汲極區於閘極電極之相反側之磊晶層中,其中源極區具有第一導電型,而汲極區具有第二導電型,且第一導電型與第二導電型不同;形成溝槽,溝槽自磊晶層之上表面延伸穿過源極區且延伸入磊晶層內,其中溝槽具有傾斜側壁以及底表面;及形成第一導電型連接區,第一導電型連接區具有第一導電型,其中第一導電型連接區圍繞溝槽之傾斜側壁並接觸溝槽之底表面,其中第一導電型連接區電性連接源極區及基底。 The present disclosure further provides a method for fabricating a semiconductor device, comprising: providing a substrate, the substrate having a first conductivity type; forming an epitaxial layer on the substrate, wherein the epitaxial layer has a first conductivity type; and forming a gate electrode on the epitaxial layer Forming a source region and a drain region in the epitaxial layer on the opposite side of the gate electrode, wherein the source region has a first conductivity type, and the drain region has a second conductivity type, and the first conductivity type and the second conductivity type The conductive type is different; forming a trench extending from the upper surface of the epitaxial layer through the source region and extending into the epitaxial layer, wherein the trench has inclined sidewalls and a bottom surface; and forming a first conductive type connection region, The first conductive type connection region has a first conductivity type, wherein the first conductive type connection region surrounds the inclined sidewall of the trench and contacts the bottom surface of the trench, wherein the first conductive type connection region is electrically connected to the source region and the substrate.

為讓本揭露之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the present disclosure more comprehensible, the preferred embodiments are described below, and are described in detail below with reference to the accompanying drawings.

100‧‧‧基底 100‧‧‧Base

102‧‧‧第一導電型之磊晶層 102‧‧‧The first conductivity type epitaxial layer

102T‧‧‧上表面 102T‧‧‧ upper surface

104‧‧‧閘極介電層 104‧‧‧ gate dielectric layer

106‧‧‧閘極電極 106‧‧‧gate electrode

108‧‧‧第一矽化物層 108‧‧‧First telluride layer

110‧‧‧源極區 110‧‧‧ source area

112‧‧‧汲極區 112‧‧‧Bungee Area

114‧‧‧間隔物層 114‧‧‧ spacer layer

116‧‧‧第一重摻雜區 116‧‧‧First heavily doped area

118‧‧‧第二重摻雜區 118‧‧‧Second heavily doped area

120‧‧‧溝槽 120‧‧‧ trench

120’‧‧‧溝槽 120’‧‧‧ trench

120S‧‧‧傾斜側壁 120S‧‧‧ sloping side wall

120’S‧‧‧垂直側壁 120’S‧‧‧Vertical sidewall

120B‧‧‧底表面 120B‧‧‧ bottom surface

120’B‧‧‧底表面 120’B‧‧‧ bottom surface

120T‧‧‧上部 120T‧‧‧ upper

122‧‧‧第一導電型連接區 122‧‧‧First Conductive Connection Area

122’‧‧‧第一導電型連接區 122'‧‧‧First Conductive Connection Area

124‧‧‧摻雜步驟 124‧‧‧Doping step

126‧‧‧源極接點 126‧‧‧Source contact

128‧‧‧汲極接點 128‧‧‧汲pole contacts

130‧‧‧第二矽化物層 130‧‧‧Second telluride layer

132‧‧‧第三矽化物層 132‧‧‧ Third telluride layer

134‧‧‧介電層 134‧‧‧ dielectric layer

200‧‧‧半導體裝置 200‧‧‧Semiconductor device

200’‧‧‧半導體裝置 200'‧‧‧ semiconductor devices

θ‧‧‧銳角 Θ‧‧‧ acute angle

W1‧‧‧寬度 W1‧‧‧Width

W2‧‧‧寬度 W2‧‧‧Width

W3‧‧‧寬度 W3‧‧‧Width

W4‧‧‧寬度 W4‧‧‧Width

W5‧‧‧寬度 W5‧‧‧Width

W6‧‧‧寬度 W6‧‧‧Width

W7‧‧‧寬度 W7‧‧‧Width

D1‧‧‧深度 D1‧‧ depth

D2‧‧‧深度 D2‧‧ depth

D3‧‧‧深度 D3‧‧ depth

D4‧‧‧深度 D4‧‧ depth

D5‧‧‧深度 D5‧‧ depth

D6‧‧‧深度 D6‧‧ depth

第1-4及6圖係本揭露實施例之半導體裝置在其製造方法中各階段的剖面圖。 Figures 1-4 and 6 are cross-sectional views of various stages of the semiconductor device of the present disclosure in its method of manufacture.

第5圖係本揭露另一實施例之半導體裝置之剖面圖。 Figure 5 is a cross-sectional view showing a semiconductor device according to another embodiment of the present invention.

以下針對本揭露之半導體裝置及其製造方法作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單清楚描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 Hereinafter, the semiconductor device and the method of manufacturing the same will be described in detail. It will be appreciated that the following description provides many different embodiments or examples for implementing the various aspects of the disclosure. The specific elements and arrangements described below are merely illustrative of the disclosure. Of course, these are only used as examples and not as a limitation of the disclosure. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the disclosure, and are not intended to be a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first layer of material and the second layer of material.

必需了解的是,圖式之元件或裝置可以此技術人士所熟知之各種形式存在。此外,當某層在其它層或基底「上」時,有可能是指「直接」在其它層或基底上,或指某層在其它層或基底上,或指其它層或基底之間夾設其它層。 It must be understood that the elements or devices of the drawings may be in various forms well known to those skilled in the art. In addition, when a layer is "on" another layer or substrate, it may mean "directly" on another layer or substrate, or a layer on another layer or substrate, or between other layers or substrates. Other layers.

此外,實施例中可能使用相對性的用語,例如「較低」或「底部」及「較高」或「頂部」,以描述圖式的一個元件對於另一元件的相對關係。能理解的是,如果將圖式的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。 In addition, relative terms such as "lower" or "bottom" and "higher" or "top" may be used in the embodiments to describe the relative relationship of one element of the drawing to another. It will be understood that if the device of the drawing is flipped upside down, the component described on the "lower" side will become the component on the "higher" side.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、 「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。 Here, the terms "about", "about" and "major" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. The quantity given here is an approximate quantity, that is, there is no specific description of "about", "about", In the case of "almost", the meanings of "about", "about" and "major" may still be implied.

能理解的是,雖然在此可使用用語「第一」、「第二」、「第三」等來敘述各種元件、組成成分、區域、層、及/或部分,這些元件、組成成分、區域、層、及/或部分不應被這些用語限定,且這些用語僅是用來區別不同的元件、組成成分、區域、層、及/或部分。因此,以下討論的一第一元件、組成成分、區域、層、及/或部分可在不偏離本揭露之教示的情況下被稱為一第二元件、組成成分、區域、層、及/或部分。 It will be understood that the terms "first", "second", "third", etc. may be used herein to describe various elements, components, regions, layers, and/or portions, such elements, components, and regions. The layers, and/or portions are not to be limited by the terms, and the terms are used to distinguish different elements, components, regions, layers, and/or parts. Therefore, a first element, component, region, layer, and/or portion discussed below may be referred to as a second element, component, region, layer, and/or without departing from the teachings of the disclosure. section.

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有一與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在此特別定義。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning meaning It will be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the relevant art and the context or context of the present disclosure, and should not be in an idealized or overly formal manner. Interpretation, unless specifically defined herein.

本揭露實施例可配合圖式一併理解,本揭露之圖式亦被視為揭露說明之一部分。需了解的是,本揭露之圖式並未以實際裝置及元件之比例繪示。在圖式中可能誇大實施例的形狀與厚度以便清楚表現出本揭露之特徵。此外,圖式中之結構及裝置係以示意之方式繪示,以便清楚表現出本揭露之特徵。 The embodiments of the present disclosure can be understood in conjunction with the drawings, and the drawings of the present disclosure are also considered as part of the disclosure. It should be understood that the drawings of the present disclosure are not shown in the form of actual devices and components. The shapes and thicknesses of the embodiments may be exaggerated in the drawings in order to clearly illustrate the features of the present disclosure. In addition, the structures and devices in the drawings are schematically illustrated in order to clearly illustrate the features of the disclosure.

在本揭露中,相對性的用語例如「下」、「上」、「水平」、「垂直」、「之下」、「之上」、「頂部」、「底部」等等應被理解為該段以及相關圖式中所繪示的方位。此相對性的用語僅是為了方便說明之用,其並不代表其所敘述之裝置需以特定方位 來製造或運作。而關於接合、連接之用語例如「連接」、「互連」等,除非特別定義,否則可指兩個結構係直接接觸,或者亦可指兩個結構並非直接接觸,其中有其它結構設於此兩個結構之間。且此關於接合、連接之用語亦可包括兩個結構都可移動,或者兩個結構都固定之情況。 In this disclosure, relative terms such as "lower", "upper", "horizontal", "vertical", "lower", "above", "top", "bottom", etc. shall be understood as The orientation shown in the paragraph and related schemas. This relative term is used for convenience of description only, and does not mean that the device described therein needs to be in a specific orientation. To manufacture or operate. Terms such as "joining" and "interconnecting", etc., unless otherwise defined, may mean that two structures are in direct contact, or that two structures are not in direct contact, and other structures are provided here. Between the two structures. The term "joining and joining" may also include the case where both structures are movable or both structures are fixed.

應注意的是,在後文中「基底」一詞可包括半導體晶圓上已形成的元件與覆蓋在晶圓上的各種膜層,其上方可以已形成任何所需的半導體元件,不過此處為了簡化圖式,僅以平整的基底表示之。此外,「基底表面」係包括半導體晶圓上最上方且暴露之膜層,例如一矽表面、一絕緣層及/或金屬線。 It should be noted that the term "substrate" may include the formed elements on the semiconductor wafer and the various film layers overlying the wafer, on which any desired semiconductor components may have been formed, but here Simplify the drawing and only represent it as a flat base. In addition, the "substrate surface" includes the uppermost and exposed film layer on the semiconductor wafer, such as a germanium surface, an insulating layer, and/or metal lines.

本揭露中所提及之「銅」係包括銅及其合金。 The "copper" mentioned in the present disclosure includes copper and its alloys.

本揭露實施例之半導體裝置係使用一具有傾斜側邊之溝槽以及一圍繞此溝槽之第一導電型連接區以確保源極區與基底之間的電性連接,並藉此提昇半導體裝置之結構可靠度。 The semiconductor device of the embodiment of the present disclosure uses a trench having a slanted side and a first conductive type connection region surrounding the trench to ensure an electrical connection between the source region and the substrate, thereby enhancing the semiconductor device. Structural reliability.

第1-4及6圖係本揭露實施例之半導體裝置在其製造方法中各階段的剖面圖。參見第1圖,提供一基底100,此基底100具有第一導電型。此基底100可包括:單晶結構、多晶結構或非晶結構的矽或鍺之元素半導體;氮化鎵(GaN)、碳化矽(silicon carbide)、砷化鎵(gallium arsenic)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)或銻化銦(indium antimonide)等化合物半導體;SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP或GaInAsP等合金半導體或 其它適合的材料及/或上述組合。 Figures 1-4 and 6 are cross-sectional views of various stages of the semiconductor device of the present disclosure in its method of manufacture. Referring to Figure 1, a substrate 100 is provided having a first conductivity type. The substrate 100 may include: a single crystal structure, a polycrystalline structure or an amorphous structure of germanium or germanium elemental semiconductor; gallium nitride (GaN), silicon carbide, gallium arsenic, gallium phosphide a compound semiconductor such as (gallium phosphide), indium phosphide, indium arsenide or indium antimonide; alloy semiconductor such as SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP or GaInAsP or Other suitable materials and/or combinations of the above.

在一些實施例中,上述第一導電型為P型,而基底100可為一重摻雜P型基底。在所述實施例中,“重摻雜”意指超過約1019/cm3的摻雜濃度,例如為約1019/cm3至約1021/cm3的摻雜濃度。然而,本領域具有通常知識者可瞭解的是,“重摻雜”的定義亦可依照特定裝置型態、技術世代、最小元件尺寸等所決定。因此,“重摻雜”的定義當視可技術內容重新評估,而不受限於在此所舉之實施例。 In some embodiments, the first conductivity type is a P-type, and the substrate 100 can be a heavily doped P-type substrate. In the illustrated embodiment, "heavily doped" means a doping concentration in excess of about 10 19 /cm 3 , such as a doping concentration of from about 10 19 /cm 3 to about 10 21 /cm 3 . However, it will be appreciated by those of ordinary skill in the art that the definition of "heavily doped" can also be determined by the particular device type, technical generation, minimum component size, and the like. Thus, the definition of "heavily doped" is re-evaluated based on technical content and is not limited by the embodiments presented herein.

參見第1圖,形成磊晶層102於基底100上,此磊晶層102亦具有第一導電型。磊晶層102可包括矽、鍺、矽與鍺、III-V族化合物或上述之組合。此磊晶層102可藉由磊晶成長(epitaxial growth)製程形成,例如金屬有機物化學氣相沉積法(MOCVD)、金屬有機物化學氣相磊晶法(MOVPE)、電漿增強型化學氣相沉積法(plasma-enhanced CVD)、遙控電漿化學氣相沉積法(RP-CVD)、分子束磊晶法(MBE)、氫化物氣相磊晶法(HVPE)、液相磊晶法(LPE)、氯化物氣相磊晶法(Cl-VPE)或類似的方法形成。 Referring to FIG. 1, an epitaxial layer 102 is formed on the substrate 100. The epitaxial layer 102 also has a first conductivity type. The epitaxial layer 102 can comprise ruthenium, osmium, iridium and osmium, a III-V compound, or a combination thereof. The epitaxial layer 102 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), metal organic chemical vapor deposition (MOVPE), plasma enhanced chemical vapor deposition. Plasma-enhanced CVD, remote controlled plasma chemical vapor deposition (RP-CVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE) Formed by chloride vapor phase epitaxy (Cl-VPE) or a similar method.

在一些實施例中,當此第一導電型為P型時,具有第一導電型之磊晶層102為P型磊晶層,其可藉由在沈積磊晶層102時,於反應氣體中加入硼烷(BH3)或三溴化硼(BBr3)進行原位(in-situ)摻雜,或者,亦可先沈積未摻雜之磊晶層102後,再以硼離子或銦離子進行離子佈植。此磊晶層102之摻雜濃度可為約1016/cm3至約1018/cm3In some embodiments, when the first conductivity type is a P-type, the epitaxial layer 102 having the first conductivity type is a P-type epitaxial layer, which can be in the reaction gas when the epitaxial layer 102 is deposited. Adding borane (BH 3 ) or boron tribromide (BBr 3 ) for in-situ doping, or depositing undoped epitaxial layer 102 first, followed by boron ion or indium ion Perform ion implantation. The epitaxial layer 102 may have a doping concentration of from about 10 16 /cm 3 to about 10 18 /cm 3 .

接著,可毯覆性沈積一閘極介電層104及位於其上 之導電材料層(用以形成閘極電極106,未繪示)於磊晶層102上。接著,藉由一微影與蝕刻製程將導電材料層圖案化以形成設於閘極介電層104上(或設於磊晶層102上)之閘極電極106。 Next, a gate dielectric layer 104 can be blanket deposited and placed thereon A layer of conductive material (to form a gate electrode 106, not shown) on the epitaxial layer 102. Next, the conductive material layer is patterned by a lithography and etching process to form a gate electrode 106 disposed on the gate dielectric layer 104 (or disposed on the epitaxial layer 102).

上述閘極介電層104之材料可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、或其它任何適合之介電材料、或上述之組合。此高介電常數(high-k)介電材料之材料可為金屬氧化物、金屬氮化物、金屬矽化物、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽化物、金屬的氮氧化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽。例如,此高介電常數(high-k)介電材料可為LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfO2、HfO3、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3(BST)、Al2O3、其它適當材料之其它高介電常數介電材料、或上述組合。此閘極介電層104可藉由化學氣相沉積法(CVD)或旋轉塗佈法形成,此化學氣相沉積法例如可為低壓化學氣相沉積法(low pressure chemical vapor deposition,LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition,LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition,RTCVD)、電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)、原子層化學氣相沉積法之原子層沉積法(atomic layer deposition,ALD)或其它常用的方法。 The material of the gate dielectric layer 104 may be tantalum oxide, tantalum nitride, hafnium oxynitride, a high-k dielectric material, or any other suitable dielectric material, or a combination thereof. The material of the high-k dielectric material may be a metal oxide, a metal nitride, a metal halide, a transition metal oxide, a transition metal nitride, a transition metal telluride, a metal oxynitride, Metal aluminate, zirconium silicate, zirconium aluminate. For example, the high-k dielectric material may be LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 (STO), BaTiO 3 (BTO), BaZrO, HfO. 2 , HfO 3 , HfZrO, HfLaO, HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba, Sr)TiO 3 (BST), Al 2 O 3 , other high dielectric constants of other suitable materials Dielectric material, or a combination of the above. The gate dielectric layer 104 can be formed by chemical vapor deposition (CVD) or spin coating. The chemical vapor deposition method can be, for example, low pressure chemical vapor deposition (LPCVD). Low temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (PECVD) Atomic layer deposition (ALD) or other commonly used methods of atomic layer chemical vapor deposition.

前述導電材料層之材料(亦即閘極電極106之材料)可為非晶矽、複晶矽、一或多種金屬、金屬氮化物、導電金屬 氧化物、或上述之組合。上述金屬可包括但不限於鉬(molybdenum)、鎢(tungsten)、鈦(titanium)、鉭(tantalum)、鉑(platinum)或鉿(hafnium)。上述金屬氮化物可包括但不限於氮化鉬(molybdenum nitride)、氮化鎢(tungsten nitride)、氮化鈦(titanium nitride)以及氮化鉭(tantalum nitride)。上述導電金屬氧化物可包括但不限於釕金屬氧化物(ruthenium oxide)以及銦錫金屬氧化物(indium tin oxide)。此導電材料層之材料可藉由前述之化學氣相沉積法(CVD)、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積方式形成,例如,在一實施例中,可用低壓化學氣相沈積法(LPCVD)在525~650℃之間沈積而製得非晶矽導電材料層或複晶矽導電材料層,其厚度範圍可為約1000Å至約10000Å。 The material of the conductive material layer (that is, the material of the gate electrode 106) may be amorphous germanium, polycrystalline germanium, one or more metals, metal nitrides, conductive metals. Oxide, or a combination of the above. The above metals may include, but are not limited to, molybdenum, tungsten, titanium, tantalum, platinum or hafnium. The above metal nitrides may include, but are not limited to, molybdenum nitride, tungsten nitride, titanium nitride, and tantalum nitride. The above conductive metal oxide may include, but is not limited to, ruthenium oxide and indium tin oxide. The material of the conductive material layer can be formed by the aforementioned chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or any other suitable deposition method, for example, in an implementation. For example, an amorphous germanium conductive material layer or a polycrystalline germanium conductive material layer may be deposited by low pressure chemical vapor deposition (LPCVD) at a temperature between 525 and 650 ° C, and may have a thickness ranging from about 1000 Å to about 10000 Å.

接著,可選擇性(optionally)進行一金屬矽化製程,以於閘極電極106之上表面形成第一矽化物層108。此第一矽化物層108可更進一步降低裝置之導通電阻。第一矽化物層108之材料可包括但不限於矽化鎳(nickel silicide)、矽化鈷(cobalt silicide)、矽化鎢(tungsten silicide)、矽化鈦(titanium silicide)、矽化鉭(tantalum silicide)、矽化鉑(platinum silicide)、矽化鉺(erbium silicide)、或其它任何適合之金屬矽化物。 Next, a metal deuteration process can be selectively performed to form a first germanide layer 108 on the upper surface of the gate electrode 106. This first germanide layer 108 can further reduce the on-resistance of the device. The material of the first telluride layer 108 may include, but is not limited to, nickel silicide, cobalt silicide, tungsten silicide, titanium silicide, tantalum silicide, platinum telluride. (platinum silicide), erbium silicide, or any other suitable metal halide.

接著,形成源極區110及汲極區112於閘極電極106之相反側之磊晶層102中。此源極區110具有第一導電型,而汲極區112具有第二導電型,且此第一導電型與第二導電型不同。 Next, the source region 110 and the drain region 112 are formed in the epitaxial layer 102 on the opposite side of the gate electrode 106. The source region 110 has a first conductivity type, and the drain region 112 has a second conductivity type, and the first conductivity type is different from the second conductivity type.

在一些實施例中,當此第一導電型為P型,而第二 導電型為N型時時,源極區110可為重摻雜P型源極區,此重摻雜P型源極區之摻雜濃度可為約1017/cm3至約1019/cm3。而汲極區112可為輕摻雜N型汲極區,此輕摻雜N型汲極區之摻雜濃度可為約1015/cm3至約1018/cm3。此外,磊晶層102之摻雜濃度對輕摻雜N型汲極區之摻雜濃度之比值可大於約2個數量級(亦即大於約100倍)。 In some embodiments, when the first conductivity type is a P type and the second conductivity type is an N type, the source region 110 may be a heavily doped P-type source region, and the heavily doped P-type source region The doping concentration may range from about 10 17 /cm 3 to about 10 19 /cm 3 . The drain region 112 may be a lightly doped N-type drain region, and the lightly doped N-type drain region may have a doping concentration of about 10 15 /cm 3 to about 10 18 /cm 3 . In addition, the ratio of the doping concentration of the epitaxial layer 102 to the doping concentration of the lightly doped N-type drain region may be greater than about 2 orders of magnitude (ie, greater than about 100 times).

源極區110與汲極區112可藉由離子佈植步驟形成。例如,在一實施例中,當源極區110為P型源極區110,而汲極區112為N型汲極區112,可於磊晶層102中預定形成此P型源極區110之區域佈植硼離子、銦離子或二氟化硼離子(BF2 +)以形成P型源極區110,並可於磊晶層102中預定形成此N型汲極區112之區域佈植磷離子或砷離子以形成N型汲極區112。 The source region 110 and the drain region 112 can be formed by an ion implantation step. For example, in an embodiment, when the source region 110 is a P-type source region 110 and the drain region 112 is an N-type drain region 112, the P-type source region 110 may be predetermined to be formed in the epitaxial layer 102. The region is implanted with boron ions, indium ions or boron difluoride ions (BF 2 + ) to form a P-type source region 110, and a region in which the N-type drain region 112 is predetermined to be formed in the epitaxial layer 102 is implanted. Phosphorus ions or arsenic ions form an N-type drain region 112.

在一些實施例中,如第1圖所示,此源極區110與汲極區112僅自磊晶層102之部分上表面102T延伸入磊晶層102中。源極區110之寬度W1小於磊晶層102之寬度W3,而汲極區112之寬度W2亦小於磊晶層102之寬度W3。此外,在一些實施例中,源極區110與汲極區112僅延伸入磊晶層102之部分深度。亦即,此源極區110之深度D1小於磊晶層102之深度D3,而汲極區112之深度D2亦小於磊晶層102之深度D3。此外,此源極區110與汲極區112皆稍微延伸入閘極電極106下方的磊晶層102中。 In some embodiments, as shown in FIG. 1, the source region 110 and the drain region 112 extend only from a portion of the upper surface 102T of the epitaxial layer 102 into the epitaxial layer 102. The width W1 of the source region 110 is smaller than the width W3 of the epitaxial layer 102, and the width W2 of the drain region 112 is also smaller than the width W3 of the epitaxial layer 102. Moreover, in some embodiments, the source region 110 and the drain region 112 extend only a portion of the depth of the epitaxial layer 102. That is, the depth D1 of the source region 110 is smaller than the depth D3 of the epitaxial layer 102, and the depth D2 of the drain region 112 is also smaller than the depth D3 of the epitaxial layer 102. In addition, the source region 110 and the drain region 112 both extend slightly into the epitaxial layer 102 under the gate electrode 106.

接著,參見第2圖形成第一重摻雜區116於源極區110中,並形成第二重摻雜區118於汲極區112中。此第一重摻雜區116及第二重摻雜區118具有第二導電型。此第一重摻雜區 116及第二重摻雜區118可藉由離子佈植步驟形成。例如,在一實施例中,當第二導電型為N型時,可於磊晶層102中預定形成此第一重摻雜區116及第二重摻雜區118之區域佈植磷離子或砷離子以形成此第一重摻雜區116及第二重摻雜區118。 Next, referring to FIG. 2, a first heavily doped region 116 is formed in the source region 110, and a second heavily doped region 118 is formed in the drain region 112. The first heavily doped region 116 and the second heavily doped region 118 have a second conductivity type. This first heavily doped region 116 and the second heavily doped region 118 can be formed by an ion implantation step. For example, in an embodiment, when the second conductivity type is N-type, phosphorus ions may be implanted in the region of the epitaxial layer 102 where the first heavily doped region 116 and the second heavily doped region 118 are to be formed. Arsenic ions form the first heavily doped region 116 and the second heavily doped region 118.

此外,第一重摻雜區116之摻雜濃度對源極區110之摻雜濃度之比值可大於約2個數量級(亦即大於約100倍)。而第二重摻雜區118之摻雜濃度係大於汲極區112之摻雜濃度。 Moreover, the ratio of the doping concentration of the first heavily doped region 116 to the doping concentration of the source region 110 can be greater than about two orders of magnitude (ie, greater than about 100 times). The doping concentration of the second heavily doped region 118 is greater than the doping concentration of the drain region 112.

接著,參見第2圖,順應性形成間隔物層114於閘極電極106上以及部分源極區110與汲極區112上。此間隔物層114的材質可為氧化矽/氮化矽/氧化矽(ONO)、氮化矽/氧化矽(NO)、氧化矽、氮化矽、或其它任何適合之材料、或上述之組合。此間隔物層114可藉由化學氣相沉積法(CVD)形成,此化學氣相沉積法例如可為低壓化學氣相沉積法(low pressure chemical vapor deposition,LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition,LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition,RTCVD)、電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)、原子層化學氣相沉積法之原子層沉積法(atomic layer deposition,ALD)或其它常用的方法。 Next, referring to FIG. 2, a spacer layer 114 is formed on the gate electrode 106 and a portion of the source region 110 and the drain region 112 in compliance. The spacer layer 114 may be made of yttrium oxide/tantalum nitride/yttria (ONO), tantalum nitride/yttria (NO), tantalum oxide, tantalum nitride, or any other suitable material, or a combination thereof. . The spacer layer 114 can be formed by chemical vapor deposition (CVD). The chemical vapor deposition method can be, for example, low pressure chemical vapor deposition (LPCVD) or low temperature chemical vapor deposition ( Low temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer chemical vapor deposition Atomic layer deposition (ALD) or other commonly used methods.

在一些實施例中,如第2圖所示,此第一重摻雜區116僅自源極區110之部分上表面102T延伸入磊晶層102中。第一重摻雜區116之寬度W4小於源極區110之寬度W1。此外,在一些實施例中,第一重摻雜區116僅延伸入源極區110之部分深度。亦即,此第一重摻雜區116之深度D4小於源極區110之深度 D1。此外,此第一重摻雜區116稍微延伸入間隔物層114下方的磊晶層102中。 In some embodiments, as shown in FIG. 2, the first heavily doped region 116 extends only from a portion of the upper surface 102T of the source region 110 into the epitaxial layer 102. The width W4 of the first heavily doped region 116 is less than the width W1 of the source region 110. Moreover, in some embodiments, the first heavily doped region 116 extends only a portion of the depth of the source region 110. That is, the depth D4 of the first heavily doped region 116 is less than the depth of the source region 110. D1. Moreover, the first heavily doped region 116 extends slightly into the epitaxial layer 102 below the spacer layer 114.

相似地,在一些實施例中,如第2圖所示,此第二重摻雜區118僅自汲極區112之部分上表面102T延伸入磊晶層102中。第二重摻雜區118之寬度W5小於汲極區112之寬度W2。此外,在一些實施例中,第二重摻雜區118僅延伸入汲極區112之部分深度。亦即,此第二重摻雜區118之深度D5小於汲極區112之深度D2。此外,此第二重摻雜區118稍微延伸入間隔物層114下方的磊晶層102中。 Similarly, in some embodiments, as shown in FIG. 2, the second heavily doped region 118 extends only from a portion of the upper surface 102T of the drain region 112 into the epitaxial layer 102. The width W5 of the second heavily doped region 118 is less than the width W2 of the drain region 112. Moreover, in some embodiments, the second heavily doped region 118 extends only a portion of the depth into the drain region 112. That is, the depth D5 of the second heavily doped region 118 is less than the depth D2 of the drain region 112. Moreover, this second heavily doped region 118 extends slightly into the epitaxial layer 102 below the spacer layer 114.

在一些實施例中,如第2圖所示,源極區110完全圍繞第一重摻雜區116除上表面102T以外之側邊。汲極區112完全圍繞第二重摻雜區118除上表面102T以外之側邊。 In some embodiments, as shown in FIG. 2, the source region 110 completely surrounds the first heavily doped region 116 except for the side of the upper surface 102T. The drain region 112 completely surrounds the second heavily doped region 118 except for the side of the upper surface 102T.

接著,參見第3圖,形成溝槽120於磊晶層102中。此溝槽120自磊晶層102之上表面102T延伸穿過源極區110且延伸入磊晶層102內。詳細而言,此溝槽120延伸穿過第一重摻雜區116及源極區110,且停止於磊晶層102中。此溝槽120具有傾斜側壁120S以及底表面120B,且此溝槽120之傾斜側壁120S與溝槽120之底表面120B相交並夾一銳角θ,如第3圖所示。易言之,傾斜側壁120S與底表面120B之夾角並非90度。 Next, referring to FIG. 3, trenches 120 are formed in the epitaxial layer 102. This trench 120 extends from the upper surface 102T of the epitaxial layer 102 through the source region 110 and into the epitaxial layer 102. In detail, the trench 120 extends through the first heavily doped region 116 and the source region 110 and stops in the epitaxial layer 102. The trench 120 has a sloped sidewall 120S and a bottom surface 120B, and the sloped sidewall 120S of the trench 120 intersects the bottom surface 120B of the trench 120 and is at an acute angle θ as shown in FIG. In other words, the angle between the inclined side wall 120S and the bottom surface 120B is not 90 degrees.

詳細而言,溝槽120之上部120T之寬度W6(或溝槽120與磊晶層102之上表面102T位於同水平線上之寬度W6)寬於溝槽120之底表面120B之寬度W7。易言之,溝槽120為錐型(tapered shape)。 In detail, the width W6 of the upper portion 120T of the trench 120 (or the width W6 of the trench 120 on the same horizontal line as the upper surface 102T of the epitaxial layer 102) is wider than the width W7 of the bottom surface 120B of the trench 120. In other words, the groove 120 is a tapered shape.

在一些實施例中,如第3圖所示,一部分之磊晶層 102被移除以形成溝槽120。移除部分磊晶層102之方法包括形成一光阻圖案層(未繪示)於磊晶層102上,以露出欲去除的部分磊晶層102。可藉由光學微影(photolithography)、浸潤式微影(immersion lithography)、離子束微影(ion-beam writing)或其它適當的技術來形成光阻圖案層。舉例來說,光學微影包括旋轉塗佈、軟烤、曝光、後曝烤、顯影、清洗、乾燥及其它適當製程。 In some embodiments, as shown in Figure 3, a portion of the epitaxial layer 102 is removed to form trenches 120. The method of removing a portion of the epitaxial layer 102 includes forming a photoresist pattern layer (not shown) on the epitaxial layer 102 to expose a portion of the epitaxial layer 102 to be removed. The photoresist pattern layer can be formed by photolithography, immersion lithography, ion-beam writing, or other suitable technique. For example, optical lithography includes spin coating, soft baking, exposure, post exposure, development, cleaning, drying, and other suitable processes.

接著,磊晶層102露出的部分可藉由乾蝕刻、濕蝕刻或上述之組合移除,以形成具有傾斜側壁120S之溝槽120。此濕蝕刻可包括浸洗蝕刻(immersion etching)、噴洗蝕刻(spray etching)、上述之組合、或其它適合之乾蝕刻。此乾蝕刻步驟包括電容耦合電漿蝕刻、感應耦合型電漿蝕刻、螺旋電漿蝕刻、電子迴旋共振電漿蝕刻、上述之組合、或其它適合之乾蝕刻。乾蝕刻步驟可在進行一段時間之後停止蝕刻,以留下局部的磊晶層102。因此,僅有一部分之磊晶層102被移除以形成溝槽120。此外,可藉由濕式剝除法、電漿灰化法或其結合移除任何所使用的光阻圖案層(未繪示)。 Next, the exposed portion of the epitaxial layer 102 can be removed by dry etching, wet etching, or a combination thereof to form the trench 120 having the sloped sidewalls 120S. This wet etch can include immersion etching, spray etching, combinations of the above, or other suitable dry etch. The dry etching step includes capacitively coupled plasma etching, inductively coupled plasma etching, spiral plasma etching, electron cyclotron resonance plasma etching, combinations of the foregoing, or other suitable dry etching. The dry etch step may stop etching after a period of time to leave a local epitaxial layer 102. Therefore, only a portion of the epitaxial layer 102 is removed to form the trenches 120. In addition, any of the photoresist pattern layers (not shown) may be removed by wet stripping, plasma ashing, or a combination thereof.

此外,在一些實施例中,如第3圖所示,溝槽120僅自第一重摻雜區116延伸入磊晶層102內。溝槽120之最大寬度W6小於第一重摻雜區116之寬度W4。此外,在一些實施例中,溝槽120延伸穿過源極區110且僅延伸入部分磊晶層102中。易言之,溝槽120之深度D6大於源極區110之深度D1,但小於磊晶層102之深度D3。 Moreover, in some embodiments, as shown in FIG. 3, the trenches 120 extend only from the first heavily doped region 116 into the epitaxial layer 102. The maximum width W6 of the trench 120 is less than the width W4 of the first heavily doped region 116. Moreover, in some embodiments, trenches 120 extend through source region 110 and only into portions of epitaxial layer 102. In other words, the depth D6 of the trench 120 is greater than the depth D1 of the source region 110, but less than the depth D3 of the epitaxial layer 102.

接著,參見第4圖,形成具有第一導電型之第一導 電型連接區122於磊晶層102與基底100中。此第一導電型連接區122可藉由摻雜步驟124形成。此摻雜步驟124摻雜磊晶層102中對應溝槽120之區域。第一導電型連接區122之摻雜濃度比源極區110及磊晶層102之摻雜濃度高。由於溝槽120具有傾斜側壁120S,此第一導電型連接區122不但可接觸溝槽120之底表面120B,更可圍繞溝槽120之傾斜側壁120S,並可藉此電性連接基底100以及鄰接溝槽120之傾斜側壁120S的源極區110。 Next, referring to FIG. 4, forming a first guide having a first conductivity type The electrical connection region 122 is in the epitaxial layer 102 and the substrate 100. The first conductive type connection region 122 can be formed by the doping step 124. This doping step 124 is doped to the region of the epitaxial layer 102 corresponding to the trench 120. The doping concentration of the first conductive type connection region 122 is higher than the doping concentration of the source region 110 and the epitaxial layer 102. Since the trench 120 has the inclined sidewall 120S, the first conductive type connection region 122 can not only contact the bottom surface 120B of the trench 120, but also the inclined sidewall 120S of the trench 120, and can thereby electrically connect the substrate 100 and the adjacent The source region 110 of the sloped sidewall 120S of the trench 120.

第5圖係本揭露另一實施例之半導體裝置200’之剖面圖。第5圖所示之實施例與前述第4圖之實施例之差別在於第5圖之半導體裝置之溝槽具有垂直側壁,而非傾斜側壁。易言之,第5圖所示之溝槽120’之垂直側壁120’S係垂直或正交於底表面120’B。應注意的是,後文中與前文相同或相似的元件或膜層將以相同或相似之標號表示,其材料、製造方法與功能皆與前文所述相同或相似,故此部分在後文中將不再贅述。 Fig. 5 is a cross-sectional view showing a semiconductor device 200' according to another embodiment of the present invention. The embodiment shown in Fig. 5 differs from the embodiment of Fig. 4 in that the trench of the semiconductor device of Fig. 5 has vertical sidewalls instead of inclined sidewalls. In other words, the vertical sidewall 120'S of the trench 120' shown in Fig. 5 is perpendicular or orthogonal to the bottom surface 120'B. It should be noted that elements or layers that are the same or similar to those in the foregoing will be denoted by the same or similar reference numerals, and the materials, manufacturing methods and functions thereof are the same or similar to those described above, and therefore will not be described later. Narration.

如第5圖所示,由於溝槽120’具有垂直側壁120’S,而非傾斜側壁,第一導電型連接區122’無法圍繞整個垂直側壁120’S,也因此無法接觸源極區110。因此,在第5圖中,源極區110無法藉由第一導電型連接區122’而電性連接至基底100,且會因此導致裝置可靠度之問題。上述可靠度問題亦稱為未鉗制感應切換問題(unclamped inductive switching issue)。 As shown in Fig. 5, since the trench 120' has a vertical sidewall 120'S instead of a slanted sidewall, the first conductive type connection region 122' cannot surround the entire vertical sidewall 120'S, and thus cannot contact the source region 110. Therefore, in Fig. 5, the source region 110 cannot be electrically connected to the substrate 100 by the first conductive type connection region 122', and thus causes a problem of device reliability. The above reliability problem is also referred to as an unclamped inductive switching issue.

相較於第5圖,由於第4圖中的溝槽120具有傾斜側壁120S,第一導電型連接區122可圍繞整個溝槽120的傾斜側壁120S,也因此可接觸源極區110。因此,源極區110可藉由第一導電型連接區122而電性連接至基底100,並可藉此提升裝置之 可靠度。 Compared to FIG. 5, since the trench 120 in FIG. 4 has the inclined sidewall 120S, the first conductive type connection region 122 may surround the inclined sidewall 120S of the entire trench 120, and thus may contact the source region 110. Therefore, the source region 110 can be electrically connected to the substrate 100 by the first conductive type connection region 122, and thereby the lifting device can be Reliability.

繼續參見第4圖,在一些實施例中,溝槽120之傾斜側壁120S與底表面120B所夾之銳角θ可為約45度至約88度,例如為約60度至約70度。應注意的是,如果此銳角θ太大,例如大於88度,則第一導電型連接區122無法有效接觸源極區110,使得源極區110無法藉由第一導電型連接區122電性連接至基底100,且會因此導致裝置可靠度之問題。然而,若此銳角θ太小,例如小於45度,則溝槽120會佔據過多半導體裝置之面積,故會妨礙半導體裝置之微小化。 Continuing to refer to FIG. 4, in some embodiments, the acute angle θ of the sloped sidewall 120S of the trench 120 and the bottom surface 120B may be from about 45 degrees to about 88 degrees, such as from about 60 degrees to about 70 degrees. It should be noted that if the acute angle θ is too large, for example, greater than 88 degrees, the first conductive type connection region 122 cannot effectively contact the source region 110, so that the source region 110 cannot be electrically connected by the first conductive type connection region 122. Connecting to the substrate 100 can result in problems with device reliability. However, if the acute angle θ is too small, for example, less than 45 degrees, the trench 120 may occupy a large area of the semiconductor device, which may hinder the miniaturization of the semiconductor device.

在一些實施例中,參見第4圖,第一導電型連接區122可自源極區110延伸入基底100中。詳細而言,在一些實施例中,第一導電型連接區122可自磊晶層102之上表面102T延伸入基底100中。 In some embodiments, referring to FIG. 4, the first conductivity type connection region 122 can extend from the source region 110 into the substrate 100. In detail, in some embodiments, the first conductive type connection region 122 may extend into the substrate 100 from the upper surface 102T of the epitaxial layer 102.

接著,參見第6圖,形成源極接點(source contact)126與汲極接點(drain contact)128。源極接點126係電性連接至第一重摻雜區116及源極區110,而汲極接點128係電性連接至第二重摻雜區118及汲極區112。 Next, referring to FIG. 6, a source contact 126 and a drain contact 128 are formed. The source contact 126 is electrically connected to the first heavily doped region 116 and the source region 110, and the drain contact 128 is electrically connected to the second heavily doped region 118 and the drain region 112.

源極接點126與汲極接點128之材料可各自獨立地包括但不限於銅(copper)、鋁(aluminum)、鉬(molybdenum)、鎢(tungsten)、鈦(titanium)、鉭(tantalum)、鉑(platinum)或鉿(hafnium)。此源極接點126與汲極接點128之材料可藉由前述之化學氣相沉積法(CVD)、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沉積方式形成。 The materials of the source contact 126 and the drain contact 128 may each independently include, but are not limited to, copper, aluminum, molybdenum, tungsten, titanium, tantalum. , platinum or hafnium. The material of the source contact 126 and the drain contact 128 may be by the aforementioned chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or any other suitable deposition. The way is formed.

參見第6圖,在一些實施例中,源極接點126可填 入溝槽120中,且源極接點126設於溝槽120中之部分係順應性覆蓋溝槽120之傾斜側壁120S以及底表面120B,如第6圖所示。 Referring to FIG. 6, in some embodiments, the source contact 126 can be filled. Into the trench 120, the portion of the source contact 126 disposed in the trench 120 is compliant with the inclined sidewall 120S of the trench 120 and the bottom surface 120B, as shown in FIG.

接著,可選擇性(optionally)進行一金屬矽化製程,以於源極接點126與溝槽120之間形成第二矽化物層130,並於汲極接點128與第二重摻雜區118之間形成第三矽化物層132。易言之,第二矽化物層130係設於源極接點126位於溝槽120中的部分與溝槽120之傾斜側壁120S以及底表面120B之間。此第二矽化物層130與第三矽化物層132可更進一步降低裝置之導通電阻。 Then, a metal deuteration process is selectively performed to form a second vaporization layer 130 between the source contact 126 and the trench 120, and at the drain contact 128 and the second heavily doped region 118. A third vaporization layer 132 is formed therebetween. In other words, the second germanide layer 130 is disposed between the portion of the source contact 126 located in the trench 120 and the sloped sidewall 120S of the trench 120 and the bottom surface 120B. The second germanide layer 130 and the third germanide layer 132 can further reduce the on-resistance of the device.

此第二矽化物層130與第三矽化物層132之材料可包括但不限於矽化鎳(nickel silicide)、矽化鈷(cobalt silicide)、矽化鎢(tungsten silicide)、矽化鈦(titanium silicide)、矽化鉭(tantalum silicide)、矽化鉑(platinum silicide)、矽化鉺(erbium silicide)、或其它任何適合之金屬矽化物。 The materials of the second vaporization layer 130 and the third vaporization layer 132 may include, but are not limited to, nickel silicide, cobalt silicide, tungsten tungsten, titanium silicide, and germanium. Tantalum silicide, platinum silicide, erbium silicide, or any other suitable metal halide.

再者,可於溝槽120中的源極接點126上形成介電層134,且源極接點126設於溝槽120中之部分係設於介電層134與溝槽120之間。此介電層134之材料可包括,但不限於氧化矽、氮化矽、氮氧化矽、或其它任何適合之材料、或上述之組合。此介電層134可藉由化學氣相沉積法(CVD)形成,此化學氣相沉積法例如可為低壓化學氣相沉積法(low pressure chemical vapor deposition,LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition,LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition,RTCVD)、電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)、原子層化學氣相沉積法之原子層沉積法(atomic layer deposition,ALD)或其它常用的方法。 Furthermore, a dielectric layer 134 can be formed on the source contact 126 in the trench 120, and a portion of the source contact 126 disposed in the trench 120 is disposed between the dielectric layer 134 and the trench 120. The material of the dielectric layer 134 may include, but is not limited to, hafnium oxide, tantalum nitride, hafnium oxynitride, or any other suitable material, or a combination thereof. The dielectric layer 134 can be formed by chemical vapor deposition (CVD), which can be, for example, low pressure chemical vapor deposition (LPCVD) or low temperature chemical vapor deposition ( Low temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (plasma enhanced chemical) Vapor deposition (PECVD), atomic layer deposition (ALD) or other commonly used methods.

參見第6圖,半導體裝置200包括具有第一導電型之基底100、設於基底100上且具有第一導電型之磊晶層102、以及設於磊晶層102上之閘極電極106。半導體裝置200更包括設於閘極電極106之相反側之磊晶層102中之源極區110及汲極區112。此源極區110具有第一導電型,而汲極區112具有第二導電型,且第一導電型與第二導電型不同。半導體裝置200更包括溝槽120,此溝槽120自磊晶層102之上表面102T延伸穿過源極區110且延伸入磊晶層102內,且此溝槽120具有傾斜側壁120S以及底表面120B。半導體裝置200更包括具有第一導電型之第一導電型連接區122。此第一導電型連接區122圍繞溝槽120之傾斜側壁120S並接觸溝槽120之底表面120B。且此第一導電型連接區122電性連接源極區110及基底100。上述溝槽120之傾斜側壁120S與溝槽120之底表面120B相交並夾銳角θ,其中銳角θ為45度至88度。 Referring to FIG. 6, the semiconductor device 200 includes a substrate 100 having a first conductivity type, an epitaxial layer 102 having a first conductivity type disposed on the substrate 100, and a gate electrode 106 disposed on the epitaxial layer 102. The semiconductor device 200 further includes a source region 110 and a drain region 112 disposed in the epitaxial layer 102 on the opposite side of the gate electrode 106. The source region 110 has a first conductivity type, and the drain region 112 has a second conductivity type, and the first conductivity type is different from the second conductivity type. The semiconductor device 200 further includes a trench 120 extending from the upper surface 102T of the epitaxial layer 102 through the source region 110 and extending into the epitaxial layer 102, and the trench 120 has a sloped sidewall 120S and a bottom surface 120B. The semiconductor device 200 further includes a first conductive type connection region 122 having a first conductivity type. This first conductive type connection region 122 surrounds the inclined sidewall 120S of the trench 120 and contacts the bottom surface 120B of the trench 120. The first conductive type connection region 122 is electrically connected to the source region 110 and the substrate 100. The inclined sidewall 120S of the trench 120 intersects the bottom surface 120B of the trench 120 and has an acute angle θ, wherein the acute angle θ is 45 degrees to 88 degrees.

半導體裝置200可更包括設於源極區110中之第一重摻雜區116。此第一重摻雜區116具有第二導電型,且溝槽120可延伸穿過源極區110中的第一重摻雜區116。半導體裝置200可更包括設於汲極區112中之第二重摻雜區118,且此第二重摻雜區118具有第二導電型。 The semiconductor device 200 can further include a first heavily doped region 116 disposed in the source region 110. The first heavily doped region 116 has a second conductivity type, and the trench 120 can extend through the first heavily doped region 116 in the source region 110. The semiconductor device 200 can further include a second heavily doped region 118 disposed in the drain region 112, and the second heavily doped region 118 has a second conductivity type.

半導體裝置200可更包括源極接點126(source contact),此源極接點126填入溝槽120中且電性連接至第一重摻雜區116及源極區110。半導體裝置200可更包括汲極接點 128(drain contact),此汲極接點128電性連接至第二重摻雜區118及汲極區112。 The semiconductor device 200 can further include a source contact 126. The source contact 126 is filled in the trench 120 and electrically connected to the first heavily doped region 116 and the source region 110. The semiconductor device 200 may further include a drain contact 128 (drain contact), the drain contact 128 is electrically connected to the second heavily doped region 118 and the drain region 112.

半導體裝置200可更包括設於溝槽120中的源極接點126上之介電層134,且源極接點126設於溝槽120中之部分係設於介電層134與溝槽120之間。 The semiconductor device 200 further includes a dielectric layer 134 disposed on the source contact 126 of the trench 120, and a portion of the source contact 126 disposed in the trench 120 is disposed on the dielectric layer 134 and the trench 120. between.

半導體裝置200可更包括設於閘極電極106上之第一矽化物層108、設於源極接點126與溝槽120之間之第二矽化物層130、以及設於汲極接點128與第二重摻雜區118之間之第三矽化物層132。 The semiconductor device 200 may further include a first germanide layer 108 disposed on the gate electrode 106, a second germanide layer 130 disposed between the source contact 126 and the trench 120, and a drain contact 128. A third germanide layer 132 is formed between the second heavily doped region 118.

此外,應注意的是,雖然在以上之實施例中,皆以第一導電型為P型,第二導電型為N型說明,然而,此技術領域中具有通常知識者當可理解第一導電型亦可為N型,而此時第二導電型則為P型。 In addition, it should be noted that although in the above embodiments, the first conductivity type is P type and the second conductivity type is N type, however, those skilled in the art can understand the first conductivity. The type can also be N-type, while the second conductivity type is P-type.

綜上所述,由於本揭露之半導體裝置的溝槽具有傾斜側壁,第一導電型連接區可圍繞溝槽的傾斜側壁,也因此可接觸源極區。因此,源極區可藉由第一導電型連接區而電性連接至基底,並可藉此提升裝置之可靠度。 In summary, since the trench of the semiconductor device of the present disclosure has inclined sidewalls, the first conductive type connection region can surround the inclined sidewall of the trench and thus can contact the source region. Therefore, the source region can be electrically connected to the substrate by the first conductive type connection region, and thereby the reliability of the device can be improved.

值得注意的是,以上所述之元件尺寸、元件參數、以及元件形狀皆非為本揭露之限制條件。此技術領域中具有通常知識者可以根據不同需要調整這些設定值。另外,本揭露之半導體裝置及其製造方法並不僅限於第1-6圖所圖示之狀態。本揭露可以僅包括第1-6圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本揭露之半導體裝置及其製造方法中。 It should be noted that the component sizes, component parameters, and component shapes described above are not limitations of the disclosure. Those of ordinary skill in the art can adjust these settings according to different needs. Further, the semiconductor device and the method of manufacturing the same according to the present disclosure are not limited to the state illustrated in FIGS. 1-6. The disclosure may include only any one or more of the features of any one of the Figures 1-6. In other words, not all illustrated features must be simultaneously implemented in the semiconductor device and method of fabricating the same.

雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present disclosure and its advantages are disclosed above, it should be understood that those skilled in the art can make changes, substitutions, and refinements without departing from the spirit and scope of the disclosure. In addition, the scope of the disclosure is not limited to the processes, machines, manufactures, compositions, devices, methods, and steps in the specific embodiments described in the specification, and those of ordinary skill in the art may disclose the disclosure It is understood that the processes, machines, manufactures, compositions, devices, methods, and procedures that are presently or in the future may be used in accordance with the present disclosure as long as they can perform substantially the same function or achieve substantially the same results in the embodiments described herein. Accordingly, the scope of protection of the present disclosure includes the above-described processes, machines, manufacturing, material compositions, devices, methods, and procedures. In addition, each patent application scope constitutes an individual embodiment, and the scope of protection of the disclosure also includes a combination of the scope of the patent application and the embodiments.

100‧‧‧基底 100‧‧‧Base

102‧‧‧第一導電型之磊晶層 102‧‧‧The first conductivity type epitaxial layer

102T‧‧‧上表面 102T‧‧‧ upper surface

104‧‧‧閘極介電層 104‧‧‧ gate dielectric layer

106‧‧‧閘極電極 106‧‧‧gate electrode

108‧‧‧第一矽化物層 108‧‧‧First telluride layer

110‧‧‧源極區 110‧‧‧ source area

112‧‧‧汲極區 112‧‧‧Bungee Area

114‧‧‧間隔物層 114‧‧‧ spacer layer

116‧‧‧第一重摻雜區 116‧‧‧First heavily doped area

118‧‧‧第二重摻雜區 118‧‧‧Second heavily doped area

120‧‧‧溝槽 120‧‧‧ trench

120S‧‧‧傾斜側壁 120S‧‧‧ sloping side wall

120B‧‧‧底表面 120B‧‧‧ bottom surface

122‧‧‧第一導電型連接區 122‧‧‧First Conductive Connection Area

126‧‧‧源極接點 126‧‧‧Source contact

128‧‧‧汲極接點 128‧‧‧汲pole contacts

130‧‧‧第二矽化物層 130‧‧‧Second telluride layer

132‧‧‧第三矽化物層 132‧‧‧ Third telluride layer

134‧‧‧介電層 134‧‧‧ dielectric layer

200‧‧‧半導體裝置 200‧‧‧Semiconductor device

θ‧‧‧銳角 Θ‧‧‧ acute angle

Claims (20)

一種半導體裝置,包括:一基底,具有一第一導電型;一磊晶層,設於該基底上且具有該第一導電型;一閘極電極,設於該磊晶層上;一源極區及一汲極區,設於該閘極電極之相反側之該磊晶層中,其中該源極區具有該第一導電型,而該汲極區具有一第二導電型,且該第一導電型與該第二導電型不同;一溝槽,自該磊晶層之一上表面延伸穿過該源極區且延伸入該磊晶層內,其中該溝槽具有一傾斜側壁以及一底表面;及一第一導電型連接區,其中該第一導電型連接區圍繞該溝槽之該傾斜側壁並接觸該溝槽之該底表面,其中該第一導電型連接區電性連接該源極區及該基底,其中該第一導電型連接區為具有該第一導電型且位於該磊晶層中的摻雜區,且該第一導電型連接區直接接觸該源極區。 A semiconductor device comprising: a substrate having a first conductivity type; an epitaxial layer disposed on the substrate and having the first conductivity type; a gate electrode disposed on the epitaxial layer; a source a region and a drain region disposed in the epitaxial layer on the opposite side of the gate electrode, wherein the source region has the first conductivity type, and the drain region has a second conductivity type, and the a conductive type is different from the second conductive type; a trench extending from an upper surface of the epitaxial layer through the source region and extending into the epitaxial layer, wherein the trench has a sloped sidewall and a trench a bottom surface; and a first conductive type connection region, wherein the first conductive type connection region surrounds the inclined sidewall of the trench and contacts the bottom surface of the trench, wherein the first conductive type connection region is electrically connected to the bottom surface a source region and the substrate, wherein the first conductive type connection region is a doped region having the first conductivity type and located in the epitaxial layer, and the first conductive type connection region directly contacts the source region. 如申請專利範圍第1項所述之半導體裝置,其中該溝槽之該傾斜側壁與該溝槽之該底表面相交並夾一銳角,其中該銳角為45度至88度。 The semiconductor device of claim 1, wherein the inclined sidewall of the trench intersects the bottom surface of the trench and is at an acute angle, wherein the acute angle is 45 degrees to 88 degrees. 如申請專利範圍第1項所述之半導體裝置,其中該溝槽之一上部之寬度寬於該溝槽之該底表面之寬度。 The semiconductor device of claim 1, wherein an upper portion of the trench has a width wider than a width of the bottom surface of the trench. 如申請專利範圍第1項所述之半導體裝置,其中該第一導電型連接區自該源極區延伸入該基底中。 The semiconductor device of claim 1, wherein the first conductive type connection region extends from the source region into the substrate. 如申請專利範圍第4項所述之半導體裝置,其中該第一導 電型連接區自該磊晶層之該上表面延伸入該基底中。 The semiconductor device according to claim 4, wherein the first guide An electrical connection region extends into the substrate from the upper surface of the epitaxial layer. 如申請專利範圍第1項所述之半導體裝置,更包括:一第一重摻雜區,設於該源極區中,其中該第一重摻雜區具有該第二導電型;及一第二重摻雜區,設於該汲極區中,其中該第二重摻雜區具有該第二導電型;其中該溝槽延伸穿過該源極區中的該第一重摻雜區。 The semiconductor device of claim 1, further comprising: a first heavily doped region disposed in the source region, wherein the first heavily doped region has the second conductivity type; a double doped region disposed in the drain region, wherein the second heavily doped region has the second conductivity type; wherein the trench extends through the first heavily doped region in the source region. 如申請專利範圍第6項所述之半導體裝置,更包括:一源極接點(source contact),填入該溝槽中且電性連接至該第一重摻雜區及該源極區;及一汲極接點(drain contact),電性連接至該第二重摻雜區及該汲極區。 The semiconductor device of claim 6, further comprising: a source contact, filled in the trench and electrically connected to the first heavily doped region and the source region; And a drain contact electrically connected to the second heavily doped region and the drain region. 如申請專利範圍第7項所述之半導體裝置,其中:該源極接點設於該溝槽中之部分係順應性覆蓋該溝槽之傾斜側壁以及底表面;其中該半導體裝置更包括:一介電層,設於該溝槽中的該源極接點上,其中該源極接點設於該溝槽中之部分係設於該介電層與該溝槽之間。 The semiconductor device of claim 7, wherein the portion of the source contact disposed in the trench conforms to the inclined sidewall and the bottom surface of the trench; wherein the semiconductor device further comprises: The dielectric layer is disposed on the source contact in the trench, wherein a portion of the source contact disposed in the trench is disposed between the dielectric layer and the trench. 如申請專利範圍第1項所述之半導體裝置,更包括:一第一矽化物層,設於該閘極電極上。 The semiconductor device of claim 1, further comprising: a first germanide layer disposed on the gate electrode. 如申請專利範圍第7項所述之半導體裝置,更包括:一第二矽化物層,設於該源極接點與該溝槽之間;及一第三矽化物層,設於該汲極接點與該第二重摻雜區之間。 The semiconductor device of claim 7, further comprising: a second germanide layer disposed between the source contact and the trench; and a third germanide layer disposed on the drain A junction between the junction and the second heavily doped region. 一種半導體裝置之製造方法,包括: 提供一基底,該基底具有一第一導電型;形成一磊晶層於該基底上,且該磊晶層具有該第一導電型;形成一閘極電極於該磊晶層上;形成一源極區及一汲極區於該閘極電極之相反側之該磊晶層中,其中該源極區具有該第一導電型,而該汲極區具有一第二導電型,且該第一導電型與該第二導電型不同;形成一溝槽,該溝槽自該磊晶層之一上表面延伸穿過該源極區且延伸入該磊晶層內,其中該溝槽具有一傾斜側壁以及一底表面;及形成一第一導電型連接區,其中該第一導電型連接區圍繞該溝槽之該傾斜側壁並接觸該溝槽之該底表面,其中該第一導電型連接區電性連接該源極區及該基底,其中該第一導電型連接區為具有該第一導電型且位於該磊晶層中的摻雜區,且該第一導電型連接區直接接觸該源極區。 A method of fabricating a semiconductor device, comprising: Providing a substrate having a first conductivity type; forming an epitaxial layer on the substrate, wherein the epitaxial layer has the first conductivity type; forming a gate electrode on the epitaxial layer; forming a source a pole region and a drain region in the epitaxial layer on the opposite side of the gate electrode, wherein the source region has the first conductivity type, and the drain region has a second conductivity type, and the first The conductive type is different from the second conductive type; forming a trench extending from an upper surface of the epitaxial layer through the source region and extending into the epitaxial layer, wherein the trench has a tilt a sidewall and a bottom surface; and forming a first conductive type connection region, wherein the first conductive type connection region surrounds the inclined sidewall of the trench and contacts the bottom surface of the trench, wherein the first conductive type connection region Electrically connecting the source region and the substrate, wherein the first conductive type connection region is a doped region having the first conductivity type and located in the epitaxial layer, and the first conductive type connection region directly contacts the source Polar zone. 如申請專利範圍第11項所述之半導體裝置之製造方法,其中該溝槽之該傾斜側壁與該溝槽之該底表面相交並夾一銳角,其中該銳角為45度至88度。 The method of fabricating a semiconductor device according to claim 11, wherein the inclined sidewall of the trench intersects the bottom surface of the trench and is at an acute angle, wherein the acute angle is 45 degrees to 88 degrees. 如申請專利範圍第11項所述之半導體裝置之製造方法,其中該溝槽之一上部之寬度寬於該溝槽之該底表面之寬度。 The method of fabricating a semiconductor device according to claim 11, wherein a width of an upper portion of the trench is wider than a width of the bottom surface of the trench. 如申請專利範圍第11項所述之半導體裝置之製造方法,其中該第一導電型連接區自該源極區延伸入該基底中。 The method of fabricating a semiconductor device according to claim 11, wherein the first conductive type connection region extends from the source region into the substrate. 如申請專利範圍第14項所述之半導體裝置之製造方法,其中該第一導電型連接區自該磊晶層之該上表面延伸入該基底中。 The method of fabricating a semiconductor device according to claim 14, wherein the first conductive type connection region extends into the substrate from the upper surface of the epitaxial layer. 如申請專利範圍第11項所述之半導體裝置之製造方法,更包括:形成一第一重摻雜區於該源極區中,其中該第一重摻雜區具有該第二導電型;及形成一第二重摻雜區於該汲極區中,其中該第二重摻雜區具有該第二導電型;其中該溝槽延伸穿過該源極區中的該第一重摻雜區。 The method of fabricating a semiconductor device according to claim 11, further comprising: forming a first heavily doped region in the source region, wherein the first heavily doped region has the second conductivity type; Forming a second heavily doped region in the drain region, wherein the second heavily doped region has the second conductivity type; wherein the trench extends through the first heavily doped region in the source region . 如申請專利範圍第16項所述之半導體裝置之製造方法,更包括:形成一源極接點(source contact),其中該源極接點填入該溝槽中且電性連接至該第一重摻雜區及該源極區;及形成一汲極接點(drain contact),其中該汲極接點電性連接至該第二重摻雜區及該汲極區。 The method of manufacturing the semiconductor device of claim 16, further comprising: forming a source contact, wherein the source contact is filled in the trench and electrically connected to the first a heavily doped region and the source region; and a drain contact is formed, wherein the drain contact is electrically connected to the second heavily doped region and the drain region. 如申請專利範圍第17項所述之半導體裝置之製造方法,其中:該源極接點設於該溝槽中之部分係順應性覆蓋該溝槽之傾斜側壁以及底表面;其中該半導體裝置之製造方法更包括:形成一介電層於該溝槽中的該源極接點上,其中該源極接點設於該溝槽中之部分係設於該介電層與該溝槽之間。 The method of fabricating a semiconductor device according to claim 17, wherein: the portion of the source contact disposed in the trench conforms to cover the inclined sidewall and the bottom surface of the trench; wherein the semiconductor device The manufacturing method further includes: forming a dielectric layer on the source contact in the trench, wherein a portion of the source contact disposed in the trench is disposed between the dielectric layer and the trench . 如申請專利範圍第11項所述之半導體裝置之製造方法,更包括:形成一第一矽化物層於該閘極電極上。 The method of fabricating a semiconductor device according to claim 11, further comprising: forming a first germanide layer on the gate electrode. 如申請專利範圍第17項所述之半導體裝置之製造方法,更 包括:形成一第二矽化物層於該源極接點與該溝槽之間;及形成一第三矽化物層於該汲極接點與該第二重摻雜區之間。 The method for manufacturing a semiconductor device according to claim 17 of the patent application, The method includes: forming a second germanide layer between the source contact and the trench; and forming a third germanide layer between the drain contact and the second heavily doped region.
TW104132958A 2015-10-07 2015-10-07 Semiconductor device and method of manufacturing the same TWI570918B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104132958A TWI570918B (en) 2015-10-07 2015-10-07 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104132958A TWI570918B (en) 2015-10-07 2015-10-07 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI570918B true TWI570918B (en) 2017-02-11
TW201714303A TW201714303A (en) 2017-04-16

Family

ID=58608430

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132958A TWI570918B (en) 2015-10-07 2015-10-07 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI570918B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201241993A (en) * 2011-04-01 2012-10-16 Sumitomo Electric Industries Silicon carbide semiconductor device
TW201515217A (en) * 2013-10-02 2015-04-16 Vanguard Int Semiconduct Corp Lateral double diffused metal-oxide-semiconductor device and method for forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201241993A (en) * 2011-04-01 2012-10-16 Sumitomo Electric Industries Silicon carbide semiconductor device
TW201515217A (en) * 2013-10-02 2015-04-16 Vanguard Int Semiconduct Corp Lateral double diffused metal-oxide-semiconductor device and method for forming the same

Also Published As

Publication number Publication date
TW201714303A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
US8754470B1 (en) Vertical tunneling field-effect transistor cell and fabricating the same
US9991123B2 (en) Doped protection layer for contact formation
US9159826B2 (en) Vertical tunneling field-effect transistor cell and fabricating the same
TW201729346A (en) Method of cutting metal gate
US10629726B2 (en) High-voltage semiconductor device and method for manufacturing the same
TWI645459B (en) Semiconductor structures and methods for forming the same
CN106206434A (en) Semiconductor structure and manufacturing process thereof
CN107170823B (en) Fin type field effect transistor structure and manufacturing method thereof
US10784340B2 (en) Semiconductor device having a super-junction in the drift region with decreasing doped sub-regions widths
KR20170128170A (en) Semiconductor structure with insertion layer and method for manufacturing the same
US9773681B2 (en) Semiconductor device with a trench and method for manufacturing the same
US9831305B1 (en) Semiconductor device and method for manufacturing the same
TWI570918B (en) Semiconductor device and method of manufacturing the same
TW202117812A (en) Method of manufacturing semiconductor device
TW201719893A (en) Semiconductor device and method of manufacturing the same
TWI767686B (en) Contact plug
TWI618128B (en) Semiconductor devices and methods for manufacturing the same
TWI719722B (en) Semiconductor structure and method of forming the same
TWI746094B (en) Semiconductor structure and method of forming the same
TWI575707B (en) Semiconductor device and method of manufacturing the same
TWI683351B (en) Semiconductor device and method for forming the same
TWI587507B (en) Semiconductor device and method of manufacturing the same
US20210193565A1 (en) Low resistance interconnect structure for semiconductor device
US10157981B1 (en) Structure and formation method of semiconductor device structure with well regions
TWI544639B (en) High voltage semiconductor device and method of manufacturing the same