TWI569181B - 觸控感測方法及觸控顯示裝置 - Google Patents

觸控感測方法及觸控顯示裝置 Download PDF

Info

Publication number
TWI569181B
TWI569181B TW104121264A TW104121264A TWI569181B TW I569181 B TWI569181 B TW I569181B TW 104121264 A TW104121264 A TW 104121264A TW 104121264 A TW104121264 A TW 104121264A TW I569181 B TWI569181 B TW I569181B
Authority
TW
Taiwan
Prior art keywords
touch
sensing
display panel
voltage
electrode
Prior art date
Application number
TW104121264A
Other languages
English (en)
Other versions
TW201616313A (zh
Inventor
李健儒
潘彥霖
呂藝全
陳恒殷
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201510595998.9A priority Critical patent/CN105528108B/zh
Priority to US14/881,159 priority patent/US9811206B2/en
Publication of TW201616313A publication Critical patent/TW201616313A/zh
Application granted granted Critical
Publication of TWI569181B publication Critical patent/TWI569181B/zh

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

觸控感測方法及觸控顯示裝置
本揭露是有關於一種觸控感測方法、觸控顯示裝置及可攜式電子裝置。
近年來,隨著資訊技術、無線行動通訊和資訊家電等各項應用的快速發展,為了達到更便利、體積更輕巧化以及更人性化的目的,許多資訊產品的輸入裝置已由傳統之鍵盤或滑鼠等轉變為觸控顯示面板(Touch Display Panel)。目前常見的觸控顯示面板是在觸控面板與顯示面板分開製造後,再將觸控面板與顯示面板進行組裝。
為了達到輕薄短小的目標,在眾多的顯示面板應用中,主動矩陣有機發光二極體(Active Matrix Organic Light Emitting Diodes;底下稱為AMOLED)顯示面板具有輕重量、低功耗、優越的光學性能和低成本等特點,因此成為了主流。而現今的觸控顯示面板設計中,以觸控感測模式的設計原理分類,大致可區分為電阻式、電容式、光學式、聲波式以及電磁式等,其中又以電阻 式及電容式為主流。
對於外嵌式(On-Cell)的觸控顯示面板而言,觸控面板(Touch Panel)的驅動電極以及感測電極設置於顯示面板(Display Panel)表面上。當使用者以手指進行觸控時,易有感應不良的情況,特別是當觸控顯示面板(例如AMOLED顯示面板結合觸控面板)厚度越來越薄時,例如達到低於100微米以下等級時,這樣感應不良的情況會常常發生,此為需要解決的課題之一。
本揭露內容實施範例之一提出一種觸控感測方法,適用於觸控顯示裝置。此觸控顯示裝置包括一顯示面板以及一觸控面板,顯示面板包括一電極層,而觸控面板包括一驅動電極層。此觸控感測方法包括對驅動電極層施以一電壓,設定一系統參數判斷一感應事件是否發生,若否,則取得一感測電壓(CTP電壓),若是,則對應於此感應事件取得一寄生電容電壓。判斷此寄生電容電壓減去感測電壓之值是否小於一臨界電壓,若是,則調整該系統參數並重新根據更新後的系統參數判斷下一感應事件是否發生,若否,則判斷感測電壓的變化量是否小於一門檻值,若否,則回報一觸碰點,若是,則調整系統參數重新根據更新後的系統參數判斷下一感應事件是否發生。
本揭露內容實施範例之一提出一種觸控顯示裝置,用以執行前述之觸控感測方法,其中觸控顯示裝置包括一顯示面板以 及一觸控面板。顯示面板包括一電極層。觸控面板包括一驅動電極層。
本揭露內容實施範例之一提出一種觸控感測方法,適用於觸控顯示裝置。此觸控顯示裝置包括一顯示面板以及一觸控面板,此顯示面板包括一電極層,而此觸控面板包括一驅動電極層。觸控感測方法包括在一感測驅動期間,施於驅動電極層一第一電位電壓以及施於電極層一第二電位電壓,其中第二電位電壓大於或等於第一電位電壓。在感測驅動期間讀取驅動電極層的一感測事件,對應於感測事件產生一感測電壓(CTP電壓)。根據感測電壓(CTP電壓)判斷,若大於一門檻值,則回報一觸碰點。
本揭露內容實施範例之一提出一種可攜式電子裝置,包括一觸控顯示裝置及至少一條等電位電極,其中觸控顯示裝置包括一顯示面板以及一觸控面板。此顯示面板包括一電極層,此觸控面板包括一驅動電極層,至少一條等電位電極用以在一感測驅動期間的電位等於或是小於該顯示面板的該電極層的電位。
本揭露內容實施範例之一提出一種觸控感測方法,適用於一種可攜式電子裝置。此可攜式電子裝置包括背板的主體,其內配置有一觸控顯示裝置,其中觸控顯示裝置包括一顯示面板以及一觸控面板。此顯示面板包括一電極層,觸控面板包括一驅動電極層,而背板配置有多條等電位電極。此觸控感測方法包括在感測驅動期間,施以顯示面板的電極層一第一電位的訊號以及施以多條等電位電極一第二電位的訊號,其中第一電位大於或等於 該第二電位。讀取此驅動電極層的一感測事件,對應於此感測事件產生一感測電壓(CTP電壓)。根據此感測電壓(CTP電壓)判斷,若大於一門檻值,則回報一觸碰點。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100、700、800、900’‧‧‧觸控顯示面板
110‧‧‧主動矩陣有機發光二極體(AMOLED)顯示面板的上電極
120‧‧‧絕緣層
130‧‧‧電極層
132‧‧‧傳送電極(TX)
134‧‧‧接收電極(RX)
140‧‧‧覆蓋層
150‧‧‧手指
200‧‧‧控制介面
S210~S230‧‧‧步驟
CTP‧‧‧感測電極與驅動電極之間的電容
CRC‧‧‧感測電極與顯示面板的上電極之間的電容
Cin‧‧‧等效電容
400‧‧‧電荷轉移架構電路
410‧‧‧電荷泵
420‧‧‧電容感測器
430‧‧‧參考採樣電容(Cs)
440‧‧‧比較器
450‧‧‧閂鎖器(Latch)
460‧‧‧計數器
SW1~SW3‧‧‧切換器
500‧‧‧定電流充放電電路
510‧‧‧定電流源
520‧‧‧電容感測器
530‧‧‧選擇性的外部修正電容(CMod)
540‧‧‧內部電容(CInternal)
550‧‧‧低通濾波器(Low Pass Filter)
560‧‧‧比較器
600‧‧‧鬆弛震盪法技術電路架構
610‧‧‧電容元件(Ctouch)
620‧‧‧感測電極
630‧‧‧感應電容(Cx)
640‧‧‧切換控制器
650‧‧‧感測電路
710、810、910‧‧‧AMOLED顯示面板的上電極
720、820、920、770、870、970‧‧‧絕緣層
730、830、930‧‧‧觸控面板的傳送電極(TX)730
740、840、940‧‧‧接收電極(RX)
750、850、950‧‧‧覆蓋層
860、960‧‧‧使用者的手
900、900a‧‧‧手持式電子裝置
901‧‧‧顯示面板
902、902a‧‧‧殼體
904、904a‧‧‧等電位電極
圖1A與1B為說明當使用者以手指進行觸碰觸控顯示面板時,所產生的感應電場示意圖。
圖1C與1D為說明電容式觸控面板與顯示面板之間所形成的電容,以及進行觸碰觸控顯示面板時,所產生的感應電場示意圖。
圖2為說明適用於超薄的觸控顯示面板的驅動方法實施例,並用以取得觸控面板回報觸碰點的流程示意圖。
圖3A到圖3C為說明一實施範例中,為了調整系統驅動參數而對觸控面板感應時間調整的前後電壓對應時間變化示意圖。
圖4為說明運用本揭露內容實施例所提出對觸控面板調整系統驅動參數的電荷轉移架構電路示意圖。
圖5為說明運用本揭露內容實施例所提出對觸控面板調整系統驅動參數的定電流充放電電路示意圖。
圖6為說明運用本揭露內容實施例所提出對觸控面板調整系統驅動參數的鬆弛震盪法技術電路示意圖。
圖7為說明本揭露內容實施例之觸控顯示面板及驅動電路之間的驅動訊號傳輸示意圖。
圖8A為說明只要能夠降低或是去除感測電極與顯示面板的上電極之間所形成電容,即可避免感應驅動的操作時感應電容的跨電壓值降低的情況。
圖8B到圖8F為說明本揭露內容實施範例中,針對觸控顯示面板降低或是去除感測電極與顯示面板的上電極之間所形成的電容,並且達到有效感應或是降低感應誤判的情況實施範例結構示意圖。
圖9A說明使使用者的手的電位與顯示面板的上電極的電位相同之示意圖。
圖9B到圖9D說明達到消除電容CRC效應的實施範例示意圖。
圖9E是說明達到消除電容CRC效應的另一實施範例示意圖。
本揭露內容提供一種適用於觸控顯示面板的系統、驅動方式以及架構,特別適用於超薄的觸控顯示面板。
對於例如外嵌式(On-Cell)的觸控顯示面板而言,觸控面板(Touch Panel)的驅動電極以及感測電極設置於顯示面板(Display Panel)表面上。當使用者以手指進行觸控時,易有感應不良的情況,特別是當顯示顯示面板(例如AMOLED顯示面板結合觸控面板)厚度越來越薄時,例如達到低於100微米以下等級時,這樣感 應不良的情況越常發生,此為需要解決的課題之一。
請參照圖1A與圖1B,為說明當使用者以手指進行觸碰觸控顯示面板時,所產生的感應電場示意圖。此觸控顯示面板100包括主動矩陣有機發光二極體(AMOLED)顯示面板與觸控面板,為方便說明,圖1A與圖1B中僅顯示AMOLED顯示面板的上電極110、包括傳送電極(TX)132與接收電極(RX)134的電極層130、位於兩者之間的絕緣層120以及位於電極層130上方的覆蓋層140。
在本實施範例中,AMOLED顯示面板的上電極110可以是主動矩陣有機發光二極體(AMOLED)的陰極。在本實施範例中,絕緣層120可以是有機層或無機層。當絕緣層120為有機層時,有機層例如是壓敏黏著(Pressure Sensitive Adhesive,PSA)層或水膠。另一方面,覆蓋層140也可以是有機層或無機層。當覆蓋層140為有機層時,覆蓋層140的材料例如是聚醯亞胺(Polyimide,PI)或者是聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)。當覆蓋層140為無機層時,覆蓋層140的材料例如是薄玻璃。此外,觸控面板的電極層130的佈局,在本實施範例是採用交錯排列的傳送電極(TX)132與接收電極(RX)134,但不以此為限制,也可採用上下夾層式的佈局。
當使用者以手指150進行觸控時,常因為感應時間過短問題而造成觸碰事件的誤判。一般而言,當手指150觸碰觸控顯示面板100的表面時,會驅動傳送電極(TX)132到接收電極(RX)134間產生電場的變化,如圖1A所示的感應電場101。但是, 當觸控顯示面板(例如AMOLED顯示面板結合觸控面板)厚度越來越薄時,AMOLED顯示面板的上電極110將會對感應電場產生的影響也越來越明顯,造成感應時間縮短的其中一個原因是因為手指150的阻抗比接地電極(GND)大所造成。當手指150觸碰觸控面板表面後,產生的感應電場103的變化將被例如AMOLED顯示面板的上電極110所引導掉。
另一個造成感應時間過短而使觸碰事件誤判的原因在於觸控顯示面板厚度越來越薄時,互電容變大而形成靜電場。請參照圖1C與圖1D,圖1C與圖1D為說明電容式觸控面板與顯示面板(如AMOLED)之間所形成的電容,以及進行觸碰觸控顯示面板時,所產生的感應電場示意圖。如圖1C所示,感測電極與驅動電極之間形成一個電容CTP,而感測電極與顯示面板(如AMOLED)的上電極間形成另一電容CRC。具體而言,CRC為寄生電容。當手指觸碰觸控面板表面時,會在兩個電容CTP與CRC分別產生感應電場,也就是部分感應電場會被引導至顯示面板的上電極。而由如圖1D所示,對於感應電場的輸入電性而言,面板的等效電容值為兩個電容CTP與CRC的並聯值Cin
在本揭露內容實施範例所提出的觸控顯示面板的系統、驅動方法以及架構,用以降低超薄的觸控顯示面板(例如AMOLED顯示面板結合觸控面板)之間的電阻值或是降低所述電阻值帶來的影響,以減少觸碰事件無法感應或是感應誤判的情況產生。而本揭露內容實施範例所適用的超薄觸控顯示面板,顯示面板與觸 控面板貼合的厚度可低於100微米(μm)以下等級,甚至可達2到100微米(μm)的等級。
本揭露內容所提出觸控顯示面板的驅動方法,在多個實施範例其中之一,請參照圖2,圖2為適用於超薄的觸控顯示面板(例如AMOLED顯示面板結合觸控面板)的驅動方法實施範例,並用以取得觸控面板回報觸碰點的流程示意圖。首先,在控制介面200上,執行步驟S210,判斷是否有碰觸的動作或是未碰觸。在此實施範例中的碰觸或是未碰觸指的是例如是否有感應事件的發生,而此感應事件指的是在觸控面板上所感測到的變化,而觸控面板可以採用電容式或其他類型。而觸控面板能夠檢測透過物體(例如,能夠影響在電路中的電容的導電材料物體)和使用者手部做出的觸碰事件。舉例而言,感應事件為觸碰事件。若是判斷沒有觸碰的發生,例如經過一預定的時間定期循環地偵測而確定沒有觸碰的發生,則取得感測電極與驅動電極之間形成一個電容CTP的跨電壓值,並且加以記錄,如步驟S212。若是判斷有觸碰的發生,則取得感測電極與顯示面板(如AMOLED)的上電極間形成另一電容CRC的跨電壓值,並且加以記錄,如步驟S214。
而後如步驟S216,根據取得的電容CTP與電容CRC的跨電壓值,判斷電容CTP與電容CRC的跨電壓值之間的差異變化,若電容CRC的跨電壓值減去電容CTP的跨電壓值小於一個預訂的臨界電壓(Threshold Voltage)時,則表示感測電極與顯示面板間形成的電容CRC的已經產生影響,可能會帶來觸碰事件無法感應或是 感應誤判的情況產生,因此,如步驟S230的本揭露內容的一個實施範例中,進行系統驅動參數的調整。而調整的方式例如動態延長感應時間等等。若是電容CRC的跨電壓值減去電容CTP的跨電壓值並未小於預訂的臨界電壓值,則如步驟S218,接著判斷手指的變化量是否小於門檻值,例如感測電極與驅動電極之間形成一個電容CTP的跨電壓值(即為感應電壓)的變化值是否小於一門檻值,若是小於此門檻值,則如步驟S230的本揭露內容的一個實施範例中,進行系統驅動參數的調整。此門檻值可以是觸控面板原來已經設定完成的內建預設值,或是根據設計而調整的設定值。若是感應電壓的變化值是否大於門檻值,則確定是有效的觸碰,因此由觸控面板回報觸控點。
本揭露內容實施範例中對於系統驅動參數的調整,包括例如對觸控面板感應時間的調整。請參照圖3A至圖3C,圖3A至圖3C為說明本實施範例中,為了調整系統驅動參數而對觸控面板感應時間調整的前後電壓對應時間變化示意圖。請參照圖3A,圖3A為說明在一般的設計下,不會受到觸控顯示面板的顯示面板對於觸碰事件的影響下,觸控面板對於是否有感應事件產生而取得的對電壓與時間變化示意圖。當沒有感應事件發生時,感測電極與驅動電極之間的電容CTP跨電壓值如虛線310,以CTP(Non-Touch)表示。當感應事件發生時,電容CTP的跨電壓值如實線320所示,這裡以CTP(Touch)表示。一般而言,在感應時間ts的時間點,觸控面板進行感應讀出跨電壓值進行感應時間的讀取。
請參照圖3B,圖3B為說明當觸控顯示面板(例如AMOLED顯示面板結合觸控面板)的設計越來越薄的情況下,觸控面板對於是否有感應事件產生而取得的對電壓與時間變化示意圖。由於觸控顯示面板的設計越來越薄,因此,感測電極與顯示面板的上電極之間形成了電容CRC,對於感應驅動期間的操作而言,面板的等效電容值為兩個電容CTP與CRC的並聯值Cin。由於此原因,驅動的電壓值會因為部分的感應電場被顯示面板的上電極引導掉,所以感測到的電壓對應時間變化在相同的時間下,會比圖3A得到的電容CTP的跨電壓值低。請再參照圖3B,感測電極與驅動電極之間的電容CTP跨電壓值在沒有感應事件發生時如虛線330,以CTP(Non-Touch)表示。當感應事件發生時,電容CTP的跨電壓值如實線340所示,這裡以CTP(Touch)表示。例如在感應時間ts的時間點時,沒有感應事件發生的電容CTP跨電壓值與有感應事件發生時的電容CTP跨電壓值相差非常小,因此非常容易產生無法感應或是感應誤判的情況產生。
請參照圖3C,為說明本揭露內容實施範例中經過系統驅動參數調整後,觸控面板對於是否有感應事件產生而取得的對電壓與時間變化示意圖。在此實施範例中,系統驅動參數調整的方式為將原來的感應時間Ts的時間點往後延長到N倍的時間,也就是在時間點N乘以Ts的時間(時間點N*Ts)。感測電極與驅動電極之間的電容CTP跨電壓值在沒有感應事件發生時如虛線350,以CTP(Non-Touch)表示。當感應事件發生時,電容CTP的跨電壓值如實 線360所示,這裡以CTP(Touch)表示。從圖示中可以清楚理解,在時間點N*Ts時,跨電壓值CTP(Touch)與跨電壓值CTP(Non-Touch)之間的差值比起原先設定的感應時間Ts增加很多。這樣的設計可以減少無法感應或是感應誤判的情況產生。
本揭露內容實施範例中,對於系統驅動參數的調整採用對觸控面板感應時間的調整適用於各種不同的觸控面板驅動架構。底下將簡單介紹幾個適用的觸控面板驅動架構,但並非以此為限制。
請參照圖4,為說明運用本揭露內容實施範例所提出對觸控面板調整系統驅動參數的電荷轉移架構電路示意圖。此電荷轉移架構電路400包括電荷泵410、電容感測器(Cx)420、參考採樣電容(Cs)430、比較器440、閂鎖器(Latch)450、計數器460、以及多個切換器SW1~SW3。單端電荷轉移電容感測器420在每個感測通道採用一個電極板,但不依賴於時序測量或放大器,而是採用互補式金屬氧化物半導體(CMOS)開關(如切換器SW1)把電荷泵入電容感測器(如圖所標示的電容Cx)420,並把電荷轉移到一個參考採樣電容(Cs)430中。透過計算參考採樣電容(Cs)430達到預先設定的電壓值所需的週期數,就可很容易求得電壓位準,且這個週期數與電容感測器(Cx)420成反比。電荷轉移方法有助於抑制洩漏電流的影響,而且由於本揭露實施範例採用一個很大的參考採樣電容(Cs)430作為檢測器,這個檢測器相當於對外界的一個低阻抗,故其抗外部電氣雜訊的能力非常強。在本揭露實施範例中對 於系統驅動參數的調整運用在電荷轉移架構電路可以調整達到預先設定的電壓值所需的週期數。
請參照圖5,為說明運用本揭露內容實施範例所提出對觸控面板調整系統驅動參數的定電流充放電電路示意圖。此定電流充放電電路500為逐次逼近電容感應(CapSense Successive Approximation;CSA)技術。定電流充放電電路500包括定電流源510、電容感測器(如圖所標示的電容Cx)520、選擇性的外部修正電容(CMod)530、內部電容(CInternal)540、低通濾波器(Low Pass Filter)550、比較器560、以及幾個開關SW1與SW2。電容感測器(Cx)520藉由內部的類比匯流排與選擇性的外部修正電容(CMod)530、內部電容(CInternal)540並聯。
在CSA設計中,抗干擾能力表現在兩個方面,其一,採用了開關電容電路,和外部調製電容組成了低阻通路,電容感測器(Cx)520上的雜訊由於低阻通路的原因,在到達調製器之前已得到了很大的衰減。另外,CSA方式分為三個階段,階段1時,感測器電容(Cx)520連接內部類比匯流排,完成初始化的工作,通過開關SW1與SW2使外部修正電容(CMod)530恢復到起始電壓(VStart);階段2為掃描階段,此時開關SW1與SW2部分斷開,由定電流源510給外部修正電容(CMod)530充電,計數器開始計數,一直到外部修正電容(CMod)530電壓達到比較器560的參考電壓(VREF),發生翻轉,計數結束;階段3,掃描結束,電路的韌體(Firmware)處理計數器資料。這三個階段結束就完成了一次掃描, 然後會進入下一次掃描。電容感測器(Cx)520只有在階段1連接內部匯流排,在真正的測量計數階段,階段2和3都是斷開的,那麼電容感測器(Cx)520上的雜訊就不會影響到計數,所以抗干擾能力大大提高了。在本揭露實施範例中對於系統驅動參數的調整運用在CSA設計可以調整階段1的時間以達到調整感應的時間。
請參照圖6,為說明運用本揭露內容實施範例所提出對觸控面板調整系統驅動參數的鬆弛震盪法技術電路示意圖。鬆弛震盪法技術電路架構600包括電容元件(Ctouch)610、感測電極620、感應電容(Cx)630、切換控制器640以及感測電路650。鬆弛震盪法技術電路架構是利用RC時間常數技術的基本原理,當電容元件(Ctouch)610隨手指觸摸改變時,電極區域充電或放電所需的時間也隨之改變。測量充/放電期間的變化可得到電容元件(Ctouch)610的變化,因為電容元件(Ctouch)610是未知,所以假設為感應電容(Cx)630,這種方法有許多變化形式,可測量頻率或時間、可自由運行或以單週期為基礎。在本揭露實施範例中對於系統驅動參數的調整運用在鬆弛震盪法技術電路設計可以調整充電或放電所需的時間以達到調整感應的時間。
請參照圖7,為說明觸控顯示面板及驅動電路之間的驅動訊號傳輸示意圖。觸控顯示面板700包括例如主動矩陣有機發光二極體(AMOLED)顯示面板與觸控面板,為了方便說明,圖7僅顯示AMOLED顯示面板的上電極710、觸控面板的傳送電極(TX)730、接收電極(RX)740、位於顯示面板與觸控面板兩者之間 的絕緣層720、位於接收電極(RX)740與傳送電極(TX)730之間的絕緣層770以及位於觸控面板上方的覆蓋層750。而驅動電路760則電性耦接到觸控面板的傳送電極(TX)730與接收電極(RX)740。在進行觸碰掃描,以確定是否有感應事件發生時,驅動電路760會傳輸掃描訊號給傳送電極(TX)730,而從接收電極(RX)740則對應掃描信號而回傳掃描的結果回驅動電路760。
如前所述,為了因應觸控顯示面板(例如AMOLED顯示面板結合觸控面板)的設計越來越薄的要求,所造成在感測電極與顯示面板的上電極之間形成電容CRC,而對感應驅動期間的操作時將造成感應電容CTP的跨電壓值降低,容易產生無法感應或是感應誤判的情況產生。為了避免此情況,請參照圖8A,只要能夠降低或是去除感測電極與顯示面板的上電極之間所形成電容CRC,即可以避免感應驅動期間的操作時感應電容CTP的跨電壓值降低的情況。
底下圖8B~8F提出幾個實施範例,用以說明針對包括例如主動矩陣有機發光二極體(AMOLED)顯示面板與觸控面板的觸控顯示面板,如何降低或是去除感測電極與顯示面板的上電極之間所形成的電容CRC,並且達到有效感應或是降低感應誤判的情況實施範例,但並非以此為限制。在圖8B~8F所提出的幾個實施範例中,為方便說明,觸控顯示面板800的結構僅繪製部分結構,包括AMOLED顯示面板的上電極810、觸控面板的傳送電極(TX)830、接收電極(RX)840、位於顯示面板與觸控面板兩者之間 的絕緣層820、位於接收電極(RX)840與傳送電極(TX)830之間的絕緣層870以及位於觸控面板上方的覆蓋層850。底下將根據此結構說明8B~8F所提出的幾個實施範例。
如圖8B所示的實施範例,AMOLED顯示面板的上電極810電性連接到傳送電極(TX)830,則因為兩端的電壓位準相同,因此可以有效地消除之間所形成的電容CRC。如圖8C所示的實施範例,在進行觸碰掃描時,驅動電路會傳輸掃描訊號給傳送電極(TX)830,若是如圖8C所示具有第一電壓值的V1電位的脈衝時脈訊號時,相同的脈衝時脈訊號也可以同時傳送到給AMOLED顯示面板的上電極810,以做為驅動顯示之用,則因為兩端的電壓位準在同一時間下是相同的,因此也可以有效地消除之間所形成的電容CRC。在另一個選擇實施範例中,AMOLED顯示面板的上電極810的脈衝時脈訊號也可以是具有V1電位位準,但是時脈周期等於或是大於傳送給傳送電極(TX)830的具有V1電位位準的脈衝時脈訊號。
在另一個實施範例中,請參照圖8D,在進行觸碰掃描時,驅動電路會傳輸掃描訊號給傳送電極(TX)830,若是如圖8D所示具有V1電位的脈衝時脈訊號時,可以將固定電壓位準的第一電壓值的V1電位的訊號傳送到給AMOLED顯示面板的上電極810,則因為在觸碰掃描期間兩端的電壓位準是相同的,因此可以有效地消除之間所形成的電容CRC
在又一實施範例中,請參照圖8E,在進行觸碰掃描時, 驅動電路會傳輸掃描訊號給傳送電極(TX)830,若是如圖8E所示具有V1電位的脈衝時脈訊號時,可以採用比V1電位大的第二電壓值的V2電位的脈衝時脈訊號同時傳送到給AMOLED顯示面板的上電極810,以做為驅動顯示之用,則因為AMOLED顯示面板的上電極810的電壓位準在同一時間期間是高於傳送電極(TX)830的電壓位準,因此也可以有效地消除之間所形成的電容CRC。在另一個實施範例中,請參照圖8F,在進行觸碰掃描時,驅動電路會傳輸掃描訊號給傳送電極(TX)830,若是如圖所示具有V1電位的脈衝時脈訊號時,可以將比V1電位大的固定電壓位準的V2電位的訊號傳送到給AMOLED顯示面板的上電極810,則因為AMOLED顯示面板的上電極810的電壓位準在同一時間期間是高於傳送電極(TX)830的電壓位準,因此也可以有效地消除之間所形成的電容CRC
前述幾個實施範例,可以用來有效地降低或是去除感測電極與顯示面板的上電極之間所形成的電容CRC,並且達到有效感應或是降低感應誤判的情況實施範例。而如圖8B所示的實施例,若是將AMOLED顯示面板的上電極810電性連接到傳送電極(TX)830,則因為兩端的電壓位準相同,因此可以有效地消除之間所形成的電容CRC。相同的原理,在另外的一個或多個實施範例中,若是能將觸碰到觸控面板的手的電位維持在與AMOLED顯示面板的上電極電位相同或是更低,則也可以有效地降低感應誤判或錯誤的情況。在多個具體實施範例中,例如可以在手持式電子 裝置側面、背面(或背板)或是除了顯示面板區域之外的任何使用者手部可以接觸到的區域,鋪設或配置一條或多條等電位電極,當使用者在使用手持式電子裝置,並且在進行觸碰時,則可以達成觸碰到觸控面板的手的電位維持在與AMOLED顯示面板的上電極電位相同或更低的電位,如此也可有效地消除之間所形成的電容CRC。底下將以實施範例說明。
請參照圖9A所示,若是能將觸碰到觸控面板的手的電位維持在與AMOLED顯示面板的上電極電位相同,則也可以有效地降低感應誤判或錯誤的情況。而圖9B則是說明達到此消除電容CRC效應的實施範例。在此本實施範例中,例如運用在手持式電子裝置900,只要在手持式電子裝置900主體的殼體902後方背板規劃交錯的幾條導電線或電極,可以稱為等電位電極904,而這些等電位電極904可以經由驅動電路施以與顯示面板的上電極電位相同大小的訊號即可。一旦使用者手握手持式電子裝置900,並且在進行觸碰時,則可以達成觸碰到觸控面板的手的電位維持在與AMOLED顯示面板的上電極電位相同。
請參照圖9C,為說明達成圖9A實施例所提出觸碰到觸控面板的手960的電位維持在與AMOLED顯示面板的上電極電位相同的具體實施範例的架構示意圖。為方便說明,觸控顯示面板的結構僅繪製部分結構,包括AMOLED顯示面板的上電極910、觸控面板的傳送電極(TX)930、接收電極(RX)940、位於顯示面板與觸控面板兩者之間的絕緣層920、位於接收電極(RX)940與傳送 電極(TX)930之間的絕緣層970以及位於觸控面板上方的覆蓋層950。由於在手持式電子裝置主體外部的背板布滿了等電位電極904,因此,施於手960與AMOLED顯示面板的上電極910的電位相同,都是具有V1電位的脈衝時脈訊號。如此將可以有效地消除之間所形成的電容CRC
在另外一個實施範例中,為了有效地消除電容CRC,也可提出分別控制觸碰到觸控面板的手的電位與AMOLED顯示面板的上電極的電位的具體實施範例,其架構示意圖請參照圖9D。而控制觸碰到觸控面板的手的電位可以經由例如手持式電子裝置主體外部的背板配置多條等電位電極,或是其他可具體實現的方式,例如在手持式電子裝置邊框位置配置多條等電位電極等等方式皆可達成,並非以此為限制。施於手960的電位為具有第一電壓值的V1電位的脈衝時脈訊號,而施於AMOLED顯示面板的上電極910的電位為具有第二電壓值的V2電位的脈衝時脈訊號,而只要控制在觸碰掃描期間的V1電位小於V2電位的大小。如此將可以有效地消除之間所形成的電容CRC
而圖9E則是說明達到此消除電容CRC效應的另一個實施範例。在此本實施範例中,在手持式電子裝置900a的殼體902a側面規劃至少兩條的導電線或電極,可以稱為等電位電極904a,而這些等電位電極904a可以經由驅動電路施以與顯示面板901的上電極電位相同大小的訊號即可。一旦使用者手握手持式電子裝置900,並且在進行觸碰時,則可以達成觸碰到觸控面板的手的電 位維持在與AMOLED顯示面板的上電極電位相同。
雖然本揭露已以實施範例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
200‧‧‧控制介面
S210~S230‧‧‧步驟

Claims (7)

  1. 一種觸控感測方法,適用於觸控顯示裝置,其中該觸控顯示裝置包括一顯示面板以及一觸控面板,該顯示面板包括一電極層,該觸控面板包括一驅動電極層,該觸控感測方法包括:對該驅動電極層施以一電壓;設定一系統參數以判斷一感應事件是否發生,若否,則取得一感測電壓,若是,則對應於該感應事件取得一寄生電容電壓;以及判斷該寄生電容電壓減去該感測電壓之值是否小於一臨界電壓,若是,則調整該系統參數並重新根據更新後的系統參數判斷下一感應事件是否發生,若否,則判斷該感測電壓的變化量是否小於一門檻值,若否,則回報一觸碰點,若是,則調整該系統參數重新根據更新後的系統參數判斷下一感應事件是否發生。
  2. 如申請專利範圍第1項所述的觸控感測方法,其中,調整該系統參數方法包括延長感應時間。
  3. 如申請專利範圍第1項所述的觸控感測方法,其中,調整該系統參數方法包括在一定電流充放電電路架構中,調整初始化階段的時間。
  4. 如申請專利範圍第3項所述的觸控感測方法,其中,調整該初始化階段的時間為延長初始化階段的時間。
  5. 如申請專利範圍第1項所述的觸控感測方法,其中,調整該系統參數方法包括調整充電或放電所需的時間。
  6. 如申請專利範圍第1項所述的觸控感測方法,其中,該觸控面板以外嵌(On-Cell)的方式外嵌於該顯示面板表面上。
  7. 一種觸控顯示裝置,用以執行如請求項1的觸控感測方法,其中該觸控顯示裝置包括:一顯示面板,該顯示面板包括一電極層;以及一觸控面板,該觸控面板包括一驅動電極層。
TW104121264A 2014-10-21 2015-06-30 觸控感測方法及觸控顯示裝置 TWI569181B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510595998.9A CN105528108B (zh) 2014-10-21 2015-09-18 触控感应方法、触控显示装置及可携式电子装置
US14/881,159 US9811206B2 (en) 2014-10-21 2015-10-13 Touch sensing method, touch display apparatus and portable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462066381P 2014-10-21 2014-10-21

Publications (2)

Publication Number Publication Date
TW201616313A TW201616313A (zh) 2016-05-01
TWI569181B true TWI569181B (zh) 2017-02-01

Family

ID=56508576

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105134052A TWI587195B (zh) 2014-10-21 2015-06-30 觸控感測方法及可攜式電子裝置
TW104121264A TWI569181B (zh) 2014-10-21 2015-06-30 觸控感測方法及觸控顯示裝置
TW105134050A TWI569186B (zh) 2014-10-21 2015-06-30 觸控感測方法及觸控顯示裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105134052A TWI587195B (zh) 2014-10-21 2015-06-30 觸控感測方法及可攜式電子裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105134050A TWI569186B (zh) 2014-10-21 2015-06-30 觸控感測方法及觸控顯示裝置

Country Status (1)

Country Link
TW (3) TWI587195B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491195B (zh) * 2016-06-12 2024-04-30 安徽精卓光显技术有限责任公司 检测方法、检测装置及触摸屏
TWI584254B (zh) * 2016-08-05 2017-05-21 Chipone Technology (Beijing)Co Ltd Drive signal generation circuit
KR101879285B1 (ko) * 2017-08-01 2018-07-17 송청담 고감도 정전 센서 회로
KR102552746B1 (ko) * 2018-07-30 2023-07-07 주식회사 엘엑스세미콘 터치구동장치 및 디스플레이장치
TWI712928B (zh) * 2019-05-15 2020-12-11 友達光電股份有限公司 觸控顯示裝置
TWI811953B (zh) * 2022-01-12 2023-08-11 新唐科技股份有限公司 觸控感測電路及觸控判斷方法
TWI825758B (zh) * 2022-06-01 2023-12-11 瑞昱半導體股份有限公司 電容感測裝置與電容感測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110007030A1 (en) * 2009-07-09 2011-01-13 Michael Mo Ultrathin mutual capacitance touch screen and combined ultrathin touch screen
TW201131451A (en) * 2010-03-08 2011-09-16 Chunghwa Picture Tubes Ltd Capacitance sensing circuit
CN101739186B (zh) * 2008-11-21 2013-08-21 群创光电股份有限公司 影像显示系统、电容式触控面板及其电容测量装置与方法
CN103677432A (zh) * 2014-01-07 2014-03-26 华映视讯(吴江)有限公司 触控面板驱动方法及触控系统
TW201437896A (zh) * 2012-05-18 2014-10-01 Egalax Empia Technology Inc 電容式觸摸屏的偵測裝置與方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739186B (zh) * 2008-11-21 2013-08-21 群创光电股份有限公司 影像显示系统、电容式触控面板及其电容测量装置与方法
US20110007030A1 (en) * 2009-07-09 2011-01-13 Michael Mo Ultrathin mutual capacitance touch screen and combined ultrathin touch screen
TW201131451A (en) * 2010-03-08 2011-09-16 Chunghwa Picture Tubes Ltd Capacitance sensing circuit
TW201437896A (zh) * 2012-05-18 2014-10-01 Egalax Empia Technology Inc 電容式觸摸屏的偵測裝置與方法
CN103677432A (zh) * 2014-01-07 2014-03-26 华映视讯(吴江)有限公司 触控面板驱动方法及触控系统

Also Published As

Publication number Publication date
TWI569186B (zh) 2017-02-01
TW201704970A (zh) 2017-02-01
TW201616313A (zh) 2016-05-01
TWI587195B (zh) 2017-06-11
TW201710864A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI569181B (zh) 觸控感測方法及觸控顯示裝置
US9110545B2 (en) Apparatus and associated methods
US20190004629A1 (en) Pseudo Driven Shield
US9904378B1 (en) Dynamic shield electrode of a stylus
US10013593B2 (en) Multiphase fingerprint sensor layout and construction
US8063330B2 (en) Uniform threshold for capacitive sensing
JP5633565B2 (ja) 能動タッチシステム
TWI698790B (zh) 用於手勢偵測及追蹤之電極配置
US7307626B2 (en) Capacitive touch sensor
KR101523596B1 (ko) 터치 및 호버 감지
WO2016112848A1 (zh) 电子设备及其触摸感测系统、以及触摸感测系统的检测方法
US9811206B2 (en) Touch sensing method, touch display apparatus and portable electronic device
KR20160025440A (ko) 터치 패널 및 이를 구비한 좌표 측정 시스템
EP3080753A1 (en) Fingerprint sensing system and method comprising a reference sensing element
KR20130136378A (ko) 기생 정전용량을 조정하는 터치 검출 장치 및 방법
JP7454912B2 (ja) センサ電極からの電磁放射の緩和
US20170350771A1 (en) Force sensor with noise shielding layer
JP2020166656A (ja) タッチ検出回路、入力装置、電子機器
KR101490705B1 (ko) 노이즈 영향을 감소시킨 정전용량 방식의 터치 패널 및 터치 위치 검출 방법
KR101763589B1 (ko) 정전용량방식 센서장치
EP2624108B1 (en) Touch recognition method, touch key structure and touch device
KR101619081B1 (ko) 상호 정전용량 터치 센서의 터치 감도 증가를 위한 캘리브레이션 방법
US11262870B2 (en) Touch sensing device and driving method for driving touch sensing device
US11106317B1 (en) Common mode noise suppression with restoration of common mode signal