TWI570744B - Integrated circuit, system including the same, and operation method of the system - Google Patents

Integrated circuit, system including the same, and operation method of the system Download PDF

Info

Publication number
TWI570744B
TWI570744B TW101129786A TW101129786A TWI570744B TW I570744 B TWI570744 B TW I570744B TW 101129786 A TW101129786 A TW 101129786A TW 101129786 A TW101129786 A TW 101129786A TW I570744 B TWI570744 B TW I570744B
Authority
TW
Taiwan
Prior art keywords
wafer
time
memory
power supply
supply voltage
Prior art date
Application number
TW101129786A
Other languages
Chinese (zh)
Other versions
TW201324533A (en
Inventor
權奇昌
Original Assignee
愛思開海力士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛思開海力士有限公司 filed Critical 愛思開海力士有限公司
Publication of TW201324533A publication Critical patent/TW201324533A/en
Application granted granted Critical
Publication of TWI570744B publication Critical patent/TWI570744B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry

Landscapes

  • Memory System (AREA)
  • Read Only Memory (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Power Sources (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

積體電路、包含該積體電路之系統、及該系統之操作方法 Integrated circuit, system including the integrated circuit, and operating method of the system

本發明之例示性實施例係關於一種積體電路晶片,且更特定言之係關於一種用於設定針對積體電路晶片之效能的最佳潛時之技術。 Illustrative embodiments of the present invention relate to an integrated circuit chip, and more particularly to a technique for setting the optimal latency for the performance of an integrated circuit chip.

本申請案主張2011年8月16日申請之韓國專利申請案第10-2011-0081317號之優先權,該案之全文以引用的方式併入本文中。 The present application claims priority to Korean Patent Application No. 10-2011-0081, filed on Aug.

積體電路晶片藉由傳輸資料或信號或者接收來自相鄰晶片之資料或信號來與相鄰晶片通信。舉例而言,當記憶體控制器將讀取指令施加至記憶體時,記憶體將所儲存資料傳送至記憶體控制器。此處,記憶體可在延遲情況下將資料輸出至記憶體控制器,其中回應於讀取指令,延遲可在擷取所儲存資料及為進行輸出作準備時出現。 Integrated circuit wafers communicate with adjacent wafers by transmitting data or signals or receiving data or signals from adjacent wafers. For example, when the memory controller applies a read command to the memory, the memory transfers the stored data to the memory controller. Here, the memory can output data to the memory controller in the case of a delay, wherein in response to the read command, the delay can occur when the stored data is retrieved and prepared for output.

當晶片A與晶片B彼此互動時,晶片A請求晶片B執行所要操作。存在延遲,直至晶片B回應於來自晶片A之請求執行操作為止。此延遲稱為潛時。舉例而言,當CAS潛時CL針對記憶體與記憶體控制器之間的指令設定為7且記憶體控制器將讀取指令施加至記憶體時,記憶體在自施加讀取指令之時間起7個時脈之後將資料傳送至記憶體控制器。 When wafer A and wafer B interact with each other, wafer A requests wafer B to perform the desired operation. There is a delay until the wafer B performs an operation in response to a request from the wafer A. This delay is called latency. For example, when the CAS latency CL is set to 7 for the instruction between the memory and the memory controller and the memory controller applies the read command to the memory, the memory is from the time when the read command is applied. Data is transferred to the memory controller after 7 clocks.

根據新近趨勢,積體電路晶片可以若干電力供應電壓位準操作。然而,當積體電路晶片之操作的電力供應電壓改 變時,積體電路晶片之操作速度可改變。此處,最佳地設定晶片之間的潛時而不管操作速度之改變為有用的。 According to recent trends, integrated circuit chips can operate at several power supply voltage levels. However, when the power supply voltage of the integrated circuit chip is changed The operating speed of the integrated circuit chip can be changed at any time. Here, it is useful to optimally set the latency between wafers regardless of the change in operating speed.

本發明之一實施例係針對一組態,其中一主控晶片將一操作指令施加至一受控晶片,且基於關於該受控晶片之操作速度的資訊設定一最佳潛時。 One embodiment of the present invention is directed to a configuration in which a master wafer applies an operational command to a controlled wafer and sets an optimal latency based on information regarding the operating speed of the controlled wafer.

根據一實例,該主控晶片可偵測該受控晶片之該操作速度之一改變,該改變起源於施加至該受控晶片之電力供應電壓的一改變;且設定針對該受控晶片藉以操作之該電力供應電壓之每一位準的一最佳潛時。 According to an example, the master wafer can detect a change in the operating speed of the controlled wafer, the change originating from a change in the power supply voltage applied to the controlled wafer; and setting the operation for the controlled wafer An optimum potential for each of the power supply voltages.

根據本發明之一實施例,一種系統包含:一第一晶片,其經組態以供應一訓練指令;及一第二晶片,其經組態以回應於該訓練指令將用於執行一操作的一所量測時間傳送至該第一晶片。 In accordance with an embodiment of the present invention, a system includes: a first wafer configured to supply a training command; and a second wafer configured to be responsive to the training instruction to perform an operation A measurement time is transmitted to the first wafer.

根據本發明之另一實施例,一種積體電路晶片包含:一解碼器,其經組態以藉由解碼一或多個指令信號而產生一信號;一內部電路,其經組態以執行對應於一訓練指令之一操作;及一儲存電路,其經組態以儲存用於執行該操作之一所量測時間。 In accordance with another embodiment of the present invention, an integrated circuit die includes: a decoder configured to generate a signal by decoding one or more command signals; an internal circuit configured to perform a corresponding Operating in one of the training instructions; and a storage circuit configured to store the time measured for performing one of the operations.

根據本發明之再一實施例,一種用於操作一積體電路晶片之方法包含:將一第一電力供應電壓供應至該積體電路晶片;在該積體電路晶片以該第一電力供應電壓操作之同時將一訓練指令輸出至該積體電路晶片;量測該積體電路晶片之用於執行對應於該訓練指令之一操作的一第一操作 時間;儲存該第一操作時間;將一第二電力供應電壓供應至該積體電路晶片;在該積體電路晶片以該第二電力供應電壓操作之同時將該訓練指令供應至該積體電路晶片;量測該積體電路晶片之用於執行對應於該訓練指令之一操作的一第二操作時間;及儲存該第二操作時間。 According to still another embodiment of the present invention, a method for operating an integrated circuit chip includes: supplying a first power supply voltage to the integrated circuit wafer; and the first power supply voltage is applied to the integrated circuit chip Simultaneously outputting a training command to the integrated circuit chip; measuring a first operation of the integrated circuit chip for performing an operation corresponding to one of the training instructions Storing the first operation time; supplying a second power supply voltage to the integrated circuit chip; supplying the training command to the integrated circuit while the integrated circuit chip is operating with the second power supply voltage a wafer; measuring a second operation time of the integrated circuit chip for performing an operation corresponding to one of the training instructions; and storing the second operation time.

根據本發明之再一實施例,一種記憶體系統包含:一記憶體,其經組態以傳送自將一訓練指令輸出至該記憶體之一時間至回應於該訓練指令輸出資料之一時間的一所量測資料輸出時間;及一記憶體控制器,其經組態以將該訓練指令輸出至該記憶體且自該記憶體接收該資料。 In accordance with still another embodiment of the present invention, a memory system includes: a memory configured to transmit a time from when a training command is outputted to the memory to a time in response to the output of the training command A measurement data output time; and a memory controller configured to output the training command to the memory and receive the data from the memory.

根據本發明之再一實施例,一種記憶體包含:一記憶胞陣列區,其經組態以儲存資料;一指令解碼器,其經組態以藉由解碼一或多個信號而輸出一訓練指令;一控制電路,其經組態以藉由使該訓練指令延遲而產生一資料輸出信號;一資料輸出電路,其經組態以回應於該資料輸出信號而輸出自該記憶胞陣列區所讀取之該資料;一量測電路,其經組態以量測自輸出該訓練指令之一時間至自該資料輸出電路輸出該資料之一時間所花費的一資料輸出時間;及一儲存電路,其經組態以儲存該所量測資料輸出時間。 In accordance with still another embodiment of the present invention, a memory includes: a memory cell array region configured to store data; an instruction decoder configured to output a training by decoding one or more signals An instruction circuit configured to generate a data output signal by delaying the training instruction; a data output circuit configured to output from the memory cell array region in response to the data output signal Reading the data; a measuring circuit configured to measure a data output time from a time when the training command is output to a time when the data output circuit outputs the data; and a storage circuit It is configured to store the measured data output time.

下文將參看隨附圖式更詳細地描述本發明之例示性實施例。然而,本發明可以不同形式來體現,且不應解釋為限於本文中所闡述之實施例。實情為,提供此等實施例以使 得本發明將為詳盡且完整的,且將會將本發明之範疇充分地傳達給熟習此項技術者。遍及本發明,遍及本發明之各圖及實施例,相似參考數字指代相似部分。 Exemplary embodiments of the present invention are described in more detail below with reference to the accompanying drawings. However, the invention may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein. The fact is that these embodiments are provided to The present invention will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Throughout the drawings, like reference numerals refer to like parts throughout the claims

圖1為說明根據本發明之第一實施例的包含第一晶片及第二晶片之積體電路系統的方塊圖。 1 is a block diagram showing an integrated circuit system including a first wafer and a second wafer in accordance with a first embodiment of the present invention.

參看圖1,積體電路系統包含第一晶片110、第二晶片120,及電力供應器130。 Referring to FIG. 1, the integrated circuit system includes a first wafer 110, a second wafer 120, and a power supply 130.

第一晶片110為給予第二晶片120指令以執行特定操作之主控晶片,且第二晶片120為執行對應於第一晶片110之指令之操作的受控晶片。舉例而言,第一晶片110可為記憶體控制器,且第二晶片120可為在記憶體控制器之指令下執行讀取操作或寫入操作的記憶體。 The first wafer 110 is a master wafer that instructs the second wafer 120 to perform a specific operation, and the second wafer 120 is a controlled wafer that performs an operation corresponding to the instructions of the first wafer 110. For example, the first wafer 110 can be a memory controller, and the second wafer 120 can be a memory that performs a read operation or a write operation under the instruction of the memory controller.

電力供應器130向第一晶片110及第二晶片120提供電力供應電壓VDD1及VDD2。自電力供應器130供應至第一晶片110之第一電力供應電壓VDD1的位準與自電力供應器130供應至第二晶片120之第二電力供應電壓VDD2的位準可彼此相同或不同。藉由電力供應器130所供應之第一電力供應電壓VDD1及第二電力供應電壓VDD2的位準可回應於來自第一晶片110的控制信號而改變。根據另一實例,自電力供應器130提供至第一晶片110之第一電力供應電壓VDD1的位準可為恆定的,且第一晶片110可控制電力供應器130改變供應至第二晶片120之第二電力供應電壓VDD2的位準。在圖式中,「CONTROL」意謂在第一晶片110之控制下判定藉由電力供應器130所提供之電力供應的位 準。 The power supply 130 supplies power supply voltages VDD1 and VDD2 to the first wafer 110 and the second wafer 120. The level of the first power supply voltage VDD1 supplied from the power supply 130 to the first wafer 110 and the level of the second power supply voltage VDD2 supplied from the power supply 130 to the second wafer 120 may be the same or different from each other. The levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 supplied by the power supply 130 may be changed in response to a control signal from the first wafer 110. According to another example, the level of the first power supply voltage VDD1 supplied from the power supply 130 to the first wafer 110 may be constant, and the first wafer 110 may control the power supply 130 to change the supply to the second wafer 120. The level of the second power supply voltage VDD2. In the drawings, "CONTROL" means determining the bit of the power supply provided by the power supply 130 under the control of the first wafer 110. quasi.

第一晶片110輸出訓練指令以執行對第二晶片120之操作X的訓練操作。此處,操作X可為在接收到來自第一晶片110之指令後即藉由第二晶片120執行的任何操作。此操作係藉由X訓練指令表示於圖式中。第二晶片120接著執行操作X、量測執行操作X所花費之時間(稱為用於執行操作X的時間),且將量測結果傳送至第一晶片110。在改變施加至第二晶片120之第二電力供應電壓VDD2的位準之同時,重複第一晶片110與第二晶片120之間的此互動。第一晶片110可接著判定根據第二電力供應電壓VDD2改變第二晶片120之用於執行操作X之時間的方式。 The first wafer 110 outputs a training command to perform a training operation on the operation X of the second wafer 120. Here, operation X may be any operation performed by the second wafer 120 upon receiving an instruction from the first wafer 110. This operation is represented in the drawing by the X training instruction. The second wafer 120 then performs operation X, measures the time it takes to perform the operation X (referred to as the time for performing the operation X), and transmits the measurement result to the first wafer 110. This interaction between the first wafer 110 and the second wafer 120 is repeated while changing the level of the second power supply voltage VDD2 applied to the second wafer 120. The first wafer 110 may then determine a manner of changing the time of the second wafer 120 for performing the operation X according to the second power supply voltage VDD2.

第二晶片120可以以下兩種方法將對應於「用於執行操作X之時間」的信號傳送至第一晶片110。 The second wafer 120 can transmit a signal corresponding to the "time for performing the operation X" to the first wafer 110 in the following two methods.

(1)無論何時第一晶片110將X訓練指令施加至第二晶片120時,第二晶片120量測用於執行操作X之時間,並將「用於執行操作X之時間」傳送至第一晶片110。換言之,甚至在無自第一晶片110至第二晶片120以傳送對應於用於執行操作X之時間的信號之個別指令的情況下,在第二晶片120結束量測其用於執行操作X之時間時,第二晶片120仍將用於執行操作X的時間自動傳送至第一晶片110。 (1) Whenever the first wafer 110 applies the X training command to the second wafer 120, the second wafer 120 measures the time for performing the operation X, and transmits the "time for performing the operation X" to the first Wafer 110. In other words, even in the case where there is no individual instruction from the first wafer 110 to the second wafer 120 to transmit a signal corresponding to the time for performing the operation X, the second wafer 120 ends measuring it for performing the operation X. At time, the second wafer 120 still automatically transfers the time for performing the operation X to the first wafer 110.

(2)當第一晶片110將X訓練指令施加至第二晶片120時,第二晶片120量測用於執行操作X之時間且在內部儲存所量測之用於執行操作X的時間,且當第一晶片110將操作時間讀取指令傳輸至第二晶片120以傳輸用於執行操作X的時間 時,第二晶片120傳送所儲存之用於執行操作X的時間。 (2) When the first wafer 110 applies an X training instruction to the second wafer 120, the second wafer 120 measures the time for performing the operation X and internally stores the measured time for performing the operation X, and When the first wafer 110 transmits an operation time read command to the second wafer 120 to transfer the time for performing the operation X At the time, the second wafer 120 transfers the stored time for performing the operation X.

以下表1例示性地顯示根據第二電力供應電壓VDD2之位準所量測的用於執行操作X之時間。在表1中,用於執行操作X之時間的單位可為用於量化時間之任何相當合適之時間單位。舉例而言,單位可為ms、μs或時脈數目。 Table 1 below exemplarily shows the time for performing the operation X measured according to the level of the second power supply voltage VDD2. In Table 1, the unit for the time at which operation X is performed may be any suitable time unit for quantifying the time. For example, the unit can be ms, μs, or the number of clocks.

當第一晶片110接收到顯示於表1中之資訊時,第一晶片110可判定第二晶片120的用於執行操作X之時間。因此,第一晶片110可容易地控制第二晶片120之操作X的潛時。舉例而言,當第二晶片120之第二電力供應電壓VDD2為1.0 V時,第一晶片110將第二晶片120之操作X的潛時設定為9或9個以上單位之值。此處,操作X之潛時意謂第二晶片120自第一晶片110給予第二晶片120指令以執行操作X之時間起將操作X之結果值傳送至第一晶片110所花費的總時間。當第二晶片120之第二電力供應電壓VDD2為1.3 V時,第一晶片110將第二晶片120之操作X的潛時設定為6或6個以上單位之值。此處,即使改變第二晶片120之第二電力供應電壓VDD2,第一晶片110仍可一貫地使第二晶片120之操作X的潛時值最佳化。 When the first wafer 110 receives the information shown in Table 1, the first wafer 110 can determine the time of the second wafer 120 for performing the operation X. Therefore, the first wafer 110 can easily control the latency of the operation X of the second wafer 120. For example, when the second power supply voltage VDD2 of the second wafer 120 is 1.0 V, the first wafer 110 sets the latency of the operation X of the second wafer 120 to a value of 9 or more units. Here, the latency of operation X means the total time taken by the second wafer 120 to transfer the resulting value of the operation X to the first wafer 110 from the time the first wafer 110 gives the second wafer 120 instruction to perform the operation X. When the second power supply voltage VDD2 of the second wafer 120 is 1.3 V, the first wafer 110 sets the latency of the operation X of the second wafer 120 to a value of 6 or more units. Here, even if the second power supply voltage VDD2 of the second wafer 120 is changed, the first wafer 110 can consistently optimize the latency value of the operation X of the second wafer 120.

在圖1中,說明為了藉由第一晶片110判定第二晶片120之用於執行操作X的時間之目的在第一晶片110與第二晶片120之間所傳送的資訊。自第一晶片110傳輸至第二晶片120之「X訓練指令」及「操作時間讀取指令」可經由包含複數個信號線之指令頻道或控制頻道傳送,且自第二晶片120傳送至第一晶片110之「用於執行操作X之時間」可經由資料頻道或控制頻道傳送。此處,不管資料或控制頻道之類型,「X訓練指令」及「操作時間讀取指令」自第一晶片110傳送至第二晶片120,且「用於執行操作X之時間」自第二晶片120傳送至第一晶片110。 In FIG. 1, information transmitted between the first wafer 110 and the second wafer 120 for the purpose of determining the time of the second wafer 120 for performing the operation X by the first wafer 110 is illustrated. The "X training command" and the "operation time reading command" transmitted from the first wafer 110 to the second wafer 120 may be transmitted via a command channel or a control channel including a plurality of signal lines, and transmitted from the second wafer 120 to the first The "time for performing operation X" of the wafer 110 can be transmitted via a data channel or a control channel. Here, regardless of the type of data or control channel, the "X training command" and the "operation time reading command" are transmitted from the first wafer 110 to the second wafer 120, and "the time for performing the operation X" from the second wafer 120 is transferred to the first wafer 110.

在圖1中自第一晶片110傳送至第二晶片120之電力供應電壓位準資訊「VDD INFO」為關於當前施加至第二晶片120之第二電力供應電壓VDD2之位準的資訊。 The power supply voltage level information "VDD INFO" transmitted from the first wafer 110 to the second wafer 120 in FIG. 1 is information on the level of the second power supply voltage VDD2 currently applied to the second wafer 120.

圖2為說明顯示於圖1中之第二晶片120的方塊圖。 FIG. 2 is a block diagram illustrating the second wafer 120 shown in FIG. 1.

參看圖2,第二晶片120包含緩衝器201至203、指令解碼器210、狀況解碼器(case decoder)220、用於執行操作X之電路230、計數器240、儲存電路250,及輸出電路260。 Referring to FIG. 2, the second wafer 120 includes buffers 201 to 203, an instruction decoder 210, a case decoder 220, a circuit 230 for performing operation X, a counter 240, a storage circuit 250, and an output circuit 260.

緩衝器201至203接收傳送自第二晶片120外部之信號。第一緩衝器201接收傳送自第一晶片110之一或多個指令信號CMD。在圖式中,「X M」表示,存在M數目個指令信號。第二緩衝器202接收傳送自第一晶片110之一或多個控制信號。在圖式中,「X N」表示,存在N數目個控制信號。第三緩衝器203接收傳送自第一晶片110或另一外部晶片的時脈CLK。 The buffers 201 to 203 receive signals transmitted from the outside of the second wafer 120. The first buffer 201 receives one or more command signals CMD transmitted from the first wafer 110. In the drawing, "X M" indicates that there are M number of command signals. The second buffer 202 receives one or more control signals transmitted from the first wafer 110. In the figure, "X N" indicates that there are N number of control signals. The third buffer 203 receives the clock CLK transmitted from the first wafer 110 or another external wafer.

指令解碼器210藉由解碼經由第一緩衝器201所輸入之一或多個指令信號CMD而輸出「X訓練指令」以執行針對操作X的訓練操作。又,指令解碼器210藉由解碼經由第一緩衝器201所輸入之一或多個指令信號CMD而輸出操作時間讀取指令「TIME RD」。指令解碼器210不僅解碼X訓練指令及操作時間讀取指令TIME RD,而且解碼指導待藉由第二晶片120執行之操作的指令,諸如指導執行操作X的指令。然而,就該等指令之進一步描述對於解釋本發明之例示性實施例為不必要的而言,在圖式中並未說明彼等指令。 The instruction decoder 210 outputs an "X training instruction" by decoding one or more instruction signals CMD input via the first buffer 201 to perform a training operation for the operation X. Further, the command decoder 210 outputs the operation time read command "TIME RD" by decoding one or a plurality of command signals CMD input via the first buffer 201. The instruction decoder 210 decodes not only the X training instruction and the operation time read instruction TIME RD, but also an instruction that directs the operation to be performed by the second wafer 120, such as an instruction to perform the operation X. However, further description of the instructions is not necessary to explain the exemplary embodiments of the invention, and no such instructions are illustrated in the drawings.

狀況解碼器220藉由解碼經由第二緩衝器202所輸入之一或多個控制信號輸出電力供應電壓位準資訊「VDD INFO」,該資訊「VDD INFO」表示當前施加至第二晶片120之第二電力供應電壓VDD2的位準。 The status decoder 220 outputs the power supply voltage level information "VDD INFO" by decoding one or more control signals input via the second buffer 202, the information "VDD INFO" indicating the current application to the second wafer 120. The level of the two power supply voltage VDD2.

用於執行操作X之電路230為在第一晶片110之指令下執行操作X的電路。當指令解碼器210輸出X訓練指令時,用於執行操作X之電路230執行操作X。換言之,當指令解碼器210輸出指導執行操作X的指令時,且當指令解碼器210輸出X訓練指令時,用於執行操作X之電路230執行同一操作。自用於執行操作X之電路230所輸出的信號為在回應於X訓練指令執行操作X之後自用於執行操作X之電路230所獲得的結果。舉例而言,若用於執行操作X之電路230為用於執行基於特定方程式之運算的電路,則在X訓練指令被接收時,用於執行操作X之電路230起始基於特定方程式的 運算。當用於執行操作X之電路230結束操作時,用於執行操作X之電路230輸出操作的結果作為輸出信號OUT。當指令解碼器210輸出指令以執行操作X時,用於執行操作X之電路230以相同方式操作。 The circuit 230 for performing the operation X is a circuit that performs the operation X under the instruction of the first wafer 110. When the instruction decoder 210 outputs the X training instruction, the circuit 230 for performing the operation X performs the operation X. In other words, when the instruction decoder 210 outputs an instruction to instruct the execution of the operation X, and when the instruction decoder 210 outputs the X training instruction, the circuit 230 for performing the operation X performs the same operation. The signal output from circuit 230 for performing operation X is the result obtained from circuit 230 for performing operation X after performing operation X in response to the X training instruction. For example, if the circuit 230 for performing operation X is a circuit for performing an operation based on a particular equation, then when the X training instruction is received, the circuit 230 for performing operation X begins based on a particular equation. Operation. When the circuit 230 for performing the operation X ends the operation, the result of the output operation of the circuit 230 for performing the operation X is taken as the output signal OUT. When the instruction decoder 210 outputs an instruction to perform operation X, the circuit 230 for performing operation X operates in the same manner.

計數器240為用於量測用於執行操作X之電路230的用於執行操作X之時間的電路。計數器240對自啟用X訓練指令之時間至輸出用於執行操作X之電路230的輸出信號OUT之時間啟用時脈CLK的次數進行計數,且產生時間資訊TIME<0:3>。此處,根據一實例,時間資訊TIME<0:3>為4個位元。 Counter 240 is a circuit for measuring the time for performing operation X of circuit 230 for performing operation X. The counter 240 counts the number of times the clock CLK is enabled from the time when the X training command is enabled to the output signal OUT for outputting the circuit 230 of the operation X, and generates the time information TIME<0:3>. Here, according to an example, the time information TIME<0:3> is 4 bits.

儲存電路250儲存在計數器240中所量測之時間資訊TIME<0:3>。儲存電路250亦接收電力供應電壓位準資訊VDD INFO,且儲存電路250可使時間資訊TIME<0:3>與電力供應電壓位準資訊VDD INFO匹配並儲存兩種資訊。換言之,如表1中所顯示之用於執行操作X之時間TIME<0:3>與電力供應電壓資訊可彼此匹配並一起儲存於儲存電路250中。當操作時間讀取指令TIME RD傳送至儲存電路250時,儲存於儲存電路250中之資訊傳送至輸出電路260,且輸出電路260又將資訊傳送至第一晶片110。在正常操作(亦即,並非訓練操作)期間,輸出電路260將由於在用於執行操作X之電路230中執行操作X所產生之輸出信號OUT傳送至第一晶片110。 The storage circuit 250 stores the time information TIME<0:3> measured in the counter 240. The storage circuit 250 also receives the power supply voltage level information VDD INFO, and the storage circuit 250 can match the time information TIME<0:3> with the power supply voltage level information VDD INFO and store the two kinds of information. In other words, the time TIME<0:3> and the power supply voltage information for performing the operation X as shown in Table 1 can be matched with each other and stored together in the storage circuit 250. When the operation time read command TIME RD is transferred to the storage circuit 250, the information stored in the storage circuit 250 is transferred to the output circuit 260, and the output circuit 260 transmits the information to the first wafer 110. During normal operation (i.e., not a training operation), the output circuit 260 transmits an output signal OUT generated by performing the operation X in the circuit 230 for performing the operation X to the first wafer 110.

圖3為說明顯示於圖1及圖2中之積體電路系統之操作的流程圖。參看圖3,描述顯示於圖1及圖2中之積體電路系 統的總體操作。 3 is a flow chart illustrating the operation of the integrated circuit system shown in FIGS. 1 and 2. Referring to Figure 3, the integrated circuit system shown in Figures 1 and 2 will be described. The overall operation of the system.

在步驟S310中,將具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2施加至第二晶片120。如上文所描述,施加至第二晶片120之第二電力供應電壓VDD2的位準係藉由第一晶片110控制電力供應器130來判定。 In step S310, a second power supply voltage VDD2 having a first level (for example, 1.0 V) is applied to the second wafer 120. As described above, the level of the second power supply voltage VDD2 applied to the second wafer 120 is determined by the first wafer 110 controlling the power supply 130.

在第二晶片120以具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2操作的同時,執行步驟S311至S313之處理程序。在步驟S311中,將指示用於執行操作X之時間之量測的X訓練指令自第一晶片110施加至第二晶片120。在步驟S312中,第二晶片120在內部執行操作X且量測用於執行操作X之時間。如參看圖2較早描述,自施加X訓練指令之時間至輸出用於執行操作X之電路230的輸出信號OUT之時間來量測用於執行操作X之時間。在步驟S313中,將在步驟S312中所量測的用於執行操作X之時間儲存於第二晶片120內部之儲存電路250中。此時,量測第二晶片120在具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2下執行操作X所花費之時間量的操作終止。 While the second wafer 120 is operating with the second power supply voltage VDD2 having the first level (for example, 1.0 V), the processing procedures of steps S311 to S313 are performed. In step S311, an X training instruction indicating the measurement of the time for performing the operation X is applied from the first wafer 110 to the second wafer 120. In step S312, the second wafer 120 internally performs an operation X and measures the time for performing the operation X. As described earlier with reference to Fig. 2, the time for performing operation X is measured from the time when the X training command is applied to the time at which the output signal OUT for the circuit 230 of operation X is output. In step S313, the time for performing the operation X measured in step S312 is stored in the storage circuit 250 inside the second wafer 120. At this time, the operation of measuring the amount of time taken by the second wafer 120 to perform the operation X at the second power supply voltage VDD2 having the first level (for example, 1.0 V) is terminated.

在步驟S320中,將施加至第二晶片120之第二電力供應電壓VDD2的位準自第一位準(例如,1.0 V)改變至第二位準(例如,1.2 V)。施加至第二晶片120之第二電力供應電壓VDD2的位準之改變係藉由自第一晶片110至電力供應器130之控制信號/指令來控制。 In step S320, the level of the second power supply voltage VDD2 applied to the second wafer 120 is changed from a first level (for example, 1.0 V) to a second level (for example, 1.2 V). The change in the level of the second power supply voltage VDD2 applied to the second wafer 120 is controlled by a control signal/instruction from the first wafer 110 to the power supply 130.

此處,當第二晶片120以具有第二位準(例如,1.2 V)之第二電力供應電壓VDD2操作時,執行步驟S321至S323之 處理程序。在步驟S321中,將指示用於執行操作X之時間之量測的X訓練指令自第一晶片110施加至第二晶片120。在步驟S322中,第二晶片120在內部執行操作X且量測用於執行操作X之時間。在步驟S323中,將在步驟S322中所量測的用於執行操作X之時間儲存於第二晶片120內部之儲存電路250中。此時,量測第二晶片120在具有第二位準(例如,1.2 V)之第二電力供應電壓VDD2下執行操作X所花費之時間量的操作終止。 Here, when the second wafer 120 is operated with the second power supply voltage VDD2 having the second level (for example, 1.2 V), steps S321 to S323 are performed. Processing program. In step S321, an X training instruction indicating the measurement of the time for performing the operation X is applied from the first wafer 110 to the second wafer 120. In step S322, the second wafer 120 internally performs an operation X and measures the time for performing the operation X. In step S323, the time for performing the operation X measured in step S322 is stored in the storage circuit 250 inside the second wafer 120. At this time, the operation of measuring the amount of time taken by the second wafer 120 to perform the operation X at the second power supply voltage VDD2 having the second level (for example, 1.2 V) is terminated.

在步驟S330中,將操作時間讀取指令TIME RD自第一晶片110施加至第二晶片120。在步驟S340中,回應於操作時間讀取指令TIME RD將第二電力供應電壓VDD2之每一位準下的用於執行操作X之時間自第二晶片120傳送至第一晶片110。此處,將顯示於表1中之資訊自第二晶片120傳送至第一晶片110。 In step S330, an operation time read command TIME RD is applied from the first wafer 110 to the second wafer 120. In step S340, the time for performing operation X from each of the second power supply voltages VDD2 is transmitted from the second wafer 120 to the first wafer 110 in response to the operation time read command TIME RD. Here, the information shown in Table 1 is transferred from the second wafer 120 to the first wafer 110.

在步驟S350中,基於自第二晶片120所傳送之資訊,第一晶片110設定關於第二晶片120之操作X的參數。舉例而言,當第二電力供應電壓VDD2係處於1.0 V之位準時,第一晶片110可將第二晶片120之操作X的潛時設定為8個單位。當第二電力供應電壓VDD2係處於1.2 V之位準時,第一晶片110可將第二晶片120之操作X的潛時設定為6個單位。 In step S350, based on the information transmitted from the second wafer 120, the first wafer 110 sets parameters regarding the operation X of the second wafer 120. For example, when the second power supply voltage VDD2 is at a level of 1.0 V, the first wafer 110 can set the latency of the operation X of the second wafer 120 to 8 units. When the second power supply voltage VDD2 is at a level of 1.2 V, the first wafer 110 can set the latency of the operation X of the second wafer 120 to 6 units.

儘管圖3說明在具有兩個位準之第二電力供應電壓VDD2下量測第二晶片120之用於執行操作X的時間之實例,但第二晶片120之用於執行操作X的時間可在具有兩個以上位準 之第二電力供應電壓VDD2下進行量測。此處,說明於圖3中之操作可藉由在第二電力供應電壓VDD2之每一位準下判定第二晶片120的執行而改良第一晶片110對第二晶片120的控制。根據一實例,圖3之操作可在第一晶片110與第二晶片120之間的初始互動階段執行。 Although FIG. 3 illustrates an example of measuring the time for performing operation X of the second wafer 120 under the second power supply voltage VDD2 having two levels, the time for performing the operation X of the second wafer 120 may be Have more than two levels The second power supply voltage VDD2 is measured. Here, the operation illustrated in FIG. 3 can improve the control of the second wafer 120 by the first wafer 110 by determining the execution of the second wafer 120 at each of the second power supply voltages VDD2. According to an example, the operations of FIG. 3 may be performed during an initial phase of interaction between the first wafer 110 and the second wafer 120.

圖4為說明根據本發明之第二實施例的包含第一晶片410及第二晶片420之積體電路系統的方塊圖。 4 is a block diagram showing an integrated circuit system including a first wafer 410 and a second wafer 420 in accordance with a second embodiment of the present invention.

在顯示於圖4中之此實施例中,並不量測第二晶片420之用於執行操作X的時間,且用於執行操作X的時間已儲存於第二晶片420中,且所儲存資訊傳送至第一晶片410。 In the embodiment shown in FIG. 4, the time for performing operation X of the second wafer 420 is not measured, and the time for performing operation X has been stored in the second wafer 420, and the stored information Transfer to the first wafer 410.

參看圖4,積體電路系統包含第一晶片410、第二晶片420,及電力供應器430。 Referring to FIG. 4, the integrated circuit system includes a first wafer 410, a second wafer 420, and a power supply 430.

第一晶片410為給予第二晶片420指令以執行特定操作之主控晶片,且第二晶片420為執行對應於來自第一晶片410之指令之操作的受控晶片。舉例而言,第一晶片410可為記憶體控制器,且第二晶片420可為在記憶體控制器之指令下執行讀取操作或寫入操作的記憶體。 The first wafer 410 is a master wafer that gives instructions to the second wafer 420 to perform a particular operation, and the second wafer 420 is a controlled wafer that performs operations corresponding to instructions from the first wafer 410. For example, the first wafer 410 can be a memory controller, and the second wafer 420 can be a memory that performs a read operation or a write operation under the instruction of the memory controller.

電力供應器430向第一晶片410及第二晶片420提供電力供應電壓VDD1及VDD2。自電力供應器430供應至第一晶片410之第一電力供應電壓VDD1的位準與自電力供應器430供應至第二晶片420之第二電力供應電壓VDD2的位準可彼此相同或不同。藉由電力供應器430供應至第一晶片410及第二晶片420之第一電力供應電壓VDD1及第二電力供應電壓VDD2的位準可藉由第一晶片410來改變。根據另 一實例,自電力供應器430提供至第一晶片410之第一電力供應電壓VDD1的位準可為恆定電壓,且第一晶片410可改變自電力供應器430提供至第二晶片420之第二電力供應電壓VDD2的位準。在圖式中,「CONTROL」意謂在第一晶片410之控制下判定藉由電力供應器430所提供之電力供應的位準。 The power supplier 430 supplies the power supply voltages VDD1 and VDD2 to the first wafer 410 and the second wafer 420. The level of the first power supply voltage VDD1 supplied from the power supply 430 to the first wafer 410 and the level of the second power supply voltage VDD2 supplied from the power supply 430 to the second wafer 420 may be the same or different from each other. The levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 supplied to the first wafer 410 and the second wafer 420 by the power supplier 430 may be changed by the first wafer 410. According to another In one example, the level of the first power supply voltage VDD1 supplied from the power supply 430 to the first wafer 410 may be a constant voltage, and the first wafer 410 may be changed from the power supply 430 to the second of the second wafer 420. The level of the power supply voltage VDD2. In the drawings, "CONTROL" means determining the level of power supply provided by the power supply 430 under the control of the first wafer 410.

第一晶片410傳送向第二晶片420請求關於用於執行操作X所花費之時間之資訊的「操作時間讀取指令」,該操作X可為藉由第二晶片420在第一晶片410之指令下執行的任何操作。第二晶片420接著傳送其關於用於執行操作X之時間的所儲存資訊。自第二晶片420傳送至第一晶片410的用於執行操作X之時間可為如表1中所顯示與第二電力供應電壓VDD2匹配的同一資訊。第一晶片410接收用於執行操作X之時間,且針對施加至第二晶片420之第二電力供應電壓VDD2的每一位準判定第二晶片420之執行,且第一晶片410基於所判定之執行控制第二晶片420。 The first wafer 410 transmits an "operation time read command" requesting information about the time taken to perform the operation X to the second wafer 420, and the operation X may be an instruction on the first wafer 410 by the second wafer 420. Any action performed below. The second wafer 420 then transmits its stored information about the time at which operation X was performed. The time for performing operation X from the second wafer 420 to the first wafer 410 may be the same information as shown in Table 1 that matches the second power supply voltage VDD2. The first wafer 410 receives the time for performing the operation X, and determines the execution of the second wafer 420 for each level of the second power supply voltage VDD2 applied to the second wafer 420, and the first wafer 410 is determined based on The control of the second wafer 420 is performed.

第二晶片420儲存針對第二電力供應電壓VDD2之每一位準的用於執行操作X之時間。根據一實例,可在製造第二晶片420之後執行測試,且測試第二晶片420之操作X,且製造商可將關於第二晶片420針對第二電力供應電壓VDD2之每一位準執行操作X所花費之時間的資訊儲存於第二晶片420中。 The second wafer 420 stores the time for performing the operation X for each of the second power supply voltage VDD2. According to an example, the test can be performed after the second wafer 420 is fabricated, and the operation X of the second wafer 420 is tested, and the manufacturer can perform the operation X with respect to the second wafer 420 for each of the second power supply voltages VDD2. Information on the time spent is stored in the second wafer 420.

圖5為說明顯示於圖4中之第二晶片420的方塊圖。 FIG. 5 is a block diagram illustrating the second wafer 420 shown in FIG.

參看圖5,第二晶片420包含緩衝器501、指令解碼器 510、用於執行操作X之電路530、儲存電路550,及輸出電路560。 Referring to FIG. 5, the second wafer 420 includes a buffer 501 and an instruction decoder. 510. Circuit 530, storage circuit 550, and output circuit 560 for performing operation X.

緩衝器501接收傳送自第一晶片410之一或多個指令信號CMD。在圖式中,「X M」表示,存在M數目個指令信號。 The buffer 501 receives one or more command signals CMD transmitted from the first wafer 410. In the drawing, "X M" indicates that there are M number of command signals.

指令解碼器510藉由解碼經由緩衝器501所輸入之一或多個指令信號CMD而輸出「操作時間讀取指令TIME RD」,該「操作時間讀取指令TIME RD」請求關於第二晶片420之執行操作X所花費之時間的資訊。指令解碼器510不僅輸出操作時間讀取指令TIME RD,而且輸出指導待藉由第二晶片420執行之操作的許多其他指令。然而,就該等指令之進一步描述對於解釋例示性實施例為不必要的而言,在圖式中並未說明彼等指令。 The command decoder 510 outputs an "operation time read command TIME RD" by decoding one or more command signals CMD input via the buffer 501, and the "operation time read command TIME RD" requests for the second wafer 420. Information on the time it takes to perform the operation X. The instruction decoder 510 not only outputs the operation time read instruction TIME RD, but also outputs many other instructions that direct the operation to be performed by the second wafer 420. However, to the extent that the further description of the instructions is not necessary to explain the exemplary embodiments, the instructions are not illustrated in the drawings.

用於執行操作X之電路530為在指令解碼器510之指令下執行操作X的電路。圖式中之「操作X」顯示回應於正傳送至用於執行操作X之電路530之輸出自指令解碼器510的指令之操作X。 Circuitry 530 for performing operation X is a circuit that performs operation X under the instruction of instruction decoder 510. "Operation X" in the figure shows an operation X in response to an instruction being transmitted to the output from the instruction decoder 510 for the operation of the circuit 530 of operation X.

儲存電路550儲存關於根據施加至第二晶片420之第二電力供應電壓VDD2之每一位準的用於執行操作X之時間的資訊,其中(例如)該時間如上文所論述可藉由製造商來量測並儲存。此處,儲存電路550儲存顯示於表1中的資訊。當指令解碼器510輸出操作時間讀取指令TIME RD時,儲存於儲存電路550中之資訊經由輸出電路560傳送至第一晶片410。在正常操作(亦即,並非訓練操作)期間,輸出電路560可將由於在用於執行操作X之電路530中執行操作X所 產生之輸出信號OUT傳送至第一晶片410。 The storage circuit 550 stores information about the time for performing the operation X according to each level of the second power supply voltage VDD2 applied to the second wafer 420, wherein the time is, for example, as discussed above by the manufacturer To measure and store. Here, the storage circuit 550 stores the information shown in Table 1. When the instruction decoder 510 outputs the operation time read command TIME RD, the information stored in the storage circuit 550 is transferred to the first wafer 410 via the output circuit 560. During normal operation (i.e., not a training operation), output circuit 560 can perform operation X due to operation in circuit 530 for performing operation X. The generated output signal OUT is transmitted to the first wafer 410.

圖6為說明顯示於圖4及圖5中之積體電路系統之操作的流程圖。參看圖6,描述積體電路系統之總體操作。 Figure 6 is a flow chart illustrating the operation of the integrated circuit system shown in Figures 4 and 5. Referring to Figure 6, the overall operation of the integrated circuit system is described.

在步驟S610中,將操作時間讀取指令TIME RD自第一晶片410施加至第二晶片420。在步驟S620中,回應於操作時間讀取指令TIME RD而將儲存於第二晶片420之儲存電路550中的資訊(其中例如,該資訊如上文所描述可藉由製造商來量測並偵測)傳送至第一晶片410。 In step S610, an operation time read command TIME RD is applied from the first wafer 410 to the second wafer 420. In step S620, the information stored in the storage circuit 550 of the second wafer 420 is returned in response to the operation time reading command TIME RD (where, for example, the information can be measured and detected by the manufacturer as described above). Transfer to the first wafer 410.

在步驟S630中,基於自第二晶片420所傳送之資訊,第一晶片410設定針對第二晶片420之操作X的參數。舉例而言,當第二電力供應電壓VDD2係處於1.0 V之位準時,第一晶片410可將第二晶片420之操作X的潛時設定為8個單位。當第二電力供應電壓VDD2係處於1.2 V之位準時,第一晶片410可將第二晶片420之操作X的潛時設定為6個單位。 In step S630, based on the information transmitted from the second wafer 420, the first wafer 410 sets parameters for the operation X of the second wafer 420. For example, when the second power supply voltage VDD2 is at a level of 1.0 V, the first wafer 410 can set the latency of the operation X of the second wafer 420 to 8 units. When the second power supply voltage VDD2 is at a level of 1.2 V, the first wafer 410 can set the latency of the operation X of the second wafer 420 to 6 units.

圖7為說明根據本發明之第一實施例的記憶體系統之方塊圖。 Figure 7 is a block diagram showing a memory system in accordance with a first embodiment of the present invention.

圖7之記憶體系統對應於圖1之積體電路系統。第一晶片110對應於記憶體控制器710,且第二晶片120對應於記憶體720。就不存在衝突而言,如結合圖1所描述的待量測之用於執行操作X之時間的相同描述適用於如將結合圖7描述之用於執行讀取操作的時間。 The memory system of Figure 7 corresponds to the integrated circuit system of Figure 1. The first wafer 110 corresponds to the memory controller 710 and the second wafer 120 corresponds to the memory 720. In the absence of conflict, the same description of the time to perform operation X as to be described in connection with FIG. 1 applies to the time as described in connection with FIG. 7 for performing a read operation.

參看圖7,記憶體系統包含記憶體控制器710、記憶體720,及電力供應器730。 Referring to FIG. 7, the memory system includes a memory controller 710, a memory 720, and a power supply 730.

記憶體控制器710藉由將指令、位址及資料施加至記憶體720來控制記憶體720。記憶體720儲存資料,並在記憶體控制器710之控制下將所儲存資料傳送至記憶體控制器710。 The memory controller 710 controls the memory 720 by applying instructions, addresses, and data to the memory 720. The memory 720 stores the data and transfers the stored data to the memory controller 710 under the control of the memory controller 710.

電力供應器730向記憶體控制器710及記憶體720提供電力供應電壓VDD1及VDD2。自電力供應器730供應至記憶體控制器710之第一電力供應電壓VDD1的位準與自電力供應器730供應至記憶體720之第二電力供應電壓VDD2的位準可彼此相同或不同。藉由電力供應器730所供應之第一電力供應電壓VDD1及第二電力供應電壓VDD2的位準可藉由記憶體控制器710來改變。根據另一實例,自電力供應器730提供至記憶體控制器710之第一電力供應電壓VDD1的位準可為恆定的,且記憶體控制器710可改變自電力供應器730提供至記憶體720之第二電力供應電壓VDD2的位準。在圖式中,「CONTROL」意謂在記憶體控制器710之控制下判定藉由電力供應器730所提供之第二電力供應VDD2的位準。 The power supply 730 supplies power supply voltages VDD1 and VDD2 to the memory controller 710 and the memory 720. The level of the first power supply voltage VDD1 supplied from the power supply 730 to the memory controller 710 and the level of the second power supply voltage VDD2 supplied from the power supply 730 to the memory 720 may be the same or different from each other. The levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 supplied by the power supply 730 can be changed by the memory controller 710. According to another example, the level of the first power supply voltage VDD1 provided from the power supply 730 to the memory controller 710 can be constant, and the memory controller 710 can be changed from the power supply 730 to the memory 720. The level of the second power supply voltage VDD2. In the drawings, "CONTROL" means determining the level of the second power supply VDD2 provided by the power supply 730 under the control of the memory controller 710.

記憶體控制器710將用於給予指令以執行讀取操作之訓練操作的訓練指令施加至記憶體720。此處,訓練指令在圖式中表示為「讀取訓練指令」。記憶體720接著執行讀取操作、量測用於執行讀取操作之時間,且將量測結果傳送至記憶體控制器710。在改變施加至記憶體720之第二電力供應電壓VDD2的位準之同時,重複記憶體控制器710與記憶體720之間的此互動。記憶體控制器710判定根據第二電 力供應電壓VDD2改變記憶體720之用於執行讀取操作的時間之方式。 The memory controller 710 applies a training instruction for giving a training operation to instruct an instruction to perform a read operation to the memory 720. Here, the training command is expressed as "read training command" in the drawing. The memory 720 then performs a read operation, measures the time for performing the read operation, and transmits the measurement result to the memory controller 710. This interaction between the memory controller 710 and the memory 720 is repeated while changing the level of the second power supply voltage VDD2 applied to the memory 720. The memory controller 710 determines that the second battery is The force supply voltage VDD2 changes the manner in which the memory 720 is used to perform the read operation.

記憶體720可以以下兩種方法來將「用於執行讀取操作之時間」傳送至記憶體控制器710。 The memory 720 can transfer the "time for performing the read operation" to the memory controller 710 in the following two ways.

(1)無論何時記憶體控制器710將讀取訓練指令施加至記憶體720時,記憶體720量測用於執行讀取操作之時間,並將「用於執行讀取操作之時間」傳送至記憶體控制器710。換言之,儘管記憶體控制器710並未向記憶體720個別地請求用於執行讀取操作之時間,但在記憶體720結束量測用於執行讀取操作之時間時,記憶體720將用於執行讀取操作的時間自動傳送至記憶體控制器710。 (1) Whenever the memory controller 710 applies the read training command to the memory 720, the memory 720 measures the time for performing the read operation, and transmits the "time for performing the read operation" to Memory controller 710. In other words, although the memory controller 710 does not individually request the time for performing the read operation from the memory 720, the memory 720 will be used when the memory 720 ends measuring the time for performing the read operation. The time at which the read operation is performed is automatically transferred to the memory controller 710.

(2)當記憶體控制器710將讀取訓練指令施加至記憶體720時,記憶體720量測用於執行讀取操作之時間且在內部儲存所量測之用於執行讀取操作的時間,且當記憶體控制器710向記憶體720請求用於執行讀取操作的時間時(亦即,當記憶體控制器710將操作時間讀取指令施加至記憶體720時),記憶體720傳送所儲存之用於執行讀取操作的時間。 (2) When the memory controller 710 applies the read training command to the memory 720, the memory 720 measures the time for performing the read operation and internally stores the measured time for performing the read operation. And when the memory controller 710 requests the memory 720 for the time for performing the read operation (that is, when the memory controller 710 applies the operation time read command to the memory 720), the memory 720 transmits The time stored to perform the read operation.

以下表2例示性地顯示根據第二電力供應電壓VDD2之位準所量測的用於執行讀取操作之時間。在表2中,用於執行讀取操作之時間的單位為時脈數目。此處,用於執行讀取操作之時間意謂位址存取時間tAA,該位址存取時間tAA表示自施加讀取指令之時間至記憶體720能夠輸出對應資料之時間的時間。 Table 2 below exemplarily shows the time for performing the read operation measured in accordance with the level of the second power supply voltage VDD2. In Table 2, the unit for the time for performing the read operation is the number of clocks. Here, the time for performing the read operation means the address access time tAA, which represents the time from the time when the read command is applied to the time when the memory 720 can output the corresponding material.

當記憶體控制器710接收到顯示於表2中之資訊時,記憶體控制器710可判定記憶體720的用於執行讀取操作之時間。因此,記憶體控制器710可容易地控制記憶體720之讀取操作的潛時。舉例而言,當記憶體720之第二電力供應電壓VDD2為1.1 V時,記憶體控制器710將記憶體720之讀取操作的潛時設定為11個時脈。當記憶體720之第二電力供應電壓VDD2為1.3 V時,記憶體控制器710將記憶體720之讀取操作的潛時設定為7個時脈。此處,儘管記憶體720之第二電力供應電壓VDD2改變,但記憶體控制器710可一貫地使記憶體720之讀取操作的CAS潛時最佳化。 When the memory controller 710 receives the information displayed in Table 2, the memory controller 710 can determine the time of the memory 720 for performing the read operation. Therefore, the memory controller 710 can easily control the latency of the read operation of the memory 720. For example, when the second power supply voltage VDD2 of the memory 720 is 1.1 V, the memory controller 710 sets the latency of the read operation of the memory 720 to 11 clocks. When the second power supply voltage VDD2 of the memory 720 is 1.3 V, the memory controller 710 sets the latency of the read operation of the memory 720 to 7 clocks. Here, although the second power supply voltage VDD2 of the memory 720 is changed, the memory controller 710 can consistently optimize the CAS latency of the read operation of the memory 720.

在圖7中,說明針對記憶體控制器710之在記憶體控制器710與記憶體720之間所傳送的資訊以在記憶體控制器710中判定記憶體720之用於執行讀取操作的時間。自記憶體控制器710施加至記憶體720之「讀取訓練指令」及「操作時間讀取指令」可經由指令頻道傳送,且自記憶體720傳送至記憶體控制器710之「用於執行讀取操作之時間」可經由資料頻道傳送。在圖7中自記憶體控制器710傳送至記憶體720之電力供應電壓位準資訊「VDD INFO」為關於當 前施加至記憶體720之第二電力供應電壓VDD2之位準的資訊。可經由位址頻道傳送電力供應電壓位準資訊。 In FIG. 7, the information transmitted between the memory controller 710 and the memory 720 for the memory controller 710 is described to determine the time at which the memory 720 is used to perform the read operation in the memory controller 710. . The "read training command" and the "operating time read command" applied from the memory controller 710 to the memory 720 can be transmitted via the command channel and transmitted from the memory 720 to the memory controller 710 for "execution of reading." The time of the operation can be transmitted via the data channel. The power supply voltage level information "VDD INFO" transmitted from the memory controller 710 to the memory 720 in FIG. 7 is about Information previously applied to the level of the second power supply voltage VDD2 of the memory 720. The power supply voltage level information can be transmitted via the address channel.

圖8為說明顯示於圖7中之記憶體720的方塊圖。 FIG. 8 is a block diagram showing the memory 720 shown in FIG.

參看圖8,記憶體720包含緩衝器801、802及803,指令解碼器810,狀況解碼器820,讀取控制電路830,計數器840,儲存電路850,輸出電路860,記憶胞陣列870,及管鎖存器(pipe latch)880。 Referring to FIG. 8, the memory 720 includes buffers 801, 802, and 803, an instruction decoder 810, a status decoder 820, a read control circuit 830, a counter 840, a storage circuit 850, an output circuit 860, a memory cell array 870, and a tube. A pipe latch 880.

緩衝器801、802及803接收傳送自記憶體控制器710之信號。第一緩衝器801接收傳送自記憶體控制器710之一或多個指令信號CMD。在圖式中,「X M」表示存在M數目個指令信號。第二緩衝器802接收傳送自記憶體控制器710之一或多個位址信號ADD。在圖式中,「X N」表示存在N數目個位址信號。第三緩衝器803接收傳送自記憶體控制器710的時脈CLK。 Buffers 801, 802, and 803 receive signals transmitted from memory controller 710. The first buffer 801 receives one or more command signals CMD transmitted from the memory controller 710. In the drawing, "X M" indicates that there are M number of command signals. The second buffer 802 receives one or more address signals ADD transmitted from the memory controller 710. In the figure, "X N" indicates that there are N number of address signals. The third buffer 803 receives the clock CLK transmitted from the memory controller 710.

指令解碼器810藉由將經由第一緩衝器801所輸入之一或多個指令信號CMD解碼而輸出用於執行讀取操作之訓練操作的「讀取訓練指令」。又,指令解碼器810藉由將經由第一緩衝器801所輸入之一或多個指令信號CMD解碼而輸出「操作時間讀取指令TIME RD」。指令解碼器810不僅解碼讀取訓練指令及操作時間讀取指令TIME RD,而且解碼控制待藉由記憶體720執行之不同操作(諸如,正常讀取操作、主動操作、寫入操作等等)的指令。然而,基於該等指令之進一步描述對於解釋例示性實施例並無必要,故在圖式中並未說明彼等指令。 The instruction decoder 810 outputs a "read training instruction" for performing a training operation of a read operation by decoding one or more instruction signals CMD input via the first buffer 801. Further, the command decoder 810 outputs the "operation time read command TIME RD" by decoding one or more command signals CMD input via the first buffer 801. The instruction decoder 810 decodes not only the read training instruction and the operation time read instruction TIME RD but also the different operations (such as normal read operations, active operations, write operations, etc.) to be performed by the memory 720. instruction. However, further description based on the instructions is not necessary to explain the exemplary embodiments, and thus the instructions are not illustrated in the drawings.

狀況解碼器820藉由解碼經由第二緩衝器802所輸入之一或多個位址信號ADD輸出電力供應電壓位準資訊「VDD INFO」,該資訊「VDD INFO」表示當前施加至記憶體720之第二電力供應電壓VDD2的位準。 The status decoder 820 outputs the power supply voltage level information "VDD INFO" by decoding one or more address signals ADD input via the second buffer 802, and the information "VDD INFO" indicates that it is currently applied to the memory 720. The level of the second power supply voltage VDD2.

讀取控制電路830為用於進行以下操作的邏輯電路:在記憶體控制器710給予指令以執行讀取操作時,藉由使讀取指令(或訓練指令)延遲來將自記憶胞陣列870所讀出之資料輸入至管鎖存器880。此處,讀取控制電路830為用於產生關於讀取操作之控制信號的電路。當讀取控制電路830輸出讀取訓練指令時,讀取控制電路830執行讀取操作。此處,當指令解碼器810輸出指導執行讀取操作之指令時且當指令解碼器810輸出讀取訓練指令時,讀取控制電路830執行同一操作。 The read control circuit 830 is a logic circuit for performing a self-memory cell array 870 by delaying a read command (or training command) when the memory controller 710 gives an instruction to perform a read operation. The read data is input to the tube latch 880. Here, the read control circuit 830 is a circuit for generating a control signal regarding a read operation. When the read control circuit 830 outputs a read training instruction, the read control circuit 830 performs a read operation. Here, when the instruction decoder 810 outputs an instruction to instruct execution of a read operation and when the instruction decoder 810 outputs a read training instruction, the read control circuit 830 performs the same operation.

計數器840為用於量測讀取控制電路830的用於執行讀取操作之時間的電路。計數器840對自啟用讀取訓練指令之時間至啟用讀取控制電路830的係管輸入信號PIN之輸出信號OUT之時間啟用時脈CLK的次數進行計數,且產生時間資訊TIME<0:3>。根據一實例,時間資訊TIME<0:3>為4個位元。 The counter 840 is a circuit for measuring the time of the read control circuit 830 for performing a read operation. The counter 840 counts the number of times the clock CLK is enabled from the time when the read training command is enabled to the time when the output signal OUT of the system input signal PIN of the read control circuit 830 is enabled, and generates time information TIME<0:3>. According to an example, the time information TIME<0:3> is 4 bits.

管鎖存器880儲存在讀取操作期間自記憶胞陣列870所讀出的資料。管鎖存器880為排列呈用於輸出之形式的資料之電路。由於管鎖存器880與時脈CLK同步地操作,因此輸出資料停留於管鎖存器880中之時間一直為恆定的。因此,施加至記憶體720之第二電力供應電壓VDD2之位準的 改變並不影響管鎖存器880之操作時間。 Tube latch 880 stores the data read from memory cell array 870 during a read operation. Tube latch 880 is a circuit that arranges data in the form of an output. Since the tube latch 880 operates in synchronization with the clock CLK, the time during which the output data stays in the tube latch 880 is always constant. Therefore, the level of the second power supply voltage VDD2 applied to the memory 720 is The change does not affect the operating time of the tube latch 880.

儲存電路850儲存在計數器840中所量測之時間資訊TIME<0:3>。儲存電路850亦接收電力供應電壓位準資訊VDD INFO,且儲存電路850可使時間資訊TIME<0:3>與電力供應電壓位準資訊VDD INFO匹配並儲存時間資訊TIME<0:3>及電力供應電壓位準資訊VDD INFO。此處,如顯示於表2中之資訊可經匹配並儲存於儲存電路850中。記憶體720的用於執行讀取操作之時間的範圍為自記憶體720接收讀取指令之時間至讀取控制電路830及管鎖存器880之操作終止的時間。儲存電路850可儲存藉由對以下兩者進行求和所獲得的值:在計數器840中所量測之時間資訊TIME<0:3>,其表示讀取控制電路830之操作時間;及管鎖存器880之操作時間,其如上文所描述為恆定值。 The storage circuit 850 stores the time information TIME<0:3> measured in the counter 840. The storage circuit 850 also receives the power supply voltage level information VDD INFO, and the storage circuit 850 can match the time information TIME<0:3> with the power supply voltage level information VDD INFO and store the time information TIME<0:3> and the power Supply voltage level information VDD INFO. Here, the information as shown in Table 2 can be matched and stored in the storage circuit 850. The time of the memory 720 for performing the read operation ranges from the time when the read command is received from the memory 720 to the time when the operations of the read control circuit 830 and the tube latch 880 are terminated. The storage circuit 850 can store a value obtained by summing the following: time information TIME<0:3> measured in the counter 840, which indicates the operation time of the read control circuit 830; and the tube lock The operating time of the register 880, which is described above as a constant value.

當操作時間讀取指令TIME RD傳送至儲存電路850時,儲存於儲存電路850中之資訊傳送至輸出電路860,且輸出電路860將資訊傳送至記憶體控制器710。在正常操作(亦即,並非訓練操作)期間,輸出電路860輸出自記憶胞陣列870所輸出且藉由管鎖存器880排列的資料。 When the operation time read command TIME RD is transferred to the storage circuit 850, the information stored in the storage circuit 850 is transferred to the output circuit 860, and the output circuit 860 transmits the information to the memory controller 710. During normal operation (i.e., not training operation), output circuit 860 outputs data output from memory cell array 870 and arranged by tube latch 880.

圖9為說明顯示於圖7及圖8中之記憶體系統之操作的流程圖。參看圖9,描述顯示於圖7及圖8中之記憶體系統的總體操作。 Figure 9 is a flow chart illustrating the operation of the memory system shown in Figures 7 and 8. Referring to Figure 9, the overall operation of the memory system shown in Figures 7 and 8 will be described.

在步驟S910中,將具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2施加至記憶體720。如上文所描述,施加至記憶體720之第二電力供應電壓VDD2的位準係基於記憶 體控制器710控制電力供應器730來判定。 In step S910, a second power supply voltage VDD2 having a first level (for example, 1.0 V) is applied to the memory 720. As described above, the level of the second power supply voltage VDD2 applied to the memory 720 is based on memory. The body controller 710 controls the power supply 730 to determine.

在記憶體720以具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2操作的同時,執行步驟S911至S913之處理程序。在步驟S911中,將指示用於執行讀取操作之時間之量測的讀取訓練指令自記憶體控制器710施加至記憶體720。讀取訓練指令可作為單一指令被施加,或讀取訓練指令可在記憶體控制器710控制記憶體720進入訓練模式中之後被施加。舉例而言,讀取訓練指令可為在記憶體720進入訓練模式中之後施加至記憶體720的讀取指令。 While the memory 720 is operating with the second power supply voltage VDD2 having the first level (for example, 1.0 V), the processing procedures of steps S911 to S913 are performed. In step S911, a read training instruction indicating the measurement of the time for performing the read operation is applied from the memory controller 710 to the memory 720. The read training command can be applied as a single command, or the read training command can be applied after the memory controller 710 controls the memory 720 to enter the training mode. For example, the read training command can be a read command applied to the memory 720 after the memory 720 enters the training mode.

在步驟S912中,記憶體720在內部執行讀取操作,且回應於在步驟S911中所施加之讀取訓練指令量測用於執行讀取操作的時間。如參看圖8較早描述,自施加讀取訓練指令之時間至輸出(例如,啟用)讀取控制電路830的係管輸入信號之輸出信號OUT之時間來量測用於執行讀取操作的時間。在步驟S913中,將在步驟S912中所量測的用於執行讀取操作之時間儲存於記憶體720內部之儲存電路850中。此時,量測記憶體720在具有第一位準(例如,1.0 V)之第二電力供應電壓VDD2下執行讀取操作所花費之時間量的操作終止。 In step S912, the memory 720 internally performs a read operation, and measures the time for performing the read operation in response to the read training instruction applied in step S911. As described earlier with reference to FIG. 8, the time for performing the read operation is measured from the time when the read training command is applied to the time at which the output signal OUT of the system input signal of the control circuit 830 is outputted (eg, enabled). . In step S913, the time for performing the read operation measured in step S912 is stored in the storage circuit 850 inside the memory 720. At this time, the operation of the measurement memory 720 for performing the read operation at the second power supply voltage VDD2 having the first level (for example, 1.0 V) is terminated.

在步驟S920中,將施加至記憶體720之第二電力供應電壓VDD2的位準自第一位準(例如,1.0 V)改變至第二位準(例如,1.2 V)。隨著記憶體控制器710控制電力供應器730,可執行施加至記憶體720之第二電力供應電壓VDD2的位準之改變。 In step S920, the level of the second power supply voltage VDD2 applied to the memory 720 is changed from the first level (for example, 1.0 V) to the second level (for example, 1.2 V). As the memory controller 710 controls the power supply 730, a change in the level of the second power supply voltage VDD2 applied to the memory 720 can be performed.

當記憶體720以具有第二位準(例如,1.2 V)之第二電力供應電壓VDD2操作時,執行步驟S921至S923之處理程序。在步驟S921中,將指示用於執行讀取操作之時間之量測的讀取訓練指令自記憶體控制器710施加至記憶體720。在步驟S922中,記憶體720在內部執行讀取操作且量測用於執行讀取操作之時間。在步驟S923中,將在步驟S922中所量測的用於執行讀取操作之時間儲存於記憶體720內部之儲存電路850中。此時,量測記憶體720在具有第二位準(例如,1.2 V)之第二電力供應電壓VDD2下執行讀取操作所花費之時間量的操作終止。 When the memory 720 operates with the second power supply voltage VDD2 having the second level (for example, 1.2 V), the processing procedures of steps S921 to S923 are performed. In step S921, a read training instruction indicating the measurement of the time for performing the read operation is applied from the memory controller 710 to the memory 720. In step S922, the memory 720 internally performs a read operation and measures the time for performing the read operation. In step S923, the time for performing the read operation measured in step S922 is stored in the storage circuit 850 inside the memory 720. At this time, the operation of the measurement memory 720 for performing the read operation at the second power supply voltage VDD2 having the second level (for example, 1.2 V) is terminated.

在步驟S930中,將操作時間讀取指令TIME RD自記憶體控制器710施加至記憶體720。在步驟S940中,回應於操作時間讀取指令TIME RD將第二電力供應電壓VDD2之每一位準下的用於執行讀取操作之時間自記憶體720傳送至記憶體控制器710。此處,將顯示於表2中之資訊自記憶體720傳送至記憶體控制器710。 In step S930, the operation time read command TIME RD is applied from the memory controller 710 to the memory 720. In step S940, the time for performing the read operation from each of the second power supply voltage VDD2 is transmitted from the memory 720 to the memory controller 710 in response to the operation time read command TIME RD. Here, the information shown in Table 2 is transferred from the memory 720 to the memory controller 710.

在步驟S950中,基於自記憶體720所傳送之資訊,記憶體控制器710設定關於記憶體720之讀取操作的參數。舉例而言,當第二電力供應電壓VDD2係處於1.0 V之位準時,記憶體控制器710可將記憶體720之讀取操作的係CAS潛時之潛時設定為13個時脈。當第二電力供應電壓VDD2係處於1.2 V之位準時,記憶體控制器710可將記憶體720之讀取操作的潛時設定為9個時脈。 In step S950, based on the information transmitted from the memory 720, the memory controller 710 sets parameters regarding the read operation of the memory 720. For example, when the second power supply voltage VDD2 is at a level of 1.0 V, the memory controller 710 can set the latency of the CAS latency of the read operation of the memory 720 to 13 clocks. When the second power supply voltage VDD2 is at a level of 1.2 V, the memory controller 710 can set the latency of the read operation of the memory 720 to 9 clocks.

儘管圖9說明在具有兩個位準之第二電力供應電壓VDD2 下量測記憶體720之用於執行讀取操作的時間之實例,但記憶體720之用於執行讀取操作的時間可在具有兩個以上位準之第二電力供應電壓VDD2下進行量測。又,說明於圖9中之操作可藉由在第二電力供應電壓VDD2之每一位準下判定記憶體720的讀取操作執行而改良記憶體控制器710對記憶體720的控制。根據一實例,圖9之操作可在記憶體控制器710與記憶體720之間的初始互動階段執行。 Although FIG. 9 illustrates the second power supply voltage VDD2 having two levels An example of the time at which the memory 720 is used to perform the read operation is measured, but the time of the memory 720 for performing the read operation may be measured at the second power supply voltage VDD2 having more than two levels. . Moreover, the operation illustrated in FIG. 9 can improve the control of the memory controller 710 by the memory controller 710 by determining the execution of the read operation of the memory 720 at each of the second power supply voltages VDD2. According to an example, the operations of FIG. 9 may be performed during an initial phase of interaction between memory controller 710 and memory 720.

圖10為說明根據本發明之第二實施例的記憶體系統之方塊圖。 Figure 10 is a block diagram showing a memory system in accordance with a second embodiment of the present invention.

在顯示於圖10中之此實施例中,並不藉由記憶體1020來量測記憶體1020的用於執行讀取操作之時間,且用於執行讀取操作之時間已儲存於記憶體1020中(例如,可藉由製造商來量測並儲存),且所儲存資訊傳送至記憶體控制器1010。 In the embodiment shown in FIG. 10, the time for performing the read operation of the memory 1020 is not measured by the memory 1020, and the time for performing the read operation has been stored in the memory 1020. Medium (for example, can be measured and stored by the manufacturer), and the stored information is transmitted to the memory controller 1010.

參看圖10,記憶體720包含記憶體控制器1010、記憶體1020,及電力供應器1030。 Referring to FIG. 10, the memory 720 includes a memory controller 1010, a memory 1020, and a power supply 1030.

記憶體控制器1010藉由施加指令、位址及資料來控制記憶體1020。記憶體1020儲存資料,並在記憶體控制器1010之控制下將所儲存資料傳送至記憶體控制器1010。 The memory controller 1010 controls the memory 1020 by applying instructions, addresses, and data. The memory 1020 stores the data and transfers the stored data to the memory controller 1010 under the control of the memory controller 1010.

電力供應器1030向記憶體控制器1010及記憶體1020提供電力供應電壓VDD1及VDD2。自電力供應器1030供應至記憶體控制器1010之第一電力供應電壓VDD1的位準與自電力供應器1030供應至記憶體1020之第二電力供應電壓VDD2的位準可彼此相同或不同。藉由電力供應器1030供 應至記憶體控制器1010及記憶體1020之第一電力供應電壓VDD1及第二電力供應電壓VDD2的位準可藉由記憶體控制器1010來改變。根據另一實例,自電力供應器1030提供至記憶體控制器1010之第一電力供應電壓VDD1的位準可為恆定的,且記憶體控制器1010可改變自電力供應器1030提供至記憶體1020之第二電力供應電壓VDD2的位準。在圖式中,「CONTROL」意謂在記憶體控制器1010之控制下判定藉由電力供應器1030所提供之第二電力供應VDD2的位準。 The power supply 1030 supplies power supply voltages VDD1 and VDD2 to the memory controller 1010 and the memory 1020. The level of the first power supply voltage VDD1 supplied from the power supply 1030 to the memory controller 1010 and the level of the second power supply voltage VDD2 supplied from the power supply 1030 to the memory 1020 may be the same or different from each other. Provided by the power supply 1030 The levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 to the memory controller 1010 and the memory 1020 can be changed by the memory controller 1010. According to another example, the level of the first power supply voltage VDD1 provided from the power supply 1030 to the memory controller 1010 can be constant, and the memory controller 1010 can be changed from the power supply 1030 to the memory 1020. The level of the second power supply voltage VDD2. In the drawings, "CONTROL" means determining the level of the second power supply VDD2 provided by the power supply 1030 under the control of the memory controller 1010.

記憶體控制器1010傳送向記憶體1020請求關於用於執行讀取操作之時間之資訊的「操作時間讀取指令」。記憶體1020接著傳送關於用於執行讀取操作之時間的所儲存資訊。自記憶體1020傳送至記憶體控制器1010的用於執行讀取操作之時間可為如表2中所顯示與第二電力供應電壓VDD2匹配的同一資訊。記憶體控制器1010接收用於執行讀取操作之時間,且針對施加至記憶體1020之第二電力供應電壓VDD2之每一位準判定記憶體1020的執行,且記憶體控制器1010可基於執行結果有效地控制記憶體1020。 The memory controller 1010 transmits an "operation time read command" requesting information about the time for performing the read operation from the memory 1020. The memory 1020 then transmits the stored information about the time at which the read operation was performed. The time from the memory 1020 to the memory controller 1010 for performing the read operation may be the same information as shown in Table 2 that matches the second power supply voltage VDD2. The memory controller 1010 receives the time for performing the read operation, and determines the execution of the memory 1020 for each of the second power supply voltages VDD2 applied to the memory 1020, and the memory controller 1010 can be executed based on As a result, the memory 1020 is effectively controlled.

記憶體1020儲存針對第二電力供應電壓VDD2之每一位準的用於執行讀取操作之時間。此操作可藉由記憶體1020之製造商來執行。可在記憶體之製造期間執行不同測試,且在製造記憶體1020並測試記憶體1020之讀取操作之後,製造商可將關於記憶體1020針對第二電力供應電壓VDD2之每一位準執行讀取操作所花費之時間的資訊儲存於記憶 體1020中。 The memory 1020 stores the time for performing the read operation for each of the second power supply voltage VDD2. This operation can be performed by the manufacturer of the memory 1020. Different tests can be performed during the manufacture of the memory, and after the memory 1020 is fabricated and the read operation of the memory 1020 is tested, the manufacturer can perform a read on the memory 1020 for each of the second power supply voltages VDD2. Information about the time taken to take the operation is stored in memory In body 1020.

圖11為說明顯示於圖10中之記憶體1020的方塊圖。 FIG. 11 is a block diagram showing the memory 1020 shown in FIG.

在圖式中,在記憶體1020之許多構成元件當中,描述用於傳送儲存於記憶體1020內部之「用於執行讀取操作之時間」的彼等構成元件。 In the drawings, among the constituent elements of the memory 1020, the constituent elements for "the time for performing the read operation" stored in the inside of the memory 1020 are described.

參看圖11,記憶體1020包含緩衝器1101、指令解碼器1110、儲存電路1150,及輸出電路1160。 Referring to FIG. 11, the memory 1020 includes a buffer 1101, an instruction decoder 1110, a storage circuit 1150, and an output circuit 1160.

緩衝器1101接收傳送自記憶體控制器1010之一或多個指令信號CMD。在圖式中,「X M」表示,存在M數目個指令信號。 The buffer 1101 receives one or more command signals CMD transmitted from the memory controller 1010. In the drawing, "X M" indicates that there are M number of command signals.

指令解碼器1110藉由解碼經由緩衝器1101所輸入之一或多個指令信號CMD而輸出操作時間讀取指令TIME RD。藉由指令解碼器1110所輸出之操作時間讀取指令TIME RD傳送至儲存電路1150,且回應於接收到之操作時間讀取指令TIME RD,儲存於儲存電路1150中之關於用於執行讀取操作之時間的資訊經由輸出電路1160傳送至記憶體控制器1010。 The instruction decoder 1110 outputs an operation time read instruction TIME RD by decoding one or more instruction signals CMD input via the buffer 1101. The operation time read command TIME RD outputted by the instruction decoder 1110 is transferred to the storage circuit 1150, and is stored in the storage circuit 1150 for performing the read operation in response to the received operation time read command TIME RD. The information of the time is transmitted to the memory controller 1010 via the output circuit 1160.

由於儲存於儲存電路1150中之係如表2中所顯示之資訊的資訊在記憶體1020之製造期間被儲存,因此熔斷器電路可用作儲存電路1150。 Since the information stored in the storage circuit 1150 as shown in Table 2 is stored during the manufacture of the memory 1020, the fuse circuit can be used as the storage circuit 1150.

圖12為說明顯示於圖10及圖11中之記憶體系統之操作的流程圖。參看圖12,描述記憶體系統之總體操作。 Figure 12 is a flow chart illustrating the operation of the memory system shown in Figures 10 and 11. Referring to Figure 12, the overall operation of the memory system is described.

在步驟S1210中,將操作時間讀取指令TIME RD自記憶體控制器1010施加至記憶體1020。在步驟S1220中,回應 於操作時間讀取指令TIME RD而將儲存於記憶體1020之儲存電路1150中的資訊傳送至記憶體控制器1010。 In step S1210, the operation time read command TIME RD is applied from the memory controller 1010 to the memory 1020. In step S1220, the response The information stored in the storage circuit 1150 of the memory 1020 is transferred to the memory controller 1010 at the operation time reading command TIME RD.

在步驟S1230中,基於自記憶體1020所傳送之資訊,記憶體控制器1010設定關於記憶體1020之讀取操作的參數。舉例而言,當第二電力供應電壓VDD2係處於1.0 V之位準時,記憶體控制器1010可將記憶體1020之CAS潛時設定為13個時脈。當第二電力供應電壓VDD2係處於1.2 V之位準時,記憶體控制器1010可將記憶體1020之CAS潛時設定為9個時脈。 In step S1230, based on the information transmitted from the memory 1020, the memory controller 1010 sets parameters regarding the read operation of the memory 1020. For example, when the second power supply voltage VDD2 is at a level of 1.0 V, the memory controller 1010 can set the CAS latency of the memory 1020 to 13 clocks. When the second power supply voltage VDD2 is at a level of 1.2 V, the memory controller 1010 can set the CAS latency of the memory 1020 to 9 clocks.

由於在步驟S1210至S1230之處理程序中描述讀取操作,同時記憶體控制器1010已具有關於記憶體1020之讀取操作執行的資訊,因此根據一實例,圖12之操作可在記憶體控制器1010與記憶體1020之初始操作階段執行。 Since the read operation is described in the processing procedures of steps S1210 to S1230 while the memory controller 1010 has the information about the read operation of the memory 1020, the operation of FIG. 12 can be performed in the memory controller according to an example. 1010 is executed with the initial operational phase of memory 1020.

根據本發明之一實施例,在來自主控晶片之指令後,即針對電力供應電壓之每一位準量測受控晶片之特定操作的操作速度,且將量測結果傳送至主控晶片,或將儲存於受控晶片中之特定操作的針對電力供應電壓之每一位準之操作速度傳送至主控晶片。 According to an embodiment of the present invention, after the instruction from the master wafer, the operating speed of the specific operation of the controlled wafer is measured for each bit of the power supply voltage, and the measurement result is transmitted to the master wafer. Or, the operating speed of each level of the power supply voltage for a particular operation stored in the controlled wafer is transferred to the master wafer.

因此,主控晶片可判定受控晶片針對電力供應電壓之每一位準下之特定操作的執行,且結果,主控晶片可有效地控制受控晶片,諸如受控晶片之潛時及操作。 Thus, the master wafer can determine the execution of the particular operation of the controlled wafer for each bit of the power supply voltage, and as a result, the master wafer can effectively control the latency of the controlled wafer, such as the controlled wafer.

儘管已關於特定實施例描述了本發明,但以下情形對於熟習此項技術者將顯而易見:可在不脫離如以下申請專利範圍中所界定之本發明之精神及範疇的情況下進行各種改 變及修改。 Although the present invention has been described in terms of a particular embodiment, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention as defined in the following claims. Change and modify.

110‧‧‧第一晶片 110‧‧‧First chip

120‧‧‧第二晶片 120‧‧‧second chip

130‧‧‧電力供應器 130‧‧‧Power supply

201‧‧‧第一緩衝器 201‧‧‧First buffer

202‧‧‧第二緩衝器 202‧‧‧Second buffer

203‧‧‧第三緩衝器 203‧‧‧ third buffer

210‧‧‧指令解碼器 210‧‧‧ instruction decoder

220‧‧‧狀況解碼器 220‧‧‧ condition decoder

230‧‧‧用於執行操作X之電路 230‧‧‧Circuit for performing operation X

240‧‧‧計數器 240‧‧‧ counter

250‧‧‧儲存電路 250‧‧‧Storage circuit

260‧‧‧輸出電路 260‧‧‧Output circuit

410‧‧‧第一晶片 410‧‧‧First chip

420‧‧‧第二晶片 420‧‧‧second chip

430‧‧‧電力供應器 430‧‧‧Power supply

501‧‧‧緩衝器 501‧‧‧buffer

510‧‧‧指令解碼器 510‧‧‧ instruction decoder

530‧‧‧用於執行操作X之電路 530‧‧‧Circuit for performing operation X

550‧‧‧儲存電路 550‧‧‧Storage circuit

560‧‧‧輸出電路 560‧‧‧Output circuit

710‧‧‧記憶體控制器 710‧‧‧ memory controller

720‧‧‧記憶體 720‧‧‧ memory

730‧‧‧電力供應器 730‧‧‧Power supply

801‧‧‧第一緩衝器 801‧‧‧ first buffer

802‧‧‧第二緩衝器 802‧‧‧ second buffer

803‧‧‧第三緩衝器 803‧‧‧ third buffer

810‧‧‧指令解碼器 810‧‧‧ instruction decoder

820‧‧‧狀況解碼器 820‧‧‧ condition decoder

830‧‧‧讀取控制電路 830‧‧‧Read control circuit

840‧‧‧計數器 840‧‧‧ counter

850‧‧‧儲存電路 850‧‧‧ storage circuit

860‧‧‧輸出電路 860‧‧‧Output circuit

870‧‧‧記憶胞陣列 870‧‧‧ memory cell array

880‧‧‧管鎖存器 880‧‧‧ tube latch

1010‧‧‧記憶體控制器 1010‧‧‧ memory controller

1020‧‧‧記憶體 1020‧‧‧ memory

1030‧‧‧電力供應器 1030‧‧‧Power supply

1101‧‧‧緩衝器 1101‧‧‧buffer

1110‧‧‧指令解碼器 1110‧‧‧Command decoder

1150‧‧‧儲存電路 1150‧‧‧Storage circuit

1160‧‧‧輸出電路 1160‧‧‧Output circuit

ADD‧‧‧位址信號 ADD‧‧‧ address signal

CLK‧‧‧時脈 CLK‧‧‧ clock

CMD‧‧‧指令信號 CMD‧‧‧ command signal

OUT‧‧‧輸出信號 OUT‧‧‧ output signal

PIN‧‧‧管輸入信號 PIN‧‧‧ tube input signal

TIME RD‧‧‧操作時間讀取指令 TIME RD‧‧‧Operation time read command

TIME<0:3>‧‧‧時間資訊 TIME<0:3>‧‧‧Time Information

VDD INFO‧‧‧電力供應電壓位準資訊 VDD INFO‧‧‧Power supply voltage level information

VDD1‧‧‧電力供應電壓/第一電力供應電壓 VDD1‧‧‧Power supply voltage / first power supply voltage

VDD2‧‧‧電力供應電壓/第二電力供應電壓/第二電 力供應 VDD2‧‧‧Power supply voltage / second power supply voltage / second power Force supply

圖1為說明根據本發明之第一實施例的包含第一晶片及第二晶片之積體電路系統的方塊圖。 1 is a block diagram showing an integrated circuit system including a first wafer and a second wafer in accordance with a first embodiment of the present invention.

圖2為說明顯示於圖1中之第二晶片120的方塊圖。 FIG. 2 is a block diagram illustrating the second wafer 120 shown in FIG. 1.

圖3為說明顯示於圖1及圖2中之積體電路系統之操作的流程圖。 3 is a flow chart illustrating the operation of the integrated circuit system shown in FIGS. 1 and 2.

圖4為說明根據本發明之第二實施例的包含第一晶片及第二晶片之積體電路系統的方塊圖。 4 is a block diagram showing an integrated circuit system including a first wafer and a second wafer in accordance with a second embodiment of the present invention.

圖5為說明顯示於圖4中之第二晶片420的方塊圖。 FIG. 5 is a block diagram illustrating the second wafer 420 shown in FIG.

圖6為說明顯示於圖4及圖5中之積體電路系統之操作的流程圖。 Figure 6 is a flow chart illustrating the operation of the integrated circuit system shown in Figures 4 and 5.

圖7為說明根據本發明之第一實施例的記憶體系統之方塊圖。 Figure 7 is a block diagram showing a memory system in accordance with a first embodiment of the present invention.

圖8為說明顯示於圖7中之記憶體720的方塊圖。 FIG. 8 is a block diagram showing the memory 720 shown in FIG.

圖9為說明顯示於圖7及圖8中之記憶體系統之操作的流程圖。 Figure 9 is a flow chart illustrating the operation of the memory system shown in Figures 7 and 8.

圖10為說明根據本發明之第二實施例的記憶體系統之方塊圖。 Figure 10 is a block diagram showing a memory system in accordance with a second embodiment of the present invention.

圖11為說明顯示於圖10中之記憶體1020的方塊圖。 FIG. 11 is a block diagram showing the memory 1020 shown in FIG.

圖12為說明顯示於圖10及圖11中之記憶體系統之操作的流程圖。 Figure 12 is a flow chart illustrating the operation of the memory system shown in Figures 10 and 11.

110‧‧‧第一晶片 110‧‧‧First chip

120‧‧‧第二晶片 120‧‧‧second chip

130‧‧‧電力供應器 130‧‧‧Power supply

VDD1‧‧‧電力供應電壓/第一電力供應電壓 VDD1‧‧‧Power supply voltage / first power supply voltage

VDD2‧‧‧電力供應電壓/第二電力供應電壓/第二電力供應 VDD2‧‧‧Power supply voltage / second power supply voltage / second power supply

Claims (16)

一種積體電路系統,其包括:一第一晶片,其經組態以供應一訓練指令;及一第二晶片,其經組態以回應於該訓練指令將用於執行一操作之一所量測時間傳送至該第一晶片,其中該第一晶片經進一步組態以回應於該所量測時間而設定該第二晶片之該操作的一潛時。 An integrated circuit system comprising: a first wafer configured to supply a training command; and a second wafer configured to respond to the training instruction to be used to perform an operation The measurement time is transmitted to the first wafer, wherein the first wafer is further configured to set a latency of the operation of the second wafer in response to the measured time. 如請求項1之積體電路系統,其中該第一晶片經進一步組態以控制該第二晶片,使得該訓練指令自該第一晶片之該輸出及該所量測時間之該傳送針對供應至該第二晶片之一電力供應電壓的不同電壓位準分別重複地執行。 The integrated circuit system of claim 1, wherein the first wafer is further configured to control the second wafer such that the output of the training instruction from the first wafer and the transmission of the measured time are directed to supply The different voltage levels of the power supply voltage of one of the second wafers are repeatedly performed, respectively. 如請求項1之積體電路系統,其中該訓練指令自該第一晶片之該輸出及該所量測時間之該傳送係在一操作時間量測模式下執行。 The integrated circuit system of claim 1, wherein the transmission of the training command from the first wafer and the measurement of the measured time is performed in an operational time measurement mode. 如請求項2之積體電路系統,其進一步包括:一電力供應器,其經組態以將該電力供應電壓供應至該第二晶片,其中該第一晶片經進一步組態以控制該電力供應電壓自該電力供應器至該第二晶片之該供應。 The integrated circuit system of claim 2, further comprising: a power supply configured to supply the power supply voltage to the second wafer, wherein the first wafer is further configured to control the power supply The supply of voltage from the power supply to the second wafer. 一種積體電路系統,其包括:一第一晶片,其經組態以供應一訓練指令;及一第二晶片,其經組態以儲存對應於該訓練指令之一操作的一所需操作時間,其中該訓練指令自該第一晶片之該供應及該所需操作 時間藉由該第二晶片之該儲存係針對供應至該第二晶片之一電力供應電壓的不同電壓位準分別重複地執行,其中儲存於該第二晶片中之根據該電力供應電壓之每一位準的該所需操作時間係傳送至該第一晶片,及其中該第一晶片基於自該第二晶片所傳送之該所需操作時間而設定該第二晶片之該對應操作的一潛時。 An integrated circuit system comprising: a first wafer configured to supply a training command; and a second wafer configured to store a desired operating time corresponding to one of the training instructions Where the training instruction is from the supply of the first wafer and the required operation The time by the storage of the second wafer is repeatedly performed for different voltage levels supplied to one of the second wafers, wherein each of the power supply voltages stored in the second wafer is The required operating time of the level is transferred to the first wafer, and wherein the first wafer sets a latent time of the corresponding operation of the second wafer based on the required operating time transmitted from the second wafer . 一種積體電路系統,其包括:一第一晶片,其經組態以供應一訓練指令;一第二晶片,其經組態以儲存對應於該訓練指令之一操作的一所需操作時間;及一電力供應器,其經組態以將一電力供應電壓供應至該第二晶片,其中該訓練指令自該第一晶片之該供應及該所需操作時間藉由該第二晶片之該儲存係針對供應至該第二晶片之該電力供應電壓的不同電壓位準分別重複地執行。 An integrated circuit system comprising: a first wafer configured to supply a training command; a second wafer configured to store a desired operating time corresponding to one of the training instructions; And a power supply configured to supply a power supply voltage to the second wafer, wherein the supply of the training command from the first wafer and the required operational time are by the storage of the second wafer The respective voltage levels of the power supply voltage supplied to the second wafer are repeatedly performed separately. 一種用於操作一積體電路晶片之方法,其包括:將一第一電力供應電壓供應至該積體電路晶片;在該積體電路晶片以該第一電源電壓操作之同時將一訓練指令輸出至該積體電路晶片;量測該積體電路晶片之用於執行對應於該訓練指令之一操作的一第一操作時間;儲存該第一操作時間;將一第二電力供應電壓供應至該積體電路晶片;在該積體電路晶片以該第二電力供應電壓操作之同時 將該訓練指令供應至該積體電路晶片;量測該積體電路晶片之用於執行對應於該訓練指令之一操作的一第二操作時間;儲存該第二操作時間;及將該第一操作時間及該第二操作時間傳送至控制該積體電路晶片之一控制晶片,其中該控制晶片在該積體電路晶片經供應有該第一電力供應電壓之同時基於該第一操作時間設定該積體電路晶片之該操作的一潛時,且該控制晶片在該積體電路晶片經供應有該第二電力供應電壓之同時基於該第二操作時間設定該積體電路晶片之該操作的一潛時。 A method for operating an integrated circuit chip, comprising: supplying a first power supply voltage to the integrated circuit chip; outputting a training command while the integrated circuit chip operates at the first power supply voltage Up to the integrated circuit chip; measuring a first operation time of the integrated circuit chip for performing an operation corresponding to one of the training instructions; storing the first operation time; supplying a second power supply voltage to the An integrated circuit chip; while the integrated circuit wafer is operated with the second power supply voltage Supplying the training instruction to the integrated circuit chip; measuring a second operation time of the integrated circuit chip for performing an operation corresponding to one of the training instructions; storing the second operation time; and the first The operation time and the second operation time are transmitted to a control wafer that controls the integrated circuit wafer, wherein the control wafer sets the current based on the first operation time while the integrated circuit wafer is supplied with the first power supply voltage a latent time of the operation of the integrated circuit chip, and the control wafer sets one of the operations of the integrated circuit wafer based on the second operation time while the integrated circuit wafer is supplied with the second power supply voltage Latent time. 一種積體電路系統,其包括:一第一晶片,其經組態以執行一預定操作;及一第二晶片,其經組態以指令該第一晶片之該預定操作,其中該第一晶片包括一儲存電路,該儲存電路經組態以儲存在具有不同電壓位準之一電力供應電壓下該預定操作的一所需操作時間,且該第一晶片將儲存於該儲存電路中之資訊傳送至該第二晶片,其中該第二晶片基於自該第一晶片所傳輸之該所需時間而設定該第一晶片之該預定操作的一潛時。 An integrated circuit system comprising: a first wafer configured to perform a predetermined operation; and a second wafer configured to command the predetermined operation of the first wafer, wherein the first wafer Included as a storage circuit configured to store a desired operational time of the predetermined operation at a power supply voltage having a different voltage level, and the first wafer transmits information stored in the storage circuit And to the second wafer, wherein the second wafer sets a latent time of the predetermined operation of the first wafer based on the required time transmitted from the first wafer. 一種記憶體系統,其包括:一記憶體,其經組態以傳送自將一訓練指令施加至該 記憶體之一時間至回應於該訓練指令而輸出資料之一時間的一所量測資料輸出時間;一記憶體控制器,其經組態以將該訓練指令輸出至該記憶體且自該記憶體接收該所量測資料輸出時間;及一電力供應器,其經組態以將該電力供應電壓供應至該記憶體,其中該記憶體控制器經進一步組態以控制該記憶體,使得該訓練指令自該記憶體控制器之該輸出及該所量測資料輸出時間之該傳送係針對供應至該記憶體之一電力供應電壓的不同電壓位準分別重複地執行,及其中該記憶體控制器經進一步組態以控制該電力供應電壓之一電壓位準。 A memory system includes: a memory configured to transmit a command from a training command to the a time at which the memory outputs a time at which the data is output in response to the training command; a memory controller configured to output the training command to the memory and from the memory Receiving the measured data output time; and a power supply configured to supply the power supply voltage to the memory, wherein the memory controller is further configured to control the memory such that the The transmission of the training command from the memory controller and the output time of the measured data is repeatedly performed for different voltage levels supplied to one of the power supply voltages of the memory, and the memory control The device is further configured to control one of the voltage levels of the power supply voltage. 如請求項9之記憶體系統,其中該訓練指令自該記憶體控制器之該輸出及該所量測資料輸出時間自該記憶體之該傳送係在一訓練模式下執行。 The memory system of claim 9, wherein the output of the training command from the memory controller and the transmission of the measured data from the memory are performed in a training mode. 如請求項9之記憶體系統,其中該記憶體控制器經組態以回應於分別針對該電力供應電壓之不同電壓位準的所量測資料輸出時間而設定該記憶體之針對該電力供應電壓之該等不同電壓位準的行位址選通(CAS)潛時。 The memory system of claim 9, wherein the memory controller is configured to set the memory for the power supply voltage in response to the measured data output time for different voltage levels of the power supply voltage, respectively The row address strobe (CAS) latency of the different voltage levels. 一種記憶體系統,其包括:一記憶體,其經組態以儲存自將一訓練指令施加至該記憶體之一時間至資料可用於輸出之一時間的一所量測資料輸出時間;及一記憶體控制器,其經組態以將該訓練指令輸出至該 記憶體,其中該訓練指令自該記憶體控制器之該施加及該所量測資料輸出時間藉由該記憶體之該儲存係針對供應至該記憶體之一電力供應電壓的不同電壓位準分別重複地執行,其中儲存於該記憶體中之對應於該電力供應電壓之每一位準的該所量測資料輸出時間係傳送至該記憶體控制器,且該記憶體控制器基於自該記憶體所傳送之在該電源電壓之每一位準下的該所量測資料輸出時間而設定該記憶體之在該電力供應電壓之每一位準下的一行位址選通(CAS)潛時。 A memory system comprising: a memory configured to store a measured data output time from a time when a training instruction is applied to the memory to a time at which data can be output; and a memory controller configured to output the training command to the a memory, wherein the application of the training command from the memory controller and the measured data output time are respectively determined by the storage system of the memory for different voltage levels of a power supply voltage supplied to one of the memory Repeatedly executing, wherein the measured data output time stored in the memory corresponding to each level of the power supply voltage is transmitted to the memory controller, and the memory controller is based on the memory And transmitting, by the body, the measured data output time under each of the power supply voltages to set a row address sing (CAS) latency of the memory at each level of the power supply voltage . 一種記憶體,其包括:一記憶胞陣列區,其經組態以儲存資料;一指令解碼器,其經組態以藉由解碼一或多個信號而輸出一訓練指令;一控制電路,其經組態以藉由使該訓練指令延遲而產生一資料輸出信號;一資料輸出電路,其經組態以回應於該資料輸出信號而輸出自該記憶胞陣列區所讀取之該資料;一量測電路,其經組態以量測自輸出該訓練指令之一時間至自該資料輸出電路輸出該資料之一時間所花費的一資料輸出時間;及一儲存電路,其經組態以儲存該所量測資料輸出時 間。 A memory comprising: a memory cell array configured to store data; an instruction decoder configured to output a training command by decoding one or more signals; a control circuit Configuring to generate a data output signal by delaying the training command; a data output circuit configured to output the data read from the memory cell array region in response to the data output signal; a measurement circuit configured to measure a data output time from a time when the training command is output to a time when the data output circuit outputs the data; and a storage circuit configured to store When the measured data is output between. 如請求項13之記憶體,其中該量測電路經進一步組態以量測自啟用該訓練指令之一時間至啟用該資料輸出信號之一時間的一時間。 The memory of claim 13, wherein the measurement circuit is further configured to measure a time from when one of the training instructions is enabled to when the data output signal is enabled. 如請求項13之記憶體,其中該儲存電路經組態以儲存針對供應至該記憶體之一電力供應電壓之不同電壓位準的所量測資料輸出時間。 The memory of claim 13, wherein the storage circuit is configured to store the measured data output time for different voltage levels supplied to one of the memory power supply voltages. 如請求項13之記憶體,其進一步包括:一狀況解碼器,其經組態以藉由將來自由一或多個位址信號及一或多個指令信號組成之群的至少一信號解碼而判定電力供應電壓資訊,該電力供應電壓資訊顯示施加至該記憶體之電力供應電壓的一電壓位準,其中該儲存電路經組態以使該電力供應電壓資訊與該所量測資料輸出時間匹配,且儲存該電力供應電壓資訊及該所量測資料輸出時間。 The memory of claim 13, further comprising: a status decoder configured to determine by decoding at least one of the group of free one or more address signals and one or more command signals in the future Power supply voltage information, the power supply voltage information indicating a voltage level applied to the power supply voltage of the memory, wherein the storage circuit is configured to match the power supply voltage information to the measured data output time, And storing the power supply voltage information and the measured data output time.
TW101129786A 2011-08-16 2012-08-16 Integrated circuit, system including the same, and operation method of the system TWI570744B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110081317A KR101804521B1 (en) 2011-08-16 2011-08-16 Integrated circuit, operation method of the same and system including the same, memory and memory system

Publications (2)

Publication Number Publication Date
TW201324533A TW201324533A (en) 2013-06-16
TWI570744B true TWI570744B (en) 2017-02-11

Family

ID=47712557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129786A TWI570744B (en) 2011-08-16 2012-08-16 Integrated circuit, system including the same, and operation method of the system

Country Status (5)

Country Link
US (1) US8902684B2 (en)
JP (1) JP6030377B2 (en)
KR (1) KR101804521B1 (en)
CN (1) CN103150274B (en)
TW (1) TWI570744B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754648B2 (en) 2012-10-26 2017-09-05 Micron Technology, Inc. Apparatuses and methods for memory operations having variable latencies
US9740485B2 (en) 2012-10-26 2017-08-22 Micron Technology, Inc. Apparatuses and methods for memory operations having variable latencies
US9734097B2 (en) 2013-03-15 2017-08-15 Micron Technology, Inc. Apparatuses and methods for variable latency memory operations
US9727493B2 (en) 2013-08-14 2017-08-08 Micron Technology, Inc. Apparatuses and methods for providing data to a configurable storage area
US9563565B2 (en) 2013-08-14 2017-02-07 Micron Technology, Inc. Apparatuses and methods for providing data from a buffer
US10365835B2 (en) 2014-05-28 2019-07-30 Micron Technology, Inc. Apparatuses and methods for performing write count threshold wear leveling operations
KR20160043579A (en) * 2014-10-13 2016-04-22 삼성전자주식회사 Use time managing method in semiconductor device and semiconductor device having use time managing part
KR102174338B1 (en) 2014-12-29 2020-11-04 삼성전자주식회사 Multi embedded timing controller, display panel, and computer system having the same
KR102536657B1 (en) * 2016-07-12 2023-05-30 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system
KR20190026233A (en) * 2017-09-04 2019-03-13 에스케이하이닉스 주식회사 Package module and method for testing operation of chips
US11354064B2 (en) * 2018-12-26 2022-06-07 Micron Technology, Inc. Detection of illegal commands
KR20200124937A (en) * 2019-04-25 2020-11-04 에스케이하이닉스 주식회사 Controller and operating method thereof
KR20210099675A (en) * 2020-02-04 2021-08-13 삼성전자주식회사 Electronic device including memory device and training method thereof
KR20230032776A (en) * 2021-08-31 2023-03-07 에스케이하이닉스 주식회사 Semiconductor including a pipe latch circuit
CN115017069B (en) * 2022-06-28 2023-11-07 长江存储科技有限责任公司 Level adaptation device, storage system and power supply method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075316A1 (en) * 2005-12-23 2007-07-05 Intel Corporation Memory system with both single and consolidated commands
WO2007130921A2 (en) * 2006-05-02 2007-11-15 Rambus Inc. Memory module with reduced access granularity
WO2008154625A2 (en) * 2007-06-12 2008-12-18 Rambus Inc. In-dram cycle-based levelization
WO2009086359A1 (en) * 2007-12-27 2009-07-09 Pliant Technology, Inc. Flash memory controller having reduced pinout
US7936684B2 (en) * 2003-03-21 2011-05-03 Intel Corporation Physical layer loopback

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612537A (en) * 1992-06-25 1994-01-21 Fuji Photo Film Co Ltd Ic memory card
US5329491A (en) * 1993-06-30 1994-07-12 Intel Corporation Nonvolatile memory card with automatic power supply configuration
JP4299428B2 (en) 2000-01-19 2009-07-22 三星電子株式会社 Variable capacity semiconductor memory device
JP2003099333A (en) * 2001-09-21 2003-04-04 Ricoh Co Ltd Management system for flash memory
US6880094B2 (en) 2002-01-14 2005-04-12 Micron Technology, Inc. Cas latency select utilizing multilevel signaling
KR100586841B1 (en) * 2003-12-15 2006-06-07 삼성전자주식회사 Method for controlling Variable Delay and Circuit for the same
US6980042B2 (en) * 2004-04-05 2005-12-27 Micron Technology, Inc. Delay line synchronizer apparatus and method
KR100641704B1 (en) * 2004-10-30 2006-11-03 주식회사 하이닉스반도체 Semiconductor memory device and bit line sense amplifier offset voltage measuring method of it
US7292487B1 (en) 2006-05-10 2007-11-06 Micron Technology, Inc. Independent polling for multi-page programming
JP2009181638A (en) 2008-01-30 2009-08-13 Elpida Memory Inc Semiconductor storage device
JP5579979B2 (en) * 2008-10-30 2014-08-27 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device, internal signal timing circuit, and delay time measuring method
KR101045070B1 (en) * 2010-04-30 2011-06-29 주식회사 하이닉스반도체 Semiconductor memory device and semiconductor system including semiconductor memory device and operating method for the same
KR101751045B1 (en) * 2010-05-25 2017-06-27 삼성전자 주식회사 3D Semiconductor device
JP2012027964A (en) * 2010-07-20 2012-02-09 Panasonic Corp Memory device and cpu control method
KR20120044668A (en) * 2010-10-28 2012-05-08 에스케이하이닉스 주식회사 Semiconductor memory device and semiconductor system including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936684B2 (en) * 2003-03-21 2011-05-03 Intel Corporation Physical layer loopback
WO2007075316A1 (en) * 2005-12-23 2007-07-05 Intel Corporation Memory system with both single and consolidated commands
WO2007130921A2 (en) * 2006-05-02 2007-11-15 Rambus Inc. Memory module with reduced access granularity
WO2008154625A2 (en) * 2007-06-12 2008-12-18 Rambus Inc. In-dram cycle-based levelization
WO2009086359A1 (en) * 2007-12-27 2009-07-09 Pliant Technology, Inc. Flash memory controller having reduced pinout

Also Published As

Publication number Publication date
CN103150274B (en) 2018-08-03
CN103150274A (en) 2013-06-12
US8902684B2 (en) 2014-12-02
US20130044553A1 (en) 2013-02-21
KR101804521B1 (en) 2017-12-07
KR20130019257A (en) 2013-02-26
TW201324533A (en) 2013-06-16
JP2013041584A (en) 2013-02-28
JP6030377B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
TWI570744B (en) Integrated circuit, system including the same, and operation method of the system
TWI453760B (en) Daisy chain cascade configuration recognition technique
US7330378B2 (en) Inputting and outputting operating parameters for an integrated semiconductor memory device
JP5579972B2 (en) Semiconductor memory device and method for testing semiconductor memory device
US20090296504A1 (en) Semiconductor memory device and method of testing semiconductor memory device
TWI620190B (en) Memory control circuit and memory test method
TWI553652B (en) Semiconductor device and semiconductor system including the same
TWI470637B (en) Test apparatus and test method
TWI579858B (en) Semiconductor apparatus and data transmission method thereof
US9362005B2 (en) Semiconductor device for parallel bit test and test method thereof
US20210073101A1 (en) Semiconductor device
US10134484B2 (en) Semiconductor devices, semiconductor systems including the same, methods of testing the same
US8994419B2 (en) Semiconductor device, semiconductor system including the same, and method for operating the same
US12046312B2 (en) eFUSE one-time programmable memory with inter integrated circuit (I2C) communication and operation method thereof
US8537624B2 (en) Semiconductor memory device and method of operating the same
JP2006004475A (en) Semiconductor integrated circuit device
JP2008084472A (en) Semiconductor device
US20150026529A1 (en) Semiconductor device and method of evaluating semiconductor device
KR20120024254A (en) Memory system and method of operation the same
JPWO2008139606A1 (en) Test equipment
KR20080089015A (en) Semiconductor memory device with a test code rom
US7565476B2 (en) Memory device
JP2010210453A (en) Semiconductor-testing device
US7974147B2 (en) Method and apparatus for monitoring memory addresses
JP4761120B2 (en) Electronic equipment, image forming device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees