TWI567844B - Layout structure of electronic element and testing method of the same thereof - Google Patents
Layout structure of electronic element and testing method of the same thereof Download PDFInfo
- Publication number
- TWI567844B TWI567844B TW102102050A TW102102050A TWI567844B TW I567844 B TWI567844 B TW I567844B TW 102102050 A TW102102050 A TW 102102050A TW 102102050 A TW102102050 A TW 102102050A TW I567844 B TWI567844 B TW I567844B
- Authority
- TW
- Taiwan
- Prior art keywords
- resistance
- electronic component
- test pad
- load
- array
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Description
本發明是有關於一種電子元件之佈局結構及一種測試電子元件之方法,且特別是有關於一種具有電子元件陣列之電子元件的佈局結構,以及測試此電子元件陣列方法。 The present invention relates to a layout structure of an electronic component and a method of testing the electronic component, and more particularly to a layout structure of an electronic component having an array of electronic components, and a method of testing the electronic component array.
在半導體製程中,為了評估元件在通過製程後的性能,會對晶圓進行晶圓接受度測試(WAT,Wafer Acceptance Test),以確認半導體製程的穩定性。 In the semiconductor process, in order to evaluate the performance of the component after passing the process, the wafer is subjected to Wafer Acceptance Test (WAT) to confirm the stability of the semiconductor process.
晶圓接受度測試的準確性,會直接影響到半導體元件訂單對於黃金晶方(Golden Die)的選擇。舉例來說,若晶圓接受度測試過程有誤差,會造成黃金晶方的選擇結果與預期的規範標準有誤差,進而影響產品的穩定性。因此,需要準確的晶圓接受度測試結果,來維持晶圓的品質與穩定性,以符合使市場需求。 The accuracy of the wafer acceptance test will directly affect the choice of the semiconductor component order for the Golden Die. For example, if there is an error in the wafer acceptance test process, the selection result of the gold crystal side will be inaccurate with the expected specification standard, which will affect the stability of the product. Therefore, accurate wafer acceptance test results are needed to maintain wafer quality and stability to meet market demands.
本發明係有關於一種電子元件之佈局結構及一種電子元件之測試方法。待測之電子元件陣列的兩端係耦接有負載,負載包括兩個耦接之測試墊。藉由計算負載的阻值,回推電子元件陣列的電流,可以提高晶圓接受度測試的準確性。 The present invention relates to a layout structure of an electronic component and a test method of the electronic component. The two ends of the electronic component array to be tested are coupled with a load, and the load includes two coupled test pads. By calculating the resistance of the load and pushing back the current of the electronic component array, the accuracy of the wafer acceptance test can be improved.
根據本發明之第一態樣,提出一種電子元件的佈局結構,包括電子元件陣列、第一負載及第二負載。第一負載係耦接至電子元件陣列之第一端,包括第一測試墊及第二測試墊耦接至第一測試墊。第二負載係耦接至電子元件陣列之第二端,第二負載包括第三測試墊及第四測試墊耦接至第三測試墊。 According to a first aspect of the present invention, a layout structure of an electronic component is provided, including an array of electronic components, a first load, and a second load. The first load is coupled to the first end of the electronic component array, and the first test pad and the second test pad are coupled to the first test pad. The second load is coupled to the second end of the electronic component array, and the second load includes a third test pad and a fourth test pad coupled to the third test pad.
根據本發明之第二態樣,提出一種電子元件的測試方法,方法包括以下步驟。提供一電子元件的布局結構,包括一電子元件陣列、第一負載耦接至電子元件陣列之第一端及第二負載耦接至電子元件陣列之第二端。第一負載包括第一測試墊及第二測試墊耦接至第一測試墊,第二負載包括第三測試墊及第四測試墊耦接至第三測試墊。設置第一探針至第一負載上,且設置第二探針至第二負載上。計算第一電阻,且計算第二電阻,第一電阻係第一負載之電阻及第一探針與第一負載之接觸電阻,第二電阻係第二負載之電阻及第二探針與第二負載之接觸電阻。於第一負載與第二負載之間施加一壓差。量測通過電子元件陣列之一量測電流。根據量測電流、壓差、第一電阻及第二電阻,計算通過電子元件陣列之一校正後的電流。 According to a second aspect of the present invention, a method of testing an electronic component is provided, the method comprising the following steps. An electronic component layout structure is provided, including an electronic component array, a first load coupled to the first end of the electronic component array, and a second load coupled to the second end of the electronic component array. The first load includes a first test pad and a second test pad coupled to the first test pad, and the second load includes a third test pad and a fourth test pad coupled to the third test pad. The first probe is disposed on the first load, and the second probe is disposed on the second load. Calculating a first resistance, and calculating a second resistance, the first resistance is a resistance of the first load and a contact resistance between the first probe and the first load, the second resistance is a resistance of the second load, and the second probe and the second Contact resistance of the load. A pressure difference is applied between the first load and the second load. The measurement measures the current through one of the arrays of electronic components. The current corrected by one of the electronic component arrays is calculated based on the measured current, the differential pressure, the first resistance, and the second resistance.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
第1圖繪示依照本發明一實施例之電子元件的佈局結構10的電路圖。電子元件的佈局結構10包括電子元件 陣列100、第一負載102、第二負載104、第三負載106及第四負載108。第一負載102係耦接至電子元件陣列100之第一端,第二負載104係耦接至電子元件陣列100之第二端,第三負載106係耦接至電子元件陣列100之第三端,第四負載108係耦接至電子元件陣列100之第四端。 FIG. 1 is a circuit diagram of a layout structure 10 of an electronic component in accordance with an embodiment of the present invention. Electronic component layout structure 10 includes electronic components The array 100, the first load 102, the second load 104, the third load 106, and the fourth load 108. The first load 102 is coupled to the first end of the electronic component array 100, the second load 104 is coupled to the second end of the electronic component array 100, and the third load 106 is coupled to the third end of the electronic component array 100. The fourth load 108 is coupled to the fourth end of the electronic component array 100.
請參考第1圖,電子元件陣列100例如包括複數個電晶體。於一實施例中,電子元件陣列100可以係金氧半電晶體陣列,包括複數個金氧半電晶體(MOSFET,Metal-Oxide-Semiconductor Field-Effect Transistor)1002。第1圖之電子元件陣列100係以金氧半電晶體陣列為例作繪示說明,並不以此為限制,於其他實施例中,電子元件陣列100也可以係其他電晶體陣列。 Referring to FIG. 1, the electronic component array 100 includes, for example, a plurality of transistors. In one embodiment, the electronic component array 100 can be a metal oxide semi-transistor array, including a plurality of metal-oxide-semiconductor field-MOSFET (MOSFET) 1002. The electronic component array 100 of FIG. 1 is exemplified by a gold oxide semi-transistor array, and is not limited thereto. In other embodiments, the electronic component array 100 may be another transistor array.
如第1圖所示,金氧半電晶體1002之源極S彼此相接以形成共源極(Common Source),此共源極連接至電子元件陣列100之第一端。金氧半電晶體1002之汲極D彼此相接以形成共汲極(Common Drain),此共汲極連接至電子元件陣列100之第二端。金氧半電晶體1002之閘極G彼此相接以形成共閘極(Common Gate),此共閘極連接至電子元件陣列100之第三端。金氧半電晶體1002之基極彼此相接以形成共基極(Common Body),此共基極連接至電子元件陣列100之第四端。 As shown in FIG. 1, the source S of the MOS transistor 1002 is connected to each other to form a common source connected to the first end of the electronic device array 100. The drains D of the MOS transistor 1002 are connected to each other to form a common drain which is connected to the second end of the electronic component array 100. The gates G of the MOS transistors 1002 are connected to each other to form a common gate which is connected to the third terminal of the electronic component array 100. The bases of the MOS transistors 1002 are connected to each other to form a common body, which is connected to the fourth end of the electronic component array 100.
第2圖繪示如第1圖之電子元件的佈局結構的一實施例之示意圖。於第2圖之電子元件的佈局結構10與第1圖的電子元件的佈局結構10,相同元件係以相同符號表示,容此不再贅述。 FIG. 2 is a schematic view showing an embodiment of a layout structure of an electronic component as shown in FIG. 1. The layout structure 10 of the electronic component in FIG. 2 and the layout structure 10 of the electronic component in FIG. 1 are denoted by the same reference numerals and will not be described again.
如第2圖所示,第一負載102係耦接至電子元件陣列100之第一端100a,且第一負載102包括第一測試墊1020及第二測試墊1022,第二測試墊1022係耦接至第一測試墊1020。第二負載104係耦接至電子元件陣列100之第二端100b,第二負載104包括第三測試墊1040及第四測試墊1042,第四測試墊1042係耦接至第三測試墊1040。106與108也是測試墊,文中應略微說明並說明其與100之間也是由內連線所連接。 As shown in FIG. 2, the first load 102 is coupled to the first end 100a of the electronic component array 100, and the first load 102 includes a first test pad 1020 and a second test pad 1022, and the second test pad 1022 is coupled. Connected to the first test pad 1020. The second load 104 is coupled to the second end 100b of the electronic component array 100. The second load 104 includes a third test pad 1040 and a fourth test pad 1042. The fourth test pad 1042 is coupled to the third test pad 1040. 106 and 108 are also test pads, which should be slightly explained and explained that they are also connected by an interconnect.
於一實施例中,第一測試墊1020係藉由一第一內連線L1與第二測試墊1022耦接,且第三測試墊1040係藉由第二內連線L2與第四測試墊1042耦接。並且,第一測試墊1020係藉由第三內連線L3與電子元件陣列100耦接,且第三測試墊1040係藉由第四內連線L4與電子元件陣列100耦接。第三負載106藉由第五內連線L5與電子元件陣列100之第三端100c(共閘極)耦接。第四負載108係藉由第六內連線L6與電子元件陣列100之第四端100d(共基極)耦接。第一內連線L1、第二內連線L2、第三內連線L3、第四內連線L4、第五內連線L5及第六內連線L6可以包括複數條並聯設置的金屬導線,且此些金屬導線係具有低阻值之金屬導線。 In one embodiment, the first test pad 1020 is coupled to the second test pad 1022 by a first interconnecting line L1, and the third test pad 1040 is coupled to the fourth test pad by the second interconnecting line L2. 1042 is coupled. Moreover, the first test pad 1020 is coupled to the electronic component array 100 by the third interconnecting line L3, and the third test pad 1040 is coupled to the electronic component array 100 by the fourth interconnecting line L4. The third load 106 is coupled to the third end 100c (common gate) of the electronic component array 100 by the fifth interconnect L5. The fourth load 108 is coupled to the fourth end 100d (common base) of the electronic component array 100 by the sixth interconnect L6. The first interconnecting line L1, the second interconnecting line L2, the third interconnecting line L3, the fourth interconnecting line L4, the fifth interconnecting line L5, and the sixth interconnecting line L6 may include a plurality of metal wires arranged in parallel And such metal wires are metal wires having a low resistance value.
以下配合實施例,說明電子元件的佈局結構10的測試方法。請參考第3圖,其繪示依照本發明一實施例之電子元件的佈局結構的測試方法示意圖。第3圖中與第1、2圖相同之元件係以相同符號表示,容此不再贅述。 The test method of the layout structure 10 of the electronic component will be described below with reference to the embodiments. Please refer to FIG. 3, which is a schematic diagram showing a test method for the layout structure of an electronic component according to an embodiment of the invention. The same components as those in the first and second figures in Fig. 3 are denoted by the same reference numerals and will not be described again.
請同時參考第2~3圖,第一負載102係用以與第一 探針(未繪示出)接觸,且第二負載104係用以與第二探針(未繪示出)接觸。電阻Rp1係表示第一測試墊1020之電阻以及第一探針與第一測試墊1020之接觸電阻。電阻Rp2係表示第二測試墊1022之電阻以及第一探針與第二測試墊1022之接觸電阻。電阻Rp3係表示第三測試墊1040之電阻以及第二探針與第三測試墊1040之接觸電阻。電阻Rp4係表示第四測試墊1042之電阻以及第二探針與第四測試墊1042之接觸電阻。 Please also refer to pictures 2~3, the first load 102 is used with the first A probe (not shown) is in contact and the second load 104 is used to contact a second probe (not shown). The resistor Rp1 represents the resistance of the first test pad 1020 and the contact resistance of the first probe to the first test pad 1020. The resistor Rp2 represents the resistance of the second test pad 1022 and the contact resistance of the first probe and the second test pad 1022. The resistor Rp3 represents the resistance of the third test pad 1040 and the contact resistance of the second probe to the third test pad 1040. The resistor Rp4 represents the resistance of the fourth test pad 1042 and the contact resistance of the second probe and the fourth test pad 1042.
電阻Rm1係表示第一內連線L1之電阻,電阻Rm2係表示第二內連線L2之電阻,電阻Rm3係表示第三內連線L3之電阻,且電阻Rm4係表示第四內連線L4之電阻。電阻Rm1、電阻Rm2、電阻Rm3及電阻Rm4的阻值,係可以依據電子設計規則(EDR,Electric Design Rule)的製程規格(specification)作預估。 The resistor Rm1 represents the resistance of the first interconnect L1, the resistor Rm2 represents the resistance of the second interconnect L2, the resistor Rm3 represents the resistance of the third interconnect L3, and the resistor Rm4 represents the fourth interconnect L4. Resistance. The resistance values of the resistor Rm1, the resistor Rm2, the resistor Rm3, and the resistor Rm4 can be estimated according to the specification of the Electronic Design Rule (EDR).
於一實施例中,可以計算第一負載102之電阻的阻值及第一探針與第一負載102之接觸電阻,作為一第一電阻Rt1的阻值。換句話說,第一電阻Rt1的阻值係第一探針與第一測試墊1020之接觸電阻的阻值、第一探針與第二測試墊1022之接觸電阻的阻值、第一測試墊1020的阻值、第二測試墊1022的阻值及第一內連線L1之電阻Rm1的阻值之和。 In one embodiment, the resistance of the first load 102 and the contact resistance of the first probe to the first load 102 can be calculated as the resistance of the first resistor Rt1. In other words, the resistance of the first resistor Rt1 is the resistance of the contact resistance of the first probe and the first test pad 1020, the resistance of the contact resistance of the first probe and the second test pad 1022, and the first test pad. The resistance of 1020, the resistance of the second test pad 1022, and the resistance of the resistance Rm1 of the first interconnect L1.
同樣地,可以計算第二負載104之電阻的阻值及第二探針與第二負載104之接觸電阻,作為第二電阻Rt2的阻值。換句話說,第二電阻Rt2的阻值可以係第二探針與第三測試墊1040之接觸電阻的阻值、第二探針與第四測試 墊1042之接觸電阻的阻值、第三測試墊1040的阻值、第四測試墊1042的阻值及第二內連線L2之電阻Rm2的阻值之和。 Similarly, the resistance of the second load 104 and the contact resistance of the second probe and the second load 104 can be calculated as the resistance of the second resistor Rt2. In other words, the resistance of the second resistor Rt2 can be the resistance of the contact resistance of the second probe and the third test pad 1040, the second probe and the fourth test. The resistance of the contact resistance of the pad 1042, the resistance of the third test pad 1040, the resistance of the fourth test pad 1042, and the resistance of the resistance Rm2 of the second interconnect L2 are summed.
第4圖繪示依照本發明一實施例之電子元件的佈局結構的測試方法示意圖。如第4圖所示,可以利用測試機台,於第一負載102’及第二負載104’之間施加一壓差。具體來說,可以施加第一外部電壓Vs至第一負載102’。並且,可以施加一第二外部電壓Vd至第二負載104’。亦即,此壓差係施加於第一負載102’之第一外部電壓與施加於第二負載104’之第二外部電壓之間的電位差。於第4圖之第一負載102’係包括第2圖之第一負載102與第三內連線L3,第二負載104’係包括第2圖之第二負載104與第四內連線L4。因此,電阻Rs的阻值係第一電阻Rt1與電阻Rm3之阻值和,電阻Rd的阻值係第二電阻Rt2與電阻Rm4之阻值和。 FIG. 4 is a schematic diagram showing a test method of a layout structure of an electronic component according to an embodiment of the invention. As shown in Fig. 4, a test press can be utilized to apply a pressure differential between the first load 102' and the second load 104'. Specifically, the first external voltage Vs can be applied to the first load 102'. Also, a second external voltage Vd can be applied to the second load 104'. That is, the voltage difference is the potential difference between the first external voltage applied to the first load 102' and the second external voltage applied to the second load 104'. The first load 102' in FIG. 4 includes the first load 102 and the third interconnect line L3 of FIG. 2, and the second load 104' includes the second load 104 and the fourth interconnect line L4 of FIG. . Therefore, the resistance of the resistor Rs is the resistance of the first resistor Rt1 and the resistor Rm3, and the resistance of the resistor Rd is the sum of the resistances of the second resistor Rt2 and the resistor Rm4.
於此實施例中,電子元件陣列100係金氧半電晶體陣列。依據金氧半電晶體的汲極電流Id與源極電壓Vs之特性曲線,可以得到汲極電流Id:Id=pVs’+n (1) In this embodiment, the electronic component array 100 is a gold oxide semi-transistor array. According to the characteristic curve of the gate current Id of the MOS transistor and the source voltage Vs, the drain current Id: Id=pVs'+n (1) can be obtained.
依據金氧半電晶體的汲極電流Id與汲極電壓Vd之特性曲線,可以得到汲極電流Id:Id=qVd’+m (2) According to the characteristic curve of the drain current Id and the drain voltage Vd of the gold-oxide semi-transistor, the drain current Id: Id=qVd'+m (2) can be obtained.
其中p、n、q及m係常數。 Wherein p, n, q and m are constants.
將方程式(1)與方程式(2)相加,可以得到流經電子元件陣列100之電流It: It=α Vs’+β+γ Vd’ (3) By adding equation (1) to equation (2), the current It flowing through the array of electronic components 100 can be obtained: It=α Vs'+β+γ Vd’ (3)
其中α、β及γ係常數。 Among them, α, β and γ are constants.
請繼續參考第4圖,依據歐姆定律,可以根據量測流經電子元件陣列100之電流It、第一外部電壓Vs及第一電阻Rs,於電子元件陣列100之第一端100a計算出第一負載102’耦接於電子元件陣列100之第一端100a的端電壓Vs’:Vs’=ItxRs+Vs (4) Referring to FIG. 4, according to Ohm's law, the first current 100a of the electronic component array 100 can be calculated according to the current It, the first external voltage Vs and the first resistor Rs flowing through the electronic component array 100. The load 102' is coupled to the terminal voltage Vs' of the first end 100a of the electronic component array 100: Vs' = ItxRs + Vs (4)
其中It為量測流經電子元件陣列100之電流,例如係為第4圖中,I1+I2+I3+I4+I5+I6的總和。 Where It is the current flowing through the electronic component array 100, for example, the sum of I1+I2+I3+I4+I5+I6 in Fig. 4.
根據量測流經電子元件陣列100之電流It、第二外部電壓Vd及第二電阻Rd,於電子元件陣列100之第二端100b,可計算出第二負載104’耦接於電子元件陣列100之第二端100b的端電壓Vd’:Vd’=Vd-ItxRd (5)將方程式(4)及方程式(5)中,第一端電壓Vs’及第二端電壓Vd’代入方程式(3),可以建立電流校正方程式,電流校正方程式係用以計算通過電子元件陣列100之校正後的電流:
其中流經電子元件陣列100之電流係表示為x倍之第一外部電壓Vs、z倍之第二外部電壓Vd與一參數之和。 The current flowing through the electronic component array 100 is expressed as x times the first external voltage Vs, z times the second external voltage Vd and a parameter. Sum.
分別施加三組第一外部電壓及第二外部電壓至第一負載及第二負載。換句話說,取三組第一外部電壓Vs及第二外部電壓Vd的電壓值代入方程式(6),依據量測流經電子元件陣列100之電流It、第一外部電壓Vs及第二外部電壓Vd、第一電阻Rs及第二電阻Rd,可求得x、y及z的值,再將求得之x、y及z代入電流校正方程式(6),即可以回推校正後的流經電子元件陣列100之電流Ic,以計算通過電子元件陣列100之一校正後的電流Ic。 Three sets of first external voltage and second external voltage are respectively applied to the first load and the second load. In other words, the voltage values of the three sets of the first external voltage Vs and the second external voltage Vd are substituted into the equation (6), and the current It, the first external voltage Vs, and the second external voltage flowing through the electronic component array 100 are measured according to the measurement. Vd, the first resistor Rs and the second resistor Rd, the values of x, y and z can be obtained, and the obtained x, y and z are substituted into the current correction equation (6), that is, the corrected flow can be pushed back. The current Ic of the electronic component array 100 is used to calculate the current Ic corrected by one of the electronic component arrays 100.
三組第一外部電壓Vs及第二外部電壓Vd的電壓值可以分次施加。舉例來說,於第一施加步驟中,可係以第一位準電壓(例如係Vdd)作為第一外部電壓Vs,並以0伏特(V)位準電壓作為第二外部電壓Vd。於第二施加步驟中,可係施加第一位準(例如係Vdd)與一偏壓值(例如係0.05V)之和為第一外部電壓Vs,並以0 V位準電壓作為第二外部電壓Vd。於第三施加步驟中,可係施加第一位準(例如係Vdd)作為第一外部電壓Vs,並以第二位準電壓(例如係Vss)減去與偏壓值(例如係0.05)之差,作為第二外部電壓Vd。 The voltage values of the three sets of the first external voltage Vs and the second external voltage Vd may be applied in different times. For example, in the first applying step, the first level voltage (for example, Vdd) may be used as the first external voltage Vs, and the 0 volt (V) level voltage may be used as the second external voltage Vd. In the second applying step, the sum of the first level (for example, Vdd) and a bias value (for example, 0.05V) may be applied as the first external voltage Vs, and the 0 V level voltage is used as the second external portion. Voltage Vd. In the third application step, a first level (eg, Vdd) may be applied as the first external voltage Vs, and a second level voltage (eg, Vss) may be subtracted from the bias value (eg, 0.05). Poor as the second external voltage Vd.
藉由施加三組不同數值之外部電壓,可以回推出校正後的電流Ic的值。由於回推出之校正後的電流Ic係排除測試墊與探針的接觸電阻以及測試墊的電阻的阻值造成的壓降(IR Drop)效應的影響,校正後的電流Ic較量測到量測電流It更為精確。 By applying three sets of external voltages of different values, the value of the corrected current Ic can be pushed back. Since the corrected current Ic is excluded from the influence of the contact resistance of the test pad and the probe and the voltage drop caused by the resistance of the test pad, the corrected current Ic is measured. The current It is more accurate.
第5圖繪示依照本發明一實施例與一比較例之統計結果比較圖。S1的統計結果係表示原始數據的標準差(Standard deviation),S2的統計結果係表示依照本發 明上述方法所得出之數據計算出來的標準差。 Figure 5 is a graph showing a comparison of statistical results according to an embodiment of the present invention and a comparative example. The statistical result of S1 represents the standard deviation of the original data, and the statistical result of S2 is expressed according to the present invention. The standard deviation calculated from the data obtained by the above method.
如第5圖所示,統計結果S1係依照傳統的晶圓接受度測試數據計算出來的標準差,此標準差包括晶片內(within-wafer)晶粒與晶粒之間(die to die)的整體標準差(global variation),以及個別晶粒(intra-die)的局部誤差變異(local variation)。相對地,統計結果S2係依照本發明上述方法的晶圓接受度測試數據計算出來的標準差,此標準差可以消除個別晶粒的誤差變異,僅保留晶片內晶粒與晶粒之間的誤差。 As shown in Figure 5, the statistical result S1 is the standard deviation calculated from the conventional wafer acceptance test data, including the in-wafer die to die. Global variation, as well as local variation of individual intra-die. In contrast, the statistical result S2 is a standard deviation calculated from the wafer acceptance test data of the above method of the present invention, and the standard deviation can eliminate the error variation of individual crystal grains, and only the error between the crystal grains and the crystal grains in the wafer is retained. .
統計結果S1與統計結果S2相比,兩者整體平均行為相似。而統計結果S1的數據較為離散且誤差較大,不利於黃金晶方(Golden Die)的選擇。換句話說,當要選擇通過電晶體之電流為510微安培(μA)的電晶體作為黃金晶方時,以本發明上述實施例之方法測試出來的電子元件(例如係金氧半電晶體)陣列,具有相較於510μA較小的誤差範圍。因此,可以確保製程的穩定性。 Compared with the statistical result S2, the statistical result S1 has similar average behaviors. The statistical result S1 data is relatively discrete and has large errors, which is not conducive to the choice of Golden Die. In other words, when a transistor having a current of 510 microamperes (μA) through a transistor is selected as a gold crystal, an electronic component (for example, a metal oxide semi-transistor) which is tested by the method of the above embodiment of the present invention is used. The array has a smaller error margin than 510 μA. Therefore, the stability of the process can be ensured.
綜上所述,本發明上述實施例之電子元件的佈局結構及具有此種電子元件的佈局結構之電子元件測試方法,係耦接負載至待測之電子元件陣列的兩端,且負載包括兩個耦接之測試墊。藉由計算負載的阻值,可回推流經電子元件陣列更為精確的電流,因而提高晶圓接受度測試的準確性,有助於黃金晶方的選擇。 In summary, the layout structure of the electronic component of the above embodiment of the present invention and the electronic component testing method having the layout structure of the electronic component are coupled to the load to the two ends of the electronic component array to be tested, and the load includes two A test pad coupled to it. By calculating the resistance of the load, the more accurate current flowing through the array of electronic components can be pushed back, thereby improving the accuracy of the wafer acceptance test and contributing to the choice of the gold crystal.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. Those having ordinary skill in the art to which the present invention pertains can be made in various ways without departing from the spirit and scope of the invention. Change and retouch. Therefore, the scope of the invention is defined by the scope of the appended claims.
10‧‧‧電子元件的佈局結構 10‧‧‧Layout structure of electronic components
100‧‧‧電子元件陣列 100‧‧‧Electronic component array
102、102’、104、104’、106、108‧‧‧負載 102, 102', 104, 104', 106, 108‧‧‧ loads
1002‧‧‧金氧半電晶體 1002‧‧‧Gold oxygen semi-transistor
100a、100b、100c、100d‧‧‧端 100a, 100b, 100c, 100d‧‧‧
1020、1022、1040、1042‧‧‧測試墊 1020, 1022, 1040, 1042‧‧‧ test pads
It‧‧‧電流 It‧‧‧ Current
L1、L2、L3、L4、L5、L6‧‧‧內連線 L1, L2, L3, L4, L5, L6‧‧‧ interconnection
Rp1、Rp2、Rp3、Rp4、Rm1、Rm2、Rm3、Rm4、Rs、Rd‧‧‧ 電阻 Rp1, Rp2, Rp3, Rp4, Rm1, Rm2, Rm3, Rm4, Rs, Rd‧‧ resistance
S1、S2‧‧‧統計結果 S1, S2‧‧‧ statistical results
Vs、Vs’、Vd、Vd’‧‧‧電壓 Vs, Vs', Vd, Vd'‧‧‧ voltage
S‧‧‧源極 S‧‧‧ source
D‧‧‧汲極 D‧‧‧汲
G‧‧‧閘極 G‧‧‧ gate
第1圖繪示依照本發明一實施例之電子元件的佈局結構的電路圖。 FIG. 1 is a circuit diagram showing a layout structure of an electronic component according to an embodiment of the present invention.
第2圖繪示如第1圖之電子元件的佈局結構的一實施例之示意圖。 FIG. 2 is a schematic view showing an embodiment of a layout structure of an electronic component as shown in FIG. 1.
第3圖繪示依照本發明一實施例之電子元件的佈局結構的測試方法示意圖。 FIG. 3 is a schematic diagram showing a test method of a layout structure of an electronic component according to an embodiment of the invention.
第4圖繪示依照本發明一實施例之電子元件的佈局結構的測試方法示意圖。 FIG. 4 is a schematic diagram showing a test method of a layout structure of an electronic component according to an embodiment of the invention.
第5圖繪示依照本發明一實施例與一比較例之統計結果比較圖。 Figure 5 is a graph showing a comparison of statistical results according to an embodiment of the present invention and a comparative example.
10‧‧‧電子元件的佈局結構 10‧‧‧Layout structure of electronic components
100‧‧‧電子元件陣列 100‧‧‧Electronic component array
102、104、106、108‧‧‧負載 102, 104, 106, 108‧‧‧ load
1002‧‧‧金氧半電晶體 1002‧‧‧Gold oxygen semi-transistor
S‧‧‧源極 S‧‧‧ source
D‧‧‧汲極 D‧‧‧汲
G‧‧‧閘極 G‧‧‧ gate
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102102050A TWI567844B (en) | 2013-01-18 | 2013-01-18 | Layout structure of electronic element and testing method of the same thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102102050A TWI567844B (en) | 2013-01-18 | 2013-01-18 | Layout structure of electronic element and testing method of the same thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201430979A TW201430979A (en) | 2014-08-01 |
TWI567844B true TWI567844B (en) | 2017-01-21 |
Family
ID=51797013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102102050A TWI567844B (en) | 2013-01-18 | 2013-01-18 | Layout structure of electronic element and testing method of the same thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI567844B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5508631A (en) * | 1994-10-27 | 1996-04-16 | Mitel Corporation | Semiconductor test chip with on wafer switching matrix |
TW200933760A (en) * | 2007-08-16 | 2009-08-01 | Micron Technology Inc | Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods |
TW201128742A (en) * | 2010-02-12 | 2011-08-16 | Cyntec Co Ltd | Electronic package structure |
US20120155049A1 (en) * | 2010-12-17 | 2012-06-21 | Tessera Research Llc | Enhanced stacked microelectronic assemblies with central contacts |
-
2013
- 2013-01-18 TW TW102102050A patent/TWI567844B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5508631A (en) * | 1994-10-27 | 1996-04-16 | Mitel Corporation | Semiconductor test chip with on wafer switching matrix |
TW200933760A (en) * | 2007-08-16 | 2009-08-01 | Micron Technology Inc | Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods |
TW201128742A (en) * | 2010-02-12 | 2011-08-16 | Cyntec Co Ltd | Electronic package structure |
US20120155049A1 (en) * | 2010-12-17 | 2012-06-21 | Tessera Research Llc | Enhanced stacked microelectronic assemblies with central contacts |
Also Published As
Publication number | Publication date |
---|---|
TW201430979A (en) | 2014-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100940415B1 (en) | On resistance test method for back-side-drain wafer | |
US7595649B2 (en) | Method to accurately estimate the source and drain resistance of a MOSFET | |
JP4549372B2 (en) | Leakage current measuring method and apparatus | |
US8000935B2 (en) | Diagnostic method for root-cause analysis of FET performance variation | |
US20140354325A1 (en) | Semiconductor layout structure and testing method thereof | |
US8108175B2 (en) | Method for determining self-heating free I-V characterstics of a transistor | |
TWI567844B (en) | Layout structure of electronic element and testing method of the same thereof | |
TW201937179A (en) | A method for estimating contact resistances of a MOS transistor | |
US8932884B2 (en) | Process environment variation evaluation | |
US20070139034A1 (en) | Semiconductor Device and Testing Method Thereof, and Resistance Measurement Apparatus | |
US7898269B2 (en) | Semiconductor device and method for measuring analog channel resistance thereof | |
JP5009702B2 (en) | Semiconductor evaluation element, semiconductor integrated circuit device, and evaluation method | |
US9063193B2 (en) | Layout structure of electronic element and testing method of the same thereof | |
CN114509657A (en) | Test unit for improving WAT test precision and test method thereof | |
US9500687B2 (en) | Circuit and method for measuring the gain of an operational amplifier | |
Terada et al. | Measurement of the MOSFET drain current variation under high gate voltage | |
KR0140949B1 (en) | Semiconductor integrated circuit device | |
US6831474B2 (en) | Apparatus and method for testing a plurality of electrical components that are coupled to one another | |
KR20100078608A (en) | Apparatus and method for testing mos transistors | |
Nunes et al. | Operational amplifier performance degradation and time-to-failure due to electromigration | |
CN118914802A (en) | Method and system for measuring drain current of semiconductor device | |
CN118010181A (en) | Temperature test structure, temperature test chip and temperature test method | |
CN116930711A (en) | Layout structure for describing performance characteristics of device, manufacturing and testing method | |
JP2005055231A (en) | Method for inspecting on resistance in mos transistor | |
US8415956B2 (en) | Electronic device and method for wire check |